-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchapitre6_bib.html
250 lines (228 loc) · 8.97 KB
/
chapitre6_bib.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>chapitre6.bib</title>
</head>
<body>
<h1>chapitre6.bib</h1><a name="JSSv025i01"></a><pre>
@article{<a href="chapitre6.html#JSSv025i01">JSSv025i01</a>,
author = {Sébastien Lê and Julie Josse and François Husson},
title = {FactoMineR: An R Package for Multivariate Analysis},
journal = {Journal of Statistical Software, Articles},
volume = {25},
number = {1},
year = {2008},
keywords = {},
abstract = {In this article, we present FactoMineR an R package dedicated to multivariate data analysis. The main features of this package is the possibility to take into account different types of variables (quantitative or categorical), different types of structure on the data (a partition on the variables, a hierarchy on the variables, a partition on the individuals) and finally supplementary information (supplementary individuals and variables). Moreover, the dimensions issued from the different exploratory data analyses can be automatically described by quantitative and/or categorical variables. Numerous graphics are also available with various options. Finally, a graphical user interface is implemented within the Rcmdr environment in order to propose an user friendly package.},
issn = {1548-7660},
pages = {1--18},
doi = {10.18637/jss.v025.i01},
url = {https://www.jstatsoft.org/v025/i01}
}
</pre>
<a name="Yan:2017:YAY:3109859.3109923"></a><pre>
@inproceedings{<a href="chapitre6.html#Yan:2017:YAY:3109859.3109923">Yan:2017:YAY:3109859.3109923</a>,
author = {Yan, Zhixian and Wei, Lai and Lu, Yunshan and Wu, Zhongqiang and Tao, Bo},
title = {You Are What Apps You Use: Transfer Learning for Personalized Content and Ad Recommendation},
booktitle = {Proceedings of the Eleventh ACM Conference on Recommender Systems},
series = {RecSys '17},
year = {2017},
isbn = {978-1-4503-4652-8},
location = {Como, Italy},
pages = {350--350},
numpages = {1},
url = {<a href="http://doi.acm.org/10.1145/3109859.3109923">http://doi.acm.org/10.1145/3109859.3109923</a>},
doi = {10.1145/3109859.3109923},
acmid = {3109923},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {personalized recommendation, transfer learning, user profile}
}
</pre>
<a name="platt1999probabilistic"></a><pre>
@article{<a href="chapitre6.html#platt1999probabilistic">platt1999probabilistic</a>,
title = {Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods},
author = {Platt, John and others},
journal = {Advances in large margin classifiers},
volume = {10},
number = {3},
pages = {61--74},
year = {1999},
publisher = {Cambridge, MA}
}
</pre>
<a name="zadrozny2002transforming"></a><pre>
@inproceedings{<a href="chapitre6.html#zadrozny2002transforming">zadrozny2002transforming</a>,
title = {Transforming classifier scores into accurate multiclass probability estimates},
author = {Zadrozny, Bianca and Elkan, Charles},
booktitle = {Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining},
pages = {694--699},
year = {2002},
organization = {ACM}
}
</pre>
<a name="schwartz2009human"></a><pre>
@inproceedings{<a href="chapitre6.html#schwartz2009human">schwartz2009human</a>,
title = {Human detection using partial least squares analysis},
author = {Schwartz, William Robson and Kembhavi, Aniruddha and Harwood, David and Davis, Larry S},
booktitle = {2009 IEEE 12th International Conference on Computer Vision (ICCV)},
pages = {24--31},
year = {2009},
organization = {IEEE}
}
</pre>
<a name="quinlan2014c4"></a><pre>
@book{<a href="chapitre6.html#quinlan2014c4">quinlan2014c4</a>,
title = {C4. 5: programs for machine learning},
author = {Quinlan, J Ross},
year = {2014},
publisher = {Elsevier}
}
</pre>
<a name="sumner2005speeding"></a><pre>
@inproceedings{<a href="chapitre6.html#sumner2005speeding">sumner2005speeding</a>,
title = {Speeding up logistic model tree induction},
author = {Sumner, Marc and Frank, Eibe and Hall, Mark},
booktitle = {European Conference on Principles of Data Mining and Knowledge Discovery},
pages = {675--683},
year = {2005},
organization = {Springer}
}
</pre>
<a name="wold1984collinearity"></a><pre>
@article{<a href="chapitre6.html#wold1984collinearity">wold1984collinearity</a>,
title = {The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses},
author = {Wold, Svante and Ruhe, Arnold and Wold, Herman and Dunn, III, WJ},
