diff --git a/README.md b/README.md index 612f864e1c..d5a0a54c12 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,76 @@ cd adapters pip install . ``` -## Getting Started +## Quick Tour + +#### Load pre-trained adapters: + +```python +from adapters import AutoAdapterModel +from transformers import AutoTokenizer + +model = AutoAdapterModel.from_pretrained("roberta-base") +tokenizer = AutoTokenizer.from_pretrained("roberta-base") + +model.load_adapter("AdapterHub/roberta-base-pf-imdb", source="hf", set_active=True) + +print(model(**tokenizer("This works great!", return_tensors="pt")).logits) +``` + +**[Learn More](https://docs.adapterhub.ml/loading.html)** + +#### Adapt existing model setups: + +```python +import adapters +from transformers import AutoModelForSequenceClassification + +model = AutoModelForSequenceClassification.from_pretrained("t5-base") + +adapters.init(model) + +model.add_adapter("my_lora_adapter", config="lora") +model.train_adapter("my_lora_adapter") + +# Your regular training loop... +``` + +**[Learn More](https://docs.adapterhub.ml/quickstart.html)** + +#### Flexibly configure adapters: + +```python +from adapters import ConfigUnion, PrefixTuningConfig, ParBnConfig, AutoAdapterModel + +model = AutoAdapterModel.from_pretrained("microsoft/deberta-v3-base") + +adapter_config = ConfigUnion( + PrefixTuningConfig(prefix_length=20), + ParBnConfig(reduction_factor=4), +) +model.add_adapter("my_adapter", config=adapter_config, set_active=True) +``` + +**[Learn More](https://docs.adapterhub.ml/overview.html)** + +#### Easily compose adapters in a single model: + +```python +from adapters import AdapterSetup, AutoAdapterModel +import adapters.composition as ac + +model = AutoAdapterModel.from_pretrained("roberta-base") + +qc = model.load_adapter("AdapterHub/roberta-base-pf-trec") +sent = model.load_adapter("AdapterHub/roberta-base-pf-imdb") + +with AdapterSetup(ac.Parallel(qc, sent)): + print(model(**tokenizer("What is AdapterHub?", return_tensors="pt"))) +``` + +**[Learn More](https://docs.adapterhub.ml/adapter_composition.html)** + +## Useful Resources HuggingFace's great documentation on getting started with _Transformers_ can be found [here](https://huggingface.co/transformers/index.html). `adapters` is fully compatible with _Transformers_.