-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetPropulsionDetails.m
177 lines (145 loc) · 5.98 KB
/
getPropulsionDetails.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
function [rocket] = getPropulsionDetails(rocket,atmo_dat)
%% Find optimal OF at given chamber pressure and expansion altitude
P_exit = lininterp1(atmo_dat.Z,atmo_dat.P,rocket.prop.expansion_h); % psi
%[~, ~, P_exit, ~] = atmos(rocket.prop.expansion_h/3.28);
%P_exit = P_exit/101325*14.7; % psi
%[~,P_exit,~] = getAtm(rocket.prop.expansion_h,0); % exit pressure in psi
rocket.prop.P_e = P_exit;
P_chamber = rocket.prop.PC;
load('LOXCH4comb.mat','combustion');
OF = 2.5:0.0001:3;
rocket.prop.cstar_eff = 0.9; % combustion efficiency
rocket.prop.ct_eff = 0.95; % nozzle efficiency
cstar = zeros(1,length(OF));
ct = zeros(1,length(OF));
Isp = zeros(1,length(OF));
gam = zeros(1,length(OF));
for j = 1:length(OF)
cstar(j) = combustion.cstar(P_chamber,OF(j));
gam(j) = combustion.gam(P_chamber,OF(j));
c1 = gam(j)+1;c2 = gam(j)-1;
c3 = c1./c2;
ct(j) = sqrt(2*gam(j)^2/c2*(2/c1)^c3*(1-(P_exit/P_chamber)^(c2/gam(j))));
Isp(j) = cstar(j)*ct(j)/9.81*rocket.prop.cstar_eff*rocket.prop.ct_eff;
end
cstar = cstar*rocket.prop.cstar_eff; % m/s
ct = ct*rocket.prop.ct_eff; % dim.
rocket.prop.t_b = rocket.prop.Itot/rocket.prop.F; % s
m_p = rocket.prop.Itot./Isp; % lbm
mdot = m_p/rocket.prop.t_b; % lbm/s
At = rocket.prop.Itot./(P_chamber.*ct.*rocket.prop.t_b); % in2
rocket.prop.Lstar = 50; % characteristic chamber length, in, dependent on propellant
rocket.prop.FOS = 1.5; % chamber factor of safety
Al6061 = struct('strength',40000,'density',168.6); % psia, lbm/ft3
SS310 = struct('strength',19300,'density',492.6); % psia, lbm/ft3
COPV = struct('strength',87000,'density',124.855921);
%% Chamber sizing
V_chamber = rocket.prop.Lstar.*At; % in3
A_chamber = 5.*At; % in2
ID = sqrt(4*A_chamber/pi); % in
t_chamber = P_chamber.*ID/2/(SS310.strength/rocket.prop.FOS); % in
OD = ID + 2.*t_chamber * 2; % in, to account for double jacket;
theta = 30; % contraction angle degrees
Dt = sqrt(4.*At/pi); % throat diameter, in
L1 = (ID-Dt)/(2*tand(theta)); % conical frustum length, in
cont = A_chamber./At; % contraction ratio
L_chamber = (V_chamber-A_chamber.*L1)./(A_chamber.*(1+sqrt(At./A_chamber)+At./A_chamber));
%% nozzle sizing
c1=gam(j)+1;c2=gam(j)-1;
Me = sqrt(2./c2.*((P_chamber./P_exit).^(c2./gam)-1));
Ae = At./Me.*((1+c2./2.*Me.^2)./(c1./2)).^(c1./(2.*c2));
De = sqrt(4.*Ae./pi);
eps = Ae./At;
% assume conicalnozzle, can refine later to be bell nozzle to minimize
% divergence losses
alpha = 15; % divergent half angle, degrees
% nozzle length, in
Ln = ((De-Dt)/2)/tand(alpha);
L_engine = L_chamber+Ln+L1;
m_engine = ID+2.*t_chamber*pi.*L_engine*SS310.density/12^3;
%% Propellant Tank Sizing
m_ox = m_p.*(OF./(OF+1));
m_fuel = m_p.*(1./(OF+1));
mdot_ox = m_ox/rocket.prop.t_b;
mdot_fuel = m_fuel/rocket.prop.t_b;
DPox = P_chamber*0.2 + 50; % pressure drop from ox tank to chamber, psi
DPfuel = P_chamber*0.2 + 100; % pressure drop from fuel tank to chamber, psi
rocket.prop.P_ox = P_chamber + DPox;
rocket.prop.P_fuel = P_chamber + DPfuel;
