forked from Soonhwan-Kwon/capsnet.mxnet
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcapsulenet.py
executable file
·348 lines (301 loc) · 14 KB
/
capsulenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import mxnet as mx
import numpy as np
import os
import re
import urllib
import gzip
import struct
import scipy.ndimage as ndi
from capsulelayers import primary_caps, CapsuleLayer
from tensorboard import SummaryWriter
def margin_loss(y_true, y_pred):
loss = y_true * mx.sym.square(mx.sym.maximum(0., 0.9 - y_pred)) +\
0.5 * (1 - y_true) * mx.sym.square(mx.sym.maximum(0., y_pred - 0.1))
return mx.sym.mean(data=mx.sym.sum(loss, 1))
def capsnet(batch_size, n_class, num_routing,recon_loss_weight):
# data.shape = [batch_size, 1, 28, 28]
data = mx.sym.Variable('data')
input_shape = (1, 28, 28)
# Conv2D layer
# net.shape = [batch_size, 256, 20, 20]
conv1 = mx.sym.Convolution(data=data,
num_filter=256,
kernel=(9, 9),
layout='NCHW',
name='conv1')
conv1 = mx.sym.Activation(data=conv1, act_type='relu', name='conv1_act')
# net.shape = [batch_size, 256, 6, 6]
primarycaps = primary_caps(data=conv1,
dim_vector=8,
n_channels=32,
kernel=(9, 9),
strides=[2, 2],
name='primarycaps')
primarycaps.infer_shape(data=(batch_size, 1, 28, 28))
# CapsuleLayer
kernel_initializer = mx.init.Xavier(rnd_type='uniform', factor_type='avg', magnitude=3)
bias_initializer = mx.init.Zero()
digitcaps = CapsuleLayer(num_capsule=10,
dim_vector=16,
batch_size=batch_size,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
num_routing=num_routing)(primarycaps)
# out_caps : (batch_size, 10)
out_caps = mx.sym.sqrt(data=mx.sym.sum(mx.sym.square(digitcaps), 2))
out_caps.infer_shape(data=(batch_size, 1, 28, 28))
y = mx.sym.Variable('softmax_label', shape=(batch_size,))
y_onehot = mx.sym.one_hot(y, n_class)
y_reshaped = mx.sym.Reshape(data=y_onehot, shape=(batch_size, -4, n_class, -1))
y_reshaped.infer_shape(softmax_label=(batch_size,))
# inputs_masked : (batch_size, 16)
inputs_masked = mx.sym.linalg_gemm2(y_reshaped, digitcaps, transpose_a=True)
inputs_masked = mx.sym.Reshape(data=inputs_masked, shape=(-3, 0))
x_recon = mx.sym.FullyConnected(data=inputs_masked, num_hidden=512, name='x_recon')
x_recon = mx.sym.Activation(data=x_recon, act_type='relu', name='x_recon_act')
x_recon = mx.sym.FullyConnected(data=x_recon, num_hidden=1024, name='x_recon2')
x_recon = mx.sym.Activation(data=x_recon, act_type='relu', name='x_recon_act2')
x_recon = mx.sym.FullyConnected(data=x_recon, num_hidden=np.prod(input_shape), name='x_recon3')
x_recon = mx.sym.Activation(data=x_recon, act_type='sigmoid', name='x_recon_act3')
data_flatten = mx.sym.flatten(data=data)
squared_error = mx.sym.square(x_recon-data_flatten)
recon_error = mx.sym.mean(squared_error)
recon_error_stopped = recon_error
recon_error_stopped = mx.sym.BlockGrad(recon_error_stopped)
loss = mx.symbol.MakeLoss((1-recon_loss_weight)*margin_loss(y_onehot, out_caps)+recon_loss_weight*recon_error)
out_caps_blocked = out_caps
out_caps_blocked = mx.sym.BlockGrad(out_caps_blocked)
return mx.sym.Group([out_caps_blocked, loss, recon_error_stopped])
def download_data(url, force_download=False):
fname = url.split("/")[-1]
if force_download or not os.path.exists(fname):
urllib.urlretrieve(url, fname)
return fname
def read_data(label_url, image_url):
with gzip.open(download_data(label_url)) as flbl:
magic, num = struct.unpack(">II", flbl.read(8))
label = np.fromstring(flbl.read(), dtype=np.int8)
with gzip.open(download_data(image_url), 'rb') as fimg:
magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16))
image = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(label), rows, cols)
return label, image
def to4d(img):
return img.reshape(img.shape[0], 1, 28, 28).astype(np.float32)/255
class LossMetric(mx.metric.EvalMetric):
def __init__(self, batch_size, num_gpu):
super(LossMetric, self).__init__('LossMetric')
self.batch_size = batch_size
self.num_gpu = num_gpu
self.sum_metric = 0
self.num_inst = 0
self.loss = 0.0
self.batch_sum_metric = 0
self.batch_num_inst = 0
