-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_training_cifar.py
871 lines (753 loc) · 42.3 KB
/
adversarial_training_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
# Code adapted from: https://github.com/thu-ml/adversarial_training_imagenet
# @article{liu2023comprehensive,
# title={A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking},
# author={Liu, Chang and Dong, Yinpeng and Xiang, Wenzhao and Yang, Xiao and Su, Hang and Zhu, Jun and Chen, Yuefeng and He, Yuan and Xue, Hui and Zheng, Shibao},
# journal={arXiv preprint arXiv:2302.14301},
# year={2023}
# }
import warnings
warnings.filterwarnings("ignore")
import argparse
import copy
import logging
import os
import time
from collections import OrderedDict
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torchvision
import yaml
from scipy.io import savemat
# timm functions
from timm.models import load_checkpoint, model_parameters, resume_checkpoint
from timm.optim import create_optimizer_v2, optimizer_kwargs
from timm.scheduler import create_scheduler
from timm.utils import (AverageMeter, CheckpointSaver, ModelEmaV2, accuracy,
dispatch_clip_grad, distribute_bn, get_outdir,
reduce_tensor, update_summary)
from torch.nn.parallel import DistributedDataParallel as NativeDDP
import input_norm_losses
import patch_similarity_losses
from adv.adv_utils import adv_generator
from data.dataset_cifar import build_dataset
from eval_y0_gradients_single_image import abs_normalize
from eval_y0_gradients_single_image import \
get_dataloader as get_dataloader_for_visualization
# gradient teachers
from gradient_teachers import ContourEnergy
from model.loss import build_loss, build_loss_scaler, resolve_amp
from model.model import ToGreyscale, build_model
import model.prn as prn_cifar
# in functions
from utils import (create_logger, distributed_init, formatted_array_str,
get_flattened_gradients, random_seed)
from timm.utils.model import get_state_dict, unwrap_model
import numpy as np
np.set_printoptions(threshold=np.inf)
# torch.autograd.set_detect_anomaly(True)
def get_args_parser():
parser = argparse.ArgumentParser('Robust training script', add_help=False)
parser.add_argument('--configs', default='', type=str)
#* distributed setting
parser.add_argument('--distributed', default=True)
parser.add_argument('--local-rank', default=-1, type=int)
parser.add_argument('--device-id', type=int, default=0)
parser.add_argument('--rank', default=-1, type=int, help='rank')
parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist-backend', default='nccl', help='backend used to set up distributed training')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
#* amp parameters
parser.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
parser.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
parser.add_argument('--amp_version', default='', help='amp version')
#* model parameters
parser.add_argument('--model', default='resnet50', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--replace_relu_with_gelu', default=False, help='if use GELU')
parser.add_argument('--replace_relu_with_silu', default=False, help='if use SiLU')
parser.add_argument('--relu_not_inplace', default=False, help='if switch to not inplace ReLU')
parser.add_argument('--num-classes', default=1000, type=int, help='number of classes')
parser.add_argument('--create_model_pretrained', default=True, help='Create model pretrained')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--pretrain', default='', help='pretrain from checkpoint')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None. (opt)')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout (opt)')
#* Batch norm parameters
parser.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)')
parser.add_argument('--sync-bn', action='store_true', default=False, help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
parser.add_argument('--dist-bn', type=str, default='reduce', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
parser.add_argument('--split-bn', action='store_true', default=False,
help='Enable separate BN layers per augmentation split.')
