-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdecode.c
786 lines (706 loc) · 28.3 KB
/
decode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <fadec.h>
#ifdef __GNUC__
#define LIKELY(x) __builtin_expect((x), 1)
#define UNLIKELY(x) __builtin_expect((x), 0)
#define ASSUME(x) do { if (!(x)) __builtin_unreachable(); } while (0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#define ASSUME(x) ((void) 0)
#endif
// Defines FD_TABLE_OFFSET_32 and FD_TABLE_OFFSET_64, if available
#define FD_DECODE_TABLE_DEFINES
#include <fadec-decode-private.inc>
#undef FD_DECODE_TABLE_DEFINES
enum DecodeMode {
DECODE_64 = 0,
DECODE_32 = 1,
};
typedef enum DecodeMode DecodeMode;
#define ENTRY_NONE 0
#define ENTRY_INSTR 1
#define ENTRY_TABLE256 2
#define ENTRY_TABLE16 3
#define ENTRY_TABLE8E 4
#define ENTRY_TABLE_PREFIX 5
#define ENTRY_TABLE_VEX 6
#define ENTRY_TABLE_ROOT 8
#define ENTRY_MASK 7
static uint16_t
table_lookup(unsigned cur_idx, unsigned entry_idx) {
static _Alignas(16) const uint16_t _decode_table[] = {
#define FD_DECODE_TABLE_DATA
#include <fadec-decode-private.inc>
#undef FD_DECODE_TABLE_DATA
};
return _decode_table[cur_idx + entry_idx];
}
static unsigned
table_walk(unsigned table_entry, unsigned entry_idx) {
return table_lookup(table_entry & ~0x3, entry_idx);
}
#define LOAD_LE_1(buf) ((uint64_t) *(uint8_t*) (buf))
#define LOAD_LE_2(buf) (LOAD_LE_1(buf) | LOAD_LE_1((uint8_t*) (buf) + 1)<<8)
#define LOAD_LE_3(buf) (LOAD_LE_2(buf) | LOAD_LE_1((uint8_t*) (buf) + 2)<<16)
#define LOAD_LE_4(buf) (LOAD_LE_2(buf) | LOAD_LE_2((uint8_t*) (buf) + 2)<<16)
#define LOAD_LE_8(buf) (LOAD_LE_4(buf) | LOAD_LE_4((uint8_t*) (buf) + 4)<<32)
enum
{
PREFIX_REXB = 0x01,
PREFIX_REXX = 0x02,
PREFIX_REXR = 0x04,
PREFIX_REXW = 0x08,
PREFIX_REX = 0x40,
PREFIX_REXRR = 0x10,
PREFIX_VEX = 0x20,
};
struct InstrDesc
{
uint16_t type;
uint16_t operand_indices;
uint16_t operand_sizes;
uint16_t reg_types;
};
#define DESC_HAS_MODRM(desc) (((desc)->operand_indices & (3 << 0)) != 0)
#define DESC_MODRM_IDX(desc) ((((desc)->operand_indices >> 0) & 3) ^ 3)
#define DESC_HAS_MODREG(desc) (((desc)->operand_indices & (3 << 2)) != 0)
#define DESC_MODREG_IDX(desc) ((((desc)->operand_indices >> 2) & 3) ^ 3)
#define DESC_HAS_VEXREG(desc) (((desc)->operand_indices & (3 << 4)) != 0)
#define DESC_VEXREG_IDX(desc) ((((desc)->operand_indices >> 4) & 3) ^ 3)
#define DESC_IMM_CONTROL(desc) (((desc)->operand_indices >> 12) & 0x7)
#define DESC_IMM_IDX(desc) ((((desc)->operand_indices >> 6) & 3) ^ 3)
#define DESC_EVEX_BCST(desc) (((desc)->operand_indices >> 8) & 1)
#define DESC_EVEX_MASK(desc) (((desc)->operand_indices >> 9) & 1)
#define DESC_ZEROREG_VAL(desc) (((desc)->operand_indices >> 10) & 1)
#define DESC_LOCK(desc) (((desc)->operand_indices >> 11) & 1)
#define DESC_VSIB(desc) (((desc)->operand_indices >> 15) & 1)
