This repository is an official implementation of HeightMapNet.
Step 1. Create conda environment and activate it.
conda create --name heightmapnet python=3.8 -y
conda activate heightmapnet
Step 2. Install PyTorch.
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
Step 3. Install MMCV series.
# Install mmcv-series
pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6
pip install -e .
Step 4. Install other requirements.
pip install -r requirements.txt
Step 1. Download NuScenes dataset to ./datasets/nuScenes
.
Step 2. Generate annotation files for NuScenes dataset.
python tools/nuscenes_converter.py --data-root ./datasets/nuScenes --newsplit
To train a model with 1 GPUs:
bash tools/dist_train.sh ${CONFIG} 1
To validate a model with 1 GPUs:
bash tools/dist_test_map.sh ${CONFIG} ${CEHCKPOINT} 1
Method | Ap_divider | AP_boundary | AP_pedcrossing | mAP | Config | Download |
---|---|---|---|---|---|---|
HeightMapNet | 62.8 | 60.4 | 54.3 | 59.1 | config | ckpt |
If you find our paper or codebase useful in your research, please cite our paper.
@misc{qiu2024heightmapnetexplicitheightmodeling,
title={HeightMapNet: Explicit Height Modeling for End-to-End HD Map Learning},
author={Wenzhao Qiu and Shanmin Pang and Hao zhang and Jianwu Fang and Jianru Xue},
year={2024},
eprint={2411.01408},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.01408},
}