Skip to content

afondiel/edge-computer-vision

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Edge Computer Vision: A Practical Guide

Overview

This repository serves as a comprehensive, practical guide for deploying optimized computer vision models on edge devices across key industries.

Motivation

The goal is to bridge the gap between theoretical computer science and real-world applications, with a focus on edge AI engineering.

Key Features

  • Fundamental concepts and practices for Edge AI
  • Industry-specific blueprints for vision AI deployment
  • Edge optimization techniques for various hardware targets
  • Production-ready pipelines and best practices
  • Practical case studies and hands-on projects

Table of Contents

Edge AI Engineering

Fundamental concepts and practices for Edge AI:

Industry Blueprints

Practical implementation guides for:

  • Autonomous Systems
  • Medical Imaging
  • Smart Retail
  • Security & Surveillance
  • Agriculture
  • Manufacturing
  • Smart Cities

Edge Optimization Lab

Learn how to optimize models for edge deployment:

  • Model Quantization
  • Pruning Techniques
  • Federated Learning
  • Compiler Targets (TVM, ONNX Runtime)

Production Pipelines

Guides for deploying and maintaining edge AI systems:

  • CI/CD for Edge
  • Monitoring and Drift Detection
  • OTA Updates

Reference Architectures

Hardware setups and specifications for various edge deployment scenarios.

Project Structure

A focused resource for deploying optimized vision models on edge devices across key industries.

├── edge-ai-engineering/
│   ├── introduction-to-edge-ai.md
│   ├── edge-ai-architectures.md
│   ├── model-optimization-techniques.md
│   ├── hardware-acceleration.md
│   ├── edge-deployment-strategies.md
│   ├── real-time-processing.md
│   ├── privacy-and-security.md
│   ├── edge-ai-frameworks.md
│   └── benchmarking-and-performance.md    
├── industry-blueprints/
│   ├── autonomous-systems/
│   │   ├── traffic-analysis-yolov8-tensorrt.md     
│   │   ├── drone-navigation-lite.md
│   │   ├── pedestrian-tracking-edgetpu.md
│   │   └── vehicle-defect-detection-openvino.md
│   ├── healthcare-medical-imaging/
│   │   ├── xray-classification-tflite.md            
│   │   ├── ultrasound-segmentation-ncnn.md
│   │   ├── mri-tumor-detection-onnx.md
│   │   └── remote-patient-monitoring-jetson.md
│   ├── retail-consumer-analytics/
│   │   ├── shelf-analytics-mmdetection.md
│   │   ├── checkout-automation.md
│   │   ├── customer-behavior-analysis-openvino.md
│   │   └── inventory-management-edge-tflite.md
│   ├── security-surveillance/
│   │   ├── perimeter-surveillance-yolo.md
│   │   ├── anomaly-detection-autoencoder.md
│   │   ├── facial-recognition-privacy-preserving.md
│   │   └── crowd-behavior-analysis-edge.md
│   ├── agriculture-precision-farming/
│   │   ├── crop-health-monitoring-multispectral.md
│   │   ├── yield-prediction-edge-ml.md
│   │   └── autonomous-harvesting-robotics.md
│   ├── manufacturing-quality-control/
│   │   ├── defect-detection-openvino.md             
│   │   ├── robotic-picking-ort.md
│   │   └── predictive-maintenance-edge-analytics.md
│   └── smart-cities-urban-planning/
│       ├── traffic-flow-optimization-edge.md
│       ├── waste-management-vision-ai.md
│       └── energy-grid-monitoring-federated.md
├── edge-optimization-lab/                         
│   ├── model-quantization/
│   │   ├── post-training-int8.md
│   │   └── qat-pytorch.md
│   ├── pruning-techniques/
│   │   ├── magnitude-pruning.md
│   │   └── lottery-ticket-hypothesis.md
│   ├── federated-learning/
│   │   ├── privacy-preserving-cv.md
│   │   └── distributed-training.md
│   ├── compiler-targets/
│   │   ├── tvm-tutorial.md
│   │   └── onnx-runtime-guide.md
│   └── hardware-specific-optimization/
│       ├── nvidia-jetson-optimization.md
│       ├── intel-openvino-deployment.md
│       ├── raspberry-pi-edge-ai.md
│       └── microcontroller-tinyml.md
├── production-pipelines/                           
│   ├── ci-cd-for-edge.md
│   ├── monitoring/
│   │   ├── drift-detection.md
│   │   └── edge-metrics-dashboard.md
│   ├── ota-updates.md
│   └── edge-security/
│       ├── secure-boot-implementation.md
│       ├── data-encryption-edge.md
│       ├── threat-detection/
│       │   ├── perimeter-surveillance.md
│       │   └── anomaly-detection.md
│       ├── privacy-preserving-cv/
│       │   ├── federated-learning-techniques.md
│       │   └── differential-privacy.md
│       ├── model-security/
│       │   └── adversarial-robustness.md
│       ├── edge-device-hardening/
│       │   ├── secure-deployment.md
│       │   └── secure-communication.md
│       └── industry-compliance/
│           ├── regulatory-standards.md
│           └── ethical-ai-guidelines.md
├── reference-architectures/
│   ├── industrial-camera-setups.md
│   ├── edge-server-specs.md
│   ├── iot-connectivity.md
│   └── edge-cloud-hybrid-models.md
└── _integration/
    ├── cs-notebook-redirects.md                   
    ├── companion-resources.md
    └── industry-specific-regulations.md

Getting Started

  1. Clone this repository:
    git clone https://github.com/yourusername/computer-vision-practical-guide.git
    
  2. Navigate to the industry blueprint or topic you're interested in.
  3. Follow the step-by-step guides to implement and deploy edge AI vision solutions.

Contributing

We welcome contributions! Please see our CONTRIBUTING.md file for details on how to submit improvements.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

References

Deep Dives:

Books:

Back to the Top