-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathForce.hpp
294 lines (238 loc) · 11.3 KB
/
Force.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_FORCE_HPP
#define PHQ_FORCE_HPP
#include <array>
#include <cstddef>
#include <functional>
#include <ostream>
#include "Angle.hpp"
#include "DimensionalVector.hpp"
#include "Direction.hpp"
#include "PlanarForce.hpp"
#include "ScalarForce.hpp"
#include "Unit/Force.hpp"
#include "Vector.hpp"
namespace PhQ {
// Forward declaration for class PhQ::Force.
template <typename NumericType>
class Traction;
/// \brief Three-dimensional Euclidean force vector. Contains three components in Cartesian
/// coordinates: x, y, and z. For a two-dimensional Euclidean force vector in the XY plane, see
/// PhQ::PlanarForce. For scalar force components or for the magnitude of a force vector, see
/// PhQ::ScalarForce.
template <typename NumericType = double>
class Force : public DimensionalVector<Unit::Force, NumericType> {
public:
/// \brief Default constructor. Constructs a force vector with an uninitialized value.
Force() = default;
/// \brief Constructor. Constructs a force vector with a given value expressed in a given force
/// unit.
Force(const Vector<NumericType>& value, const Unit::Force unit)
: DimensionalVector<Unit::Force, NumericType>(value, unit) {}
/// \brief Constructor. Constructs a force vector from a given set of scalar force components.
Force(const ScalarForce<NumericType>& x, const ScalarForce<NumericType>& y,
const ScalarForce<NumericType>& z)
: Force<NumericType>({x.Value(), y.Value(), z.Value()}) {}
/// \brief Constructor. Constructs a force vector from a given scalar force magnitude and
/// direction.
constexpr Force(
const ScalarForce<NumericType>& scalar_force, const Direction<NumericType>& direction)
: Force<NumericType>(scalar_force.Value() * direction.Value()) {}
/// \brief Constructor. Constructs a force vector from a given planar force vector in the XY
/// plane. This force vector's z-component is initialized to zero.
explicit constexpr Force(const PlanarForce<NumericType>& planar_force)
: Force<NumericType>(Vector<NumericType>{planar_force.Value()}) {}
/// \brief Constructor. Constructs a force vector from a given traction and area using the
/// definition of traction.
constexpr Force(const Traction<NumericType>& traction, const Area<NumericType>& area);
/// \brief Destructor. Destroys this force vector.
~Force() noexcept = default;
/// \brief Copy constructor. Constructs a force vector by copying another one.
constexpr Force(const Force<NumericType>& other) = default;
/// \brief Copy constructor. Constructs a force vector by copying another one.
template <typename OtherNumericType>
explicit constexpr Force(const Force<OtherNumericType>& other)
: Force(static_cast<Vector<NumericType>>(other.Value())) {}
/// \brief Move constructor. Constructs a force vector by moving another one.
constexpr Force(Force<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this force vector by copying another one.
constexpr Force<NumericType>& operator=(const Force<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this force vector by copying another one.
template <typename OtherNumericType>
constexpr Force<NumericType>& operator=(const Force<OtherNumericType>& other) {
this->value = static_cast<Vector<NumericType>>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this force vector by moving another one.
constexpr Force<NumericType>& operator=(Force<NumericType>&& other) noexcept = default;
/// \brief Statically creates a force vector of zero.
[[nodiscard]] static constexpr Force<NumericType> Zero() {
return Force<NumericType>{Vector<NumericType>::Zero()};
}
/// \brief Statically creates a force vector from the given x, y, and z Cartesian components
/// expressed in a given force unit.
template <Unit::Force Unit>
[[nodiscard]] static constexpr Force<NumericType> Create(
const NumericType x, const NumericType y, const NumericType z) {
return Force<NumericType>{
ConvertStatically<Unit::Force, Unit, Standard<Unit::Force>>(Vector<NumericType>{x, y, z})};
}
/// \brief Statically creates a force vector from the given x, y, and z Cartesian components
/// expressed in a given force unit.
template <Unit::Force Unit>
[[nodiscard]] static constexpr Force<NumericType> Create(
const std::array<NumericType, 3>& x_y_z) {
return Force<NumericType>{
ConvertStatically<Unit::Force, Unit, Standard<Unit::Force>>(Vector<NumericType>{x_y_z})};
}
/// \brief Statically creates a force vector with a given value expressed in a given force unit.
template <Unit::Force Unit>
[[nodiscard]] static constexpr Force<NumericType> Create(const Vector<NumericType>& value) {
return Force<NumericType>{ConvertStatically<Unit::Force, Unit, Standard<Unit::Force>>(value)};
}
/// \brief Returns the x Cartesian component of this force vector.
