-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-GAcolonyPartitionV4.py
2060 lines (1448 loc) · 76.4 KB
/
main-GAcolonyPartitionV4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 4 12:44:49 2019
@author: carlos
"""
import configuration
import networkx as nx
from networkx.algorithms import community
import time
import itertools
#import random
import copy
import numpy
import json
import sys
import os
import pulp
#import plots
import pickle
import operator
import domainConfiguration
#ILP_METHOD = True
verbose_log = True
#numNodes = 10
populationSize=100 # ponerlo a 200
mutationProb=0.3
#crossoverProb=0.8
crossoverProb=0.95
loglevel = 0
repeatedSolutions = False
SECONDS2MS = 1000
SECONDS2MCRS = 1000000
MS2SECONDS = float(1/1000)
scaleOptimizationTime = SECONDS2MS
scaleResponseTime = MS2SECONDS
randomSeeds=2022
#random.seed(randomSeeds)
#numpy.random.seed(randomSeeds)
#random_state = numpy.random.RandomState(randomSeeds)
PRINTS_X = False
def print_x(msg):
if PRINTS_X:
print(msg)
def printlog(text,level):
if loglevel >= level:
print(text)
# NOTE: X, ??
def checkConstraints(chrCol,chrSer):
return True
#TODO Implement constraints
#******************************************************************************************
# Control cases (cloud, centralities)
#******************************************************************************************
def getOnlyOneColony():
oneColonySolution = [0 for element in range(len(GAstructure4partition))]
oneColonySolution[0]=1
solServ,solCloud,solTimes,solFreeResources = allocateServicesInColonies(oneColonySolution)
oneColonyFitness=calculateFitnessObjectives(oneColonySolution,solServ, solCloud, solTimes, solFreeResources)
oneColonyOptimizationTime = oneColonyFitness['max_allocation_time']
oneColonyResponseTime = oneColonyFitness['estimated_latency']
return oneColonyOptimizationTime,oneColonyResponseTime
def getCentralityAwareColony(size):
CentralityAwareSolution = [0 for element in range(len(GAstructure4partition))]
for i in range(len(GAstructure4partition)):
if len(GAstructure4partition[i]['Cxi'])>=(size-1) and len(GAstructure4partition[i]['Cxi'])<=(size+1):
#print(GAstructure4partition[i]['Cxi'])
CentralityAwareSolution[i]=1
repairSolution2MoreColonies(CentralityAwareSolution,GAstructure4partition) #si hay colonies que se solapan, pues las arreglo dividiendo las colonies
repairAllInColoniesLess(CentralityAwareSolution,GAstructure4partition) #incluyo los nodos que no estan en ninguna colony en el menor numero de colonies posible
solServ,solCloud,solTimes,solFreeResources = allocateServicesInColonies(CentralityAwareSolution)
centralityAwareFitness=calculateFitnessObjectives(CentralityAwareSolution,solServ, solCloud, solTimes, solFreeResources)
print(size)
print(centralityAwareFitness)
centralityAwareOptimizationTime = centralityAwareFitness['max_allocation_time']
centralityAwareResponseTime = centralityAwareFitness['estimated_latency']
return centralityAwareOptimizationTime,centralityAwareResponseTime
#******************************************************************************************
# END Control cases (cloud, centralities)
#******************************************************************************************
#******************************************************************************************
# Objectives and fitness calculation
#******************************************************************************************
def get_allocation_time(times):
return max(times.values())
#print("TIEMPOOOOOO"+str(list(times.values())))
#return numpy.mean(list(times.values()))
##
# para cada app, obtener todos los nodos donde se solicita y todos los nodos donde esta ubicada
# para cada nodo, su distancia a la app sera la distancia minima entre el y los nodos donde esta ubicada la app
# esto se deberia cumplir siempre y creo que es la manera mas rapida para encontrar la distancia
# esta distancia se multiplica por (1/lambda), acumulamos la distancia y lambda
# al final dividir la distancia acumulada por (1/lambdas acumulados)
##
def OLDestimated_latency_btw_users_and_services(colonies, node_services, cloud_services):
acum_users_values = 0
acum_request_ratios = 0
for user in domainConfiguration.myUsers:
appId = int(user['app'])
app_requesting_nodes = [node for node in GAstructure4partition[user['id_resource']]['Cxi']]
for request_node in app_requesting_nodes:
distance = float('inf')
#distance = sys.maxsize #python3
#distance = sys.maxint #python2
# distancia con los nodos
for app_node, value in enumerate(node_services[appId]):
if value == 1:
