-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_training_liu.py
618 lines (532 loc) · 30.5 KB
/
adversarial_training_liu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# Code adapted from: https://github.com/thu-ml/adversarial_training_imagenet
# @article{liu2023comprehensive,
# title={A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking},
# author={Liu, Chang and Dong, Yinpeng and Xiang, Wenzhao and Yang, Xiao and Su, Hang and Zhu, Jun and Chen, Yuefeng and He, Yuan and Xue, Hui and Zheng, Shibao},
# journal={arXiv preprint arXiv:2302.14301},
# year={2023}
# }
import warnings
warnings.filterwarnings("ignore")
import argparse
import time
import yaml
import os
import logging
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel as NativeDDP
# timm functions
from timm.models import resume_checkpoint, load_checkpoint, model_parameters
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer_v2, optimizer_kwargs
from timm.utils import ModelEmaV2, distribute_bn, AverageMeter, reduce_tensor, dispatch_clip_grad, accuracy, get_outdir, CheckpointSaver, update_summary
# in functions
from utils import distributed_init, random_seed, create_logger
from model.model import build_model
from model.loss import build_loss, resolve_amp, build_loss_scaler
from data.dataset import build_dataset
from adv.adv_utils import adv_generator
def get_args_parser():
parser = argparse.ArgumentParser('Robust training script', add_help=False)
parser.add_argument('--configs', default='', type=str)
#* distributed setting
parser.add_argument('--distributed', default=True)
parser.add_argument('--local-rank', default=-1, type=int)
parser.add_argument('--device-id', type=int, default=0)
parser.add_argument('--rank', default=-1, type=int, help='rank')
parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist-backend', default='nccl', help='backend used to set up distributed training')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
#* amp parameters
parser.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
parser.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
parser.add_argument('--amp_version', default='', help='amp version')
#* model parameters
parser.add_argument('--model', default='resnet50', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--num-classes', default=1000, type=int, help='number of classes')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--pretrain', default='', help='pretrain from checkpoint')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None. (opt)')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout (opt)')
#* Batch norm parameters
parser.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)')
parser.add_argument('--sync-bn', action='store_true', default=False, help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
parser.add_argument('--dist-bn', type=str, default='reduce', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
parser.add_argument('--split-bn', action='store_true', default=False,
help='Enable separate BN layers per augmentation split.')
#* Optimizer parameters
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=2e-5,
help='weight decay (default: 0.0001)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
parser.add_argument('--layer-decay', type=float, default=None,
help='layer-wise learning rate decay (default: None)')
#* Learning rate schedule parameters
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lrb', type=float, default=0.1, metavar='LR',
help='base learning rate (default: 5e-4)')
parser.add_argument('--lr', type=float, default=None, help='actual learning rate')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
parser.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
help='amount to decay each learning rate cycle (default: 0.5)')
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit, cycles enabled if > 1')
parser.add_argument('--lr-k-decay', type=float, default=1.0,
help='learning rate k-decay for cosine/poly (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
help='warmup learning rate (default: 0.0001)')
parser.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
#* dataset parameters
parser.add_argument('--batch-size', default=64, type=int) # batch size per gpu
parser.add_argument('--train-dir', default='', type=str, help='train dataset path')
parser.add_argument('--eval-dir', default='', type=str, help='validation dataset path')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--crop-pct', default=0.875, type=float,
metavar='N', help='Input image center crop percent (for validation only)')
parser.add_argument('--interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--mean', type=float, nargs='+', default=(0.485, 0.456, 0.406), metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=(0.229, 0.224, 0.225), metavar='STD',
help='Override std deviation of of dataset')
#* Augmentation & regularization parameters
parser.add_argument('--no-aug', action='store_true', default=False,
help='Disable all training augmentation, override other train aug args')
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
help='Random resize scale (default: 0.08 1.0)')
parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
help='Random resize aspect ratio (default: 0.75 1.33)')
parser.add_argument('--hflip', type=float, default=0.5,
help='Horizontal flip training aug probability')
parser.add_argument('--vflip', type=float, default=0.,
help='Vertical flip training aug probability')
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
parser.add_argument('--aug-repeats', type=float, default=0,
help='Number of augmentation repetitions (distributed training only) (default: 0)')
parser.add_argument('--aug-splits', type=int, default=0,
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
parser.add_argument('--jsd-loss', action='store_true', default=False,
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
parser.add_argument('--bce-loss', action='store_true', default=False,
help='Enable BCE loss w/ Mixup/CutMix use.')
