diff --git a/BellaBeat - Capstone Project by Google/Images/linear_reg_1_x_test_vs_y_pred.png b/BellaBeat - Capstone Project by Google/Images/linear_reg_1_x_test_vs_y_pred.png index ccbc6962e..a6cd2785e 100644 Binary files a/BellaBeat - Capstone Project by Google/Images/linear_reg_1_x_test_vs_y_pred.png and b/BellaBeat - Capstone Project by Google/Images/linear_reg_1_x_test_vs_y_pred.png differ diff --git a/BellaBeat - Capstone Project by Google/Images/linear_reg_2_x_test_vs_y_pred.png b/BellaBeat - Capstone Project by Google/Images/linear_reg_2_x_test_vs_y_pred.png index 1a1227109..5aad00835 100644 Binary files a/BellaBeat - Capstone Project by Google/Images/linear_reg_2_x_test_vs_y_pred.png and b/BellaBeat - Capstone Project by Google/Images/linear_reg_2_x_test_vs_y_pred.png differ diff --git a/BellaBeat - Capstone Project by Google/Model/.ipynb_checkpoints/analysis-checkpoint.ipynb b/BellaBeat - Capstone Project by Google/Model/.ipynb_checkpoints/analysis-checkpoint.ipynb new file mode 100644 index 000000000..d10c8e3c4 --- /dev/null +++ b/BellaBeat - Capstone Project by Google/Model/.ipynb_checkpoints/analysis-checkpoint.ipynb @@ -0,0 +1,5572 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e45afcc4", + "metadata": {}, + "source": [ + "### Loading Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "12477683", + "metadata": {}, + "outputs": [], + "source": [ + "# Import necessary libraries\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import datetime as dt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "2de85d2b", + "metadata": {}, + "source": [ + "### Loading dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fbf09bf8", + "metadata": {}, + "outputs": [], + "source": [ + "# Read data from CSV files into DataFrames\n", + "daily_activity = pd.read_csv('../Dataset/dailyActivity_merged.csv')\n", + "hourly_steps = pd.read_csv('../Dataset/hourlySteps_merged.csv')\n", + "hourly_calories = pd.read_csv('../Dataset/hourlyCalories_merged.csv')\n", + "sleep_day = pd.read_csv('../Dataset/sleepDay_merged.csv')\n", + "daily_calories = pd.read_csv('../Dataset/dailyCalories_merged.csv')\n", + "daily_intensity = pd.read_csv('../Dataset/dailyIntensities_merged.csv')\n", + "weight_log = pd.read_csv('../Dataset/weightLogInfo_merged.csv')\n", + "daily_steps = pd.read_csv('../Dataset/dailySteps_merged.csv')\n", + "heart_rate = pd.read_csv('../Dataset/heartrate_seconds_merged.csv')" + ] + }, + { + "cell_type": "markdown", + "id": "b9380597", + "metadata": {}, + "source": [ + "### Data exploration" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "42366763", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDateTotalStepsTotalDistanceTrackerDistanceLoggedActivitiesDistanceVeryActiveDistanceModeratelyActiveDistanceLightActiveDistanceSedentaryActiveDistanceVeryActiveMinutesFairlyActiveMinutesLightlyActiveMinutesSedentaryMinutesCalories
015039603664/12/2016131628.508.500.01.880.556.060.025133287281985
115039603664/13/2016107356.976.970.01.570.694.710.021192177761797
215039603664/14/2016104606.746.740.02.440.403.910.0301118112181776
315039603664/15/201697626.286.280.02.141.262.830.029342097261745
415039603664/16/2016126698.168.160.02.710.415.040.036102217731863
\n", + "
" + ], + "text/plain": [ + " Id ActivityDate TotalSteps TotalDistance TrackerDistance \\\n", + "0 1503960366 4/12/2016 13162 8.50 8.50 \n", + "1 1503960366 4/13/2016 10735 6.97 6.97 \n", + "2 1503960366 4/14/2016 10460 6.74 6.74 \n", + "3 1503960366 4/15/2016 9762 6.28 6.28 \n", + "4 1503960366 4/16/2016 12669 8.16 8.16 \n", + "\n", + " LoggedActivitiesDistance VeryActiveDistance ModeratelyActiveDistance \\\n", + "0 0.0 1.88 0.55 \n", + "1 0.0 1.57 0.69 \n", + "2 0.0 2.44 0.40 \n", + "3 0.0 2.14 1.26 \n", + "4 0.0 2.71 0.41 \n", + "\n", + " LightActiveDistance SedentaryActiveDistance VeryActiveMinutes \\\n", + "0 6.06 0.0 25 \n", + "1 4.71 0.0 21 \n", + "2 3.91 0.0 30 \n", + "3 2.83 0.0 29 \n", + "4 5.04 0.0 36 \n", + "\n", + " FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes Calories \n", + "0 13 328 728 1985 \n", + "1 19 217 776 1797 \n", + "2 11 181 1218 1776 \n", + "3 34 209 726 1745 \n", + "4 10 221 773 1863 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "14c29a42", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityHourStepTotal
015039603664/12/2016 12:00:00 AM373
115039603664/12/2016 1:00:00 AM160
215039603664/12/2016 2:00:00 AM151
315039603664/12/2016 3:00:00 AM0
415039603664/12/2016 4:00:00 AM0
\n", + "
" + ], + "text/plain": [ + " Id ActivityHour StepTotal\n", + "0 1503960366 4/12/2016 12:00:00 AM 373\n", + "1 1503960366 4/12/2016 1:00:00 AM 160\n", + "2 1503960366 4/12/2016 2:00:00 AM 151\n", + "3 1503960366 4/12/2016 3:00:00 AM 0\n", + "4 1503960366 4/12/2016 4:00:00 AM 0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hourly_steps.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7cacced8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityHourCalories
015039603664/12/2016 12:00:00 AM81
115039603664/12/2016 1:00:00 AM61
215039603664/12/2016 2:00:00 AM59
315039603664/12/2016 3:00:00 AM47
415039603664/12/2016 4:00:00 AM48
\n", + "
" + ], + "text/plain": [ + " Id ActivityHour Calories\n", + "0 1503960366 4/12/2016 12:00:00 AM 81\n", + "1 1503960366 4/12/2016 1:00:00 AM 61\n", + "2 1503960366 4/12/2016 2:00:00 AM 59\n", + "3 1503960366 4/12/2016 3:00:00 AM 47\n", + "4 1503960366 4/12/2016 4:00:00 AM 48" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hourly_calories.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "93e5e38d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdSleepDayTotalSleepRecordsTotalMinutesAsleepTotalTimeInBed
015039603664/12/2016 12:00:00 AM1327346
115039603664/13/2016 12:00:00 AM2384407
215039603664/15/2016 12:00:00 AM1412442
315039603664/16/2016 12:00:00 AM2340367
415039603664/17/2016 12:00:00 AM1700712
\n", + "
" + ], + "text/plain": [ + " Id SleepDay TotalSleepRecords TotalMinutesAsleep \\\n", + "0 1503960366 4/12/2016 12:00:00 AM 1 327 \n", + "1 1503960366 4/13/2016 12:00:00 AM 2 384 \n", + "2 1503960366 4/15/2016 12:00:00 AM 1 412 \n", + "3 1503960366 4/16/2016 12:00:00 AM 2 340 \n", + "4 1503960366 4/17/2016 12:00:00 AM 1 700 \n", + "\n", + " TotalTimeInBed \n", + "0 346 \n", + "1 407 \n", + "2 442 \n", + "3 367 \n", + "4 712 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sleep_day.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bef0c99f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDaySedentaryMinutesLightlyActiveMinutesFairlyActiveMinutesVeryActiveMinutesSedentaryActiveDistanceLightActiveDistanceModeratelyActiveDistanceVeryActiveDistance
015039603664/12/201672832813250.06.060.551.88
115039603664/13/201677621719210.04.710.691.57
215039603664/14/2016121818111300.03.910.402.44
315039603664/15/201672620934290.02.831.262.14
415039603664/16/201677322110360.05.040.412.71
\n", + "
" + ], + "text/plain": [ + " Id ActivityDay SedentaryMinutes LightlyActiveMinutes \\\n", + "0 1503960366 4/12/2016 728 328 \n", + "1 1503960366 4/13/2016 776 217 \n", + "2 1503960366 4/14/2016 1218 181 \n", + "3 1503960366 4/15/2016 726 209 \n", + "4 1503960366 4/16/2016 773 221 \n", + "\n", + " FairlyActiveMinutes VeryActiveMinutes SedentaryActiveDistance \\\n", + "0 13 25 0.0 \n", + "1 19 21 0.0 \n", + "2 11 30 0.0 \n", + "3 34 29 0.0 \n", + "4 10 36 0.0 \n", + "\n", + " LightActiveDistance ModeratelyActiveDistance VeryActiveDistance \n", + "0 6.06 0.55 1.88 \n", + "1 4.71 0.69 1.57 \n", + "2 3.91 0.40 2.44 \n", + "3 2.83 1.26 2.14 \n", + "4 5.04 0.41 2.71 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_intensity.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5a4b140e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdDateWeightKgWeightPoundsFatBMIIsManualReportLogId
015039603665/2/2016 11:59:59 PM52.599998115.96314722.022.650000True1462233599000
115039603665/3/2016 11:59:59 PM52.599998115.963147NaN22.650000True1462319999000
219279722794/13/2016 1:08:52 AM133.500000294.317120NaN47.540001False1460509732000
328732127654/21/2016 11:59:59 PM56.700001125.002104NaN21.450001True1461283199000
428732127655/12/2016 11:59:59 PM57.299999126.324875NaN21.690001True1463097599000
\n", + "