#* Optimizer parameters
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=2e-5,
help='weight decay (default: 0.0001)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
parser.add_argument('--layer-decay', type=float, default=None,
help='layer-wise learning rate decay (default: None)')
#* Learning rate schedule parameters
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lrb', type=float, default=0.1, metavar='LR',
help='base learning rate (default: 5e-4)')
parser.add_argument('--lr', type=float, default=None, help='actual learning rate')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
parser.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
help='amount to decay each learning rate cycle (default: 0.5)')
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit, cycles enabled if > 1')
parser.add_argument('--lr-k-decay', type=float, default=1.0,
help='learning rate k-decay for cosine/poly (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
help='warmup learning rate (default: 0.0001)')
parser.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
#* dataset parameters
parser.add_argument('--batch-size', default=64, type=int) # batch size per gpu
parser.add_argument('--grad-accum', default=1, type=int) # gradient acumulation
parser.add_argument('--train-dir', default='', type=str, help='train dataset path')
parser.add_argument('--eval-dir', default='', type=str, help='validation dataset path')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--crop-pct', default=0.875, type=float,
metavar='N', help='Input image center crop percent (for validation only)')
parser.add_argument('--interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--mean', type=float, nargs='+', default=(0.485, 0.456, 0.406), metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=(0.229, 0.224, 0.225), metavar='STD',
help='Override std deviation of of dataset')
#* Augmentation & regularization parameters
parser.add_argument('--no-aug', action='store_true', default=False,
help='Disable all training augmentation, override other train aug args')
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
help='Random resize scale (default: 0.08 1.0)')
parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
help='Random resize aspect ratio (default: 0.75 1.33)')
parser.add_argument('--hflip', type=float, default=0.5,
help='Horizontal flip training aug probability')
parser.add_argument('--vflip', type=float, default=0.,
help='Vertical flip training aug probability')
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
parser.add_argument('--aug-repeats', type=float, default=0,
help='Number of augmentation repetitions (distributed training only) (default: 0)')
parser.add_argument('--aug-splits', type=int, default=0,
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
parser.add_argument('--jsd-loss', action='store_true', default=False,
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
parser.add_argument('--bce-loss', action='store_true', default=False,
help='Enable BCE loss w/ Mixup/CutMix use.')
parser.add_argument('--bce-target-thresh', type=float, default=None,
help='Threshold for binarizing softened BCE targets (default: None, disabled)')
# random erase
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
help='Random erase prob (default: 0.)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix', type=float, default=0.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='random',
help='Training interpolation (random, bilinear, bicubic default: "random")')
# drop connection
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
#* ema
parser.add_argument('--model-ema', action='store_true', default=False,
help='Enable tracking moving average of model weights')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False,
help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
help='decay factor for model weights moving average (default: 0.9998)')
# misc
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
help='how many batches to wait before writing recovery checkpoint')
parser.add_argument('--max-history', type=int, default=5, help='how many recovery checkpoints')
parser.add_argument('--num-workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--output-dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "top1")')
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# advtrain
parser.add_argument('--advtrain', default=False, help='if use advtrain')
parser.add_argument('--attack-criterion', type=str, default='regular', choices=['regular', 'smooth', 'mixup'], help='default args for: adversarial training')
parser.add_argument('--attack-eps', type=float, default=8.0/255, help='attack epsilon.')