distance = min(distance, Gdistances[request_node][app_node])
# distancia con el cloud
if cloud_services[appId] == 1:
distance = min(distance, g_distances_with_cloud[request_node][domainConfiguration.cloudId])
acum_users_values += distance * (1 / user['lambda'])
acum_request_ratios += user['lambda']
estimated_latency = acum_users_values / (1 / acum_request_ratios)
estimated_latency = estimated_latency*scaleResponseTime
return estimated_latency
def closestDevice4DeployedAppInColony(idColony,idApp,idSourceDev,placementMatrix):
distance = float('inf') #inicialmente consideramos que el timpo hasta el lugar donde esta la app placed es infinito
placedInColony = False
closestDevice = -1
for id_dev in GAstructure4partition[idColony]['Cxi']:#busco todos los devices de la colonia donde esta la app
if placementMatrix[idApp][id_dev] == 1:
placedInColony = True
if Gdistances[idSourceDev][id_dev] < distance:
closestDevice = id_dev
distance = Gdistances[idSourceDev][id_dev] #si esta en la colony, la distancia es la distancia directa entre los dos dispositivos
return placedInColony, closestDevice
def estimated_latency_btw_users_and_services(colonies, node_services, cloud_services):
accumulatedDistance = 0
numApps = 0
selectedColonies = list()
for idx,colony in enumerate(colonies): #selecciono todas las colonias activas
if colony==1:
selectedColonies.append(idx)
for idColony in selectedColonies:
devicesInColony = GAstructure4partition[idColony]['Cxi']
usersInColony = list()
for user in domainConfiguration.myUsers:
if user['id_resource'] in devicesInColony:
usersInColony.append(user)
for app in usersInColony: #recorro todas las apps que son solicitadas desde la colonia
distance = float('inf') #inicialmente consideramos que el timpo hasta el lugar donde esta la app placed es infinito
idApp = int(app['app'])
idSourceNode = app['id_resource']
placedInColony,idPlacingDev = closestDevice4DeployedAppInColony(idColony,idApp,idSourceNode,node_services) #miramos si en la own colony esta emplazada la app de esta iteración
if placedInColony: #si esta emplazada, el tiempo de respuesta es la distsancia entre el nodo del usuario y el nodo que emplaza la app
distance = Gdistances[idSourceNode][idPlacingDev]
else: #si no esta emplazada, hemos de buscar la colonia que tiene la app y que este mas cerca, y si esta esta mas cerca que el cloud o no
coodinatorSourceColony=GAstructure4partition[idColony]['coordinator']
closestNeighbourd = domainConfiguration.cloudId
closestCloud = True
closestPlacingDevice = -1
distance = g_distances_with_cloud[coodinatorSourceColony][domainConfiguration.cloudId] # el limite superior (peor caso) es que este en el cloud
for idNeighbourdColony in selectedColonies: #recorremos todas las colonies que estan sleccionadas, y comprobamos que no sea la own colony
if idNeighbourdColony != idColony:
colonyCoordinatorNode = GAstructure4partition[idNeighbourdColony]['coordinator']
placedInColony,idPlacingDev = closestDevice4DeployedAppInColony(idNeighbourdColony,idApp,colonyCoordinatorNode,node_services)
if placedInColony: #si la neighbourd colony actual tiene la app y la distancia entre coordinadorees es menor que entre coordinador y cloud, o match acutal, lo sustituimos
tmp_intraColonyDistance = Gdistances[coodinatorSourceColony][colonyCoordinatorNode]
if tmp_intraColonyDistance < distance:
distance = tmp_intraColonyDistance
closestCloud = False
closestNeighbourd = idNeighbourdColony
closestPlacingDevice = idPlacingDev
if closestCloud: #si el mas cercano resulta ser el cloud, a la distancia coordinator-cloud solo hay que sumarle la distancia user-coordinator
distance += Gdistances[idSourceNode][coodinatorSourceColony]
else: # si el mas cercano es otra colony, a la distancia coordinator-coordinator hay que sumar las distancias user-coordinator y coordinator-placingDevice
distance += Gdistances[idSourceNode][coodinatorSourceColony]
distance += Gdistances[GAstructure4partition[closestNeighbourd]['coordinator']][closestPlacingDevice]
accumulatedDistance += distance
numApps += 1
return float(float(accumulatedDistance) / float(numApps))
# for id_dev,placed in enumerate(node_services[app['app']]): #busco todos los devices de la colonia donde esta la app
# if placed == 1:
# if id_dev in devicesInColony:
# placedInColony = True
# distance = min(distance, Gdistances[app['id_resource']][id_dev]) #si esta en la colony, la distancia es la distancia directa entre los dos dispositivos
# if not placedInColony: #si la app no estaba en la colony, tenemos que mirar la distancia hasta el cloud y hasta los vecinos, siempre pasando a traves del nodo coordinador.