" + ], + "text/plain": [ + " Id Date WeightKg WeightPounds Fat \\\n", + "0 1503960366 5/2/2016 11:59:59 PM 52.599998 115.963147 22.0 \n", + "1 1503960366 5/3/2016 11:59:59 PM 52.599998 115.963147 NaN \n", + "2 1927972279 4/13/2016 1:08:52 AM 133.500000 294.317120 NaN \n", + "3 2873212765 4/21/2016 11:59:59 PM 56.700001 125.002104 NaN \n", + "4 2873212765 5/12/2016 11:59:59 PM 57.299999 126.324875 NaN \n", + "\n", + " BMI IsManualReport LogId \n", + "0 22.650000 True 1462233599000 \n", + "1 22.650000 True 1462319999000 \n", + "2 47.540001 False 1460509732000 \n", + "3 21.450001 True 1461283199000 \n", + "4 21.690001 True 1463097599000 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_log.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a2690c2d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDayStepTotal
015039603664/12/201613162
115039603664/13/201610735
215039603664/14/201610460
315039603664/15/20169762
415039603664/16/201612669
\n", + "
" + ], + "text/plain": [ + " Id ActivityDay StepTotal\n", + "0 1503960366 4/12/2016 13162\n", + "1 1503960366 4/13/2016 10735\n", + "2 1503960366 4/14/2016 10460\n", + "3 1503960366 4/15/2016 9762\n", + "4 1503960366 4/16/2016 12669" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_steps.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3e36dda7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdTimeValue
020224844084/12/2016 7:21:00 AM97
120224844084/12/2016 7:21:05 AM102
220224844084/12/2016 7:21:10 AM105
320224844084/12/2016 7:21:20 AM103
420224844084/12/2016 7:21:25 AM101
\n", + "
" + ], + "text/plain": [ + " Id Time Value\n", + "0 2022484408 4/12/2016 7:21:00 AM 97\n", + "1 2022484408 4/12/2016 7:21:05 AM 102\n", + "2 2022484408 4/12/2016 7:21:10 AM 105\n", + "3 2022484408 4/12/2016 7:21:20 AM 103\n", + "4 2022484408 4/12/2016 7:21:25 AM 101" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "heart_rate.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "309ac10c", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDayCalories
015039603664/12/20161985
115039603664/13/20161797
215039603664/14/20161776
315039603664/15/20161745
415039603664/16/20161863
\n", + "
" + ], + "text/plain": [ + " Id ActivityDay Calories\n", + "0 1503960366 4/12/2016 1985\n", + "1 1503960366 4/13/2016 1797\n", + "2 1503960366 4/14/2016 1776\n", + "3 1503960366 4/15/2016 1745\n", + "4 1503960366 4/16/2016 1863" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_calories.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "3b483546", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------Shapes of Datasets------\n", + "Daily Activity: (940, 15)\n", + "Hourly Steps: (22099, 3)\n", + "Hourly Calories: (22099, 3)\n", + "Sleep Day: (413, 5)\n", + "Daily Calories: (940, 3)\n", + "Daily Intensity: (940, 10)\n", + "Weight Log: (67, 8)\n", + "Daily Steps: (940, 3)\n", + "Heart Rate: (2483658, 3)\n" + ] + } + ], + "source": [ + "# Displaying the shapes of the datasets\n", + "print(\"------Shapes of Datasets------\")\n", + "print(\"Daily Activity:\".ljust(20), daily_activity.shape)\n", + "print(\"Hourly Steps:\".ljust(20), hourly_steps.shape)\n", + "print(\"Hourly Calories:\".ljust(20), hourly_calories.shape)\n", + "print(\"Sleep Day:\".ljust(20), sleep_day.shape)\n", + "print(\"Daily Calories:\".ljust(20), daily_calories.shape)\n", + "print(\"Daily Intensity:\".ljust(20), daily_intensity.shape)\n", + "print(\"Weight Log:\".ljust(20), weight_log.shape)\n", + "print(\"Daily Steps:\".ljust(20), daily_steps.shape)\n", + "print(\"Heart Rate:\".ljust(20), heart_rate.