parser.add_argument('--attack-step', type=float, default=16.0/255/3, help='attack epsilon.')
parser.add_argument('--attack-it', type=int, default=3, help='attack iteration')
# advprop
parser.add_argument('--advprop', default=False, help='if use advprop')
# gradnorm
parser.add_argument('--gradnorm', default=False, help='if use contourtrain')
parser.add_argument('--alpha', type=float, nargs='+', default=(0.0, 0.1, 1.00), help='Loss weight ramp')
parser.add_argument('--alpha-start-epoch', type=float, default=0.0, help='Start epoch for loss weight ramp')
parser.add_argument('--random_start', default=False, help='If use randomstart')
parser.add_argument('--random_start_eps_factor', type=float, default=0.5, help='Quotient for epsilon')
# patches
parser.add_argument('--patch-size', type=int, default=3, help='Patch size for patch similarity')
# saving
parser.add_argument('--save_snapshot_for_inference', type=str, nargs='+', default=None, help='When to save snapshots')
parser.add_argument('--collect_gradient_statistics', type=int, nargs='+', default=None, help='When to collect gradient statistics')
return parser
def main(args, args_text):
# distributed settings and logger
if "WORLD_SIZE" in os.environ:
args.world_size=int(os.environ["WORLD_SIZE"])
if "LOCAL_RANK" in os.environ:
args.local_rank=int(os.environ["LOCAL_RANK"])
args.distributed=args.world_size>1
distributed_init(args)
args.output_dir = f'{args.output_dir}/{os.environ["HYDRA_NOW"]}'
if args.rank == 0 and not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# os.makedirs(f'{args.output_dir}/gradnorms')
with open(f'{args.output_dir}/gradnorms.txt', "w") as file:
print("Gradnorms", file=file)
os.makedirs(f'{args.output_dir}/snapshots')
_logger = create_logger(args.output_dir, dist_rank=args.rank, name='main_train', default_level=logging.INFO)
# fix the seed for reproducibility
random_seed(args.seed, args.rank)
torch.backends.cudnn.deterministic=False
torch.backends.cudnn.benchmark = True
# setup augmentation batch splits for contrastive loss or split bn
num_aug_splits = 0
if args.aug_splits > 0:
assert args.aug_splits > 1, 'A split of 1 makes no sense'
num_aug_splits = args.aug_splits
# resolve amp
resolve_amp(args, _logger)
# build model
# model = build_model(args, _logger, num_aug_splits)
model = prn_cifar.PreActResNet18()
model.cuda()
# # Replace activations
# def replace_layers(model, old, new):
# for n, module in model.named_children():
# if len(list(module.children())) > 0:
# ## compound module, go inside it
# replace_layers(module, old, new)
# if isinstance(module, old):
# ## simple module
# setattr(model, n, new)
# if args.replace_relu_with_gelu:
# replace_layers(model, nn.ReLU, nn.GELU())
# if args.replace_relu_with_silu:
# replace_layers(model, nn.ReLU, nn.SiLU())
# if args.relu_not_inplace:
# replace_layers(model, nn.ReLU, nn.ReLU(inplace=False))
# create optimizer
optimizer=None
if args.lr is None:
args.lr=args.lrb * args.batch_size * args.world_size * args.grad_accum / 512
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
# build loss scaler
amp_autocast, loss_scaler = build_loss_scaler(args, _logger)
# resume from a checkpoint
resume_epoch = None
if args.pretrain:
_ = resume_checkpoint(
model, args.pretrain,
optimizer=None,
loss_scaler=None,
log_info=args.rank == 0)
print(f'pretraining from {args.pretrain}')
# setup ema
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEmaV2(
model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
if args.pretrain:
load_checkpoint(model_ema.module, args.pretrain, use_ema=True)
# Resume
if args.resume:
resume_epoch = resume_checkpoint(
model, args.resume,
optimizer=optimizer,
loss_scaler=loss_scaler,
log_info=args.rank == 0)
if args.model_ema:
if args.resume:
load_checkpoint(model_ema.module, args.resume, use_ema=True)
# visualize gradients
# if args.rank == 0:
# os.makedirs(Path(args.output_dir) / 'gradient_images')
# visualize_gradients(args, model, _logger, 'train', epoch='start')
# visualize_gradients(args, model, _logger, 'val', epoch='start')
# if model_ema is not None:
# visualize_gradients(args, model_ema.module, _logger, 'train', epoch='start', ema='ema')
# visualize_gradients(args, model_ema.module, _logger, 'val', epoch='start', ema='ema')
# visualize_gradients(args, model, _logger, 'train', 0, 0)
# visualize_gradients(args, model, _logger, 'val', 0, 0)
# setup distributed training
if args.distributed:
if args.amp_version == 'apex':
# Apex DDP preferred unless native amp is activated
from apex.parallel import DistributedDataParallel as ApexDDP
_logger.info("Using NVIDIA APEX DistributedDataParallel.")