# distance = Gdistances[app['id_resource']][GAstructure4partition[idColony]['coordinator']]#inicializamos la distancia a la distancia hasta el cloud
# distance += g_distances_with_cloud[GAstructure4partition[idColony]['coordinator']][domainConfiguration.cloudId]
# for neighbourdColony in selectedColonies:
# if neighbourdColony != idColony:
# HEMOS DE MIRAR SI TIENE LA APP
# neighbourdDistance = Gdistances[app['id_resource']][GAstructure4partition[idColony]['coordinator']]
def CHANGEDestimated_latency_btw_users_and_services(colonies, node_services, cloud_services):
acum_users_values = 0
acum_request_ratios = 0
for user in domainConfiguration.myUsers:
appId = int(user['app'])
app_requesting_nodes = [node for node in GAstructure4partition[user['id_resource']]['Cxi']]
for request_node in app_requesting_nodes:
distance = float('inf')
#distance = sys.maxsize #python3
#distance = sys.maxint #python2
# distancia con los nodos
for app_node, value in enumerate(node_services[appId]):
if value == 1:
distance = min(distance, Gdistances[request_node][app_node])
# distancia con el cloud
#if cloud_services[appId] == 1:
distance = min(distance, g_distances_with_cloud[request_node][domainConfiguration.cloudId])
acum_users_values += distance * (1 / user['lambda'])
acum_request_ratios += user['lambda']
estimated_latency = acum_users_values / (1 / acum_request_ratios)
estimated_latency = estimated_latency*scaleResponseTime
return estimated_latency
def calculateFitnessObjectives(chromosome_col,chromosome_serv,chromosome_cloud_serv,chromosome_time, ocuped_nodes_resources):
if str(chromosome_col) in calculated_fitness:
return calculated_fitness[str(chromosome_col)]
else:
if configuration.ILP_METHOD:
return calculateFitnessObjectivesILP(chromosome_col,chromosome_serv,chromosome_cloud_serv,chromosome_time, ocuped_nodes_resources)
else:
return calculateFitnessObjectivesGreedy(chromosome_col,chromosome_serv,chromosome_cloud_serv,chromosome_time)
def calculateFitnessObjectivesGreedy(chromosome_col,chromosome_serv,chromosome_cloud_serv,chromosome_time):
chr_fitness = {}
if checkConstraints(chromosome_col,chromosome_time):
# cambiar el tiempo maximo por el tiempo medio
chr_fitness["max_allocation_time"] = get_allocation_time(chromosome_time)
chr_fitness["estimated_latency"] = estimated_latency_btw_users_and_services(chromosome_col,chromosome_serv,chromosome_cloud_serv)
a = 0.5
b = 0.5
chr_fitness["total"] = chr_fitness["max_allocation_time"] * a + chr_fitness["estimated_latency"] * b
else:
# print("not constraints")
chr_fitness["max_allocation_time"] = float('inf')
chr_fitness["estimated_latency"] = float('inf')
chr_fitness["total"] = float('inf')
calculated_fitness[str(chromosome_col)] = chr_fitness
return chr_fitness
def mean_colonies_free_resources(colonies, ocuped_nodes_resources):
colonies_idx = [n for n,i in enumerate(colonies) if i == 1]
free_resources = [0]*len(colonies_idx)
for n,colonie in enumerate(colonies_idx):
colonie_nodes = GAstructure4partition[colonie]["Cxi"]
for node in colonie_nodes:
free_resources[n] += (domainConfiguration.nodeResources[node] - ocuped_nodes_resources[node])
# mean
result = sum(free_resources) / len(free_resources)
return result
def calculateFitnessObjectivesILP(chromosome_col,chromosome_serv,chromosome_cloud_serv,chromosome_time,ocuped_nodes_resources):
