DVI (Data Visualization Interface) is a powerful tool for managing data and visualizing hashtag networks. It integrates with multiple related projects to streamline data mining, analysis, and visualization workflows. A core feature is the creation of mining tasks, each assigned a unique Mining Unique Identifier (MUID) that links tasks across all integrated tools.
- CRUD Operations: Perform Create, Read, Update, and Delete operations seamlessly.
- Mining Tasks: Generate tasks that integrate with:
- IDMB: Scrapes hashtag conversations.
- Graffiti Detection OD TensorFlow: Detects graffiti in image datasets.
- Hashtag Custom NER spaCy: Analyzes mined hashtags.
- MUID (Mining Unique Identifier): Links tasks across projects.
- Graph Visualization: Offers a dynamic interface for analyzing hashtag networks.
- Customizable Visualization: Modify graph parameters and filters to suit specific needs.
- User-Friendly Interface: Intuitive design for efficient task management.
dvi/
├── database/ # Database-related files and configurations
├── db_actions/ # Scripts for database operations
├── docs/ # Documentation and resources
├── includes/ # Shared includes and utilities
├── json/ # JSON-related data and configurations
├── json_actions/ # Scripts for JSON data manipulation
├── block_data_live.php
├── db.php
├── delete_task.php
├── edit.php
├── functions.php
├── hashtags.php
├── hashtags_ai_data.php
├── hashtags_ai_data_live.php
├── header.php
├── index.php
├── json_data.php
├── json_hashtag.php
├── json_scandir.php
├── json_scandir_h.php
├── json_user.php
├── save_task.php
├── sigma.php
- hashtags_ai_data_live.php: Generates a JSON cache file representing hashtag network structures.
- Supports graph visualization workflows.
- Enables cleaning messy hashtag records dynamically.
- Visualization parameters can be adjusted via form inputs or left as defaults.
The MUID (Mining Unique Identifier) is a key feature of DVI. It is a compound identifier automatically generated for each mining task and serves as a transversal key across all related projects.
-
Seed Node: The main hashtag or entry point.
Example:afeks
. -
Mining Depth: Depth of the mining process (0 to 4).
Example:1
. -
Mining Type: Task type, such as:
hashtagTop
: Extracts the most valuable posts for a hashtag.
Example:hashtagTop
.
-
Hashtag Media Amount: Total number of media posts mined.
Example:9
. -
Unique Hash: A short, randomly generated hash ensuring uniqueness.
afeks_1_hashtagTop_9_7052518d
All graph visualization features are managed in hashtags_ai_data_live.php.
The file is commented for clarity, and the visualization parameters can be modified as needed. Users can either provide custom values through the interface or rely on the defaults.
-
Graph Layout and Physics:
initialLayout
: Default iscirclepack
.autoGravityScale
: Default is"auto"
.nodeMinDegree
: Default is0
.gravity
: Default is1
.iterations
: Default is133
.scale
: Default is5000
.
-
Node and Edge Behavior:
adjustSizes
: Default is'false'
.cleanEntities
: Default is'true'
.barnesHutOptimize
: Default is'false'
.barnesHutTheta
: Default is0.5
.
-
Network Filters:
networkfilter
: Default includes"standard"
,"text_ai"
,"image_ai"
, and"text_ai_entities"
.
Example:$networkfilter_get = isset($_GET['networkfilter']) ? $_GET['networkfilter'] : ["standard", "text_ai", "image_ai", "text_ai_entities"];
$initialLayout = isset($_GET['initialLayout']) ? $_GET['initialLayout'] : "circlepack";
$nodeMinDegree = isset($_GET['nodeMinDegree']) ? $_GET['nodeMinDegree'] : 0;
$iterations = isset($_GET['iterations']) ? $_GET['iterations'] : 133;
-
Download the repository:
Clone or download the ZIP file from the repository. -
Upload files to your server:
Extract and upload to your desired FTP folder. -
Configure the database:
Updatedb.php
with your database credentials:<?php session_start(); $conn = mysqli_connect( '[SERVER]', '[DATABASE_USER]', '[DATABASE_PASSWORD]', '[DATABASE_NAME]' ) or die(mysqli_error($mysqli)); ?>
-
Access the application:
Navigate to the uploaded folder in your browser:http://your-server-path/dvi
This project is licensed under the MIT License.
Feel free to suggest edits or report issues in the Issues section!