#define DESC_OPSIZE(desc) (((desc)->reg_types >> 11) & 7)
#define DESC_MODRM_SIZE(desc) (((desc)->operand_sizes >> 0) & 3)
#define DESC_MODREG_SIZE(desc) (((desc)->operand_sizes >> 2) & 3)
#define DESC_VEXREG_SIZE(desc) (((desc)->operand_sizes >> 4) & 3)
#define DESC_IMM_SIZE(desc) (((desc)->operand_sizes >> 6) & 3)
#define DESC_LEGACY(desc) (((desc)->operand_sizes >> 8) & 1)
#define DESC_SIZE_FIX1(desc) (((desc)->operand_sizes >> 10) & 7)
#define DESC_SIZE_FIX2(desc) (((desc)->operand_sizes >> 13) & 3)
#define DESC_INSTR_WIDTH(desc) (((desc)->operand_sizes >> 15) & 1)
#define DESC_MODRM(desc) (((desc)->reg_types >> 14) & 1)
#define DESC_IGN66(desc) (((desc)->reg_types >> 15) & 1)
#define DESC_EVEX_SAE(desc) (((desc)->reg_types >> 8) & 1)
#define DESC_EVEX_ER(desc) (((desc)->reg_types >> 9) & 1)
#define DESC_EVEX_BCST16(desc) (((desc)->reg_types >> 10) & 1)
#define DESC_REGTY_MODRM(desc) (((desc)->reg_types >> 0) & 7)
#define DESC_REGTY_MODREG(desc) (((desc)->reg_types >> 3) & 7)
#define DESC_REGTY_VEXREG(desc) (((desc)->reg_types >> 6) & 3)
int
fd_decode(const uint8_t* buffer, size_t len_sz, int mode_int, uintptr_t address,
FdInstr* instr)
{
int len = len_sz > 15 ? 15 : len_sz;
// Ensure that we can actually handle the decode request
DecodeMode mode;
unsigned table_root_idx;
switch (mode_int)
{
#if defined(FD_TABLE_OFFSET_32)
case 32: table_root_idx = FD_TABLE_OFFSET_32; mode = DECODE_32; break;
#endif
#if defined(FD_TABLE_OFFSET_64)
case 64: table_root_idx = FD_TABLE_OFFSET_64; mode = DECODE_64; break;
#endif
default: return FD_ERR_INTERNAL;
}
int off = 0;
uint8_t vex_operand = 0;
uint8_t addr_size = mode == DECODE_64 ? 3 : 2;
unsigned prefix_rex = 0;
uint8_t prefix_rep = 0;
unsigned vexl = 0;
unsigned prefix_evex = 0;
instr->segment = FD_REG_NONE;
// Values must match prefixes in parseinstrs.py.
enum {
PF_SEG1 = 0xfff8 - 0xfff8,
PF_SEG2 = 0xfff9 - 0xfff8,
PF_66 = 0xfffa - 0xfff8,
PF_67 = 0xfffb - 0xfff8,
PF_LOCK = 0xfffc - 0xfff8,
PF_REP = 0xfffd - 0xfff8,
PF_REX = 0xfffe - 0xfff8,
};
uint8_t prefixes[8] = {0};
unsigned table_entry = 0;
while (true) {
if (UNLIKELY(off >= len))
return FD_ERR_PARTIAL;
uint8_t prefix = buffer[off];
table_entry = table_lookup(table_root_idx, prefix);
if (LIKELY(table_entry - 0xfff8 >= 8))
break;
prefixes[PF_REX] = 0;
prefixes[table_entry - 0xfff8] = prefix;
off++;
}
if (off) {
if (UNLIKELY(prefixes[PF_SEG2])) {
if (prefixes[PF_SEG2] & 0x02)
instr->segment = prefixes[PF_SEG2] >> 3 & 3;
else
instr->segment = prefixes[PF_SEG2] & 7;
}
if (UNLIKELY(prefixes[PF_67]))
addr_size--;
prefix_rex = prefixes[PF_REX];
prefix_rep = prefixes[PF_REP];
}
// table_entry kinds: INSTR(0), T16(1), ESCAPE_A(2), ESCAPE_B(3)
if (LIKELY(!(table_entry & 2))) {
off++;
// Then, walk through ModR/M-encoded opcode extensions.