journal = {SIAM Journal on Scientific and Statistical Computing},
volume = {5},
number = {3},
pages = {735--743},
year = {1984},
publisher = {SIAM}
}
</pre>
<a name="bair2006prediction"></a><pre>
@article{<a href="chapitre6.html#bair2006prediction">bair2006prediction</a>,
title = {Prediction by supervised principal components},
author = {Bair, Eric and Hastie, Trevor and Paul, Debashis and Tibshirani, Robert},
journal = {Journal of the American Statistical Association},
volume = {101},
number = {473},
pages = {119--137},
year = {2006},
publisher = {Taylor \& Francis}
}
</pre>
<a name="cart84"></a><pre>
@book{<a href="chapitre6.html#cart84">cart84</a>,
author = {Leo {Breiman} and J. H. {Friedman} and R. A. {Olshen} and C. J. {Stone}},
title = {Classification and Regression Trees},
year = {1984},
publisher = {Wadsworth Publishing Company},
address = {Belmont, California, U.S.A.},
series = {Statistics/Probability Series}
}
</pre>
<a name="hothorn2006unbiased"></a><pre>
@article{<a href="chapitre6.html#hothorn2006unbiased">hothorn2006unbiased</a>,
title = {Unbiased recursive partitioning: A conditional inference framework},
author = {Hothorn, Torsten and Hornik, Kurt and Zeileis, Achim},
journal = {Journal of Computational and Graphical statistics},
volume = {15},
number = {3},
pages = {651--674},
year = {2006},
publisher = {Taylor \& Francis}
}
</pre>
<a name="friedman2000additive"></a><pre>
@article{<a href="chapitre6.html#friedman2000additive">friedman2000additive</a>,
title = {Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)},
author = {Friedman, Jerome and Hastie, Trevor and Tibshirani, Robert and others},
journal = {The annals of statistics},
volume = {28},
number = {2},
pages = {337--407},
year = {2000},
publisher = {Institute of Mathematical Statistics}
}
</pre>
<a name="chan2004lotus"></a><pre>
@article{<a href="chapitre6.html#chan2004lotus">chan2004lotus</a>,
title = {LOTUS: An algorithm for building accurate and comprehensible logistic regression trees},
author = {Chan, Kin-Yee and Loh, Wei-Yin},
journal = {Journal of Computational and Graphical Statistics},
volume = {13},
number = {4},
pages = {826--852},
year = {2004},
publisher = {Taylor \& Francis}
}
</pre>
<a name="pages2014multiple"></a><pre>
@book{<a href="chapitre6.html#pages2014multiple">pages2014multiple</a>,
title = {Multiple factor analysis by example using R},
author = {Pag{\`e}s, J{\'e}r{\^o}me},
year = {2014},
publisher = {Chapman and Hall/CRC}
}
</pre>
<a name="lebart1995statistique"></a><pre>
@book{<a href="chapitre6.html#lebart1995statistique">lebart1995statistique</a>,
title = {Statistique exploratoire multidimensionnelle},
author = {Lebart, Ludovic and Morineau, Alain and Piron, Marie},
volume = {3},
year = {1995},
publisher = {Dunod Paris}
}
</pre>
<a name="opitz1999popular"></a><pre>
@article{<a href="chapitre6.html#opitz1999popular">opitz1999popular</a>,
title = {Popular ensemble methods: An empirical study},
author = {Opitz, David and Maclin, Richard},
journal = {Journal of artificial intelligence research},
volume = {11},
pages = {169--198},
year = {1999}
}
</pre>
<a name="jordan1994hierarchical"></a><pre>
@article{<a href="chapitre6.html#jordan1994hierarchical">jordan1994hierarchical</a>,
title = {Hierarchical mixtures of experts and the EM algorithm},
author = {Jordan, Michael I and Jacobs, Robert A},
journal = {Neural computation},
volume = {6},
number = {2},
pages = {181--214},
year = {1994},
publisher = {MIT Press}
}
</pre>
<a name="zeileis2008model"></a><pre>
@article{<a href="chapitre6.html#zeileis2008model">zeileis2008model</a>,
title = {Model-based recursive partitioning},
author = {Zeileis, Achim and Hothorn, Torsten and Hornik, Kurt},
journal = {Journal of Computational and Graphical Statistics},
volume = {17},
number = {2},
pages = {492--514},
year = {2008},
publisher = {Taylor \& Francis}
}
</pre>
<a name="landwehr2005logistic"></a><pre>
@article{<a href="chapitre6.html#landwehr2005logistic">landwehr2005logistic</a>,
title = {Logistic model trees},
author = {Landwehr, Niels and Hall, Mark and Frank, Eibe},
journal = {Machine learning},
volume = {59},
number = {1-2},
pages = {161--205},
year = {2005},
publisher = {Springer}
}
</pre>
<hr><p><em>This file was generated by
<a href="http://www.lri.fr/~filliatr/bibtex2html/">bibtex2html</a> 1.96.</em></p>
</body>
</html>