self.batch_loss = 0.0
self.recon_loss = 0.0
self.n_batch = 0
def update(self, labels, preds):
batch_sum_metric = 0
batch_num_inst = 0
for label, pred_outcaps in zip(labels[0], preds[0]):
label_np = int(label.asnumpy())
pred_label = int(np.argmax(pred_outcaps.asnumpy()))
batch_sum_metric += int(label_np == pred_label)
batch_num_inst += 1
batch_loss = preds[1].asnumpy()
recon_loss = preds[2].asnumpy()
self.sum_metric += batch_sum_metric
self.num_inst += batch_num_inst
self.loss += batch_loss
self.recon_loss += recon_loss
self.batch_sum_metric = batch_sum_metric
self.batch_num_inst = batch_num_inst
self.batch_loss = batch_loss
self.n_batch += 1
def get_name_value(self):
acc = float(self.sum_metric)/float(self.num_inst)
mean_loss = self.loss / float(self.n_batch)
mean_recon_loss = self.recon_loss / float(self.n_batch)
return acc, mean_loss, mean_recon_loss
def get_batch_log(self, n_batch):
print("n_batch :"+str(n_batch)+" batch_acc:" +
str(float(self.batch_sum_metric) / float(self.batch_num_inst)) +
' batch_loss:' + str(float(self.batch_loss)/float(self.batch_num_inst)))
self.batch_sum_metric = 0
self.batch_num_inst = 0
self.batch_loss = 0.0
def reset(self):
self.sum_metric = 0
self.num_inst = 0
self.loss = 0.0
self.recon_loss = 0.0
self.n_batch = 0
class SimpleLRScheduler(mx.lr_scheduler.LRScheduler):
"""A simple lr schedule that simply return `dynamic_lr`. We will set `dynamic_lr`
dynamically based on performance on the validation set.
"""
def __init__(self, learning_rate=0.001):
super(SimpleLRScheduler, self).__init__()
self.learning_rate = learning_rate
def __call__(self, num_update):
return self.learning_rate
def do_training(num_epoch, optimizer, kvstore, learning_rate, model_prefix, decay):
summary_writer = SummaryWriter(args.tblog_dir)
lr_scheduler = SimpleLRScheduler(learning_rate)
optimizer_params = {'lr_scheduler': lr_scheduler}
module.init_params()
module.init_optimizer(kvstore=kvstore,
optimizer=optimizer,
optimizer_params=optimizer_params)
n_epoch = 0
while True:
if n_epoch >= num_epoch:
break
train_iter.reset()
val_iter.reset()
loss_metric.reset()
for n_batch, data_batch in enumerate(train_iter):
module.forward_backward(data_batch)
module.update()
module.update_metric(loss_metric, data_batch.label)
loss_metric.get_batch_log(n_batch)
train_acc, train_loss, train_recon_err = loss_metric.get_name_value()
loss_metric.reset()
for n_batch, data_batch in enumerate(val_iter):
module.forward(data_batch)
module.update_metric(loss_metric, data_batch.label)
loss_metric.get_batch_log(n_batch)
val_acc, val_loss, val_recon_err = loss_metric.get_name_value()
summary_writer.add_scalar('train_acc', train_acc, n_epoch)
summary_writer.add_scalar('train_loss', train_loss, n_epoch)
summary_writer.add_scalar('train_recon_err', train_recon_err, n_epoch)
summary_writer.add_scalar('val_acc', val_acc, n_epoch)
summary_writer.add_scalar('val_loss', val_loss, n_epoch)
summary_writer.add_scalar('val_recon_err', val_recon_err, n_epoch)
print('Epoch[%d] train acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, train_acc, train_loss, train_recon_err))
print('Epoch[%d] val acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, val_acc, val_loss, val_recon_err))
print('SAVE CHECKPOINT')
module.save_checkpoint(prefix=model_prefix, epoch=n_epoch)
n_epoch += 1
lr_scheduler.learning_rate = learning_rate * (decay ** n_epoch)
def apply_transform(x,
transform_matrix,
fill_mode='nearest',
cval=0.):
x = np.rollaxis(x, 0, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(
x_channel,
final_affine_matrix,
final_offset,
order=0,
mode=fill_mode,
cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, 0 + 1)
return x
def random_shift(x, width_shift_fraction, height_shift_fraction):
tx = np.random.uniform(-height_shift_fraction, height_shift_fraction) * x.shape[2]
ty = np.random.uniform(-width_shift_fraction, width_shift_fraction) * x.shape[1]
shift_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
x = apply_transform(x, shift_matrix, 'nearest')
return x
def _shuffle(data, idx):
"""Shuffle the data."""