if (table_entry & 1) {
if (UNLIKELY(off >= len))
return FD_ERR_PARTIAL;
unsigned isreg = buffer[off] >= 0xc0;
table_entry = table_walk(table_entry, ((buffer[off] >> 2) & 0xe) | isreg);
// table_entry kinds: INSTR(0), T8E(1)
if (table_entry & 1)
table_entry = table_walk(table_entry, buffer[off] & 7);
}
// table_entry kinds: INSTR(0)
goto direct;
}
if (UNLIKELY(off >= len))
return FD_ERR_PARTIAL;
unsigned opcode_escape = 0;
uint8_t mandatory_prefix = 0; // without escape/VEX/EVEX, this is ignored.
if (buffer[off] == 0x0f)
{
if (UNLIKELY(off + 1 >= len))
return FD_ERR_PARTIAL;
if (buffer[off + 1] == 0x38)
opcode_escape = 2;
else if (buffer[off + 1] == 0x3a)
opcode_escape = 3;
else
opcode_escape = 1;
off += opcode_escape >= 2 ? 2 : 1;
// If there is no REP/REPNZ prefix offer 66h as mandatory prefix. If
// there is a REP prefix, then the 66h prefix is ignored here.
mandatory_prefix = prefix_rep ? prefix_rep ^ 0xf1 : !!prefixes[PF_66];
}
else if (UNLIKELY((unsigned) buffer[off] - 0xc4 < 2 || buffer[off] == 0x62))
{
unsigned vex_prefix = buffer[off];
// VEX (C4/C5) or EVEX (62)
if (UNLIKELY(off + 1 >= len))
return FD_ERR_PARTIAL;
if (UNLIKELY(mode == DECODE_32 && buffer[off + 1] < 0xc0)) {
off++;
table_entry = table_walk(table_entry, 0);
// table_entry kinds: INSTR(0)
goto direct;
}
// VEX/EVEX + 66/F3/F2/REX will #UD.
// Note: REX is also here only respected if it immediately precedes the
// opcode, in this case the VEX/EVEX "prefix".
if (prefixes[PF_66] || prefixes[PF_REP] || prefix_rex)
return FD_ERR_UD;
uint8_t byte = buffer[off + 1];
if (vex_prefix == 0xc5) // 2-byte VEX
{
opcode_escape = 1;
prefix_rex = byte & 0x80 ? 0 : PREFIX_REXR;
}
else // 3-byte VEX or EVEX
{
// SDM Vol 2A 2-15 (Dec. 2016): Ignored in 32-bit mode
if (mode == DECODE_64)
prefix_rex = byte >> 5 ^ 0x7;
if (vex_prefix == 0x62) // EVEX
{
if (byte & 0x08) // Bit 3 of opcode_escape must be clear.
return FD_ERR_UD;
_Static_assert(PREFIX_REXRR == 0x10, "wrong REXRR value");
if (mode == DECODE_64)
prefix_rex |= (byte & PREFIX_REXRR) ^ PREFIX_REXRR;
}
else // 3-byte VEX
{
if (byte & 0x18) // Bits 4:3 of opcode_escape must be clear.
return FD_ERR_UD;
}
opcode_escape = (byte & 0x07);
if (UNLIKELY(opcode_escape == 0)) {
int prefix_len = vex_prefix == 0x62 ? 4 : 3;
// Pretend to decode the prefix plus one opcode byte.
return off + prefix_len > len ? FD_ERR_PARTIAL : FD_ERR_UD;
}
// Load third byte of VEX prefix
if (UNLIKELY(off + 2 >= len))
return FD_ERR_PARTIAL;
byte = buffer[off + 2];
prefix_rex |= byte & 0x80 ? PREFIX_REXW : 0;
}
mandatory_prefix = byte & 3;
vex_operand = ((byte & 0x78) >> 3) ^ 0xf;
prefix_rex |= PREFIX_VEX;
if (vex_prefix == 0x62) // EVEX
{
if (!(byte & 0x04)) // Bit 10 must be 1.
