forked from yeungchenwa/FontDiffuser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
369 lines (327 loc) · 14.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import math
import time
import logging
from tqdm.auto import tqdm
import torch
import torch.nn.functional as F
from torchvision import transforms
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers.optimization import get_scheduler
from dataset.font_dataset import FontDataset
from dataset.collate_fn import CollateFN
from configs.fontdiffuser import get_parser
from src import (
FontDiffuserModel,
ContentPerceptualLoss,
build_unet,
build_style_encoder,
build_content_encoder,
build_ddpm_scheduler,
build_scr,
)
from utils import (
save_args_to_yaml,
x0_from_epsilon,
reNormalize_img,
normalize_mean_std,
)
logger = get_logger(__name__)
def get_args():
parser = get_parser()
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
style_image_size = args.style_image_size
content_image_size = args.content_image_size
args.style_image_size = (style_image_size, style_image_size)
args.content_image_size = (content_image_size, content_image_size)
return args
def main():
args = get_args()
logging_dir = f"{args.output_dir}/{args.logging_dir}"
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
logging.basicConfig(
filename=f"{args.output_dir}/fontdiffuser_training.log",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Ser training seed
if args.seed is not None:
set_seed(args.seed)
# Load model and noise_scheduler
unet = build_unet(args=args)
style_encoder = build_style_encoder(args=args)
content_encoder = build_content_encoder(args=args)
noise_scheduler = build_ddpm_scheduler(args)
if args.phase_2:
unet.load_state_dict(torch.load(f"{args.phase_1_ckpt_dir}/unet.pth"))
style_encoder.load_state_dict(
torch.load(f"{args.phase_1_ckpt_dir}/style_encoder.pth")
)
content_encoder.load_state_dict(
torch.load(f"{args.phase_1_ckpt_dir}/content_encoder.pth")
)
model = FontDiffuserModel(
unet=unet, style_encoder=style_encoder, content_encoder=content_encoder
)
"""
Build content perceptaual Loss
衡量生成字体图像与目标字体图像之间的感知差异。
计算感知损失(Perceptual Loss)的类。在深度学习中,
感知损失是一种衡量生成图像质量的方法。
它通过使用预训练的神经网络(如 VGG 网络)提取特征,并比较生成图像和目标图像的特征差异,而不仅仅是像素级别的差异。
这种损失可以帮助模型生成更具感知意义的图像,使其更加接近人类的视觉体验。
"""
perceptual_loss = ContentPerceptualLoss()
# Load SCR module for supervision
if args.phase_2:
scr = build_scr(args=args)
scr.load_state_dict(torch.load(args.scr_ckpt_path))
scr.requires_grad_(False)
"""
Resize: 将目标图像调整为指定的分辨率 (args.resolution),使用双线性插值(BILINEAR)方法来进行插值
ToTensor: 将图像从 PIL 格式转换为 PyTorch 的张量格式(Tensor),并将像素值标准化到 [0, 1] 的范围。
Normalize: 使用均值 [0.5] 和标准差 [0.5] 对张量进行归一化,将像素值从 [0, 1] 转换为 [-1, 1] 的范围。
"""
content_transforms = transforms.Compose(
[
transforms.Resize(
args.content_image_size,
interpolation=transforms.InterpolationMode.BILINEAR,
),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
style_transforms = transforms.Compose(
[
transforms.Resize(
args.style_image_size,
interpolation=transforms.InterpolationMode.BILINEAR,
),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
target_transforms = transforms.Compose(
[
transforms.Resize(
(args.resolution, args.resolution),
interpolation=transforms.InterpolationMode.BILINEAR,
),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
train_font_dataset = FontDataset(
args=args,
phase="train",
transforms=[content_transforms, style_transforms, target_transforms],
scr=args.phase_2,
)
train_dataloader = torch.utils.data.DataLoader(
train_font_dataset,
shuffle=True,
batch_size=args.train_batch_size,
collate_fn=CollateFN(),
)
# Build optimizer and learning rate
if args.scale_lr:
args.learning_rate = (
args.learning_rate
* args.gradient_accumulation_steps
* args.train_batch_size
* accelerator.num_processes
)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
# beta1 和 beta2 是 Adam 优化器中的两个动量项,控制一阶和二阶动量。beta1 通常用于加速收敛,beta2 用于防止震荡。
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# 学习率调度器 动态调整学习率,避免训练过程中过早或过晚收敛,从而提升模型性能。
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Accelerate preparation
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
## move scr module to the target deivces
if args.phase_2:
scr = scr.to(accelerator.device)
