-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_transfer.py
342 lines (267 loc) · 13 KB
/
eval_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Code from: https://github.com/thu-ml/adversarial_training_imagenet
# @article{liu2023comprehensive,
# title={A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking},
# author={Liu, Chang and Dong, Yinpeng and Xiang, Wenzhao and Yang, Xiao and Su, Hang and Zhu, Jun and Chen, Yuefeng and He, Yuan and Xue, Hui and Zheng, Shibao},
# journal={arXiv preprint arXiv:2302.14301},
# year={2023}
# }
import os
import sys
import argparse
import time
import gdown
from collections import OrderedDict
import torch
import torch.nn as nn
from torchvision import transforms
import numpy as np
# timm func
from timm.models import create_model
from timm.utils import AverageMeter, reduce_tensor, accuracy
from utils import distributed_init, NormalizeByChannelMeanStd, random_seed
from data.dataset import ImageNet
from model.resnet import resnet50, wide_resnet50_2
from model.resnet_denoise import get_FD
from model import vit_mae
from model.model_zoo import model_zoo
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__name__))))
from ares_attack_torch import FGSM, MIM, DI2FGSM, TIFGSM, SI_NI_FGSM, VMI_fgsm
def generate_attacker(args, net):
if args.attack_name == 'fgsm':
attack = FGSM(net, eps=args.eps)
elif args.attack_name == 'mim':
attack = MIM(net, epsilon=args.eps, stepsize=args.stepsize, steps=args.steps, decay_factor=args.decay_factor)
elif args.attack_name == 'dim':
attack = DI2FGSM(net, eps=args.eps, stepsize=args.stepsize, steps=args.steps, decay=args.decay_factor,
resize_rate=args.resize_rate, diversity_prob=args.diversity_prob)
elif args.attack_name == 'tim':
attack = TIFGSM(net, kernel_name=args.kernel_name, len_kernel=args.len_kernel, nsig=args.nsig,
eps=args.eps, stepsize=args.stepsize, steps=args.steps, decay=args.decay_factor, resize_rate=args.resize_rate,
diversity_prob=args.diversity_prob)
elif args.attack_name == 'si_ni_fgsm':
#net, epsilon, scale_factor, stepsize, decay_factor, steps
attack = SI_NI_FGSM(net, epsilon=args.eps, scale_factor=args.scale_factor,stepsize=args.stepsize, decay_factor=args.decay_factor, steps=args.steps)
elif args.attack_name == 'vmi_fgsm':
attack = VMI_fgsm(net, epsilon=args.eps, beta=args.beta, sample_number=args.sample_number,
stepsize=args.stepsize, steps=args.steps, decay_factor=args.decay_factor)
return attack
def get_model(model_name):
backbone=model_zoo[model_name]['model']
url = model_zoo[model_name]['url']
src_path='./src_ckpt'
ckpt_name=f'{model_name}_checkpoint.pth'
ckpt_dir=os.path.join(src_path, ckpt_name)
ckpt_list=os.listdir(src_path)
if ckpt_name not in ckpt_list:
gdown.download(url, ckpt_dir, quiet=False)
mean=model_zoo[model_name]['mean']
std=model_zoo[model_name]['std']
pretrained=model_zoo[model_name]['pretrained']
act_gelu=model_zoo[model_name]['act_gelu']
if backbone=='resnet50_rl':
model=resnet50()
elif backbone=='wide_resnet50_2_rl':
model=wide_resnet50_2()
elif backbone=='resnet152_fd':
model = get_FD()
elif backbone=='vit_base_patch16' or backbone=='vit_large_patch16':
model=vit_mae.__dict__[backbone](num_classes=1000, global_pool='')
else:
model_kwargs=dict({'num_classes': 1000})
if act_gelu:
model_kwargs['act_layer']=nn.GELU
model = create_model(backbone, pretrained=pretrained, **model_kwargs)
if not pretrained:
ckpt=torch.load(ckpt_dir, map_location='cpu')
model.load_state_dict(ckpt)
normalize = NormalizeByChannelMeanStd(mean=mean, std=std)
model = torch.nn.Sequential(normalize, model)
return model
def get_args_parser():
parser = argparse.ArgumentParser('Robust training script', add_help=False)