return FD_ERR_UD;
if (UNLIKELY(off + 3 >= len))
return FD_ERR_PARTIAL;
byte = buffer[off + 3];
// prefix_evex is z:L'L/RC:b:V':aaa
vexl = (byte >> 5) & 3;
prefix_evex = byte | 0x100; // Ensure that prefix_evex is non-zero.
if (mode == DECODE_64) // V' causes UD in 32-bit mode
vex_operand |= byte & 0x08 ? 0 : 0x10; // V'
else if (!(byte & 0x08))
return FD_ERR_UD;
off += 4;
}
else // VEX
{
vexl = byte & 0x04 ? 1 : 0;
off += 0xc7 - vex_prefix; // 3 for c4, 2 for c5
}
}
table_entry = table_walk(table_entry, opcode_escape);
// table_entry kinds: INSTR(0) [only for invalid], T256(2)
if (UNLIKELY(!table_entry))
return FD_ERR_UD;
if (UNLIKELY(off >= len))
return FD_ERR_PARTIAL;
table_entry = table_walk(table_entry, buffer[off++]);
// table_entry kinds: INSTR(0), T16(1), TVEX(2), TPREFIX(3)
// Handle mandatory prefixes (which behave like an opcode ext.).
if ((table_entry & 3) == 3)
table_entry = table_walk(table_entry, mandatory_prefix);
// table_entry kinds: INSTR(0), T16(1), TVEX(2)
// Then, walk through ModR/M-encoded opcode extensions.
if (table_entry & 1) {
if (UNLIKELY(off >= len))
return FD_ERR_PARTIAL;
unsigned isreg = buffer[off] >= 0xc0;
table_entry = table_walk(table_entry, ((buffer[off] >> 2) & 0xe) | isreg);
// table_entry kinds: INSTR(0), T8E(1), TVEX(2)
if (table_entry & 1)
table_entry = table_walk(table_entry, buffer[off] & 7);
}
// table_entry kinds: INSTR(0), TVEX(2)
// For VEX prefix, we have to distinguish between VEX.W and VEX.L which may
// be part of the opcode.
if (UNLIKELY(table_entry & 2))
{
uint8_t index = 0;
index |= prefix_rex & PREFIX_REXW ? (1 << 0) : 0;
// When EVEX.L'L is the rounding mode, the instruction must not have
// L'L constraints.
index |= vexl << 1;
table_entry = table_walk(table_entry, index);
}
// table_entry kinds: INSTR(0)
direct:
// table_entry kinds: INSTR(0)
if (UNLIKELY(!table_entry))
return FD_ERR_UD;
static _Alignas(16) const struct InstrDesc descs[] = {
#define FD_DECODE_TABLE_DESCS
#include <fadec-decode-private.inc>
#undef FD_DECODE_TABLE_DESCS
};
const struct InstrDesc* desc = &descs[table_entry >> 2];
instr->type = desc->type;
instr->addrsz = addr_size;
instr->flags = ((prefix_rep + 1) & 6) + (mode == DECODE_64 ? FD_FLAG_64 : 0);
instr->address = address;
for (unsigned i = 0; i < sizeof(instr->operands) / sizeof(FdOp); i++)
instr->operands[i] = (FdOp) {0};
if (DESC_MODRM(desc) && UNLIKELY(off++ >= len))
return FD_ERR_PARTIAL;
unsigned op_byte = buffer[off - 1] | (!DESC_MODRM(desc) ? 0xc0 : 0);
if (UNLIKELY(prefix_evex)) {
// VSIB inst (gather/scatter) without mask register or w/EVEX.z is UD
if (DESC_VSIB(desc) && (!(prefix_evex & 0x07) || (prefix_evex & 0x80)))
return FD_ERR_UD;
// Inst doesn't support masking, so EVEX.z or EVEX.aaa is UD
if (!DESC_EVEX_MASK(desc) && (prefix_evex & 0x87))
return FD_ERR_UD;
// EVEX.z without EVEX.aaa is UD. The Intel SDM is rather unprecise
// about this, but real hardware doesn't accept this.