# Para la nueva funcion de fitness del GA hacer la media SUMATORIO ( recursos libres en cada colonia / num colonias )
# como recursos libres entiendo la suma de los recursos libres de cada nodo de la colonia o simplemente
# contar lo nodos que no alojan ninguna app?????
chr_fitness = {}
if checkConstraints(chromosome_col,chromosome_time):
chr_fitness["max_allocation_time"] = get_allocation_time(chromosome_time)
chr_fitness["free_resources"] = mean_colonies_free_resources(chromosome_col, ocuped_nodes_resources)
a = 0.5
b = 0.5
chr_fitness["total"] = chr_fitness["max_allocation_time"] * a + chr_fitness["free_resources"] * b
else:
# print("not constraints")
chr_fitness["max_allocation_time"] = float('inf')
chr_fitness["free_resources"] = float('inf')
chr_fitness["total"] = float('inf')
calculated_fitness[str(chromosome_col)] = chr_fitness
return chr_fitness
#******************************************************************************************
# END Objectives and fitness calculation
#******************************************************************************************
#******************************************************************************************
# NSGA-II Algorithm
#******************************************************************************************
def dominates(a,b):
#checks if solution a dominates solution b, i.e. all the objectives are better in A than in B
Adominates = True
#### OJOOOOOO Hay un atributo en los dictionarios que no hay que tener en cuenta, el index!!!
equalValues = True
for key in a:
if key in objectivesKeys:
if b[key]!=a[key]:
equalValues = False
break
if equalValues:
return False
for key in a:
#TODO actualizar siempre que haya un objetivo adicional
if key in objectivesKeys: #por ese motivo está este if.
if b[key]<a[key]:
Adominates = False
break
return Adominates
def crowdingDistancesAssigments(pop,numFront):
front = pop["fronts"][numFront]
frontFitness = list()
for i in front:
frontFitness.append(pop["fitness"][i])
frontFitness[-1]["index"]=i
for key in objectivesKeys:
orderedList = sorted(frontFitness, key=lambda k: k[key])
pop["crowdingDistance"][orderedList[0]["index"]] = float('inf')
minObj = orderedList[0][key]
pop["crowdingDistance"][orderedList[-1]["index"]] = float('inf')
maxObj = orderedList[-1][key]
normalizedDenominator = float(maxObj-minObj)
if normalizedDenominator==0.0:
normalizedDenominator = float('inf')
for i in range(1, len(orderedList)-1):
if orderedList[i]["index"]==8:
printlog("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@",5)
printlog(key,5)
printlog(orderedList[i+1]["index"],5)
printlog(orderedList[i+1][key],5)
printlog(orderedList[i-1]["index"],5)
printlog(orderedList[i-1][key],5)
printlog(normalizedDenominator,5)
printlog("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@",5)
#anyado esto para evitar si me encuentro con valores iguales que no produzca el fallo del final
if (orderedList[i+1][key]==orderedList[i][key]):
pop["crowdingDistance"][orderedList[i]["index"]]=0.0
elif (orderedList[i-1][key]==orderedList[i][key]):
pop["crowdingDistance"][orderedList[i]["index"]]=0.0
else:
pop["crowdingDistance"][orderedList[i]["index"]] += (orderedList[i+1][key] - orderedList[i-1][key])/normalizedDenominator
#con solo esta linea, si los valores de fitness son iguales para tres puntos, uno se queda con crwodingdistance = 0.0 y los otros dos con la resta al de un solo lado.
