-
Notifications
You must be signed in to change notification settings - Fork 53
/
ipsc.py
616 lines (505 loc) · 26.3 KB
/
ipsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# Copyright (c) 2013 Cortney T. Buffington, N0MJS n0mjs@me.com
#
# This work is licensed under the Creative Commons Attribution-ShareAlike
# 3.0 Unported License.To view a copy of this license, visit
# http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
# Creative Commons, 444 Castro Street, Suite 900, Mountain View,
# California, 94041, USA.
from __future__ import print_function
from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.internet import task
import sys
import argparse
import binascii
import hmac
import hashlib
import socket
#************************************************
# IMPORTING OTHER FILES - '#include'
#************************************************
# Import system logger configuration
#
try:
from ipsc.ipsc_logger import logger
except ImportError:
sys.exit('System logger configuraiton not found or invalid')
# Import configuration and informational data structures
#
try:
from ipsc.my_ipsc_config import NETWORK
except ImportError:
sys.exit('Configuration file not found, or not valid formatting')
# Import IPSC message types and version information
#
try:
from ipsc.ipsc_message_types import *
except ImportError:
sys.exit('IPSC message types file not found or invalid')
# Import IPSC flag mask values
#
try:
from ipsc.ipsc_mask import *
except ImportError:
sys.exit('IPSC mask values file not found or invalid')
#************************************************
# CALLBACK FUNCTIONS FOR USER PACKET TYPES
#************************************************
def call_ctl_1():
pass
def call_ctl_2():
pass
def call_ctl_3():
pass
def xcmp_xnl():
pass
def group_voice():
# _log = logger.debug
_src_group = _data[9:12]
_src_ipsc = _data[1:5]
for source in NETWORK[_network]['RULES']['GROUP_VOICE']:
# Matching for rules is against the Destination Group in the SOURCE packet (SRC_GROUP)
if source['SRC_GROUP'] == _src_group:
_target = source['DST_NET']
_target_sock = NETWORK[_target]['MASTER']['IP'], NETWORK[_target]['MASTER']['PORT']
# Re-Write the IPSC SRC to match the target network's ID
_data = _data.replace(_src_ipsc, NETWORK[_target]['LOCAL']['RADIO_ID'])
# Re-Write the destinaion Group ID
_data = _data.replace(_src_group, source['DST_GROUP'])
# Calculate and append the authentication hash for the target network... if necessary
if NETWORK[_target]['LOCAL']['AUTH_KEY'] == True:
_data = hashed_packet(NETWORK[_target]['LOCAL']['AUTH_KEY'], _data)
# Send the packet to all peers in the target IPSC
send_to_ipsc(_target, _data)
def private_voice():
pass
def group_data():
pass
def private_data():
pass
def unknown_message():
pass
#************************************************
# UTILITY FUNCTIONS FOR INTERNAL USE
#************************************************
# Remove the hash from a paket and return the payload
#
def strip_hash(_data):
# _log = logger.debug
# _log('Stripped Packet: %s', binascii.b2a_hex(_data[:-10]))
return _data[:-10]
# Determine if the provided peer ID is valid for the provided network
#
def valid_peer(_peer_list, _peerid):
# _log = logger.debug
if _peerid in _peer_list:
# _log('Peer List Has An Entry For: %s', binascii.b2a_hex(_peerid))
return True
# _log('Peer List Does NOT Have An Entry For: %s', binascii.b2a_hex(_peerid))
return False