if ((prefix_evex & 0x87) == 0x80)
return FD_ERR_UD;
// Cases for SAE/RC (reg operands only):
// - ER supported -> all ok
// - SAE supported -> assume L'L is RC, but ignored (undocumented)
// - Neither supported -> b == 0
if ((prefix_evex & 0x10) && (op_byte & 0xc0) == 0xc0) { // EVEX.b+reg
if (!DESC_EVEX_SAE(desc))
return FD_ERR_UD;
vexl = 2;
if (DESC_EVEX_ER(desc))
instr->evex = prefix_evex;
else
instr->evex = (prefix_evex & 0x87) | 0x60; // set RC, clear B
} else {
if (UNLIKELY(vexl == 3)) // EVEX.L'L == 11b is UD
return FD_ERR_UD;
instr->evex = prefix_evex & 0x87; // clear RC, clear B
}
if (DESC_VSIB(desc))
vex_operand &= 0xf; // EVEX.V' is used as index extension instead.
} else {
instr->evex = 0;
}
unsigned op_size;
unsigned op_size_alt = 0;
if (!(DESC_OPSIZE(desc) & 4)) {
if (mode == DECODE_64)
op_size = ((prefix_rex & PREFIX_REXW) || DESC_OPSIZE(desc) == 3) ? 4 :
UNLIKELY(prefixes[PF_66] && !DESC_IGN66(desc)) ? 2 :
DESC_OPSIZE(desc) ? 4 :
3;
else
op_size = UNLIKELY(prefixes[PF_66] && !DESC_IGN66(desc)) ? 2 : 3;
} else {
op_size = 5 + vexl;
op_size_alt = op_size - (DESC_OPSIZE(desc) & 3);
}
uint8_t operand_sizes[4] = {
DESC_SIZE_FIX1(desc), DESC_SIZE_FIX2(desc) + 1, op_size, op_size_alt
};
if (UNLIKELY(instr->type == FDI_MOV_CR || instr->type == FDI_MOV_DR)) {
unsigned modreg = (op_byte >> 3) & 0x7;
unsigned modrm = op_byte & 0x7;
FdOp* op_modreg = &instr->operands[DESC_MODREG_IDX(desc)];
op_modreg->type = FD_OT_REG;
op_modreg->size = op_size;
op_modreg->reg = modreg | (prefix_rex & PREFIX_REXR ? 8 : 0);
op_modreg->misc = instr->type == FDI_MOV_CR ? FD_RT_CR : FD_RT_DR;
if (instr->type == FDI_MOV_CR && (~0x011d >> op_modreg->reg) & 1)
return FD_ERR_UD;
else if (instr->type == FDI_MOV_DR && prefix_rex & PREFIX_REXR)
return FD_ERR_UD;
FdOp* op_modrm = &instr->operands[DESC_MODRM_IDX(desc)];
op_modrm->type = FD_OT_REG;
op_modrm->size = op_size;
op_modrm->reg = modrm | (prefix_rex & PREFIX_REXB ? 8 : 0);
op_modrm->misc = FD_RT_GPL;
goto skip_modrm;
}
if (DESC_HAS_MODREG(desc))
{
FdOp* op_modreg = &instr->operands[DESC_MODREG_IDX(desc)];
unsigned reg_idx = (op_byte & 0x38) >> 3;
unsigned reg_ty = DESC_REGTY_MODREG(desc);
op_modreg->misc = reg_ty;
if (LIKELY(reg_ty < 2))
reg_idx += prefix_rex & PREFIX_REXR ? 8 : 0;
else if (reg_ty == 7 && (prefix_rex & PREFIX_REXR || prefix_evex & 0x80))
return FD_ERR_UD; // REXR in 64-bit mode or EVEX.z with mask as dest
if (UNLIKELY(reg_ty == FD_RT_VEC)) // REXRR ignored above in 32-bit mode
reg_idx += prefix_rex & PREFIX_REXRR ? 16 : 0;
else if (UNLIKELY(prefix_rex & PREFIX_REXRR))
return FD_ERR_UD;
op_modreg->type = FD_OT_REG;
op_modreg->size = operand_sizes[DESC_MODREG_SIZE(desc)];
op_modreg->reg = reg_idx;
}
if (DESC_HAS_MODRM(desc))
{
FdOp* op_modrm = &instr->operands[DESC_MODRM_IDX(desc)];
op_modrm->size = operand_sizes[DESC_MODRM_SIZE(desc)];
unsigned rm = op_byte & 0x07;
if (op_byte >= 0xc0)
{
uint8_t reg_idx = rm;
unsigned reg_ty = DESC_REGTY_MODRM(desc);
op_modrm->misc = reg_ty;
if (LIKELY(reg_ty < 2))
reg_idx += prefix_rex & PREFIX_REXB ? 8 : 0;
if (prefix_evex && reg_ty == 0) // vector registers only
reg_idx += prefix_rex & PREFIX_REXX ? 16 : 0;
op_modrm->type = FD_OT_REG;
op_modrm->reg = reg_idx;
}
else
{
unsigned dispscale = 0;
if (UNLIKELY(prefix_evex)) {
// EVEX.z for memory destination operand is UD.