model = ApexDDP(model, delay_allreduce=True)
else:
_logger.info("Using native Torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[args.device_id])
# NOTE: EMA model does not need to be wrapped by DDP
# setup learning rate schedule and starting epoch
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
start_epoch = 0
if resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.step(start_epoch)
_logger.info('Scheduled epochs: {}'.format(num_epochs))
# create the train and eval dataloaders
if 'SLURM_PROCID' in os.environ:
cmd = os.popen('modulecmd python load "/home/gridsan/groups/datasets/ImageNet/modulefile"')
cmd.read()
cmd.close()
#_logger.info(f'Imagenet path {os.environ["IMAGENET_PATH"]}')
args.train_dir = '/run/user/61863/imagenet' + '/normal/train'
args.eval_dir = '/run/user/61863/imagenet' + '/normal/val'
loader_train, loader_eval, mixup_fn = build_dataset(args, num_aug_splits)
# setup loss function
train_loss_fn, validate_loss_fn = build_loss(args, mixup_fn, num_aug_splits)
# setup reg loss fncs
reg_loss_fn = []
if args.advtrain:
reg_loss_fn = None
elif args.gradnorm and args.loss_fn == 'DBP':
reg_loss_fn = input_norm_losses.DBP()
elif args.gradnorm and args.loss_fn == 'DBPAMHM':
reg_loss_fn = input_norm_losses.DBPAMHM()
elif args.gradnorm and args.loss_fn == 'DBPSparsity':
reg_loss_fn = input_norm_losses.DBPSparsity()
elif args.gradnorm and args.loss_fn == 'DBPChannel':
reg_loss_fn = input_norm_losses.DBPChannel()
elif args.gradnorm and args.loss_fn == 'DBPThresholded':
reg_loss_fn = input_norm_losses.DBPThresholded()
elif args.gradnorm and args.loss_fn == 'DBPPow':
reg_loss_fn = input_norm_losses.DBPPow(p=args.p, th=args.th, tol=args.tol)
elif args.gradnorm and args.loss_fn == 'DBPTangent':
reg_loss_fn = input_norm_losses.DBPTangent().cuda()
elif args.gradnorm and args.loss_fn == 'DBPEdgeWeight':
reg_loss_fn = input_norm_losses.DBPEdgeWeight().cuda()
elif args.gradnorm and args.loss_fn == 'DBPEdgeWeightNorm':
reg_loss_fn = input_norm_losses.DBPEdgeWeightNorm().cuda()
elif args.gradnorm and args.loss_fn == 'DBPChange':
reg_loss_fn = input_norm_losses.DBPChange().cuda()
elif args.gradnorm and args.loss_fn == 'EdgePatchSimilarity':
reg_loss_fn = patch_similarity_losses.EdgePatchSimilarity(patch_size=args.patch_size).cuda()
_logger.info(f'Reg losses: {str(reg_loss_fn)}')
# saver
eval_metric = args.eval_metric
saver = None
best_metric = None
best_epoch = None
output_dir = None
if args.rank == 0:
output_dir = get_outdir(args.output_dir)
decreasing=True if (eval_metric=='loss' or eval_metric=='advloss') else False
saver = CheckpointSaver(
model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.max_history)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
# start training
_logger.info(f"Start training for {args.epochs} epochs")
for epoch in range(start_epoch, args.epochs):
if hasattr(loader_train, 'sampler'):
loader_train.sampler.set_epoch(epoch)
# one epoch training
train_metrics = train_one_epoch(
epoch, model, loader_train, optimizer, train_loss_fn, args,
reg_loss_fn=reg_loss_fn,
lr_scheduler=lr_scheduler, saver=saver, amp_autocast=amp_autocast,
loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn, _logger=_logger)
# distributed bn sync
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
_logger.info("Distributing BatchNorm running means and vars")
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
# calculate evaluation metric
eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, _logger=_logger)
# model ema update
if model_ema is not None and not args.model_ema_force_cpu:
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
ema_eval_metrics = validate(model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)', _logger=_logger)
eval_metrics = ema_eval_metrics
# lr_scheduler update
if lr_scheduler is not None:
# step LR for next epoch
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
# output summary.csv
if output_dir is not None:
