-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
83 lines (65 loc) · 2.41 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from torch import nn
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class UnFlatten(nn.Module):
def forward(self, input, size=100):
return input.view(input.size(0), size, 1, 1)
class VAE(nn.Module):
def __init__(self, device="cpu", image_channels=3, h_dim=2304, z_dim=100):
super(VAE, self).__init__()
self.device = device
self.encoder = nn.Sequential(
nn.Conv2d(image_channels, 32, kernel_size=3, stride=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=2, stride=2),
nn.ReLU(),
Flatten()
)
self.fc1 = nn.Linear(h_dim, z_dim)
self.fc2 = nn.Linear(h_dim, z_dim)
self.decoder = nn.Sequential(
UnFlatten(),
nn.ConvTranspose2d(z_dim, 1024, kernel_size=4, stride=1),
nn.ReLU(),
nn.ConvTranspose2d(1024, 512, kernel_size=5, stride=1),
nn.ReLU(),
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(256, image_channels, kernel_size=4, stride=2, padding=1),
nn.Sigmoid()
)
def reparameterize(self, mu, log_var):
std = log_var.mul(0.5).exp_()
# return torch.normal(mu, std)
esp = torch.randn(*mu.size(), device=self.device)
z = mu + std * esp
return z
def bottleneck(self, h):
mu, log_var = self.fc1(h), self.fc2(h)
z = self.reparameterize(mu, log_var)
return z, mu, log_var
def encode(self, x):
h = self.encoder(x)
z, mu, log_var = self.bottleneck(h)
return z, mu, log_var
def decode(self, z):
z = self.decoder(z)
return z
def forward(self, x):
z, mu, log_var = self.encode(x)
z = self.decode(z)
return z, mu, log_var
def loss_fn(recon_x, x, mu, log_var):
MSE = F.mse_loss(recon_x, x, reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return MSE + KLD, MSE, KLD