Skip to content

Commit

Permalink
delete links to examples
Browse files Browse the repository at this point in the history
  • Loading branch information
valer1435 committed Jan 18, 2024
1 parent 9395e71 commit 37e539c
Show file tree
Hide file tree
Showing 11 changed files with 58 additions and 54 deletions.
45 changes: 0 additions & 45 deletions cases/utils.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,18 @@
import numpy as np
import pandas as pd
from fedot.core.data.data import InputData
from fedot.core.pipelines.pipeline_builder import PipelineBuilder
from fedot.core.pipelines.tuning.tuner_builder import TunerBuilder
from fedot.core.repository.dataset_types import DataTypesEnum
from fedot.core.repository.metrics_repository import RegressionMetricsEnum
from fedot.core.repository.tasks import TaskTypesEnum, Task
from golem.core.tuning.simultaneous import SimultaneousTuner
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, median_absolute_error, \
explained_variance_score, max_error, d2_absolute_error_score
from sklearn.preprocessing import LabelEncoder

from fedot_ind.api.main import FedotIndustrial
from fedot_ind.api.utils.path_lib import PROJECT_PATH
from fedot_ind.core.optimizer.IndustrialEvoOptimizer import IndustrialEvoOptimizer
from fedot_ind.core.repository.initializer_industrial_models import IndustrialModels


def check_multivariate_data(data: pd.DataFrame) -> bool:
if isinstance(data.iloc[0, 0], pd.Series):
return True
else:
return False


def calculate_regression_metric(test_target, labels):
test_target = test_target.astype(np.float)
metric_dict = {'r2_score:': r2_score(test_target, labels),
Expand All @@ -40,40 +29,6 @@ def calculate_regression_metric(test_target, labels):
return df


def init_input_data(X: pd.DataFrame, y: np.ndarray, task: str = 'classification') -> InputData:
is_multivariate_data = check_multivariate_data(X)
task_dict = {'classification': Task(TaskTypesEnum.classification),
'regression': Task(TaskTypesEnum.regression)}
features = X.values

if type((y)[0]) is np.str_ and task == 'classification':
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
elif type((y)[0]) is np.str_ and task == 'regression':
y = y.astype(float)

if is_multivariate_data:
input_data = InputData(idx=np.arange(len(X)),
features=np.array(features.tolist()).astype(np.float),
target=y.reshape(-1, 1),
task=task_dict[task],
data_type=DataTypesEnum.image)
else:
input_data = InputData(idx=np.arange(len(X)),
features=X.values,
target=np.ravel(y).reshape(-1, 1),
task=task_dict[task],
data_type=DataTypesEnum.table)

if task == 'regression':
input_data.target = input_data.target.squeeze()
elif task == 'classification':
input_data.target[input_data.target == -1] = 0
input_data.features = np.where(np.isnan(input_data.features), 0, input_data.features)
input_data.features = np.where(np.isinf(input_data.features), 0, input_data.features)
return input_data


def evaluate_industrial_model(train_data, test_data, task: str = 'regression'):
metric_dict = {}
input_data = init_input_data(train_data[0], train_data[1], task=task)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import pandas as pd
from fedot.core.pipelines.pipeline_builder import PipelineBuilder

from examples.example_utils import evaluate_metric, init_input_data
from examples.example_utils import evaluate_metric
from fedot_ind.api.utils.data import init_input_data
from fedot_ind.core.repository.initializer_industrial_models import IndustrialModels
from fedot_ind.tools.loader import DataLoader

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@
from fedot.core.pipelines.node import PipelineNode
from fedot.core.pipelines.pipeline_builder import PipelineBuilder

from examples.example_utils import evaluate_metric, init_input_data
from examples.example_utils import evaluate_metric
from fedot_ind.api.utils.data import init_input_data
from fedot_ind.core.repository.initializer_industrial_models import IndustrialModels
from fedot_ind.tools.loader import DataLoader
from fedot.core.pipelines.pipeline import Pipeline
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@

from fedot.core.pipelines.pipeline_builder import PipelineBuilder
from examples.example_utils import evaluate_metric
from examples.example_utils import init_input_data
from fedot_ind.api.utils.data import init_input_data
from fedot_ind.tools.loader import DataLoader
from fedot_ind.core.repository.initializer_industrial_models import IndustrialModels

Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from fedot.core.pipelines.pipeline_builder import PipelineBuilder

from examples.example_utils import init_input_data, calculate_regression_metric
from examples.example_utils import calculate_regression_metric
from fedot_ind.api.utils.data import init_input_data
from fedot_ind.api.utils.path_lib import PROJECT_PATH
from fedot_ind.core.repository.initializer_industrial_models import IndustrialModels
from fedot_ind.tools.loader import DataLoader
Expand Down
2 changes: 1 addition & 1 deletion fedot_ind/api/utils/checkers_collections.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
import logging

from fedot_ind.api.utils.data import check_multivariate_data
from fedot_ind.core.architecture.settings.computational import backend_methods as np
from fedot.core.data.data import InputData
from fedot.core.repository.dataset_types import DataTypesEnum
from sklearn.preprocessing import LabelEncoder
from fedot.core.repository.tasks import Task, TaskTypesEnum

from examples.example_utils import check_multivariate_data
from fedot_ind.core.architecture.preprocessing.data_convertor import NumpyConverter


Expand Down
47 changes: 47 additions & 0 deletions fedot_ind/api/utils/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
import numpy as np
import pandas as pd
from fedot.core.data.data import InputData
from fedot.core.repository.dataset_types import DataTypesEnum
from fedot.core.repository.tasks import TaskTypesEnum, Task
from sklearn.preprocessing import LabelEncoder


def check_multivariate_data(data: pd.DataFrame) -> bool:
if isinstance(data.iloc[0, 0], pd.Series):
return True
else:
return False


def init_input_data(X: pd.DataFrame, y: np.ndarray, task: str = 'classification') -> InputData:
is_multivariate_data = check_multivariate_data(X)
task_dict = {'classification': Task(TaskTypesEnum.classification),
'regression': Task(TaskTypesEnum.regression)}
features = X.values

if type((y)[0]) is np.str_ and task == 'classification':
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
elif type((y)[0]) is np.str_ and task == 'regression':
y = y.astype(float)

if is_multivariate_data:
input_data = InputData(idx=np.arange(len(X)),
features=np.array(features.tolist()).astype(np.float),
target=y.reshape(-1, 1),
task=task_dict[task],
data_type=DataTypesEnum.image)
else:
input_data = InputData(idx=np.arange(len(X)),
features=X.values,
target=np.ravel(y).reshape(-1, 1),
task=task_dict[task],
data_type=DataTypesEnum.table)

if task == 'regression':
input_data.target = input_data.target.squeeze()
elif task == 'classification':
input_data.target[input_data.target == -1] = 0
input_data.features = np.where(np.isnan(input_data.features), 0, input_data.features)
input_data.features = np.where(np.isinf(input_data.features), 0, input_data.features)
return input_data
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from pymonad.list import ListMonad
from sklearn.preprocessing import LabelEncoder

from examples.example_utils import check_multivariate_data
from fedot_ind.api.utils.data import check_multivariate_data
from fedot_ind.core.architecture.settings.computational import backend_methods as np
from fedot_ind.core.architecture.settings.computational import default_device
from fedot_ind.core.repository.constanst_repository import MATRIX, MULTI_ARRAY
Expand Down
1 change: 0 additions & 1 deletion fedot_ind/core/models/base_extractor.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
from joblib import delayed, Parallel
from tqdm import tqdm

from examples.example_utils import init_input_data
from fedot_ind.core.architecture.abstraction.decorators import convert_to_input_data, fedot_data_type, remove_1_dim_axis
from fedot_ind.core.metrics.metrics_implementation import *
from fedot_ind.core.operation.IndustrialCachableOperation import IndustrialCachableOperationImplementation
Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
from fedot_ind.api.utils.data import init_input_data
from fedot_ind.core.architecture.settings.computational import backend_methods as np
import pytest
from fedot.core.data.data import OutputData

from examples.example_utils import init_input_data
from fedot_ind.core.operation.transformation.basis.fourier import FourierBasisImplementation
from fedot_ind.tools.synthetic.ts_datasets_generator import TimeSeriesDatasetsGenerator

Expand Down
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
from fedot_ind.api.utils.data import init_input_data
from fedot_ind.core.architecture.settings.computational import backend_methods as np
import pytest
import pywt
from fedot.core.data.data import OutputData

from examples.example_utils import init_input_data
from fedot_ind.core.operation.transformation.basis.wavelet import WaveletBasisImplementation
from fedot_ind.tools.synthetic.ts_datasets_generator import TimeSeriesDatasetsGenerator

Expand Down

0 comments on commit 37e539c

Please sign in to comment.