# local test parameters
parser.add_argument('--distributed', default=True)
parser.add_argument('--local-rank', type=int, default=-1)
parser.add_argument('--device-id', type=int, default=0)
parser.add_argument('--rank', default=0, type=int, help='rank')
parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist-backend', default='nccl', help='backend used to set up distributed training')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
# Model parameters
parser.add_argument('--model_names', type=str, nargs='*', default=('resnet50_normal',), help='models in model zoo')
# data parameters
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--crop-pct', default=0.875, type=float, metavar='N', help='Input image center crop percent (for validation only)')
parser.add_argument('--interpolation', default=3, type=int, help='1: lanczos 2: bilinear 3: bicubic')
#attack paremeters
parser.add_argument('--attack_name', default='tim', type=str, help='Name of adversarial attack')
parser.add_argument('--eps', type= float, default=8/255, help='linf: 8/255.0 and l2: 3.0')
parser.add_argument('--stepsize', type= float, default=8/255/18, help='linf: 8/2550.0 and l2: (2.5*eps)/steps that is 0.075')
parser.add_argument('--steps', type= int, default=20, help='linf: 100 and l2: 100, steps is set to 100 if attack is apgd')
parser.add_argument('--decay_factor', type= float, default=1.0, help='momentum is used')
parser.add_argument('--resize_rate', type= float, default=0.85, help='dim is used') #0.9
parser.add_argument('--diversity_prob', type= float, default=0.7, help='dim is used') #0.5
parser.add_argument('--kernel_name', default='gaussian', help= 'kernel_name for tim', choices= ['gaussian', 'linear', 'uniform'])
parser.add_argument('--len_kernel', type= int, default=15, help='len_kernel for tim')
parser.add_argument('--nsig', type= int, default=3, help='nsig for tim')
parser.add_argument('--scale_factor', type= int, default=5, help='scale_factor for si_ni_fgsm, min 1, max 5')
parser.add_argument('--beta', type= float, default=1.5, help='beta for vmi_fgsm')
parser.add_argument('--sample_number', type= int, default=10, help='sample_number for vmi_fgsm')
# misc
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--num_workers', default=6, type=int)
parser.add_argument('--pin_mem', default=True)
# evaluated datasets
parser.add_argument('--imagenet_val_path', default='', type=str, help='path to imagenet validation dataset')
parser.add_argument('--output_dir', default='./test_out', type=str, help='path to the output')
return parser
def main(args):
#distributed settings
if "WORLD_SIZE" in os.environ:
args.world_size=int(os.environ["WORLD_SIZE"])
args.distributed=args.world_size>1
distributed_init(args)
# fix the seed for reproducibility
random_seed(args.seed, args.rank)
torch.backends.cudnn.deterministic=False
torch.backends.cudnn.benchmark = True
# test transform without norm
t = []
if args.input_size > 32:
size = int(args.input_size/args.crop_pct)
t.append(
transforms.Resize(size, interpolation=args.interpolation),
)
t.append(transforms.CenterCrop(args.input_size))
else:
t.append(
transforms.Resize(args.input_size, interpolation=args.interpolation),
)
t.append(transforms.ToTensor())
test_transform = transforms.Compose(t)
# normal_models adv_models
model_names=args.model_names
acc_np=torch.zeros([len(model_names), len(model_names)])
for i, source_model in enumerate(model_names):
print(f'Processing model {source_model}')
model = get_model(source_model).cuda()
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.device_id], find_unused_parameters=True)
# set dataloader
args.imagenet_val_path='./src_data/ILSVRC2012_img_val'