update_summary(
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
write_header=best_metric is None)
# save checkpoint, print best metric
if saver is not None:
best_metric, best_epoch = saver.save_checkpoint(epoch, eval_metrics[eval_metric])
torch.distributed.barrier()
if best_metric is not None:
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
def train_one_epoch(
epoch, model, loader, optimizer, loss_fn, args,
reg_loss_fn=None,
lr_scheduler=None, saver=None, amp_autocast=None,
loss_scaler=None, model_ema=None, mixup_fn=None, _logger=None):
# mixup setting
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
if mixup_fn is not None:
mixup_fn.mixup_enabled = False
# statistical variables
second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
losses_m = AverageMeter()
num_epochs = args.epochs + args.cooldown_epochs
# model.train()
model.eval()
end = time.time()
last_idx = len(loader) - 1
num_updates = epoch * len(loader)
att_step = args.attack_step * min(epoch, 5)/5
att_eps=args.attack_eps
att_it=args.attack_it
alpha=0
optimizer.zero_grad()
for batch_idx, (input, target) in enumerate(loader):
last_batch = batch_idx == last_idx
# processing input and target
input, target = input.cuda(non_blocking=True), target.cuda(non_blocking=True)
if mixup_fn is not None:
input, target = mixup_fn(input, target)
if args.channels_last:
input=input.contiguous(memory_format=torch.channels_last)
data_time_m.update(time.time() - end)
# generate adv input
if args.advtrain:
input_advtrain = adv_generator(args, input, target, model, att_eps, att_it, att_step, random_start=False, attack_criterion=args.attack_criterion)
# generate advprop input
if args.advprop:
model.apply(lambda m: setattr(m, 'bn_mode', 'adv'))
input_advprop = adv_generator(args, input, target, model, 1/255, 1, 1/255, random_start=True, attack_criterion=args.attack_criterion, use_best=False)
with amp_autocast():
if args.advprop:
outputs = model(input_advprop)
adv_loss = loss_fn(outputs, target)
model.apply(lambda m: setattr(m, 'bn_mode', 'clean'))
outputs = model(input)
loss = loss_fn(outputs, target) + adv_loss
elif args.advtrain:
output = model(input_advtrain)
loss = loss_fn(output, target)
loss_v = [loss]
elif args.gradnorm:
if args.random_start:
with torch.no_grad():
input = random_uniform_generator(input, args.mean, args.std, att_eps*args.random_start_eps_factor)
input.requires_grad_(True)
output = model(input)
ce_loss = loss_fn(output, target)
loss = args.ce_weight * ce_loss
loss_v = [ce_loss]
gradient = torch.autograd.grad(ce_loss, input, create_graph=True, retain_graph=True)[0]
loss_reg = reg_loss_fn(gradient, input)
alpha = max(0., min(args.alpha[0] + ((epoch-args.alpha_start_epoch) + (batch_idx // args.grad_accum) / (len(loader) / args.grad_accum)) * args.alpha[1], args.alpha[2]))
if not (args.loss_fn == 'DBPTangent' or args.loss_fn == 'DBPChange' or args.loss_fn == 'DBPSparsity' or args.loss_fn == 'DBPAMHM'):
loss += args.gradnorm_weight * alpha * loss_reg
loss_v += [loss_reg]
elif args.loss_fn == 'DBPSparsity':
norm_term, sparsity_term = loss_reg
loss += args.gradnorm_weight * alpha * (norm_term + sparsity_term)
loss_v += [norm_term, sparsity_term]
else:
loss_reg_d0, loss_reg_d1 = loss_reg
loss += args.gradnorm_weight * alpha * (loss_reg_d0 + loss_reg_d1)
loss_v += [loss_reg_d0, loss_reg_d1]
elif args.regtrain:
input = input / input.flatten(1).square().mean(1).sqrt()[:, None, None, None]
output = model(input)
loss = loss_fn(output, target)
loss_v = [loss]
else:
output = model(input)
loss = loss_fn(output, target)
loss_v = [loss]
loss_v = [loss] + loss_v
loss_v = torch.stack(loss_v, dim=0)
if not args.distributed:
losses_m.update(loss.item(), input.size(0))
else:
torch.cuda.synchronize()
reduced_loss = reduce_tensor(loss_v.data, args.world_size)
losses_m.update(reduced_loss.detach().cpu().numpy(), input.size(0))
# optimizer.zero_grad()
if loss_scaler is not None:
loss_scaler(