parser.add_argument('--bce-target-thresh', type=float, default=None,
help='Threshold for binarizing softened BCE targets (default: None, disabled)')
# random erase
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
help='Random erase prob (default: 0.)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix', type=float, default=0.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='random',
help='Training interpolation (random, bilinear, bicubic default: "random")')
# drop connection
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
#* ema
parser.add_argument('--model-ema', action='store_true', default=False,
help='Enable tracking moving average of model weights')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False,
help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
help='decay factor for model weights moving average (default: 0.9998)')
# misc
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
help='how many batches to wait before writing recovery checkpoint')
parser.add_argument('--max-history', type=int, default=5, help='how many recovery checkpoints')
parser.add_argument('--num-workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--output-dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "top1")')
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# advtrain
parser.add_argument('--advtrain', default=False, help='if use advtrain')
parser.add_argument('--attack-criterion', type=str, default='regular', choices=['regular', 'smooth', 'mixup'], help='default args for: adversarial training')
parser.add_argument('--attack-eps', type=float, default=4.0/255, help='attack epsilon.')
parser.add_argument('--attack-step', type=float, default=8.0/255/3, help='attack epsilon.')
parser.add_argument('--attack-it', type=int, default=3, help='attack iteration')
# advprop
parser.add_argument('--advprop', default=False, help='if use advprop')
return parser
def main(args, args_text):
# distributed settings and logger
if "WORLD_SIZE" in os.environ:
args.world_size=int(os.environ["WORLD_SIZE"])
args.local_rank=int(os.environ["LOCAL_RANK"])
args.distributed=args.world_size>1
distributed_init(args)
args.output_dir = f'{args.output_dir}/{os.environ["HYDRA_NOW"]}'
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
_logger = create_logger(args.output_dir, dist_rank=args.rank, name='main_train', default_level=logging.INFO)
# fix the seed for reproducibility
random_seed(args.seed, args.rank)
torch.backends.cudnn.deterministic=False
torch.backends.cudnn.benchmark = True
# setup augmentation batch splits for contrastive loss or split bn
num_aug_splits = 0
if args.aug_splits > 0:
assert args.aug_splits > 1, 'A split of 1 makes no sense'
num_aug_splits = args.aug_splits
# resolve amp
resolve_amp(args, _logger)
# build model
model = build_model(args, _logger, num_aug_splits)
# create optimizer
optimizer=None
if args.lr is None:
args.lr=args.lrb * args.batch_size * args.world_size / 512
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
# build loss scaler
amp_autocast, loss_scaler = build_loss_scaler(args, _logger)
# resume from a checkpoint
resume_epoch = None
if args.resume:
resume_epoch = resume_checkpoint(
model, args.resume,
optimizer=optimizer,
loss_scaler=loss_scaler,
log_info=args.rank == 0)
# setup ema
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEmaV2(
model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
if args.resume:
load_checkpoint(model_ema.module, args.resume, use_ema=True)
# setup distributed training
if args.distributed:
if args.amp_version == 'apex':
# Apex DDP preferred unless native amp is activated
from apex.parallel import DistributedDataParallel as ApexDDP
_logger.info("Using NVIDIA APEX DistributedDataParallel.")