#pop["crowdingDistance"][orderedList[i]["index"]] += (orderedList[i+1][key] - orderedList[i-1][key])/normalizedDenominator
def calculateCrowdingDistances(pop):
pop["crowdingDistance"] = list()
for i in pop["Col"]:
pop["crowdingDistance"].append(float(0))
i=0
while len(pop["fronts"][i])!=0:
crowdingDistancesAssigments(pop,i)
i+=1
def calculateDominants(pop):
pop["dominatedBy"] = list()
pop["dominatesTo"] = list()
pop["fronts"] = list()
for i in range(len(pop["Col"])):
pop["dominatedBy"].append(set())
pop["dominatesTo"].append(set())
pop["fronts"].append(set())
for p in range(len(pop["Col"])):
for q in range(p+1,len(pop["Col"])):
if dominates(pop["fitness"][p],pop["fitness"][q]):
pop["dominatesTo"][p].add(q)
pop["dominatedBy"][q].add(p)
if dominates(pop["fitness"][q],pop["fitness"][p]):
pop["dominatedBy"][p].add(q)
pop["dominatesTo"][q].add(p)
def calculateFronts(pop):
addedToFronts = set()
tempDominitedBy = copy.deepcopy(pop["dominatedBy"])
i=0
while len(addedToFronts)<len(pop["Col"]):
pop["fronts"][i] = set([index for index,item in enumerate(tempDominitedBy) if item==set()])
addedToFronts = addedToFronts | pop["fronts"][i]
for index,item in enumerate(tempDominitedBy):
if index in pop["fronts"][i]:
tempDominitedBy[index].add(-1)
else:
tempDominitedBy[index] = tempDominitedBy[index] - pop["fronts"][i]
i+=1
pop["inFront"] = list()
for i in pop["Col"]:
pop["inFront"].append(-1)
for i,v in enumerate(pop["fronts"]):
for j in v:
pop["inFront"][j]=i
def fastNonDominatedSort(pop):
calculateDominants(pop)
calculateFronts(pop)
calculateCrowdingDistances(pop)
def splitPopsByDominance(joinPop):
newpop = {}
idsNewPop = set()
popSize=0
totalFronts = len(joinPop['fronts'])
for i in range(totalFronts):
elementsInFront = len(joinPop['fronts'][i])
if (popSize + elementsInFront) <= populationSize:
popSize = popSize + elementsInFront
idsNewPop = idsNewPop | joinPop['fronts'][i] #union of the current ids and all the ones in the current front
else:
solWithCrowDist = {}
for solId in joinPop['fronts'][i]:
solWithCrowDist[solId]=joinPop['crowdingDistance'][solId]
orderedByCD = [k for k, v in sorted(solWithCrowDist.items(), key=lambda item: item[1], reverse=True)]
selectedOnes =set(orderedByCD[0:(populationSize-popSize)])
idsNewPop = idsNewPop | selectedOnes
break
newpop['Col'] = list()
newpop['Serv'] = list()
newpop['Cloud']=list()
newpop['fitness'] = list()
for i in idsNewPop:
newpop['Col'].append(joinPop['Col'][i])
newpop['Serv'].append(joinPop['Serv'][i])
newpop['Cloud'].append(joinPop['Cloud'][i])
newpop['fitness'].append(joinPop['fitness'][i])
return newpop
#******************************************************************************************
# END NSGA-II Algorithm
#******************************************************************************************
def generateStructure(depth, partitionIterator, previousState,partitionStructure):
depth = depth +1
currentState = partitionIterator.next()
differentSets = list()
differentIds = list()
for i,v in enumerate(currentState):
if (v not in previousState):
differentSets.append(v)
differentIds.append(i)
if len(differentSets) > 2:
print("ERRRRORRRRRRRRR")
previousSet = differentSets[0] | differentSets[1]
previousSetId = previousState.index(previousSet)
for j in range(0,2):
if len(differentSets[j])>0:
#if len(differentSets[j])>1:
newSet = {}
newSet['Cxi']= differentSets[j]
tempset = set()
tempset.add(len(partitionStructure))
Axi = partitionStructure[previousSetId]['Axi'] | tempset
newSet['Axi']= Axi
newSet['detph']=depth
partitionStructure.append(newSet)
def getMaxCentrality(centralities, setNodes):
selectedNode = list(setNodes)[0]
maxCentrality=centralities[selectedNode]
for i in setNodes:
if centralities[i]>maxCentrality:
maxCentrality = centralities[i]
selectedNode = i
return selectedNode
def deviceDistances(GRAPH):
dist_ = nx.shortest_path_length(GRAPH)
distances = {}
for i in dist_:
distances[i[0]]=i[1]
return distances
def meanCell2ControllerDistance(controller,cellSet):
distance = 0.0
elements = 0
for i in cellSet:
elements = elements + 1
distance = Gdistances[controller][i] + distance
meanDistance = distance / elements
return meanDistance
def dendrogramCalculation(GRAPH):
timecom = time.time()
print("Calculating the communities....")