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "581148a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------Columns in Datasets------\n", + "Daily Activity: Index(['Id', 'ActivityDate', 'TotalSteps', 'TotalDistance', 'TrackerDistance',\n", + " 'LoggedActivitiesDistance', 'VeryActiveDistance',\n", + " 'ModeratelyActiveDistance', 'LightActiveDistance',\n", + " 'SedentaryActiveDistance', 'VeryActiveMinutes', 'FairlyActiveMinutes',\n", + " 'LightlyActiveMinutes', 'SedentaryMinutes', 'Calories'],\n", + " dtype='object')\n", + "\n", + "Hourly Steps: Index(['Id', 'ActivityHour', 'StepTotal'], dtype='object')\n", + "\n", + "Hourly Calories: Index(['Id', 'ActivityHour', 'Calories'], dtype='object')\n", + "\n", + "Sleep Day: Index(['Id', 'SleepDay', 'TotalSleepRecords', 'TotalMinutesAsleep',\n", + " 'TotalTimeInBed'],\n", + " dtype='object')\n", + "\n", + "Daily Calories: Index(['Id', 'ActivityDay', 'Calories'], dtype='object')\n", + "\n", + "Daily Intensity: Index(['Id', 'ActivityDay', 'SedentaryMinutes', 'LightlyActiveMinutes',\n", + " 'FairlyActiveMinutes', 'VeryActiveMinutes', 'SedentaryActiveDistance',\n", + " 'LightActiveDistance', 'ModeratelyActiveDistance',\n", + " 'VeryActiveDistance'],\n", + " dtype='object')\n", + "\n", + "Weight Log: Index(['Id', 'Date', 'WeightKg', 'WeightPounds', 'Fat', 'BMI',\n", + " 'IsManualReport', 'LogId'],\n", + " dtype='object')\n", + "\n", + "Daily Steps: Index(['Id', 'ActivityDay', 'StepTotal'], dtype='object')\n", + "\n", + "Heart Rate: Index(['Id', 'Time', 'Value'], dtype='object')\n" + ] + } + ], + "source": [ + "# Displaying the columns in the datasets\n", + "print(\"------Columns in Datasets------\")\n", + "print(\"Daily Activity:\".ljust(20), daily_activity.columns)\n", + "print(\"\\nHourly Steps:\".ljust(20), hourly_steps.columns)\n", + "print(\"\\nHourly Calories:\".ljust(20), hourly_calories.columns)\n", + "print(\"\\nSleep Day:\".ljust(20), sleep_day.columns)\n", + "print(\"\\nDaily Calories:\".ljust(20), daily_calories.columns)\n", + "print(\"\\nDaily Intensity:\".ljust(20), daily_intensity.columns)\n", + "print(\"\\nWeight Log:\".ljust(20), weight_log.columns)\n", + "print(\"\\nDaily Steps:\".ljust(20), daily_steps.columns)\n", + "print(\"\\nHeart Rate:\".ljust(20), heart_rate.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1484b388", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------Unique Users in each Dataset------\n", + "Daily Activity: 33 unique users\n", + "Hourly Steps: 33 unique users\n", + "Hourly Calories: 33 unique users\n", + "Sleep Day: 24 unique users\n", + "Daily Calories: 33 unique users\n", + "Daily Intensity: 33 unique users\n", + "Weight Log: 8 unique users\n", + "Daily Steps: 33 unique users\n", + "Heart Rate: 14 unique users\n" + ] + } + ], + "source": [ + "# Displaying the number of unique users in each dataset\n", + "print(\"------Unique Users in each Dataset------\")\n", + "print(\"Daily Activity:\".ljust(20), f\"{daily_activity['Id'].nunique()} unique users\")\n", + "print(\"Hourly Steps:\".ljust(20), f\"{hourly_steps['Id'].nunique()} unique users\")\n", + "print(\"Hourly Calories:\".ljust(20), f\"{hourly_calories['Id'].nunique()} unique users\")\n", + "print(\"Sleep Day:\".ljust(20), f\"{sleep_day['Id'].nunique()} unique users\")\n", + "print(\"Daily Calories:\".ljust(20), f\"{daily_calories['Id'].nunique()} unique users\")\n", + "print(\"Daily Intensity:\".ljust(20), f\"{daily_intensity['Id'].nunique()} unique users\")\n", + "print(\"Weight Log:\".ljust(20), f\"{weight_log['Id'].nunique()} unique users\")\n", + "print(\"Daily Steps:\".ljust(20), f\"{daily_steps['Id'].nunique()} unique users\")\n", + "print(\"Heart Rate:\".ljust(20), f\"{heart_rate['Id'].nunique()} unique users\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "170505ac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "ActivityDate object\n", + "TotalSteps int64\n", + "TotalDistance float64\n", + "TrackerDistance float64\n", + "LoggedActivitiesDistance float64\n", + "VeryActiveDistance float64\n", + "ModeratelyActiveDistance float64\n", + "LightActiveDistance float64\n", + "SedentaryActiveDistance float64\n", + "VeryActiveMinutes int64\n", + "FairlyActiveMinutes int64\n", + "LightlyActiveMinutes int64\n", + "SedentaryMinutes int64\n", + "Calories int64\n", + "dtype: object" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a4710015", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "ActivityHour object\n", + "StepTotal int64\n", + "dtype: object" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hourly_steps.