# Determine if the provided master ID is valid for the provided network
#
def valid_master(_network, _peerid):
# _log = logger.debug
if NETWORK[_network]['MASTER']['RADIO_ID'] == _peerid:
# _log('Master ID is Valid: %s', binascii.b2a_hex(_peerid))
return True
else:
# _log('Master ID is NOT Valid: %s', binascii.b2a_hex(_peerid))
return False
# Accept a complete packet, ready to be sent, and send it to all active peers + master in an IPSC
#
def send_to_ipsc(_target, _packet):
# _log = logger.debug
# Send to the Master
# _log('Sending %s to:', binascii.b2a_hex(_packet)
networks[_target].transport.write(_packet, (NETWORK[_target]['MASTER']['IP'], NETWORK[_target]['MASTER']['PORT']))
# _log(' Master: %s', binascii.b2a_hex(NETWORK[_target]['MASTER']['RADIO_ID']))
# Send to each connected Peer
for peer in NETWORK[_target]['PEERS']:
if peer['STATUS']['CONNECTED'] == True:
networks[_target].transport.write(_packet, (peer['IP'], peer['PORT']))
# _log(' Peer: %s', binascii.b2a_hex(peer['RADIO_ID']))
# De-register a peer from an IPSC by removing it's infomation
#
def de_register_peer(_network, _peerid):
# _log = logger.debug
# Iterate for the peer in our data
# _log('Peer De-Registration Requested for: %s', binascii.b2a_hex(_peerid))
for peer in NETWORK[_network]['PEERS']:
# If we find the peer, remove it (we should find it)
if _peerid == peer['RADIO_ID']:
NETWORK[_network]['PEERS'].remove(peer)
# _log(' Peer Found And De-Registered')
return
else:
# _log(' Peer NOT Found')
pass
# Take a recieved peer list and the network it belongs to, process and populate the
# data structure in my_ipsc_config with the results, and return a simple list of peers.
#
def process_peer_list(_data, _network, _peer_list):
# _log = logger.debug
# Set the status flag to indicate we have recieved a Peer List
NETWORK[_network]['MASTER']['STATUS']['PEER-LIST'] = True
# Determine the length of the peer list for the parsing iterator
_peer_list_length = int(binascii.b2a_hex(_data[5:7]), 16)
# Record the number of peers in the data structure... we'll use it later (11 bytes per peer entry)
NETWORK[_network]['LOCAL']['NUM_PEERS'] = _peer_list_length/11
# _log('<<- (%s) The Peer List has been Received from Master\n%s There are %s peers in this IPSC Network', _network, (' '*(len(_network)+7)), _num_peers)
# Iterate each peer entry in the peer list. Skip the header, then pull the next peer, the next, etc.
for i in range(7, (_peer_list_length)+7, 11):
# Extract various elements from each entry...
_hex_radio_id = (_data[i:i+4])
_hex_address = (_data[i+4:i+8])
_ip_address = socket.inet_ntoa(_hex_address)
_hex_port = (_data[i+8:i+10])
_port = int(binascii.b2a_hex(_hex_port), 16)
_hex_mode = (_data[i+10:i+11])
_mode = int(binascii.b2a_hex(_hex_mode), 16)
# mask individual Mode parameters
_link_op = _mode & PEER_OP_MSK
_link_mode = _mode & PEER_MODE_MSK
_ts1 = _mode & IPSC_TS1_MSK
_ts2 = _mode & IPSC_TS2_MSK
# Determine whether or not the peer is operational
if _link_op == 0b01000000:
_peer_op = True
else:
_peer_op = False
# Determine the operational mode of the peer
if _link_mode == 0b00000000:
_peer_mode = 'NO_RADIO'
elif _link_mode == 0b00010000:
_peer_mode = 'ANALOG'
elif _link_mode == 0b00100000:
_peer_mode = 'DIGITAL'
else:
_peer_node = 'NO_RADIO'
# Determine whether or not timeslot 1 is linked
if _ts1 == 0b00001000:
_ts1 = True
else:
_ts1 = False
# Determine whether or not timeslot 2 is linked
if _ts2 == 0b00000010:
_ts2 = True
else:
