Skip to content

In the Linux kernel, the following vulnerability has been...

Moderate severity Unreviewed Published Aug 22, 2024 to the GitHub Advisory Database • Updated Aug 22, 2024

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

ice: fix concurrent reset and removal of VFs

Commit c503e63200c6 ("ice: Stop processing VF messages during teardown")
introduced a driver state flag, ICE_VF_DEINIT_IN_PROGRESS, which is
intended to prevent some issues with concurrently handling messages from
VFs while tearing down the VFs.

This change was motivated by crashes caused while tearing down and
bringing up VFs in rapid succession.

It turns out that the fix actually introduces issues with the VF driver
caused because the PF no longer responds to any messages sent by the VF
during its .remove routine. This results in the VF potentially removing
its DMA memory before the PF has shut down the device queues.

Additionally, the fix doesn't actually resolve concurrency issues within
the ice driver. It is possible for a VF to initiate a reset just prior
to the ice driver removing VFs. This can result in the remove task
concurrently operating while the VF is being reset. This results in
similar memory corruption and panics purportedly fixed by that commit.

Fix this concurrency at its root by protecting both the reset and
removal flows using the existing VF cfg_lock. This ensures that we
cannot remove the VF while any outstanding critical tasks such as a
virtchnl message or a reset are occurring.

This locking change also fixes the root cause originally fixed by commit
c503e63200c6 ("ice: Stop processing VF messages during teardown"), so we
can simply revert it.

Note that I kept these two changes together because simply reverting the
original commit alone would leave the driver vulnerable to worse race
conditions.

References

Published by the National Vulnerability Database Aug 22, 2024
Published to the GitHub Advisory Database Aug 22, 2024
Last updated Aug 22, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
High
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H

EPSS score

0.042%
(5th percentile)

Weaknesses

CVE ID

CVE-2022-48941

GHSA ID

GHSA-2862-5xjv-8phr

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.