# The trackers initialize automatically on the main process.
if accelerator.is_main_process:
# Accelerate 库中的一个属性,用于判断当前进程是否为主要进程(主进程)。
# 在分布式训练中,通常会有多个进程同时运行来加速模型训练。其中,只有一个进程是“主进程”(main process)主要负责记录日志、保存模型等操作
# 而其他进程则主要用于计算。
accelerator.init_trackers(args.experience_name)
save_args_to_yaml(
args=args,
output_file=f"{args.output_dir}/{args.experience_name}_config.yaml",
)
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
progress_bar.set_description("Steps")
# Convert to the training epoch
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
global_step = 0
for epoch in range(num_train_epochs):
train_loss = 0.0
for step, samples in enumerate(train_dataloader):
model.train()
content_images = samples["content_image"]
style_images = samples["style_image"]
target_images = samples["target_image"]
nonorm_target_images = samples["nonorm_target_image"]
with accelerator.accumulate(model):
# Sample noise that we'll add to the samples
noise = torch.randn_like(target_images)
bsz = target_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=target_images.device,
)
timesteps = timesteps.long()
# Add noise to the target_images according to the noise magnitude at each timestep
# (this is the forward diffusion process) 扩散模型的核心,给目标图像添加噪声。
noisy_target_images = noise_scheduler.add_noise(
target_images, noise, timesteps
)
# Classifier-free training strategy 分类器自由训练策略
# 随机遮蔽风格和内容图像,用于实现分类器自由引导。
context_mask = torch.bernoulli(torch.zeros(bsz) + args.drop_prob)
for i, mask_value in enumerate(context_mask):
if mask_value == 1:
content_images[i, :, :, :] = 1
style_images[i, :, :, :] = 1
# Predict the noise residual and compute loss
noise_pred, offset_out_sum = model(
x_t=noisy_target_images,
timesteps=timesteps,
style_images=style_images,
content_images=content_images,
content_encoder_downsample_size=args.content_encoder_downsample_size,
)
# 通过模型预测噪声,并计算与真实噪声之间的均方误差(MSE)
diff_loss = F.mse_loss(
noise_pred.float(), noise.float(), reduction="mean"
)
offset_loss = offset_out_sum / 2
# output processing for content perceptual loss
pred_original_sample_norm = x0_from_epsilon(
scheduler=noise_scheduler,
noise_pred=noise_pred,
x_t=noisy_target_images,
timesteps=timesteps,
)
pred_original_sample = reNormalize_img(pred_original_sample_norm)
norm_pred_ori = normalize_mean_std(pred_original_sample)
norm_target_ori = normalize_mean_std(nonorm_target_images)
percep_loss = perceptual_loss.calculate_loss(
generated_images=norm_pred_ori,
target_images=norm_target_ori,
device=target_images.device,
)
loss = (
diff_loss
+ args.perceptual_coefficient * percep_loss
+ args.offset_coefficient * offset_loss
)
if args.phase_2:
neg_images = samples["neg_images"]
# sc loss
(
sample_style_embeddings,
pos_style_embeddings,
neg_style_embeddings,
) = scr(
pred_original_sample_norm,
target_images,
neg_images,
nce_layers=args.nce_layers,
)
sc_loss = scr.calculate_nce_loss(
sample_s=sample_style_embeddings,
pos_s=pos_style_embeddings,
neg_s=neg_style_embeddings,
)
loss += args.sc_coefficient * sc_loss
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if accelerator.is_main_process:
if global_step % args.ckpt_interval == 0:
save_dir = f"{args.output_dir}/global_step_{global_step}"
os.makedirs(save_dir, exist_ok=True)
# 此处如果 accelerate config 设置的多卡,需要加 module
torch.save(
model.module.unet.state_dict(), f"{save_dir}/unet.pth"
)
torch.save(
model.module.style_encoder.state_dict(),
f"{save_dir}/style_encoder.pth",
)
torch.save(
model.module.content_encoder.state_dict(),
f"{save_dir}/content_encoder.pth",
)
torch.save(model, f"{save_dir}/total_model.pth")
logging.info(
f"[{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}] Save the checkpoint on global step {global_step}"
)
print(
"Save the checkpoint on global step {}".format(global_step)
)
logs = {
"step_loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
}
if global_step % args.log_interval == 0:
logging.info(
f"[{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}] Global Step {global_step} => train_loss = {loss}"
)
progress_bar.set_postfix(**logs)
# Quit
if global_step >= args.max_train_steps:
break
accelerator.end_training()
if __name__ == "__main__":
main()