_ts2 = False
# If this entry was NOT already in our list, add it.
# Note: We keep a "simple" peer list in addition to the large data
# structure because soemtimes, we just need to identify a
# peer quickly.
if _hex_radio_id not in _peer_list:
_peer_list.append(_hex_radio_id)
NETWORK[_network]['PEERS'].append({
'RADIO_ID': _hex_radio_id,
'IP': _ip_address,
'PORT': _port,
'MODE': _hex_mode,
'PEER_OPER': _peer_op,
'PEER_MODE': _peer_mode,
'TS1_LINK': _ts1,
'TS2_LINK': _ts2,
'STATUS': {'CONNECTED': False, 'KEEP_ALIVES_SENT': 0, 'KEEP_ALIVES_MISSED': 0, 'KEEP_ALIVES_OUTSTANDING': 0}
})
return _peer_list
# Gratuituous print-out of the peer list.. Pretty much debug stuff.
#
def print_peer_list(_network):
# _log = logger.info
_status = NETWORK[_network]['MASTER']['STATUS']['PEER-LIST']
print('Peer List Status for {}: {}' .format(_network, _status))
if _status and not NETWORK[_network]['PEERS']:
print('We are the only peer for: %s' % _network)
print('')
return
print('Peer List for: %s' % _network)
for dictionary in NETWORK[_network]['PEERS']:
if dictionary['RADIO_ID'] == NETWORK[_network]['LOCAL']['RADIO_ID']:
me = '(self)'
else:
me = ''
print('\tRADIO ID: {} {}' .format(int(binascii.b2a_hex(dictionary['RADIO_ID']), 16), me))
print('\t\tIP Address: {}:{}' .format(dictionary['IP'], dictionary['PORT']))
print('\t\tOperational: {}, Mode: {}, TS1 Link: {}, TS2 Link: {}' .format(dictionary['PEER_OPER'], dictionary['PEER_MODE'], dictionary['TS1_LINK'], dictionary['TS2_LINK']))
print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(dictionary['STATUS']['CONNECTED'], dictionary['STATUS']['KEEP_ALIVES_SENT'], dictionary['STATUS']['KEEP_ALIVES_OUTSTANDING'], dictionary['STATUS']['KEEP_ALIVES_MISSED']))
print('')
#************************************************
#******** ***********
#******** IPSC Network 'Engine' ***********
#******** ***********
#************************************************
#************************************************
# Base Class (used nearly all of the time)
#************************************************
class IPSC(DatagramProtocol):
# Modify the initializer to set up our environment and build the packets
# we need to maitain connections
#
def __init__(self, *args, **kwargs):
if len(args) == 1:
# Housekeeping: create references to the configuration and status data for this IPSC instance.
# Some configuration objects that are used frequently and have lengthy names are shortened
# such as (self._master_sock) expands to (self._config['MASTER']['IP'], self._config['MASTER']['PORT']).
# Note that many of them reference each other... this is the Pythonic way.
#
self._network = args[0]
self._config = NETWORK[self._network]
#
self._local = self._config['LOCAL']
self._local_stat = self._local['STATUS']
self._local_id = self._local['RADIO_ID']
#
self._master = self._config['MASTER']
self._master_stat = self._master['STATUS']
self._master_sock = self._master['IP'], self._master['PORT']
#
self._peers = self._config['PEERS']
#
# This is a regular list to store peers for the IPSC. At times, parsing a simple list is much less
# Spendy than iterating a list of dictionaries... Maybe I'll find a better way in the future. Also
# We have to know when we have a new peer list, so a variable to indicate we do (or don't)
#
self._peer_list = []
self._peer_list_new = False
args = ()
