diff --git a/examples/automl_example/api_example/time_series/ts_classification/tmp.py b/examples/automl_example/api_example/time_series/ts_classification/tmp.py index 37e444d53..e49dbd454 100644 --- a/examples/automl_example/api_example/time_series/ts_classification/tmp.py +++ b/examples/automl_example/api_example/time_series/ts_classification/tmp.py @@ -21,8 +21,8 @@ def multiclass_classification(): pdc.fit(X, y) print('score:', pdc.score(X, y)) - y_pred = pdc.predict(X) - proba_pred = pdc.predict_proba(X) + pdc.predict(X) + pdc.predict_proba(X) assert pdc.score(X, y) == 1.0 diff --git a/fedot_ind/api/main.py b/fedot_ind/api/main.py index e735b36b4..be57fa31d 100644 --- a/fedot_ind/api/main.py +++ b/fedot_ind/api/main.py @@ -324,7 +324,7 @@ def get_metrics(self, predicted_probs=probs, rounding_order=rounding_order, metric_names=metric_names) for strategy, - probs in self.predicted_probs.items()} + probs in self.predicted_probs.items()} else: metric_dict = self._metric_evaluation_loop( diff --git a/fedot_ind/core/repository/constanst_repository.py b/fedot_ind/core/repository/constanst_repository.py index b95e0f7b3..be3a70280 100644 --- a/fedot_ind/core/repository/constanst_repository.py +++ b/fedot_ind/core/repository/constanst_repository.py @@ -409,6 +409,7 @@ class FedotOperationConstant(Enum): "catboostreg": FedotCatBoostRegressionImplementation } + class ModelCompressionConstant(Enum): ENERGY_THR = [0.9, 0.95, 0.99, 0.999] DECOMPOSE_MODE = 'channel'