communities_generator = community.girvan_newman(GRAPH)
clustMeasure = nx.betweenness_centrality(GRAPH,seed=domainConfiguration.randomDomain)
# sorted_clustMeasure = sorted(clustMeasure.items(), key=operator.itemgetter(1),reverse=True)
print("Communities calculated in "+str(time.time()-timecom))
#calculamos la particion el grafo
previousState = list()
previousState.append(set(GRAPH.nodes))
previousState = tuple(previousState)
partitionStructure = list()
depth = 0
newSet = {}
newSet['Cxi']= set(GRAPH.nodes)
centralNode = getMaxCentrality(clustMeasure,newSet['Cxi'])
newSet['coordinator']=centralNode
Axi = set()
Axi.add(0)
newSet['Axi']= Axi
newSet['depth']=depth
newSet['cell2controllerDistance']=meanCell2ControllerDistance(centralNode,set(GRAPH.nodes))
partitionStructure.append(newSet)
#introducimos el primer elemento en la estrcutura resultante
#es decir, el que cuyo camino previo Cxi es la primera bifurcacion del dendograma "0"
#y el conjunto de elementos son todos ellos
partitionIterator = itertools.islice(communities_generator, GRAPH.number_of_nodes())
#avanzamos en la iteracion del todo los niveles del dendograma
for currentState in partitionIterator:
depth = depth +1
#incrementamos la profundidad/nivel del dendograma
differentSets = list()
differentIds = list()
#buscamos los dos nuevos conjuntos de elementos que no estaban en la iteracion anterior
#es decir, son los dos nuevos comunities obtenidos
for i,v in enumerate(currentState):
if (v not in previousState):
differentSets.append(v)
differentIds.append(i)
#si hay mas de dos, es que hay algun error
if len(differentSets) > 2:
print("ERRRRORRRRRRRRR")
#generamos el community del que se han obtenido los dos nuevos y lo buscamos el id
#de dicho community con el for que hay
previousSet = differentSets[0] | differentSets[1]
previousSetId= -1
for ii,vv in enumerate(partitionStructure):
if previousSet == vv['Cxi']:
previousSetId = ii
#una vez que sabemos los dos nuevos communities, y el community del que provienen
#podemos incluir los dos nuevos en la estructura resultante partitionStructure
#complentado la informacion del Cxi -que son los elementos que hay ene l community-
#y el path hasta la cima del dendograma, que se construye anyadiendo el id de la nueva
#bifurcacion al path que tenia el community del que proviene
for j in range(0,2):
#solo anyadios los nuevos communities que son division de communities. si es un community
#de un elemento este nunca se dividira y por tanto no lo incluimos
if len(differentSets[j])>0:
#if len(differentSets[j])>1:
newSet = {}
newSet['Cxi']= differentSets[j]
centralNode = getMaxCentrality(clustMeasure,newSet['Cxi'])
newSet['coordinator']=centralNode
tempset = set()
tempset.add(len(partitionStructure))
Axi = partitionStructure[previousSetId]['Axi'] | tempset
newSet['Axi']= Axi
newSet['depth']=depth
newSet['cell2controllerDistance']=meanCell2ControllerDistance(centralNode,differentSets[j])
partitionStructure.append(newSet)
#actualizamos el depth del community padre para saber en que nivel se ha dividido
partitionStructure[previousSetId]['depth']=depth-1
previousState = currentState
return partitionStructure
## Ordena los nodos de cada colonia de menor a mayor distancia al nodo coordinador
def oderNodesInColony(partitionStructure):
orderedNodes = list()
for colony in partitionStructure:
distanceToCoordinator = {}
coordinator = colony['coordinator']
for node in colony['Cxi']:
distanceToCoordinator[node]=Gdistances[coordinator][node]
ordered = [k for k, v in sorted(distanceToCoordinator.items(), key=lambda item: item[1])]
orderedNodes.append(ordered)