# Packet 'constructors' - builds the necessary control packets for this IPSC instance.
# This isn't really necessary for anything other than readability (reduction of code golf)
#
self.TS_FLAGS = (self._local['MODE'] + self._local['FLAGS'])
self.MASTER_REG_REQ_PKT = (MASTER_REG_REQ + self._local_id + self.TS_FLAGS + IPSC_VER)
self.MASTER_ALIVE_PKT = (MASTER_ALIVE_REQ + self._local_id + self.TS_FLAGS + IPSC_VER)
self.PEER_LIST_REQ_PKT = (PEER_LIST_REQ + self._local_id)
self.PEER_REG_REQ_PKT = (PEER_REG_REQ + self._local_id + IPSC_VER)
self.PEER_REG_REPLY_PKT = (PEER_REG_REPLY + self._local_id + IPSC_VER)
self.PEER_ALIVE_REQ_PKT = (PEER_ALIVE_REQ + self._local_id + self.TS_FLAGS)
self.PEER_ALIVE_REPLY_PKT = (PEER_ALIVE_REPLY + self._local_id + self.TS_FLAGS)
else:
# If we didn't get called correctly, log it!
#
logger.error('(%s) Unexpected arguments found.', self._network)
# This is called by REACTOR when it starts, We use it to set up the timed
# loop for each instance of the IPSC engine
#
def startProtocol(self):
# Timed loop for IPSC connection establishment and maintenance
# Others could be added later for things like updating a status
# Web page, etc....
#
self._call = task.LoopingCall(self.timed_loop)
self._loop = self._call.start(self._local['ALIVE_TIMER'])
# Take a packet to be SENT, calcualte auth hash and return the whole thing
#
def hashed_packet(self, _key, _data):
# _log = logger.debug
_hash = binascii.a2b_hex((hmac.new(_key,_data,hashlib.sha1)).hexdigest()[:20])
# _log('Hash for: %s is %s', binascii.b2a_hex(_data), binascii.b2a_hex(_hash)
return (_data + _hash)
# Take a RECEIVED packet, calculate the auth hash and verify authenticity
#
def validate_auth(self, _key, _data):
# _log = logger.debug
_payload = strip_hash(_data)
_hash = _data[-10:]
_chk_hash = binascii.a2b_hex((hmac.new(_key,_payload,hashlib.sha1)).hexdigest()[:20])
if _chk_hash == _hash:
# _log(' AUTH: Valid - Payload: %s, Hash: %s', binascii.b2a_hex(_payload), binascii.b2a_hex(_hash))
return True
else:
# _log(' AUTH: Invalid - Payload: %s, Hash: %s', binascii.b2a_hex(_payload), binascii.b2a_hex(_hash))
return False
#************************************************
# TIMED LOOP - MY CONNECTION MAINTENANCE
#************************************************
def timed_loop(self):
# Right now, without this, we really dont' know anything is happening.
print_peer_list(self._network)
# If the master isn't connected, we have to do that before we can do anything else!
if self._master_stat['CONNECTED'] == False:
reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_REG_REQ_PKT)
self.transport.write(reg_packet, (self._master_sock))
# Once the master is connected, we have to send keep-alives.. and make sure we get them back
elif (self._master_stat['CONNECTED'] == True):
# Send keep-alive to the master
master_alive_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_ALIVE_PKT)
self.transport.write(master_alive_packet, (self._master_sock))
# If we had a keep-alive outstanding by the time we send another, mark it missed.
if (self._master_stat['KEEP_ALIVES_OUTSTANDING']) > 0:
self._master_stat['KEEP_ALIVES_MISSED'] += 1
# If we have missed too many keep-alives, de-regiseter the master and start over.
if self._master_stat['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']:
self._master_stat['CONNECTED'] = False
logger.error('Maximum Master Keep-Alives Missed -- De-registering the Master')
# Update our stats before we move on...
self._master_stat['KEEP_ALIVES_SENT'] += 1
self._master_stat['KEEP_ALIVES_OUTSTANDING'] += 1
else:
# This is bad. If we get this message, probably need to restart the program.
logger.error('->> (%s) Master in UNKOWN STATE:%s:%s', self._network, self._master_sock)
# If the master is connected and we don't have a peer-list yet....
if ((self._master_stat['CONNECTED'] == True) and (self._master_stat['PEER-LIST'] == False)):
# Ask the master for a peer-list
peer_list_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_LIST_REQ_PKT)
self.transport.write(peer_list_req_packet, (self._master_sock))