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0366ea56", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "ActivityHour object\n", + "Calories int64\n", + "dtype: object" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hourly_calories.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e43ea0f3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "SleepDay object\n", + "TotalSleepRecords int64\n", + "TotalMinutesAsleep int64\n", + "TotalTimeInBed int64\n", + "dtype: object" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sleep_day.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "f5bc78d9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "ActivityDay object\n", + "Calories int64\n", + "dtype: object" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_calories.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "388ed5f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "ActivityDay object\n", + "SedentaryMinutes int64\n", + "LightlyActiveMinutes int64\n", + "FairlyActiveMinutes int64\n", + "VeryActiveMinutes int64\n", + "SedentaryActiveDistance float64\n", + "LightActiveDistance float64\n", + "ModeratelyActiveDistance float64\n", + "VeryActiveDistance float64\n", + "dtype: object" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_intensity.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7c851c5d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "Date object\n", + "WeightKg float64\n", + "WeightPounds float64\n", + "Fat float64\n", + "BMI float64\n", + "IsManualReport bool\n", + "LogId int64\n", + "dtype: object" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_log.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "aac59d9e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "ActivityDay object\n", + "StepTotal int64\n", + "dtype: object" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_steps.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "0e946a60", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id int64\n", + "Time object\n", + "Value int64\n", + "dtype: object" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "heart_rate.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "44f152cf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdTimeValue
020224844084/12/2016 7:21:00 AM97
120224844084/12/2016 7:21:05 AM102
220224844084/12/2016 7:21:10 AM105
320224844084/12/2016 7:21:20 AM103
420224844084/12/2016 7:21:25 AM101
............
248365388776893915/12/2016 2:43:53 PM57
248365488776893915/12/2016 2:43:58 PM56
248365588776893915/12/2016 2:44:03 PM55
248365688776893915/12/2016 2:44:18 PM55
248365788776893915/12/2016 2:44:28 PM56
\n", + "

2483658 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Id Time Value\n", + "0 2022484408 4/12/2016 7:21:00 AM 97\n", + "1 2022484408 4/12/2016 7:21:05 AM 102\n", + "2 2022484408 4/12/2016 7:21:10 AM 105\n", + "3 2022484408 4/12/2016 7:21:20 AM 103\n", + "4 2022484408 4/12/2016 7:21:25 AM 101\n", + "... ... ... ...\n", + "2483653 8877689391 5/12/2016 2:43:53 PM 57\n", + "2483654 8877689391 5/12/2016 2:43:58 PM 56\n", + "2483655 8877689391 5/12/2016 2:44:03 PM 55\n", + "2483656 8877689391 5/12/2016 2:44:18 PM 55\n", + "2483657 8877689391 5/12/2016 2:44:28 PM 56\n", + "\n", + "[2483658 rows x 3 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity\n", + "hourly_steps\n", + "hourly_calories\n", + "sleep_day\n", + "daily_calories\n", + "daily_intensity\n", + "weight_log\n", + "daily_steps\n", + "heart_rate" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8c8b1c46", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------Missing Values in each Dataset------\n", + "Daily Activity: 0 missing values\n", + "Hourly Steps: 0 missing values\n", + "Hourly Calories 0 missing values\n", + "Sleep Day: 0 missing values\n", + "Daily Calories 0 missing values\n", + "Daily Intensity: 0 missing values\n", + "Weight Log: 65 missing values\n", + "Daily Steps: 0 missing values\n", + "Heart Rate: 0 missing values\n" + ] + } + ], + "source": [ + "# Displaying the number of missing values in each dataset\n", + "print(\"------Missing Values in each Dataset------\")\n", + "print(\"Daily