rho_ox = 71.2; % oxygen density, lbm/ft3
rho_fuel = 26.4; % methane density, lbm/ft3
ullage_margin = 0.15;
V_ox = m_ox/rho_ox; % ox volume, ft3
V_fuel = m_fuel/rho_fuel; % fuel volume, ft3
V_oxtank = V_ox*(1+ullage_margin);
V_fueltank = V_fuel*(1+ullage_margin);
rocket.prop.P_press = 4500; % pressurant tank pressure, psi (max pressure of an airsoft tank)
V_press = (V_ox*rocket.prop.P_ox + V_fuel*rocket.prop.P_fuel)/rocket.prop.P_press; % total required pressurant volume at press tank pressure, ft3
VtotSTP = V_press*rocket.prop.P_press/14.7/12^3; % vol at STP, ft3 or SCF
R_HE = 2.682897569; % psi*ft3/lb*R, for helium
m_press = rocket.prop.P_press.*V_press/(486*R_HE); % mass of helium, lbm
D = rocket.geo.body.D; % in
[rocket.prop.t_oxtank,L_oxtank,m_oxtank] = vessel(rocket.prop.P_ox,D,V_oxtank,Al6061,1.5); % in, in, lbm
[rocket.prop.t_fueltank,L_fueltank,m_fueltank] = vessel(rocket.prop.P_fuel,D,V_fueltank,Al6061,1.5); % in, in, lbm
[rocket.prop.t_presstank,L_presstank,m_presstank] = vessel(rocket.prop.P_press,D/2,V_press,Al6061,1.5); % in, in, lbm
%% Lowest system mass
mtot = m_ox + m_oxtank + m_fuel + m_fueltank + m_press + m_presstank + m_engine; % lbm
[~,Ind] = min(mtot);
rocket.prop.OF = OF(Ind); % mixture ratio, dim.
rocket.prop.Isp = Isp(Ind); % specific impulse, s
rocket.prop.cstar = cstar(Ind); % characteristic velocity, m/s
rocket.prop.ct = ct(Ind); % thrust coefficient, dim.
rocket.prop.T = combustion.T(P_chamber, rocket.prop.OF); % adiabatic flame temperature, K
rocket.prop.gam = combustion.gam(P_chamber, rocket.prop.OF); % specific heat ratio
rocket.prop.mw = combustion.mw(P_chamber, rocket.prop.OF); % molecular weight
rocket.prop.m_p = m_p(Ind);
rocket.prop.mdot = mdot(Ind);
rocket.prop.At = At(Ind);
rocket.prop.Dt = Dt(Ind);
rocket.prop.Lc = L_chamber(Ind);
rocket.prop.L_engine = L_engine(Ind);
rocket.prop.Vc = V_chamber(Ind);
rocket.prop.Ac = A_chamber(Ind);
rocket.prop.tc = t_chamber(Ind);
rocket.prop.m_engine = m_engine(Ind);
rocket.prop.ID = ID(Ind);
rocket.prop.OD = OD(Ind);
rocket.prop.Lfrustum = L1(Ind);
rocket.prop.Me = Me(Ind);
rocket.prop.Ae = Ae(Ind);
rocket.prop.Ln = Ln(Ind);
rocket.prop.De = De(Ind);
rocket.prop.eps = eps(Ind);
rocket.prop.m_ox = m_ox(Ind);
rocket.prop.V_ox = V_ox(Ind);
rocket.prop.L_ox = L_oxtank(Ind);
rocket.prop.m_oxtank = m_oxtank(Ind);
rocket.prop.m_fuel = m_fuel(Ind);
rocket.prop.V_fuel = V_fuel(Ind);
rocket.prop.L_fuel = L_fueltank(Ind);
rocket.prop.m_fueltank = m_fueltank(Ind);
rocket.prop.m_press = m_press(Ind);
rocket.prop.V_press = V_press(Ind);
rocket.prop.L_presstank = L_presstank(Ind);
rocket.prop.D_presstank = D/2;
rocket.prop.m_presstank = m_presstank(Ind);
%%
% figure
% hold on
% yyaxis left
% plot(OF,Isp,'LineWidth',2)
% ylabel('Specific Impulse, s')
% yyaxis right
% plot(OF,mtot,'LineWidth',2)
% xlabel('OF Ratio')
% ylabel('Propulsion System Mass, lbm')
% grid on
end
function [t,L,m] = vessel(P,D,V,Mat,FoS)
R = D/2; % in
l = (V*12^3-4/3*pi*R^3)/(pi*R^2); % cylindrical length, in3
L = l+D; % total length, in
SA = 2*pi*R*l+4*pi*R^2;
t = R*P/Mat.strength*FoS;
m = SA.*t/12^3*Mat.density;
end