# If we do ahve a peer-list, we need to register with the peers and send keep-alives...
if (self._master_stat['PEER-LIST'] == True):
# Iterate the list of peers... so we do this for each one.
for peer in (self._peers):
# We will show up in the peer list, but shouldn't try to talk to ourselves.
if (peer['RADIO_ID'] == self._local_id):
continue
# If we haven't registered to a peer, send a registration
if peer['STATUS']['CONNECTED'] == False:
peer_reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REQ_PKT)
self.transport.write(peer_reg_packet, (peer['IP'], peer['PORT']))
# If we have registered with the peer, then send a keep-alive
elif peer['STATUS']['CONNECTED'] == True:
peer_alive_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REQ_PKT)
self.transport.write(peer_alive_req_packet, (peer['IP'], peer['PORT']))
# If we have a keep-alive outstanding by the time we send another, mark it missed.
if peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] > 0:
peer['STATUS']['KEEP_ALIVES_MISSED'] += 1
# If we have missed too many keep-alives, de-register the peer and start over.
if peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']:
peer['STATUS']['CONNECTED'] = False
self._peer_list.remove(peer['RADIO_ID']) # Remove the peer from the simple list FIRST
self._peers.remove(peer) # Becuase once it's out of the dictionary, you can't use it for anything else.
logger.error('Maximum Peer Keep-Alives Missed -- De-registering the Peer: %s', peer)
# Update our stats before moving on...
peer['STATUS']['KEEP_ALIVES_SENT'] += 1
peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] += 1
#************************************************
# RECEIVED DATAGRAM - ACT IMMEDIATELY!!!
#************************************************
# Actions for recieved packets by type: For every packet recieved, there are some things that we need to do:
# Decode some of the info
# Check for auth and authenticate the packet
# Strip the hash from the end... we don't need it anymore
#
# Once they're done, we move on to the proccessing or callbacks for each packet type.
#
def datagramReceived(self, data, (host, port)):
_packettype = data[0:1]
_peerid = data[1:5]
_dec_peerid = int(binascii.b2a_hex(_peerid), 16)
# First action: if Authentication is active, authenticate the packet
#
if bool(self._local['AUTH_KEY']) == True:
# Validate
if self.validate_auth(self._local['AUTH_KEY'], data) == False:
logger.warning('(%s) AuthError: IPSC packet failed authentication. Type %s: Peer ID: %s', self._network, binascii.b2a_hex(_packettype), _dec_peerid)
return
# Strip the hash, we won't need it anymore
data = strip_hash(data)
# Packets generated by "users" that are the most common should come first for efficiency.
#
if (_packettype == GROUP_VOICE):
# Don't take action unless it's from a valid peer (including the master, of course)
if not(valid_master(self._network, _peerid) == False or valid_peer(self._peer_list, _peerid) == False):
logger.warning('(%s) PeerError: Peer not in peer-list: %s', self._network, _dec_peerid)
return
group_voice(self._network, data)
# IPSC keep alives, master and peer, come next in processing priority
#
elif (_packettype == PEER_ALIVE_REQ):
# We should not answer a keep-alive request from a peer we don't know about!
if valid_peer(self._peer_list, _peerid) == False:
logger.warning('(%s) PeerError: Peer %s not in peer-list: %s', self._network, _dec_peerid, self._peer_list)
return
# Generate a hashed paket from our template and send it.
peer_alive_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REPLY_PKT)
self.transport.write(peer_alive_reply_packet, (host, port))
elif (_packettype == MASTER_ALIVE_REPLY):
# We should not accept keep-alive reply from someone claming to be a master who isn't!
if valid_master(self._network, _peerid) == False:
logger.warning('(%s) PeerError: Peer %s not in peer-list: %s', self._network, _dec_peerid, self._peer_list)
