-
Notifications
You must be signed in to change notification settings - Fork 355
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Draft import structure and adapter model class
- Loading branch information
Showing
2 changed files
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
# flake8: noqa | ||
# There's no way to ignore "F401 '...' imported but unused" warnings in this | ||
# module, but to preserve other warnings. So, don't check this module at all. | ||
|
||
# Copyright 2020 The Adapter-Hub Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import TYPE_CHECKING | ||
|
||
from transformers.utils import _LazyModule | ||
|
||
|
||
_import_structure = { | ||
"adapter_model": ["MllamaAdapterModel"], | ||
} | ||
|
||
|
||
if TYPE_CHECKING: | ||
from .adapter_model import MllamaAdapterModel | ||
|
||
else: | ||
import sys | ||
|
||
sys.modules[__name__] = _LazyModule( | ||
__name__, | ||
globals()["__file__"], | ||
_import_structure, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
import logging | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
|
||
from hf_transformers.build.lib.transformers.cache_utils import Cache | ||
from hf_transformers.build.lib.transformers.modeling_outputs import BaseModelOutputWithPast | ||
from transformers.models.mllama import MLLAMA_START_DOCSTRING, MllamaPreTrainedModel, MllamaTextModel | ||
from transformers.utils import add_start_docstrings | ||
|
||
from ...composition import adjust_tensors_for_parallel | ||
from ...heads import ModelWithFlexibleHeadsAdaptersMixin | ||
from ...model_mixin import EmbeddingAdaptersWrapperMixin | ||
from ...wrappers import init | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
@add_start_docstrings( | ||
""" | ||
TODO | ||
""", | ||
MLLAMA_START_DOCSTRING, | ||
) | ||
class MllamaTextAdapterModel( | ||
EmbeddingAdaptersWrapperMixin, ModelWithFlexibleHeadsAdaptersMixin, MllamaPreTrainedModel | ||
): | ||
head_types = [ | ||
"causal_lm", | ||
] # TODO: "conditional_generation" | ||
|
||
def __init__(self, config): | ||
super().__init__(config) | ||
self.model = MllamaTextModel | ||
init(self.model) | ||
|
||
self._init_head_modules() | ||
|
||
self.init_weights() | ||
|
||
# Model parallel | ||
self.model_parallel = False | ||
self.device_map = None | ||
self.post_init() | ||
|
||
def forward( | ||
self, | ||
input_ids: Optional[torch.LongTensor] = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
cross_attention_states: Optional[torch.FloatTensor] = None, | ||
cross_attention_mask: Optional[torch.Tensor] = None, | ||
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | ||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
head=None, | ||
output_adapter_gating_scores=False, | ||
output_adapter_fusion_attentions=False, | ||
**kwargs, | ||
) -> Union[Tuple, BaseModelOutputWithPast]: | ||
|
||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | ||
output_hidden_states = ( | ||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | ||
) | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
outputs, context = self.model( | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
cross_attention_states=cross_attention_states, | ||
cross_attention_mask=cross_attention_mask, | ||
full_text_row_masked_out_mask=full_text_row_masked_out_mask, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
cache_position=cache_position, | ||
output_adapter_gating_scores=output_adapter_gating_scores, | ||
output_adapter_fusion_attentions=output_adapter_fusion_attentions, | ||
adapter_input_parallelized=kwargs.pop("adapter_input_parallelized", False), | ||
output_context=True, | ||
) | ||
kwargs["context"] = context | ||
batch_size = outputs[0].shape[0] | ||
|
||
if self.config.pad_token_id is None: | ||
# TODO-AH: this may result in unexpected behavior for classification. Find a better way to do this? | ||
sequence_lengths = -1 | ||
else: | ||
if input_ids is not None: | ||
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 | ||
(sequence_lengths,) = adjust_tensors_for_parallel(outputs[0], sequence_lengths) | ||
else: | ||
sequence_lengths = -1 | ||
logger.warning( | ||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | ||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | ||
) | ||
|
||
cls_logits = outputs[0][range(batch_size), sequence_lengths] | ||
|
||
outputs = self.forward_head( | ||
outputs, | ||
head_name=head, | ||
cls_output=cls_logits, | ||
attention_mask=attention_mask, | ||
return_dict=return_dict, | ||
**kwargs, | ||
) | ||
|
||
return outputs | ||
|
||
def prepare_inputs_for_generation( | ||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | ||
): | ||
if past_key_values: | ||
input_ids = input_ids[:, -1:] | ||
|
||
position_ids = kwargs.get("position_ids", None) | ||
if attention_mask is not None and position_ids is None: | ||
# create position_ids on the fly for batch generation | ||
position_ids = attention_mask.long().cumsum(-1) - 1 | ||
position_ids.masked_fill_(attention_mask == 0, 1) | ||
if past_key_values: | ||
position_ids = position_ids[:, -1].unsqueeze(-1) | ||
|
||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | ||
if inputs_embeds is not None and past_key_values is None: | ||
model_inputs = {"inputs_embeds": inputs_embeds} | ||
else: | ||
model_inputs = {"input_ids": input_ids} | ||
|
||
model_inputs.update( | ||
{ | ||
"position_ids": position_ids, | ||
"past_key_values": past_key_values, | ||
"use_cache": kwargs.get("use_cache"), | ||
"attention_mask": attention_mask, | ||
"adapter_input_parallelized": kwargs.pop("adapter_input_parallelized", False), | ||
} | ||
) | ||
return model_inputs |