if (UNLIKELY(prefix_evex & 0x80) && DESC_MODRM_IDX(desc) == 0)
return FD_ERR_UD;
// EVEX.b for memory-operand without broadcast support is UD.
if (UNLIKELY(prefix_evex & 0x10)) {
if (UNLIKELY(!DESC_EVEX_BCST(desc)))
return FD_ERR_UD;
if (UNLIKELY(DESC_EVEX_BCST16(desc)))
dispscale = 1;
else
dispscale = prefix_rex & PREFIX_REXW ? 3 : 2;
instr->segment |= dispscale << 6; // Store broadcast size
op_modrm->type = FD_OT_MEMBCST;
} else {
dispscale = op_modrm->size - 1;
op_modrm->type = FD_OT_MEM;
}
} else {
op_modrm->type = FD_OT_MEM;
}
// 16-bit address size implies different ModRM encoding
if (UNLIKELY(addr_size == 1)) {
ASSUME(mode == DECODE_32);
if (UNLIKELY(DESC_VSIB(desc))) // 16-bit addr size + VSIB is UD
return FD_ERR_UD;
if (rm < 6)
op_modrm->misc = rm & 1 ? FD_REG_DI : FD_REG_SI;
else
op_modrm->misc = FD_REG_NONE;
if (rm < 4)
op_modrm->reg = rm & 2 ? FD_REG_BP : FD_REG_BX;
else if (rm < 6 || (op_byte & 0xc7) == 0x06)
op_modrm->reg = FD_REG_NONE;
else
op_modrm->reg = rm == 6 ? FD_REG_BP : FD_REG_BX;
const uint8_t* dispbase = &buffer[off];
if (op_byte & 0x40) {
if (UNLIKELY((off += 1) > len))
return FD_ERR_PARTIAL;
instr->disp = (int8_t) LOAD_LE_1(dispbase) * (1 << dispscale);
} else if (op_byte & 0x80 || (op_byte & 0xc7) == 0x06) {
if (UNLIKELY((off += 2) > len))
return FD_ERR_PARTIAL;
instr->disp = (int16_t) LOAD_LE_2(dispbase);
} else {
instr->disp = 0;
}
goto end_modrm;
}
// SIB byte
uint8_t base = rm;
if (rm == 4) {
if (UNLIKELY(off >= len))
return FD_ERR_PARTIAL;
uint8_t sib = buffer[off++];
unsigned scale = sib & 0xc0;
unsigned idx = (sib & 0x38) >> 3;
idx += prefix_rex & PREFIX_REXX ? 8 : 0;
base = sib & 0x07;
if (idx == 4)
idx = FD_REG_NONE;
op_modrm->misc = scale | idx;
} else {
op_modrm->misc = FD_REG_NONE;
}
if (UNLIKELY(DESC_VSIB(desc))) {
// VSIB must have a memory operand with SIB byte.