loss, optimizer,
clip_grad=args.clip_grad, clip_mode=args.clip_mode,
parameters=model_parameters(model, exclude_head='agc' in args.clip_mode),
create_graph=second_order)
else:
if args.grad_accum == 1:
optimizer.zero_grad()
loss.backward(create_graph=second_order)
if (batch_idx + 1) % args.grad_accum == 0:
if args.clip_grad is not None:
dispatch_clip_grad(
model_parameters(model, exclude_head='agc' in args.clip_mode),
value=args.clip_grad, mode=args.clip_mode)
optimizer.step()
optimizer.zero_grad()
if model_ema is not None:
if (batch_idx + 1) % args.grad_accum == 0:
model_ema.update(model)
if (batch_idx + 1) % args.grad_accum == 0:
torch.cuda.synchronize()
num_updates += 1
batch_time_m.update(time.time() - end)
# Save snapshot
accum_batch_idx = batch_idx // args.grad_accum
if (saver is not None) and (args.save_snapshot_for_inference is not None):
if ((accum_batch_idx + 1) == (len(loader) // args.grad_accum)):
save_snapshot_for_inference(saver, epoch, accum_batch_idx)
# # Collect gradient statistics
# if (args.collect_gradient_statistics is not None) and (epoch == 0 or epoch == 1):
# save_gradient_statistics(args, model, epoch, accum_batch_idx)
# torch.distributed.barrier()
if last_batch or (batch_idx // args.grad_accum) % args.log_interval == 0:
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
lr = sum(lrl) / len(lrl)
# model_ema.module.train()
# if args.distributed:
# reduced_loss = reduce_tensor(loss_v.data, args.world_size)
# losses_m.update(reduced_loss.detach().cpu().numpy(), input.size(0))
_logger.info(
'Train: [{}/{}] [{:>4d}/{} ({:>3.0f}%)] '
'Loss: {loss_val} ({loss_avg}) '
'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s '
'({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'LR: {lr:.3e} '
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
epoch, num_epochs,
batch_idx // args.grad_accum, len(loader) // args.grad_accum,
100. * batch_idx / last_idx,
loss_val=formatted_array_str(losses_m.val, '#.4g'),
loss_avg=formatted_array_str(losses_m.avg, '#.4g'),
batch_time=batch_time_m,
rate=input.size(0) * args.world_size / batch_time_m.val,
rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
lr=lr,
data_time=data_time_m))
# # save checkpoint
# if saver is not None and args.recovery_interval and (
# last_batch or (batch_idx + 1) % args.recovery_interval == 0):
# saver.save_recovery(epoch, batch_idx=batch_idx)
# update lr scheduler
if lr_scheduler is not None:
lr_scheduler.step_update(num_updates=num_updates/(len(loader)//args.grad_accum), metric=losses_m.avg)
end = time.time()
# end for
if hasattr(optimizer, 'sync_lookahead'):
optimizer.sync_lookahead()
return OrderedDict([('loss', losses_m.avg)])
def validate(model, loader, loss_fn, args, amp_autocast=None, log_suffix='', _logger=None):
batch_time_m = AverageMeter()
losses_m = AverageMeter()
top1_m = AverageMeter()
top5_m = AverageMeter()
adv_losses_m = AverageMeter()
adv_top1_m = AverageMeter()
adv_top5_m = AverageMeter()
model.eval()
end = time.time()
last_idx = len(loader) - 1
for batch_idx, (input, target) in enumerate(loader):
# read eval input
last_batch = batch_idx == last_idx
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
# normal eval process
with torch.no_grad():
with amp_autocast():
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
loss = loss_fn(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args.world_size)
acc1 = reduce_tensor(acc1, args.world_size)
acc5 = reduce_tensor(acc5, args.world_size)
else:
reduced_loss = loss.data
torch.cuda.synchronize()
# record normal results
losses_m.update(reduced_loss.item(), input.size(0))
top1_m.update(acc1.item(), output.size(0))
top5_m.update(acc5.item(), output.size(0))
# adv eval process
if True:
adv_input=adv_generator(args, input, target, model, 8/255, 50, 1/255, random_start=True, use_best=False, attack_criterion='regular')
with torch.no_grad():
with amp_autocast():
adv_output = model(adv_input)