model = ApexDDP(model, delay_allreduce=True)
else:
_logger.info("Using native Torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[args.device_id])
# NOTE: EMA model does not need to be wrapped by DDP
# setup learning rate schedule and starting epoch
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
start_epoch = 0
if resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.step(start_epoch)
_logger.info('Scheduled epochs: {}'.format(num_epochs))
# create the train and eval dataloaders
loader_train, loader_eval, mixup_fn = build_dataset(args, num_aug_splits)
# setup loss function
train_loss_fn, validate_loss_fn = build_loss(args, mixup_fn, num_aug_splits)
# saver
eval_metric = args.eval_metric
saver = None
best_metric = None
best_epoch = None
output_dir = None
if args.rank == 0:
output_dir = get_outdir(args.output_dir)
decreasing=True if eval_metric=='loss' else False
saver = CheckpointSaver(
model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.max_history)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
# start training
_logger.info(f"Start training for {args.epochs} epochs")
for epoch in range(start_epoch, args.epochs):
if hasattr(loader_train, 'sampler'):
loader_train.sampler.set_epoch(epoch)
# one epoch training
train_metrics = train_one_epoch(
epoch, model, loader_train, optimizer, train_loss_fn, args,
lr_scheduler=lr_scheduler, saver=saver, amp_autocast=amp_autocast,
loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn, _logger=_logger)
# distributed bn sync
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
_logger.info("Distributing BatchNorm running means and vars")
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
# calculate evaluation metric
eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, _logger=_logger)
# model ema update
if model_ema is not None and not args.model_ema_force_cpu:
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
ema_eval_metrics = validate(model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)', _logger=_logger)
eval_metrics = ema_eval_metrics
# lr_scheduler update
if lr_scheduler is not None:
# step LR for next epoch
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
# output summary.csv
if output_dir is not None:
update_summary(
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
write_header=best_metric is None)
# save checkpoint, print best metric
if saver is not None:
best_metric, best_epoch = saver.save_checkpoint(epoch, eval_metrics[eval_metric])
torch.distributed.barrier()
if best_metric is not None:
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
def train_one_epoch(
epoch, model, loader, optimizer, loss_fn, args,
lr_scheduler=None, saver=None, amp_autocast=None,
loss_scaler=None, model_ema=None, mixup_fn=None, _logger=None):
# mixup setting
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
if mixup_fn is not None:
mixup_fn.mixup_enabled = False
# statistical variables
second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
losses_m = AverageMeter()
num_epochs = args.epochs + args.cooldown_epochs
model.train()
end = time.time()
last_idx = len(loader) - 1
num_updates = epoch * len(loader)
att_step = args.attack_step * min(epoch, 5)/5
att_eps=args.attack_eps
att_it=args.attack_it
for batch_idx, (input, target) in enumerate(loader):
last_batch = batch_idx == last_idx
# processing input and target
input, target = input.cuda(non_blocking=True), target.cuda(non_blocking=True)
if mixup_fn is not None:
input, target = mixup_fn(input, target)
if args.channels_last:
input=input.contiguous(memory_format=torch.channels_last)
data_time_m.update(time.time() - end)
# generate adv input
if args.advtrain:
input_advtrain = adv_generator(args, input, target, model, att_eps, att_it, att_step, random_start=False, attack_criterion=args.attack_criterion)
# generate advprop input
if args.advprop:
model.apply(lambda m: setattr(m, 'bn_mode', 'adv'))
input_advprop = adv_generator(args, input, target, model, 1/255, 1, 1/255, random_start=True, attack_criterion=args.attack_criterion, use_best=False)
# forward
with amp_autocast():
if args.advprop:
outputs = model(input_advprop)
adv_loss = loss_fn(outputs, target)
model.apply(lambda m: setattr(m, 'bn_mode', 'clean'))
outputs = model(input)
loss = loss_fn(outputs, target) + adv_loss
elif args.advtrain:
output = model(input_advtrain)
loss = loss_fn(output, target)
else:
output = model(input)
loss = loss_fn(output, target)
if not args.distributed:
losses_m.update(loss.item(), input.size(0))
optimizer.zero_grad()
if loss_scaler is not None:
loss_scaler(
loss, optimizer,
clip_grad=args.clip_grad, clip_mode=args.clip_mode,