Activity:\".ljust(20), f\"{daily_activity.isnull().values.sum()} missing values\")\n", + "print(\"Hourly Steps:\".ljust(20), f\"{hourly_steps.isnull().values.sum()} missing values\")\n", + "print(\"Hourly Calories\".ljust(20), f\"{hourly_calories.isnull().values.sum()} missing values\")\n", + "print(\"Sleep Day:\".ljust(20), f\"{sleep_day.isnull().values.sum()} missing values\")\n", + "print(\"Daily Calories\".ljust(20), f\"{daily_calories.isnull().values.sum()} missing values\")\n", + "print(\"Daily Intensity:\".ljust(20), f\"{daily_intensity.isnull().values.sum()} missing values\")\n", + "print(\"Weight Log:\".ljust(20), f\"{weight_log.isnull().values.sum()} missing values\")\n", + "print(\"Daily Steps:\".ljust(20), f\"{daily_steps.isnull().values.sum()} missing values\")\n", + "print(\"Heart Rate:\".ljust(20), f\"{heart_rate.isnull().values.sum()} missing values\")" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "2cfefbf0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------Duplicates in each Dataset------\n", + "Daily Activity: 0 duplicates\n", + "Hourly Steps: 0 duplicates\n", + "Hourly Calories: 0 duplicates\n", + "Sleep Day: 3 duplicates\n", + "Daily Calories 0 duplicates\n", + "Daily Intensity: 0 duplicates\n", + "Weight Log: 0 duplicates\n", + "Daily Steps: 0 duplicates\n", + "Heart Rate: 0 duplicates\n" + ] + } + ], + "source": [ + "# Displaying the number of duplicates in each dataset\n", + "print(\"------Duplicates in each Dataset------\")\n", + "print(\"Daily Activity:\".ljust(20), f\"{daily_activity.duplicated().values.sum()} duplicates\")\n", + "print(\"Hourly Steps:\".ljust(20), f\"{hourly_steps.duplicated().values.sum()} duplicates\")\n", + "print(\"Hourly Calories:\".ljust(20), f\"{hourly_calories.duplicated().values.sum()} duplicates\")\n", + "print(\"Sleep Day:\".ljust(20), f\"{sleep_day.duplicated().values.sum()} duplicates\")\n", + "print(\"Daily Calories\".ljust(20), f\"{daily_calories.duplicated().values.sum()} duplicates\")\n", + "print(\"Daily Intensity:\".ljust(20), f\"{daily_intensity.duplicated().values.sum()} duplicates\")\n", + "print(\"Weight Log:\".ljust(20), f\"{weight_log.duplicated().values.sum()} duplicates\")\n", + "print(\"Daily Steps:\".ljust(20), f\"{daily_steps.duplicated().values.sum()} duplicates\")\n", + "print(\"Heart Rate:\".ljust(20), f\"{heart_rate.duplicated().values.sum()} duplicates\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "5f906470", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_7425/4216372866.py:3: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " hourly_steps[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", + "/tmp/ipykernel_7425/4216372866.py:4: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " hourly_calories[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", + "/tmp/ipykernel_7425/4216372866.py:5: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " sleep_day[\"SleepDay\"] = pd.to_datetime(sleep_day[\"SleepDay\"])\n" + ] + } + ], + "source": [ + "# Convert relevant columns to datetime format\n", + "daily_activity[\"ActivityDate\"] = pd.to_datetime(daily_activity[\"ActivityDate\"])\n", + "hourly_steps[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", + "hourly_calories[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", + "sleep_day[\"SleepDay\"] = pd.to_datetime(sleep_day[\"SleepDay\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "9dac26b6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Daily Acitivity data type is datetime64[ns] data type\n", + "Hourly Steps data type is datetime64[ns] data type\n", + "Hourly Calories data type is datetime64[ns] data type\n", + "Sleepday data type is datetime64[ns] data type\n" + ] + } + ], + "source": [ + "print(\"Daily Acitivity data type is\", daily_activity[\"ActivityDate\"].dtypes, \"data type\")\n", + "print(\"Hourly Steps data type is\", hourly_steps[\"ActivityHour\"].dtypes, \"data type\")\n", + "print(\"Hourly Calories data type is\", hourly_calories[\"ActivityHour\"].dtypes, \"data type\")\n", + "print(\"Sleepday data type is\", sleep_day[\"SleepDay\"].dtypes, \"data type\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "2f641cbf", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Id', 'ActivityHour', 'StepTotal'], dtype='object')\n", + "Index(['Id', 'ActivityHour', 'Calories'], dtype='object')\n" + ] + } + ], + "source": [ + "for col in hourly_steps.columns, hourly_calories.columns:\n", + " print (col)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "932b38f2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityHourStepTotalCalories
015039603662016-04-12 00:00:0037381
115039603662016-04-12 01:00:0016061
215039603662016-04-12 02:00:0015159
315039603662016-04-12 03:00:00047
415039603662016-04-12 04:00:00048
\n", + "
" + ], + "text/plain": [ + " Id ActivityHour StepTotal Calories\n", + "0 1503960366 2016-04-12 00:00:00 373 81\n", + "1 1503960366 2016-04-12 01:00:00 160 61\n", + "2 1503960366 2016-04-12 02:00:00 151 59\n", + "3 1503960366 2016-04-12 03:00:00 0 47\n", + "4 1503960366 2016-04-12 04:00:00 0 48" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Merging the 'hourly_steps' and 'hourly_calories' DataFrames based on 'Id' and 'ActivityHour'\n", + "merge_df = pd.merge(hourly_steps, hourly_calories,\n", + " on=['Id', 'ActivityHour'], how='inner')\n", + "\n", + "merge_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "347c44af", + "metadata": {}, + "outputs": [], + "source": [ + "daily_activity[\"WeekDay\"] = daily_activity[\"ActivityDate\"].dt.day_name()\n", + "merge_df[\"WeekDay\"] = merge_df[\"ActivityHour\"].dt.day_name()\n", + "sleep_day[\"WeekDay\"] = sleep_day[\"SleepDay\"].dt.day_name()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "5a6892b8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDateTotalStepsTotalDistanceTrackerDistanceLoggedActivitiesDistanceVeryActiveDistanceModeratelyActiveDistanceLightActiveDistanceSedentaryActiveDistanceVeryActiveMinutesFairlyActiveMinutesLightlyActiveMinutesSedentaryMinutesCaloriesWeekDay
015039603662016-04-12131628.508.500.01.880.556.060.025133287281985Tuesday
115039603662016-04-13107356.976.970.01.570.694.710.021192177761797Wednesday
215039603662016-04-14104606.746.740.02.440.403.910.0301118112181776Thursday
315039603662016-04-1597626.286.280.02.141.262.830.029342097261745Friday
415039603662016-04-16126698.168.160.02.710.415.040.036102217731863Saturday
\n", + "
" + ], + "text/plain": [ + " Id ActivityDate TotalSteps TotalDistance TrackerDistance \\\n", + "0 1503960366 2016-04-12 13162 8.50 8.50 \n", + "1 1503960366 2016-04-13 10735 6.97 6.97 \n", + "2 1503960366 2016-04-14 10460 6.74 6.74 \n", + "3 1503960366 2016-04-15 9762 6.28 6.28 \n", + "4 1503960366 2016-04-16 12669 8.16 8.16 \n", + "\n", + " LoggedActivitiesDistance VeryActiveDistance ModeratelyActiveDistance \\\n", + "0 0.0 1.88 0.55 \n", + "1 0.0 1.57 0.69 \n", + "2 0.0 2.44 0.40 \n", + "3 0.0 2.14 1.26 \n", + "4 0.0 2.71 0.41 \n", + "\n", + " LightActiveDistance SedentaryActiveDistance VeryActiveMinutes \\\n", + "0 6.06 0.0 25 \n", + "1 4.71 0.0 21 \n", + "2 3.91 0.0 30 \n", + "3 2.83 0.0 29 \n", + "4 5.04 0.0 36 \n", + "\n", + " FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes Calories \\\n", + "0 13 328 728 1985 \n", + "1 19 217 776 1797 \n", + "2 11 181 1218 1776 \n", + "3 34 209 726 1745 \n", + "4 10 221 773 1863 \n", + "\n", + " WeekDay \n", + "0 Tuesday \n", + "1 Wednesday \n", + "2 Thursday \n", + "3 Friday \n", + "4 Saturday " + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "150566e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityHourStepTotalCaloriesWeekDay
015039603662016-04-12 00:00:0037381Tuesday
115039603662016-04-12 01:00:0016061Tuesday
215039603662016-04-12 02:00:0015159Tuesday
315039603662016-04-12 03:00:00047Tuesday
415039603662016-04-12 04:00:00048Tuesday
\n", + "
" + ], + "text/plain": [ + " Id ActivityHour StepTotal Calories WeekDay\n", + "0 1503960366 2016-04-12 00:00:00 373 81 Tuesday\n", + "1 1503960366 2016-04-12 01:00:00 160 61 Tuesday\n", + "2 1503960366 2016-04-12 02:00:00 151 59 Tuesday\n", + "3 1503960366 2016-04-12 03:00:00 0 47 Tuesday\n", + "4 1503960366 2016-04-12 04:00:00 0 48 Tuesday" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "6e7ad63e", + "metadata": {}, + "outputs": [], + "source": [ + "merge_df[\"DateHour\"] = merge_df[\"ActivityHour\"].dt.hour" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "ce9a6e6d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityHourStepTotalCaloriesWeekDayDateHour