return
# logger.debug('<<- (%s) Master Keep-alive Reply From: %s \t@ IP: %s:%s', self._network, _dec_peerid, host, port)
# This action is so simple, it doesn't require a callback function, master is responding, we're good.
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
elif (_packettype == PEER_ALIVE_REPLY):
# Find the peer in our list of peers...
for peer in self._config['PEERS']:
if peer['RADIO_ID'] == _peerid:
# No callback funcntion needed, set the outstanding keepalives to 0, and move on.
peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] = 0
# Registration requests and replies are infrequent, but important. Peer lists can go here too as a part
# of the registration process.
#
elif (_packettype == MASTER_REG_REQ):
# We can't operate as a master as of now, so we should never receive one of these.
# logger.debug('<<- (%s) Master Registration Packet Recieved', self._network)
pass
# When we hear from the maseter, record it's ID, flag that we're connected, and reset the dead counter.
elif (_packettype == MASTER_REG_REPLY):
self._master['RADIO_ID'] = _peerid
self._master_stat['CONNECTED'] = True
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
# Answer a peer registration request -- simple, no callback runction needed
elif (_packettype == PEER_REG_REQ):
# TO DO TO DO TO DO TO DO ***ADD CODE TO VALIDATE THE PEER IS IN OUR PEER-LIST HERE***
peer_reg_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REPLY_PKT)
self.transport.write(peer_reg_reply_packet, (host, port))
elif (_packettype == PEER_REG_REPLY):
for peer in self._config['PEERS']:
if peer['RADIO_ID'] == _peerid:
peer['STATUS']['CONNECTED'] = True
elif (_packettype == PEER_LIST_REPLY):
if len(data) > 18:
self._peer_list = process_peer_list(data, self._network, self._peer_list)
else:
NETWORK[self._network]['MASTER']['STATUS']['PEER-LIST'] = True
elif (_packettype == DE_REG_REQ):
de_register_peer(self._network, _peerid)
logger.warning('<<- (%s) Peer De-Registration Request From:%s:%s', self._network, host, port)
elif (_packettype == DE_REG_REPLY):
logger.warning('<<- (%s) Peer De-Registration Reply From:%s:%s', self._network, host, port)
elif (_packettype == RPT_WAKE_UP):
logger.warning('<<- (%s) Repeater Wake-Up Packet From:%s:%s', self._network, host, port)
# Other "user" related packet types that we don't do much or anything with yet
#
elif (_packettype == PVT_VOICE):
private_voice()
elif (_packettype == GROUP_DATA):
group_data()
elif (_packettype == PVT_DATA):
private_data()
elif (_packettype == XCMP_XNL): # NOTE: We currently indicate we are not XCMP/XNL capable!
xcmp_xnl()
elif (_packettype == CALL_CTL_1):
call_control_1()
elif (_packettype == CALL_CTL_2):
call_control_2()
elif (_packettype == CALL_CTL_3):
call_control_3()
# If there's a packet type we don't know aobut, it should be logged so we can figure it out and take an appropriate action!
else:
unknown_message(_packettype, data)
#************************************************
# Derived Class
# used in the rare event of an
# unauthenticated IPSC network.
#************************************************
class UnauthIPSC(IPSC):
# There isn't a hash to build, so just return the data
#
def hashed_packet(self, _key, _data):
return (_data)
# Everything is validated, so just return True
#
def validate_auth(self, _key, _data):
return True
#************************************************
# MAIN PROGRAM LOOP STARTS HERE
#************************************************
if __name__ == '__main__':
networks = {}
for ipsc_network in NETWORK:
if (NETWORK[ipsc_network]['LOCAL']['ENABLED']):
if NETWORK[ipsc_network]['LOCAL']['AUTH_ENABLED'] == True:
networks[ipsc_network] = IPSC(ipsc_network)
else:
networks[ipsc_network] = UnauthIPSC(ipsc_network)
reactor.listenUDP(NETWORK[ipsc_network]['LOCAL']['PORT'], networks[ipsc_network])
reactor.run()