if (rm != 4)
return FD_ERR_UD;
_Static_assert(FD_REG_NONE == 0x3f, "unexpected FD_REG_NONE");
// idx 4 is valid for VSIB
if ((op_modrm->misc & 0x3f) == FD_REG_NONE)
op_modrm->misc &= 0xc4;
if (prefix_evex) // EVEX.V':EVEX.X:SIB.idx
op_modrm->misc |= prefix_evex & 0x8 ? 0 : 0x10;
}
// RIP-relative addressing only if SIB-byte is absent
if (op_byte < 0x40 && rm == 5 && mode == DECODE_64)
op_modrm->reg = FD_REG_IP;
else if (op_byte < 0x40 && base == 5)
op_modrm->reg = FD_REG_NONE;
else
op_modrm->reg = base + (prefix_rex & PREFIX_REXB ? 8 : 0);
const uint8_t* dispbase = &buffer[off];
if (op_byte & 0x40) {
if (UNLIKELY((off += 1) > len))
return FD_ERR_PARTIAL;
instr->disp = (int8_t) LOAD_LE_1(dispbase) * (1 << dispscale);
} else if (op_byte & 0x80 || (op_byte < 0x40 && base == 5)) {
if (UNLIKELY((off += 4) > len))
return FD_ERR_PARTIAL;
instr->disp = (int32_t) LOAD_LE_4(dispbase);
} else {
instr->disp = 0;
}
end_modrm:;
}
}
if (UNLIKELY(DESC_HAS_VEXREG(desc)))
{
FdOp* operand = &instr->operands[DESC_VEXREG_IDX(desc)];
if (DESC_ZEROREG_VAL(desc)) {
operand->type = FD_OT_REG;
operand->size = 1;
operand->reg = FD_REG_CL;
operand->misc = FD_RT_GPL;
} else {
operand->type = FD_OT_REG;
// Without VEX prefix, this encodes an implicit register
operand->size = operand_sizes[DESC_VEXREG_SIZE(desc)];
if (mode == DECODE_32)
vex_operand &= 0x7;
// Note: 32-bit will never UD here. EVEX.V' is caught above already.
// Note: UD if > 16 for non-VEC. No EVEX-encoded instruction uses
// EVEX.vvvv to refer to non-vector registers. Verified in parseinstrs.
operand->reg = vex_operand;
unsigned reg_ty = DESC_REGTY_VEXREG(desc); // VEC GPL MSK FPU/TMM
if (prefix_rex & PREFIX_VEX) { // TMM with VEX, FPU otherwise
// In 64-bit mode: UD if FD_RT_MASK and vex_operand&8 != 0
if (reg_ty == 2 && vex_operand >= 8)
return FD_ERR_UD;
if (UNLIKELY(reg_ty == 3)) // TMM
operand->reg &= 0x7; // TODO: verify
operand->misc = (06710 >> (3 * reg_ty)) & 0x7;
} else {
operand->misc = (04710 >> (3 * reg_ty)) & 0x7;
}
}
}
else if (vex_operand != 0)
{
// TODO: bit 3 ignored in 32-bit mode? unverified
return FD_ERR_UD;
}
uint32_t imm_control = UNLIKELY(DESC_IMM_CONTROL(desc));
if (LIKELY(!imm_control)) {
} else if (UNLIKELY(imm_control == 1))
{
// 1 = immediate constant 1, used for shifts
FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)];
operand->type = FD_OT_IMM;
operand->size = 1;
instr->imm = 1;
}
else if (UNLIKELY(imm_control == 2))
{
// 2 = memory, address-sized, used for mov with moffs operand
FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)];
operand->type = FD_OT_MEM;
operand->size = operand_sizes[DESC_IMM_SIZE(desc)];
operand->reg = FD_REG_NONE;
operand->misc = FD_REG_NONE;
int moffsz = 1 << addr_size;
if (UNLIKELY(off + moffsz > len))
return FD_ERR_PARTIAL;
if (moffsz == 2)
instr->disp = LOAD_LE_2(&buffer[off]);
if (moffsz == 4)
instr->disp = LOAD_LE_4(&buffer[off]);
if (LIKELY(moffsz == 8))
instr->disp = LOAD_LE_8(&buffer[off]);
off += moffsz;
}
else if (UNLIKELY(imm_control == 3))
{
// 3 = register in imm8[7:4], used for RVMR encoding with VBLENDVP[SD]
FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)];
