-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_feature_from_multiple_files.py
147 lines (136 loc) · 4.87 KB
/
create_feature_from_multiple_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from create_feature_SE import get_rob_tokenizer, get_rob_features, yield_chunks
from glob import glob
from pathlib import Path
from utilis import count_lines
from multiprocessing import Pool
from tqdm import tqdm
import random, json
import argparse
from dataset import TextDatasetWriter, BinaryIndexDatasetWriter
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokenizer_type", default="BPE", help="type of tokenizer BPE or BERT"
)
parser.add_argument("--mode", default="bin", help="store in txt/bin file")
parser.add_argument(
"--vocab_file",
default=None,
help="path to vocab.json file created after tokenization process",
)
parser.add_argument(
"--merges_file",
default=None,
help="path to merges.txt file created after tokenization process",
)
parser.add_argument(
"--out_dir",
default=None,
help="path to output dir to store created features",
)
parser.add_argument(
"--in_dir",
default=None,
help="file path to input_dir containing all file",
)
parser.add_argument(
"--max_seq_len", default=512, type=int, help="max seq len of features"
)
parser.add_argument(
"--chunk_size",
default=1000000,
type=int,
help="size of chunk to be processed by one worker",
)
parser.add_argument("--workers", default=30, type=int, help="number of workers")
parser.add_argument(
"--valid_split", default=0.2, type=float, help="percentage of validation data"
)
return parser
def main(
in_dir,
out_dir,
tokenizer_type,
max_seq_len,
vocab_file,
merges_file=None,
lowercase=True,
valid_split=0.2,
chunk_size=100000,
workers=20,
mode="bin",
tokenizer=None,
):
if out_dir is None:
out_dir = in_dir
file_paths = [str(Path(x)) for x in glob(str(in_dir) + "*")]
if tokenizer is None:
tokenizer = get_rob_tokenizer(
vocab_file=vocab_file, merges_file=merges_file, lowercase=False
)
output = [[]] * workers
def on_return(features):
# print("callback")
worker_id, examples = features
output[worker_id] = examples
if mode == "bin":
valid_output = BinaryIndexDatasetWriter(dir_path=out_dir, file_name="valid")
train_output = BinaryIndexDatasetWriter(dir_path=out_dir, file_name="train")
else:
valid_output = TextDatasetWriter(dir_path=out_dir, file_name="valid")
train_output = TextDatasetWriter(dir_path=out_dir, file_name="train")
for in_file_path in file_paths:
output = [[]] * workers
tt = count_lines(in_file_path)
for lines in tqdm(
yield_chunks(in_file_path, chunk_size), total=tt // chunk_size
):
pool = Pool()
size = (
(len(lines) // workers)
if len(lines) % workers == 0
else (1 + (len(lines) // workers))
)
for i in range(workers):
start = i * size
pool.apply_async(
get_rob_features,
args=(
i,
lines[start : start + size],
tokenizer,
max_seq_len,
),
callback=on_return,
)
pool.close()
pool.join()
total_feat = sum(len(x) for x in output)
valid_split_count = int(valid_split * total_feat)
valid_idx = random.sample(list(range(total_feat)), k=valid_split_count)
idx = 0
for examples in output:
for ex in examples:
if idx in valid_idx:
valid_output.write_line(ex["input_id"])
else:
train_output.write_line(ex["input_id"])
idx += 1
train_output.close_writer()
valid_output.close_writer()
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(
in_dir=args.in_dir,
out_dir=args.out_dir,
tokenizer_type=args.tokenizer_type,
max_seq_len=args.max_seq_len,
vocab_file=args.vocab_file,
merges_file=args.merges_file,
chunk_size=args.chunk_size,
workers=args.workers,
valid_split=args.valid_split,
mode=args.mode,
)
# python create_feature_from_multiple_files.py --tokenizer_type "BPE" --vocab_file "/media/data_dump/Amardeep/spanElectra/data/wikitext/tok_10k/trial BPE-vocab.json" --merges_file "/media/data_dump/Amardeep/spanElectra/data/wikitext/tok_10k/trial BPE-merges.txt" --out_dir "/media/data_dump/Amardeep/test_fol/" --in_dir "/media/data_dump/Amardeep/spanElectra/data/wikitext/wikitext-2/" --max_seq_len 512 --workers 10 --chunk_size 10000 --valid_split 0.3