parameters=model_parameters(model, exclude_head='agc' in args.clip_mode),
create_graph=second_order)
else:
loss.backward(create_graph=second_order)
if args.clip_grad is not None:
dispatch_clip_grad(
model_parameters(model, exclude_head='agc' in args.clip_mode),
value=args.clip_grad, mode=args.clip_mode)
optimizer.step()
if model_ema is not None:
model_ema.update(model)
torch.cuda.synchronize()
num_updates += 1
batch_time_m.update(time.time() - end)
if last_batch or batch_idx % args.log_interval == 0:
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
lr = sum(lrl) / len(lrl)
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args.world_size)
losses_m.update(reduced_loss.item(), input.size(0))
_logger.info(
'Train: [{}/{}] [{:>4d}/{} ({:>3.0f}%)] '
'Loss: {loss.val:#.4g} ({loss.avg:#.3g}) '
'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s '
'({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'LR: {lr:.3e} '
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
epoch, num_epochs,
batch_idx, len(loader),
100. * batch_idx / last_idx,
loss=losses_m,
batch_time=batch_time_m,
rate=input.size(0) * args.world_size / batch_time_m.val,
rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
lr=lr,
data_time=data_time_m))
# save checkpoint
if saver is not None and args.recovery_interval and (
last_batch or (batch_idx + 1) % args.recovery_interval == 0):
saver.save_recovery(epoch, batch_idx=batch_idx)
# update lr scheduler
if lr_scheduler is not None:
lr_scheduler.step_update(num_updates=num_updates/len(loader), metric=losses_m.avg)
end = time.time()
# end for
if hasattr(optimizer, 'sync_lookahead'):
optimizer.sync_lookahead()
return OrderedDict([('loss', losses_m.avg)])
def validate(model, loader, loss_fn, args, amp_autocast=None, log_suffix='', _logger=None):
batch_time_m = AverageMeter()
losses_m = AverageMeter()
top1_m = AverageMeter()
top5_m = AverageMeter()
adv_losses_m = AverageMeter()
adv_top1_m = AverageMeter()
adv_top5_m = AverageMeter()
model.eval()
end = time.time()
last_idx = len(loader) - 1
for batch_idx, (input, target) in enumerate(loader):
# read eval input
last_batch = batch_idx == last_idx
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
# normal eval process
with torch.no_grad():
with amp_autocast():
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
loss = loss_fn(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args.world_size)
acc1 = reduce_tensor(acc1, args.world_size)
acc5 = reduce_tensor(acc5, args.world_size)
else:
reduced_loss = loss.data
torch.cuda.synchronize()
# record normal results
losses_m.update(reduced_loss.item(), input.size(0))
top1_m.update(acc1.item(), output.size(0))
top5_m.update(acc5.item(), output.size(0))
# adv eval process
if args.advtrain:
adv_input=adv_generator(args, input, target, model, 4/255, 10, 1/255, random_start=True, use_best=False, attack_criterion='regular')
with torch.no_grad():
with amp_autocast():
adv_output = model(adv_input)
if isinstance(adv_output, (tuple, list)):
adv_output = adv_output[0]
adv_loss = loss_fn(adv_output, target)
adv_acc1, adv_acc5 = accuracy(adv_output, target, topk=(1, 5))
if args.distributed:
adv_reduced_loss = reduce_tensor(adv_loss.data, args.world_size)
adv_acc1 = reduce_tensor(adv_acc1, args.world_size)
adv_acc5 = reduce_tensor(adv_acc5, args.world_size)
else:
adv_reduced_loss = adv_loss.data
torch.cuda.synchronize()
# record adv results
adv_losses_m.update(adv_reduced_loss.item(), adv_input.size(0))
adv_top1_m.update(adv_acc1.item(), adv_output.size(0))
adv_top5_m.update(adv_acc5.item(), adv_output.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
if last_batch or batch_idx % args.log_interval == 0:
log_name = 'Test' + log_suffix
_logger.info(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '
'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f}) '
'AdvLoss: {adv_loss.val:>7.4f} ({adv_loss.avg:>6.4f}) '
'AdvAcc@1: {adv_top1.val:>7.4f} ({adv_top1.avg:>7.4f}) '
'AdvAcc@5: {adv_top5.val:>7.4f} ({adv_top5.avg:>7.4f})'.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m,
loss=losses_m, top1=top1_m, top5=top5_m,
adv_loss=adv_losses_m, adv_top1=adv_top1_m, adv_top5=adv_top5_m))
metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg), ('advloss', adv_losses_m.avg), ('advtop1', adv_top1_m.avg), ('advtop5', adv_top5_m.avg)])
return metrics
if __name__ == '__main__':
parser = argparse.ArgumentParser('Robust training script', parents=[get_args_parser()])
args = parser.parse_args()
opt = vars(args)
if args.configs:
opt.update(yaml.load(open(args.configs), Loader=yaml.FullLoader))
args = argparse.Namespace(**opt)
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
main(args, args_text)