return orderedNodes
## Devuelve una lista de listas, cada una de estas listas contiene para la colonia en cuestion
## el numero de servicios de cada aplicacion ??
def getNumUserService4Colonies(partitionStructure):
numUserService = list()
for colony in partitionStructure:
numServ = list()
numServ = [0 for s in range(domainConfiguration.TOTALNUMBEROFAPPS)]
for node in colony['Cxi']:
for user in domainConfiguration.myUsers:
if node==user['id_resource']:
serv = int(user['app'])
numServ[serv]=numServ[serv]+1
numUserService.append(numServ)
return numUserService
## Ordena las listas de cada colonia segun app popularity
## (no se muy bien como, que criterio esta siguiemdo)
def orderAppsPopularityInColony(userService4Colonies):
orderedAppPopularity = list()
ordered_app_popularity_list = list()
for numApps in userService4Colonies:
sortedApps = numpy.argsort(numApps)[::-1]
orderedAppPopularity.append(sortedApps)
ordered_app_popularity_list.append(sortedApps.tolist())
return orderedAppPopularity, ordered_app_popularity_list
def getRequestedServices4Colonies(partitionStructure):
rqServ = list()
for colony in partitionStructure:
services = set()
for node in colony['Cxi']:
for user in domainConfiguration.myUsers:
if node==user['id_resource']:
services.add(int(user['app']))
rqServ.append(services)
return rqServ
#def fitnessSolution(sol):
#
# return sum(sol)
#
#def calculateFitnessPop(pop):
#
# fit = list()
# for p in pop:
# vfit = fitnessSolution(p)
# fit.append(vfit)
# return fit
#******************************************************************************************
# Repair operators
#******************************************************************************************
def repairSolution2LessColonies(sol,struc): #dib
#ponemos a 0 todos los descendientes
for i,v in enumerate(sol):
if v==1:
#al encontrar un 1 en la solucion que indica que la colony esta formada por todos los nodos
# terminales que cuelgan desde ese nodo intermedio, se buscan todos los nodos hijos -son
#aquellos que comparten la ruta de nodo predecesores.
for j,w in enumerate(struc):
if (len(w['Axi']) > len(struc[i]['Axi']) ) and (len(struc[i]['Axi'] - w['Axi']) == 0):
sol[j]=0
def repairSolution2MoreColonies(sol,struc): #dib
#ponemos a 0 todos los predecesores
for i,v in enumerate(sol):
#al encontrar un 1 en la solucion que indica que la colony esta formada por todos los nodos
# terminales que cuelgan desde ese nodo intermedio, se pone a 0 a todos los nodos padres
if v==1:
for j in struc[i]['Axi']:
if not j==i:
sol[j]=0
#def repairNode2MoreColonies(sol,struc,i):
##ponemos a 0 todos los predecesores
##solo lo hace para una
#
# for i,v in enumerate(sol):
# #al encontrar un 1 en la solucion que indica que la colony esta formada por todos los nodos
# # terminales que cuelgan desde ese nodo intermedio, se pone a 0 a todos los nodos padres
# if v==1:
# for j in struc[i]['Axi']:
# if not j==i:
# sol[j]=0
def repairAllInColoniesMore(sol,struc): #dib
#Busca todos los devices que no estan en un colony, y crea un colony de un unico dispositivo con dicho device
nodesIncluded = set()
for i,v in enumerate(sol):
if v == 1:
nodesIncluded = nodesIncluded | struc[i]['Cxi']
for i,v in enumerate(struc):
if len(v['Cxi'])==1 and len(v['Cxi'] & nodesIncluded)==0:
sol[i]=1
def repairAllInColoniesLess(sol,struc): #dib
#Busca el menor numero de colonies para incorporar todos los devices que quedan sin asociar a ningun colony
nodesIncluded = set()
for i,v in enumerate(sol): #miro todos los nodos que estan actualmente en una colonia
if v == 1:
nodesIncluded = nodesIncluded | struc[i]['Cxi']
pendingNodes = allNodes - nodesIncluded #obtengo los nodos que falta por incluir en colonias
#TODO habria que hacer el recorrido siguiente desde el v['Cxi'] con mayor numero de elementos al que menos
