diff --git a/examples/automl_example/api_example/time_series/ts_forecasting/m4_analiysis/ts_forecasting_m4_benchmark.py b/examples/automl_example/api_example/time_series/ts_forecasting/m4_analiysis/ts_forecasting_m4_benchmark.py index d9285f08c..8a41e04d4 100644 --- a/examples/automl_example/api_example/time_series/ts_forecasting/m4_analiysis/ts_forecasting_m4_benchmark.py +++ b/examples/automl_example/api_example/time_series/ts_forecasting/m4_analiysis/ts_forecasting_m4_benchmark.py @@ -42,8 +42,8 @@ api_config.update(output_folder=os.path.join( PROJECT_PATH, 'results_of_experiments', dataset_name)) n_beats_forecast, n_beats_metrics, \ - autogluon_forecast, autogluon_metrics = compare_forecast_with_sota(dataset_name=dataset_name, - horizon=horizon) + autogluon_forecast, autogluon_metrics = compare_forecast_with_sota(dataset_name=dataset_name, + horizon=horizon) model, labels, metrics, target = industrial_forecasting_modelling_loop(dataset_name=dataset_name, benchmark=benchmark, horizon=horizon, diff --git a/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py b/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py index 004cb9a86..bd29bcb7d 100644 --- a/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py +++ b/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py @@ -6,12 +6,13 @@ dataset_name = {'benchmark': 'M4', 'dataset': 'D3257'} finetune = False - initial_assumptions = {'nbeats': PipelineBuilder().add_node('nbeats_model'), - 'industiral': PipelineBuilder().add_node( - 'eigen_basis', - params={ - 'low_rank_approximation': False, - 'rank_regularization': 'explained_dispersion'}).add_node('ar')} + initial_assumptions = { + 'nbeats': PipelineBuilder().add_node('nbeats_model'), + 'industiral': PipelineBuilder().add_node( + 'eigen_basis', + params={ + 'low_rank_approximation': False, + 'rank_regularization': 'explained_dispersion'}).add_node('ar')} for assumption in initial_assumptions.keys(): api_config = dict(problem='ts_forecasting', metric='rmse', diff --git a/fedot_ind/core/metrics/metrics_implementation.py b/fedot_ind/core/metrics/metrics_implementation.py index 233f7da4d..4d0206126 100644 --- a/fedot_ind/core/metrics/metrics_implementation.py +++ b/fedot_ind/core/metrics/metrics_implementation.py @@ -266,12 +266,12 @@ def calculate_classification_metric( probs, rounding_order=3, metric_names=( - 'f1', - # 'roc_auc', - 'accuracy')): + 'f1', + # 'roc_auc', + 'accuracy')): metric_dict = {'accuracy': Accuracy, 'f1': F1, - #'roc_auc': ROCAUC, + # 'roc_auc': ROCAUC, 'precision': Precision, 'logloss': Logloss} diff --git a/fedot_ind/tools/example_utils.py b/fedot_ind/tools/example_utils.py index 2546b9a6b..daf451f08 100644 --- a/fedot_ind/tools/example_utils.py +++ b/fedot_ind/tools/example_utils.py @@ -93,18 +93,21 @@ def industrial_common_modelling_loop( finetune: bool = False, api_config: dict = None, metric_names: tuple = ( - 'r2', - 'rmse', - 'mae')): + 'r2', + 'rmse', + 'mae')): industrial = FedotIndustrial(**api_config) if api_config['problem'] == 'ts_forecasting': - train_data, _ = DataLoader(dataset_name=dataset_name['dataset']).load_forecast_data( + train_data, _ = DataLoader( + dataset_name=dataset_name['dataset']).load_forecast_data( dataset_name['benchmark']) - target = train_data.values[-api_config['task_params']['forecast_length']:].flatten() + target = train_data.values[-api_config['task_params'] + ['forecast_length']:].flatten() train_data = (train_data, target) test_data = train_data else: - train_data, test_data = DataLoader(dataset_name=dataset_name).load_data() + train_data, test_data = DataLoader( + dataset_name=dataset_name).load_data() if finetune: industrial.finetune(train_data, tuning_params={ 'tuning_timeout': api_config['timeout']}) @@ -139,11 +142,11 @@ def create_comprasion_df(df, metric: str = 'rmse'): df_full = df_full[df_full['Unnamed: 0'] == metric] df_full = df_full.drop('Unnamed: 0', axis=1) df_full['Difference_industrial_All'] = ( - df_full.iloc[:, 1:3].min(axis=1) - df_full['industrial']) + df_full.iloc[:, 1:3].min(axis=1) - df_full['industrial']) df_full['Difference_industrial_AG'] = ( - df_full.iloc[:, 1:2].min(axis=1) - df_full['industrial']) + df_full.iloc[:, 1:2].min(axis=1) - df_full['industrial']) df_full['Difference_industrial_NBEATS'] = ( - df_full.iloc[:, 2:3].min(axis=1) - df_full['industrial']) + df_full.iloc[:, 2:3].min(axis=1) - df_full['industrial']) df_full['industrial_Wins_All'] = df_full.apply( lambda row: 'Win' if row.loc['Difference_industrial_All'] > 0 else 'Loose', axis=1) df_full['industrial_Wins_AG'] = df_full.apply(