shuffle_data = []
for k, v in data:
shuffle_data.append((k, mx.ndarray.array(v.asnumpy()[idx], v.context)))
return shuffle_data
class MNISTCustomIter(mx.io.NDArrayIter):
def reset(self):
# shuffle data
if self.is_train:
np.random.shuffle(self.idx)
self.data = _shuffle(self.data, self.idx)
self.label = _shuffle(self.label, self.idx)
if self.last_batch_handle == 'roll_over' and self.cursor > self.num_data:
self.cursor = -self.batch_size + (self.cursor%self.num_data)%self.batch_size
else:
self.cursor = -self.batch_size
def set_is_train(self, is_train):
self.is_train = is_train
def next(self):
if self.iter_next():
if self.is_train:
data_raw_list = self.getdata()
data_shifted = []
for data_raw in data_raw_list[0]:
data_shifted.append(random_shift(data_raw.asnumpy(), 0.1, 0.1))
return mx.io.DataBatch(data=[mx.nd.array(data_shifted)], label=self.getlabel(),
pad=self.getpad(), index=None)
else:
return mx.io.DataBatch(data=self.getdata(), label=self.getlabel(), \
pad=self.getpad(), index=None)
else:
raise StopIteration
if __name__ == "__main__":
# Read mnist data set
path = 'http://yann.lecun.com/exdb/mnist/'
(train_lbl, train_img) = read_data(
path + 'train-labels-idx1-ubyte.gz', path + 'train-images-idx3-ubyte.gz')
(val_lbl, val_img) = read_data(
path + 't10k-labels-idx1-ubyte.gz', path + 't10k-images-idx3-ubyte.gz')
# set batch size
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int)
parser.add_argument('--devices', default='gpu0', type=str)
parser.add_argument('--num_epoch', default=100, type=int)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--num_routing', default=3, type=int)
parser.add_argument('--model_prefix', default='capsnet', type=str)
parser.add_argument('--decay', default=0.9, type=float)
parser.add_argument('--tblog_dir', default='tblog', type=str)
parser.add_argument('--recon_loss_weight', default=0.392, type=float)
args = parser.parse_args()
for k, v in sorted(vars(args).items()):
print("{0}: {1}".format(k, v))
contexts = re.split(r'\W+', args.devices)
for i, ctx in enumerate(contexts):
if ctx[:3] == 'gpu':
contexts[i] = mx.context.gpu(int(ctx[3:]))
else:
contexts[i] = mx.context.cpu()
num_gpu = len(contexts)
if args.batch_size % num_gpu != 0:
raise Exception('num_gpu should be positive divisor of batch_size')
# generate train_iter, val_iter
train_iter = MNISTCustomIter(data=to4d(train_img), label=train_lbl, batch_size=args.batch_size, shuffle=True)
train_iter.set_is_train(True)
val_iter = MNISTCustomIter(data=to4d(val_img), label=val_lbl, batch_size=args.batch_size,)
val_iter.set_is_train(False)
# define capsnet
final_net = capsnet(batch_size=args.batch_size/num_gpu, n_class=10, num_routing=args.num_routing, recon_loss_weight=args.recon_loss_weight)
# set metric
loss_metric = LossMetric(args.batch_size/num_gpu, 1)
# run model
module = mx.mod.Module(symbol=final_net, context=contexts, data_names=('data',), label_names=('softmax_label',))
module.bind(data_shapes=train_iter.provide_data,
label_shapes=val_iter.provide_label,
for_training=True)
do_training(num_epoch=args.num_epoch, optimizer='adam', kvstore='device', learning_rate=args.lr,
model_prefix=args.model_prefix, decay=args.decay)