[[nodiscard]] constexpr ScalarForce<NumericType> x() const noexcept {
return ScalarForce<NumericType>{this->value.x()};
}
/// \brief Returns the y Cartesian component of this force vector.
[[nodiscard]] constexpr ScalarForce<NumericType> y() const noexcept {
return ScalarForce<NumericType>{this->value.y()};
}
/// \brief Returns the z Cartesian component of this force vector.
[[nodiscard]] constexpr ScalarForce<NumericType> z() const noexcept {
return ScalarForce<NumericType>{this->value.z()};
}
/// \brief Returns the magnitude of this force vector.
[[nodiscard]] ScalarForce<NumericType> Magnitude() const {
return ScalarForce<NumericType>{this->value.Magnitude()};
}
/// \brief Returns the direction of this force vector.
[[nodiscard]] PhQ::Direction<NumericType> Direction() const {
return this->value.Direction();
}
/// \brief Returns the angle between this force vector and another one.
[[nodiscard]] PhQ::Angle<NumericType> Angle(const Force<NumericType>& force) const {
return PhQ::Angle<NumericType>{*this, force};
}
constexpr Force<NumericType> operator+(const Force<NumericType>& force) const {
return Force<NumericType>{this->value + force.value};
}
constexpr Force<NumericType> operator-(const Force<NumericType>& force) const {
return Force<NumericType>{this->value - force.value};
}
constexpr Force<NumericType> operator*(const NumericType number) const {
return Force<NumericType>{this->value * number};
}
constexpr Force<NumericType> operator/(const NumericType number) const {
return Force<NumericType>{this->value / number};
}
constexpr Traction<NumericType> operator/(const Area<NumericType>& area) const;
constexpr void operator+=(const Force<NumericType>& force) noexcept {
this->value += force.value;
}
constexpr void operator-=(const Force<NumericType>& force) noexcept {
this->value -= force.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs a force vector with a given value expressed in the standard
/// force unit.
explicit constexpr Force(const Vector<NumericType>& value)
: DimensionalVector<Unit::Force, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(
const Force<NumericType>& left, const Force<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(
const Force<NumericType>& left, const Force<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(
const Force<NumericType>& left, const Force<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(
const Force<NumericType>& left, const Force<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(
const Force<NumericType>& left, const Force<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(
const Force<NumericType>& left, const Force<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(std::ostream& stream, const Force<NumericType>& force) {
stream << force.Print();
return stream;
}
template <typename NumericType>
inline constexpr Force<NumericType> operator*(
const NumericType number, const Force<NumericType>& force) {
return force * number;
}
template <typename NumericType>
inline Direction<NumericType>::Direction(const Force<NumericType>& force)
: Direction<NumericType>(force.Value()) {}
template <typename NumericType>
inline Angle<NumericType>::Angle(const Force<NumericType>& force1, const Force<NumericType>& force2)
: Angle<NumericType>(force1.Value(), force2.Value()) {}
template <typename NumericType>
inline constexpr Force<NumericType> Direction<NumericType>::operator*(
const ScalarForce<NumericType>& scalar_force) const {
return Force<NumericType>{scalar_force, *this};
}
template <typename NumericType>
inline constexpr Force<NumericType> ScalarForce<NumericType>::operator*(
const Direction<NumericType>& direction) const {
return Force<NumericType>{*this, direction};
}
template <typename NumericType>
inline constexpr PlanarForce<NumericType>::PlanarForce(const Force<NumericType>& force)
: PlanarForce(PlanarVector<NumericType>{force.Value()}) {}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::Force<NumericType>> {
inline size_t operator()(const PhQ::Force<NumericType>& force) const {
return hash<PhQ::Vector<NumericType>>()(force.Value());
}
};
} // namespace std
#endif // PHQ_FORCE_HPP