operand->type = FD_OT_REG;
operand->size = op_size;
operand->misc = FD_RT_VEC;
if (UNLIKELY(off + 1 > len))
return FD_ERR_PARTIAL;
uint8_t reg = (uint8_t) LOAD_LE_1(&buffer[off]);
off += 1;
if (mode == DECODE_32)
reg &= 0x7f;
operand->reg = reg >> 4;
instr->imm = reg & 0x0f;
}
else if (imm_control != 0)
{
// 4/5 = immediate, operand-sized/8 bit
// 6/7 = offset, operand-sized/8 bit (used for jumps/calls)
int imm_byte = imm_control & 1;
int imm_offset = imm_control & 2;
FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)];
operand->type = FD_OT_IMM;
if (imm_byte) {
if (UNLIKELY(off + 1 > len))
return FD_ERR_PARTIAL;
instr->imm = (int8_t) LOAD_LE_1(&buffer[off++]);
operand->size = DESC_IMM_SIZE(desc) & 1 ? 1 : op_size;
} else {
operand->size = operand_sizes[DESC_IMM_SIZE(desc)];
uint8_t imm_size;
if (UNLIKELY(instr->type == FDI_RET || instr->type == FDI_RETF ||
instr->type == FDI_SSE_EXTRQ ||
instr->type == FDI_SSE_INSERTQ))
imm_size = 2;
else if (UNLIKELY(instr->type == FDI_JMPF || instr->type == FDI_CALLF))
imm_size = (1 << op_size >> 1) + 2;
else if (UNLIKELY(instr->type == FDI_ENTER))
imm_size = 3;
else if (instr->type == FDI_MOVABS)
imm_size = (1 << op_size >> 1);
else
imm_size = op_size == 2 ? 2 : 4;
if (UNLIKELY(off + imm_size > len))
return FD_ERR_PARTIAL;
if (imm_size == 2)
instr->imm = (int16_t) LOAD_LE_2(&buffer[off]);
else if (imm_size == 3)
instr->imm = LOAD_LE_3(&buffer[off]);
else if (imm_size == 4)
instr->imm = (int32_t) LOAD_LE_4(&buffer[off]);
else if (imm_size == 6)
instr->imm = LOAD_LE_4(&buffer[off]) | LOAD_LE_2(&buffer[off+4]) << 32;
else if (imm_size == 8)
instr->imm = (int64_t) LOAD_LE_8(&buffer[off]);
off += imm_size;
}
if (imm_offset)
{
if (instr->address != 0)
instr->imm += instr->address + off;
else
operand->type = FD_OT_OFF;
}
}
skip_modrm:
if (UNLIKELY(prefixes[PF_LOCK])) {
if (!DESC_LOCK(desc) || instr->operands[0].type != FD_OT_MEM)
return FD_ERR_UD;
instr->flags |= FD_FLAG_LOCK;
}
if (UNLIKELY(DESC_LEGACY(desc))) {
// Without REX prefix, convert one-byte GP regs to high-byte regs
// This actually only applies to SZ8/MOVSX/MOVZX; but no VEX-encoded
// instructions have a byte-sized GP register in the first two operands.
if (!(prefix_rex & PREFIX_REX)) {
for (int i = 0; i < 2; i++) {
FdOp* operand = &instr->operands[i];
if (operand->type == FD_OT_NONE)
break;
if (operand->type == FD_OT_REG && operand->misc == FD_RT_GPL &&
operand->size == 1 && operand->reg >= 4)
operand->misc = FD_RT_GPH;
}
}
if (instr->type == FDI_XCHG_NOP) {
// Only 4890, 90, and 6690 are true NOPs.
if (instr->operands[0].reg == 0 && instr->operands[1].reg == 0) {
instr->operands[0].type = FD_OT_NONE;
instr->operands[1].type = FD_OT_NONE;
instr->type = FDI_NOP;
} else {
instr->type = FDI_XCHG;
}
}
if (UNLIKELY(instr->type == FDI_3DNOW)) {
unsigned opc3dn = instr->imm;
if (opc3dn & 0x40)
return FD_ERR_UD;
uint64_t msk = opc3dn & 0x80 ? 0x88d144d144d14400 : 0x30003000;
if (!(msk >> (opc3dn & 0x3f) & 1))
return FD_ERR_UD;
}
instr->operandsz = UNLIKELY(DESC_INSTR_WIDTH(desc)) ? op_size - 1 : 0;
} else {
instr->operandsz = 0;
}
instr->size = off;
return off;
}