if isinstance(adv_output, (tuple, list)):
adv_output = adv_output[0]
adv_loss = loss_fn(adv_output, target)
adv_acc1, adv_acc5 = accuracy(adv_output, target, topk=(1, 5))
if args.distributed:
adv_reduced_loss = reduce_tensor(adv_loss.data, args.world_size)
adv_acc1 = reduce_tensor(adv_acc1, args.world_size)
adv_acc5 = reduce_tensor(adv_acc5, args.world_size)
else:
adv_reduced_loss = adv_loss.data
torch.cuda.synchronize()
# record adv results
adv_losses_m.update(adv_reduced_loss.item(), adv_input.size(0))
adv_top1_m.update(adv_acc1.item(), adv_output.size(0))
adv_top5_m.update(adv_acc5.item(), adv_output.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
if last_batch or batch_idx % args.log_interval == 0:
log_name = 'Test' + log_suffix
_logger.info(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '
'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f}) '
'AdvLoss: {adv_loss.val:>7.4f} ({adv_loss.avg:>6.4f}) '
'AdvAcc@1: {adv_top1.val:>7.4f} ({adv_top1.avg:>7.4f}) '
'AdvAcc@5: {adv_top5.val:>7.4f} ({adv_top5.avg:>7.4f})'.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m,
loss=losses_m, top1=top1_m, top5=top5_m,
adv_loss=adv_losses_m, adv_top1=adv_top1_m, adv_top5=adv_top5_m))
metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg), ('advloss', adv_losses_m.avg), ('advtop1', adv_top1_m.avg), ('advtop5', adv_top5_m.avg)])
return metrics
def save_snapshot_for_inference(saver, epoch, iter):
save_state = {
'epoch': epoch,
'arch': type(saver.model).__name__.lower(),
'state_dict': get_state_dict(saver.model, saver.unwrap_fn),
'optimizer': saver.optimizer.state_dict(),
'version': 2, # version < 2 increments epoch before save
}
if saver.args is not None:
save_state['arch'] = saver.args.model
save_state['args'] = saver.args
if saver.amp_scaler is not None:
save_state[saver.amp_scaler.state_dict_key] = saver.amp_scaler.state_dict()
if saver.model_ema is not None:
save_state['state_dict_ema'] = get_state_dict(saver.model_ema, saver.unwrap_fn)
save_path = f'{saver.checkpoint_dir}/snapshots/snapshot-{epoch}-{iter}.pth.tar'
torch.save(save_state, save_path)
def save_gradient_statistics(args, model, epoch, iter):
meta_file='gradnorm_monitoring'
imagenet_path=args.eval_dir
dataloader_eval, dataset_eval = get_dataloader_for_visualization(args, root=imagenet_path, meta_file=meta_file, batch_size=args.batch_size)
std_tensor=torch.Tensor(args.std).cuda(non_blocking=True)[None, :, None, None]
mean_tensor=torch.Tensor(args.mean).cuda(non_blocking=True)[None, :, None, None]
mode = model.training
model.eval()
gradient_norms = []
for (input, target) in dataloader_eval:
input = input.cuda()
target = target.cuda()
input = (input-mean_tensor)/std_tensor
input.requires_grad_(True)
output = model(input)
loss = torch.nn.functional.cross_entropy(output, target)
gradients = torch.autograd.grad(loss, input, create_graph=False, retain_graph=False)[0]
gradients = args.batch_size*gradients.abs().sum((-3, -2, -1))
gradient_norms.append(gradients.detach().cpu())
gradient_norms = torch.concat(gradient_norms)
with open(f'{args.output_dir}/gradnorms.txt', "a") as file:
print(f'{epoch};{iter};{gradient_norms.numpy()}', file=file)
if mode:
model.train()
def random_uniform_generator(images, mean, std, eps):
# denorm images to 0-1
std_tensor=torch.Tensor(std).cuda(non_blocking=True)[None, :, None, None]
mean_tensor=torch.Tensor(mean).cuda(non_blocking=True)[None, :, None, None]
images=images*std_tensor+mean_tensor
noise = torch.rand_like(images)
noise.uniform_(-eps, eps)
images = torch.clamp(images+noise, 0, 1)
return (images - mean_tensor) / std_tensor
if __name__ == '__main__':
parser = argparse.ArgumentParser('Robust training script', parents=[get_args_parser()])
args = parser.parse_args()
opt = vars(args)
if args.configs:
opt.update(yaml.load(open(args.configs), Loader=yaml.FullLoader))
args = argparse.Namespace(**opt)
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
main(args, args_text)