Skip to content

Commit

Permalink
fix: correct EXAMPLES_DATA_PATH import
Browse files Browse the repository at this point in the history
  • Loading branch information
Lopa10ko committed Jan 27, 2025
1 parent c567c3c commit 6362f51
Show file tree
Hide file tree
Showing 3 changed files with 51 additions and 63 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2,78 +2,66 @@
import torchvision.transforms as transforms
from fedot_ind.core.architecture.pipelines.abstract_pipeline import ApiTemplate
from fedot_ind.core.repository.config_repository import DEFAULT_COMPUTE_CONFIG, \
DEFAULT_AUTOML_LEARNING_CONFIG
DEFAULT_AUTOML_LEARNING_CONFIG, DEFAULT_CLF_AUTOML_CONFIG
from fedot_ind.tools.serialisation.path_lib import EXAMPLES_DATA_PATH


transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
if __name__ == '__main__':
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

# Load the MNIST train and test dataset
train_data = (datasets.MNIST(
root="./examples/data",
train=True,
download=True,
transform=transform), 'torchvision_dataset')
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])

test_data = (datasets.MNIST(
root="./examples/data",
train=False,
download=True,
transform=transform), 'torchvision_dataset')
# Load the MNIST train and test dataset
train_data = (datasets.MNIST(
root=EXAMPLES_DATA_PATH,
train=True,
download=True,
transform=transform), 'torchvision_dataset')

metric_names = ('f1', 'accuracy', 'precision', 'roc_auc')
test_data = (datasets.MNIST(
root="EXAMPLES_DATA_PATH",
train=False,
download=True,
transform=transform), 'torchvision_dataset')

lora_params = dict(rank=2,
sampling_share=0.5,
lora_init='random',
epochs=1,
batch_size=10
)
METRIC_NAMES = ('f1', 'accuracy', 'precision', 'roc_auc')

api_config = dict(problem='classification',
metric='accuracy',
timeout=0.1,
with_tuning=False,
industrial_strategy='lora_strategy',
industrial_strategy_params=lora_params,
logging_level=20)

AUTOML_LEARNING_STRATEGY = DEFAULT_AUTOML_LEARNING_CONFIG
COMPUTE_CONFIG = DEFAULT_COMPUTE_CONFIG
AUTOML_CONFIG = {'task': 'classification',
'use_automl': True,
'optimisation_strategy': {'optimisation_strategy': {'mutation_agent': 'bandit',
'mutation_strategy': 'growth_mutation_strategy'},
'optimisation_agent': 'Industrial'}}
DEFAULT_AUTOML_LEARNING_CONFIG['timeout'] = 0.1
AUTOML_LEARNING_STRATEGY = DEFAULT_AUTOML_LEARNING_CONFIG
COMPUTE_CONFIG = DEFAULT_COMPUTE_CONFIG
AUTOML_CONFIG = DEFAULT_CLF_AUTOML_CONFIG

LEARNING_CONFIG = {'learning_strategy': 'from_scratch',
'learning_strategy_params': AUTOML_LEARNING_STRATEGY,
'optimisation_loss': {'quality_loss': 'accuracy'}}
LEARNING_CONFIG = {'learning_strategy': 'from_scratch',
'learning_strategy_params': AUTOML_LEARNING_STRATEGY,
'optimisation_loss': {'quality_loss': 'accuracy'}}

INDUSTRIAL_PARAMS = {'rank': 2,
'sampling_share': 0.5,
'lora_init': 'random',
'epochs': 1,
'batch_size': 10,
'data_type': 'tensor'
}
INDUSTRIAL_PARAMS = {'rank': 2,
'sampling_share': 0.5,
'lora_init': 'random',
'epochs': 1,
'batch_size': 10,
'data_type': 'tensor'
}

INDUSTRIAL_CONFIG = {'problem': 'classification',
'strategy': 'lora_strategy',
'strategy_params': INDUSTRIAL_PARAMS
}
INDUSTRIAL_CONFIG = {'problem': 'classification',
'strategy': 'lora_strategy',
'strategy_params': INDUSTRIAL_PARAMS
}

API_CONFIG = {'industrial_config': INDUSTRIAL_CONFIG,
'automl_config': AUTOML_CONFIG,
'learning_config': LEARNING_CONFIG,
'compute_config': COMPUTE_CONFIG}
API_CONFIG = {'industrial_config': INDUSTRIAL_CONFIG,
'automl_config': AUTOML_CONFIG,
'learning_config': LEARNING_CONFIG,
'compute_config': COMPUTE_CONFIG}

dataset = dict(test_data=test_data, train_data=train_data)
dataset_dict = dict(test_data=(test_data[0].data.numpy(), test_data[0].targets.numpy()),
train_data=(train_data[0].data.numpy(), train_data[0].targets.numpy()))

industrial = ApiTemplate(api_config=API_CONFIG,
metric_list=metric_names).eval(dataset=dataset)
industrial.fit(train_data)
predict = industrial.predict(test_data)
_ = 1
industrial = ApiTemplate(api_config=API_CONFIG,
metric_list=METRIC_NAMES).eval(dataset=dataset_dict)
industrial.fit(train_data)
predict = industrial.predict(test_data)
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from fedot_ind.core.architecture.pipelines.abstract_pipeline import ApiTemplate
from fedot_ind.core.repository.config_repository import DEFAULT_COMPUTE_CONFIG, DEFAULT_CLF_AUTOML_CONFIG
from tools.test_load_data import EXAMPLES_DATA_PATH
from fedot_ind.tools.serialisation.path_lib import EXAMPLES_DATA_PATH


def prepare_skab_benchmark():
Expand Down
2 changes: 1 addition & 1 deletion fedot_ind/core/architecture/pipelines/abstract_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from fedot_ind.core.repository.initializer_industrial_models import IndustrialModels
from fedot_ind.core.repository.model_repository import NEURAL_MODEL
from fedot_ind.tools.loader import DataLoader
from tools.test_load_data import EXAMPLES_DATA_PATH
from fedot_ind.tools.serialisation.path_lib import EXAMPLES_DATA_PATH

BENCHMARK = 'M4'

Expand Down

0 comments on commit 6362f51

Please sign in to comment.