dataset_eval=ImageNet(root=args.imagenet_val_path, meta_file='./src_data/val.txt', transform=test_transform) # './imagenet_val_1k.txt'
sampler_eval=None
if args.distributed:
sampler_eval = torch.utils.data.distributed.DistributedSampler(dataset_eval)
dataloader_eval = torch.utils.data.DataLoader(
dataset=dataset_eval,
batch_size=model_zoo[source_model]['batch_size'],
shuffle=False,
num_workers=0,
sampler=sampler_eval,
collate_fn=None,
pin_memory=args.pin_mem,
drop_last=False
)
clean_acc=validate(model, dataloader_eval, args)
print('Top1 acc of clean images is: {0:>7.4f}'.format(clean_acc['top1']))
adv_output=adv_generator(model, dataloader_eval, args)
for j, transfer_model in enumerate(model_names):
model = get_model(transfer_model).cuda()
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.device_id], find_unused_parameters=True)
metric=transfer_validate(model, transfer_model, adv_output, args)
acc_np[i][j]=metric['top1']
torch.distributed.barrier()
if args.rank==0:
np.save(os.path.join(args.output_dir, args.attack_name+'.npy'), acc_np)
def validate(model, loader, args, log_suffix='clean acc'):
batch_time_m = AverageMeter()
top1_m = AverageMeter()
model.eval()
end = time.time()
last_idx = len(loader) - 1
for batch_idx, (input, target) in enumerate(loader):
input = input.cuda()
target = target.cuda()
with torch.no_grad():
output = model(input)
acc1, _ = accuracy(output, target, topk=(1, 5))
if args.distributed:
acc1 = reduce_tensor(acc1, args.world_size)
torch.cuda.synchronize()
top1_m.update(acc1.item(), input.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
log_name = 'Test ' + log_suffix
print(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m, top1=top1_m))
metrics = OrderedDict([('top1', top1_m.avg)])
return metrics
def transfer_validate(model, model_name, save_dict, args, log_suffix='transfer acc'):
batch_time_m = AverageMeter()
top1_m = AverageMeter()
model.eval()
end = time.time()
advs=save_dict['img']
labels=save_dict['label']
batch_size=model_zoo[model_name]['batch_size']
batch_num=advs.shape[0]//batch_size
for batch_idx in range(batch_num):
input = advs[batch_idx*batch_size: (batch_idx+1)*batch_num].cuda()
target = labels[batch_idx*batch_size: (batch_idx+1)*batch_num].cuda()
with torch.no_grad():
output = model(input)
acc1, _ = accuracy(output, target, topk=(1, 5))
if args.distributed:
acc1 = reduce_tensor(acc1, args.world_size)
torch.cuda.synchronize()
top1_m.update(acc1.item(), input.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
metrics = OrderedDict([('top1', top1_m.avg)])
return metrics
def adv_generator(source_model, loader, args):
batch_time_m = AverageMeter()
top1_m = AverageMeter()
source_model.eval()
rank_tensor=[]
rank_label=[]
# set attackers
attacker=generate_attacker(args, source_model)
end = time.time()
last_idx = len(loader) - 1
for batch_idx, (input, target) in enumerate(loader):
input = input.cuda()
target = target.cuda()
batch_size=target.size(0)
x_adv=attacker.forward(input, target)
rank_tensor.append(x_adv)
rank_label.append(target)
with torch.no_grad():
output = source_model(x_adv.detach())
_, label=torch.max(output, dim=1)
robust_label= label == target
acc1=robust_label.float().sum(0) * 100. / batch_size
if args.distributed:
acc1 = reduce_tensor(acc1, args.world_size)
torch.cuda.synchronize()
top1_m.update(acc1.item(), output.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
log_name = 'Test'
print(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m, top1=top1_m))
rank_tensor=torch.cat(rank_tensor, dim=0)
rank_label=torch.cat(rank_label, dim=0)
return {'img':rank_tensor, 'label':rank_label}
if __name__ == '__main__':
parser = argparse.ArgumentParser('Robust test script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)