-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainModel.py
177 lines (152 loc) · 6.65 KB
/
TrainModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
from torch.optim import AdamW
from tokenizers import Tokenizer
from torch.utils.data import DataLoader
from Dataset import ShakespeareDataset
from Models import ShakespeareBrain
from tqdm import tqdm
import argparse
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as distributed
import os
torch.manual_seed(42)
# For generating outputs
tokenizer = Tokenizer.from_file(path="Tokenizer/Vocab.json")
trainingDataset = ShakespeareDataset(splitType="train", filename=f"ShakespeareBooks/ShakespeareTexts.txt")
validationDataset = ShakespeareDataset(splitType="val", filename=f"ShakespeareBooks/ShakespeareTexts.txt")
lengthOfDatasets = {"train": len(trainingDataset),
"val": len(validationDataset)}
# define custom collator for batches
def customCollator(batchData):
maxSize = max([batchData[i]["sourceIds"].shape[0]
for i in range(len(batchData))])
# Padding the data with 3's
batchSize = len(batchData)
zeroSourceIds = 3 * torch.ones((batchSize, maxSize), dtype=torch.int16)
zeroSourceMasks = 3 * torch.ones((batchSize, maxSize), dtype=torch.int16)
zeroTargetIds = 3 * torch.ones((batchSize, maxSize), dtype=torch.int16)
zeroTokensToPredict = 3 * torch.ones((batchSize, 1), dtype=torch.int16)
for i, item in enumerate(batchData):
zeroSourceIds[i,:item["sourceIds"].size(-1)] = item["sourceIds"]
zeroSourceMasks[i, :item["sourceMasks"].size(-1)] = item["sourceMasks"]
zeroTargetIds[i, :item["targetIds"].size(-1)] = item["targetIds"]
zeroTokensToPredict[i, 0] = item["tokensToPredict"]
return zeroSourceIds, zeroTargetIds, zeroSourceMasks.float(), zeroTokensToPredict
parser = argparse.ArgumentParser()
parser.add_argument("-bs", "--batchSize", default=200, type=int)
parser.add_argument("-lr", "--learningRate", default=1e-3, type=float)
parser.add_argument("-cl", "--contextLength", default=256, type=int)
# parser.add_argument("-h", "--numberOfHeads", default=4, type=int)
parser.add_argument("-e", "--epochs", default=20, type=int)
parser.add_argument("-c", "--classification", default=True, type=bool)
parser.add_argument("-nv", "--cuda", default=False, type=bool)
parser.add_argument("-v", "--vocabSize", default=2000, type=int)
parser.add_argument("-d", "--depth", default=8, type=int)
args = parser.parse_args()
batchSize = args.batchSize
learningRate = args.learningRate
contextLength = args.contextLength
numberOfEpochs = args.epochs
isClassification = args.classification
cuda = args.cuda
# numberOfHeads = args.numberOfHeads
numberOfHeads = 8
depth = args.depth
vocabSize = args.vocabSize
modelName = f"ShakespeareWith-->{numberOfHeads}Heads-->DepthOf{depth}+CL-->" \
f"{contextLength}+VocabSize-->{vocabSize}.pth.tar"
trainingDataloader = DataLoader(dataset=trainingDataset, shuffle=True,
batch_size=batchSize,
collate_fn=customCollator)
validationDataloader = DataLoader(dataset=validationDataset, shuffle=True,
batch_size=batchSize,
collate_fn=customCollator)
dataloaders = {"train": trainingDataloader,
"val": validationDataloader}
model = ShakespeareBrain(contextLength=contextLength,
classification=isClassification,
numberOfHeads=numberOfHeads,
vocabSize=vocabSize,
generate=False,
depth=depth)
# optimizer
softmax = nn.Softmax()
optimizer = torch.optim.AdamW(model.parameters(), lr=learningRate)
# model.compile()
device = torch.device("mps") # for mac
if cuda:
device = torch.device("cuda:1") # for NVIDIA GPUs
# best metrics and parameters
bestEpoch = 0
bestEpochLoss = 10
# Load from checkpoint
if os.path.exists(f"SavedModels/{modelName}"):
checkpoint = torch.load(f"SavedModels/{modelName}",
map_location=device)
model.load_state_dict(checkpoint["modelStateDict"])
bestEpochLoss = checkpoint["bestEpochLoss"]
learningRate = checkpoint["learningRate"]
# optimizer.load_state_dict(checkpoint["optimizerStateDict"])
del checkpoint
model.to(device)
"""
# Code for distributed computing
if distributed.is_available():
# do something
"""
# optimizer = torch.optim.SGD(model.parameters(), lr=learningRate)
# learning rate scheduler
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.1)
writer = SummaryWriter(f"runs/{modelName}")
# training and evaluation loop
for epoch in tqdm(range(numberOfEpochs), desc="Epoch progress:", leave=False):
print("-" * 40)
print(f"Epoch {epoch + 1}:")
# Setting phase
for phase in ["train", "val"]:
if phase == "train":
model.train()
else:
model.eval()
epochLoss = 0
for e, batch in tqdm(enumerate(dataloaders[phase]),
desc="Iteration progress",
leave=False):
sourceIds, targetIds, sourceMasks = batch[0], batch[1], batch[2]
tokensToPredict = batch[-1]
sourceIds = sourceIds.to(device)
sourceMasks = sourceMasks.to(device)
targetIds = targetIds.to(device)
tokensToPredict = tokensToPredict.to(device)
with torch.set_grad_enabled(phase == "train"):
outputs, loss = model(sourceIds, targetIds, sourceMasks,
tokensToPredict)
if phase == "train":
# backpropgate the loss
loss.backward()
# update the weights
optimizer.step()
optimizer.zero_grad()
epochLoss += loss.item()
# scheduler.step()
"""
Epoch metrics
"""
averageEpochLoss = epochLoss / (e + 1)
if epoch % 1 == 0:
print(f"{phase} loss = {averageEpochLoss:.4f}")
writer.add_scalar(f"{phase.capitalize()} Loss/Epoch", averageEpochLoss,
epoch + 1)
if (averageEpochLoss < bestEpochLoss) and phase == "val":
bestEpochLoss = averageEpochLoss
bestEpoch = epoch
torch.save({"epoch": epoch+1,
"modelStateDict": model.state_dict(),
# "optimizerStateDict":optimizer.state_dict(),
"bestEpochLoss":round(bestEpochLoss, 4),
"learningRate":learningRate},
f"SavedModels/{modelName}")
writer.close()
print(f"Best loss: {round(bestEpochLoss, 4)} @ epoch #{bestEpoch + 1}")
print(f"Best model saved.")