#TODO corregido abajo
# for i,v in enumerate(struc): #si encuentro un proposed colony, que solo contenga nodos pendientes, lo selecciono.
# if len(v['Cxi']-pendingNodes)==0:
# sol[i]=1
# pendingNodes = pendingNodes - v['Cxi']
colonySize = dict()
for i,v in enumerate(struc): #calculo el tamanyo de cada colony
colonySize[i]=len(v['Cxi'])
sortedColonySize = sorted(colonySize.items(), key=operator.itemgetter(1), reverse=True) #ordeno los colonies de mayor a menor por su tamanyo
for i in sortedColonySize:
idColony = i[0]
if len(struc[idColony]['Cxi']-pendingNodes)==0: #si encuentro un proposed colony, que solo contenga nodos pendientes, lo selecciono. al estar ordenados de mayor tamanyo a menor, garantizo que los que obtenga seran los colonies mas grande y por tant la menor cantidad de colonies
#print("seleccionada colony:"+str(idColony))
sol[idColony]=1
pendingNodes = pendingNodes - struc[idColony]['Cxi']
#print("He juntado los nodos "+str(struc[idColony]['Cxi'])+" y ahora quedan los nodos: "+str(pendingNodes))
#print("Aun quedan por colocar: "+str(len(pendingNodes)))
#else:
#print("descartar colony:"+str(idColony))
def repairAllInColonies(sol,struc,repairType): #dib
printlog("repairAllinColonies",2)
if repairType=='more':
repairAllInColoniesMore(sol,struc)
printlog("repairAllinColonies",2)
if repairType=='less':
repairAllInColoniesLess(sol,struc)
printlog("less",2)
def repairSolution(sol,struc,repairType): #dib
printlog("repair",2)
if repairType=='more':
repairSolution2MoreColonies(sol,struc)
printlog("more",2)
if repairType=='less':
repairSolution2LessColonies(sol,struc)
printlog("less",2)
repairAllInColonies(sol,struc,repairType)
#******************************************************************************************
# END Repair operators
#******************************************************************************************
#******************************************************************************************
# Crossover operators
#******************************************************************************************
def crossoverCol(sol1,sol2,struc):
c1 = copy.copy(sol1)
c2 = copy.copy(sol2)
theones1=list()
for i,v in enumerate(sol1):
if v==1:
theones1.append(i)
theones2=list()
for i,v in enumerate(sol2):
if v==1:
theones2.append(i)
if configuration.randomGenetic.random()>0.5:
theones1,theones2 = theones2,theones1
if len(theones1)>1:
#cutpoint = theones1[random.randint(0,len(theones1)-1)] #RANDOM Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).
cutpoint = theones1[configuration.randomGenetic.randint(0, len(theones1))] #NUMPY randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive).
elif len(theones2)>1:
#cutpoint = theones2[random.randint(0,len(theones2)-1)] #RANDOM Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).
cutpoint = theones2[configuration.randomGenetic.randint(0, len(theones2))] #NUMPY randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive).
else:
#cutpoint = random.randint(0,len(sol1)-1) #RANDOM Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).
cutpoint = configuration.randomGenetic.randint(0, len(sol1)) #NUMPY randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive).
precedence = struc[cutpoint]['Axi']
genes2Change = set()
for j,w in enumerate(struc):
if (len(w['Axi']) > len(precedence) ) and (len(precedence - w['Axi']) == 0):
genes2Change.add(j)
genes2Change.add(cutpoint)
for i in genes2Change:
c1[i],c2[i]=c2[i],c1[i]
repairSolution(c1,struc,'less')
repairSolution(c2,struc,'less')
return c1,c2
#******************************************************************************************
# END Crossover operators
#******************************************************************************************
#******************************************************************************************
# Mutation operators
#******************************************************************************************
def splitColony(sol,idColony,struc):
precedence = struc[idColony]['Axi']
foundAny = False
for j,w in enumerate(struc):
if (len(w['Axi'])-1 == len(precedence) ) and (len(precedence - w['Axi']) == 0):
sol[j]=1
foundAny = True
if foundAny:
sol[idColony]=0