015039603662016-04-12 00:00:0037381Tuesday0
115039603662016-04-12 01:00:0016061Tuesday1
215039603662016-04-12 02:00:0015159Tuesday2
315039603662016-04-12 03:00:00047Tuesday3
415039603662016-04-12 04:00:00048Tuesday4
\n", + "
" + ], + "text/plain": [ + " Id ActivityHour StepTotal Calories WeekDay DateHour\n", + "0 1503960366 2016-04-12 00:00:00 373 81 Tuesday 0\n", + "1 1503960366 2016-04-12 01:00:00 160 61 Tuesday 1\n", + "2 1503960366 2016-04-12 02:00:00 151 59 Tuesday 2\n", + "3 1503960366 2016-04-12 03:00:00 0 47 Tuesday 3\n", + "4 1503960366 2016-04-12 04:00:00 0 48 Tuesday 4" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "70b3355e", + "metadata": {}, + "outputs": [], + "source": [ + "merge_df[\"ActivityDay\"] = merge_df[\"ActivityHour\"].dt.date" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "358d1f1c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdStepTotalCaloriesWeekDayDateHourActivityDay
0150396036637381Tuesday02016-04-12
1150396036616061Tuesday12016-04-12
2150396036615159Tuesday22016-04-12
31503960366047Tuesday32016-04-12
41503960366048Tuesday42016-04-12
\n", + "
" + ], + "text/plain": [ + " Id StepTotal Calories WeekDay DateHour ActivityDay\n", + "0 1503960366 373 81 Tuesday 0 2016-04-12\n", + "1 1503960366 160 61 Tuesday 1 2016-04-12\n", + "2 1503960366 151 59 Tuesday 2 2016-04-12\n", + "3 1503960366 0 47 Tuesday 3 2016-04-12\n", + "4 1503960366 0 48 Tuesday 4 2016-04-12" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_df = merge_df.drop(\"ActivityHour\", axis = 1)\n", + "merge_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "8941c73f", + "metadata": {}, + "outputs": [], + "source": [ + "merge_df[\"ActivityDay\"] = pd.to_datetime(merge_df[\"ActivityDay\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "6d0c4ed5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDayTotalSleepRecordsTotalMinutesAsleepTotalTimeInBedWeekDay
015039603662016-04-121327346Tuesday
115039603662016-04-132384407Wednesday
215039603662016-04-151412442Friday
315039603662016-04-162340367Saturday
415039603662016-04-171700712Sunday
\n", + "
" + ], + "text/plain": [ + " Id ActivityDay TotalSleepRecords TotalMinutesAsleep \\\n", + "0 1503960366 2016-04-12 1 327 \n", + "1 1503960366 2016-04-13 2 384 \n", + "2 1503960366 2016-04-15 1 412 \n", + "3 1503960366 2016-04-16 2 340 \n", + "4 1503960366 2016-04-17 1 700 \n", + "\n", + " TotalTimeInBed WeekDay \n", + "0 346 Tuesday \n", + "1 407 Wednesday \n", + "2 442 Friday \n", + "3 367 Saturday \n", + "4 712 Sunday " + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sleep_day = sleep_day.rename(columns={'SleepDay': 'ActivityDay'})\n", + "sleep_day.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d1884fdb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Id', 'StepTotal', 'Calories', 'WeekDay', 'DateHour', 'ActivityDay'], dtype='object')\n", + "Index(['Id', 'ActivityDay', 'TotalSleepRecords', 'TotalMinutesAsleep',\n", + " 'TotalTimeInBed', 'WeekDay'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "for col in merge_df.columns, sleep_day.columns:\n", + " print (col)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "adbe8c72", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdStepTotalCaloriesWeekDayDateHourActivityDayTotalSleepRecordsTotalMinutesAsleepTotalTimeInBed
0150396036637381Tuesday02016-04-121327346
1150396036616061Tuesday12016-04-121327346
2150396036615159Tuesday22016-04-121327346
31503960366047Tuesday32016-04-121327346
41503960366048Tuesday42016-04-121327346
\n", + "
" + ], + "text/plain": [ + " Id StepTotal Calories WeekDay DateHour ActivityDay \\\n", + "0 1503960366 373 81 Tuesday 0 2016-04-12 \n", + "1 1503960366 160 61 Tuesday 1 2016-04-12 \n", + "2 1503960366 151 59 Tuesday 2 2016-04-12 \n", + "3 1503960366 0 47 Tuesday 3 2016-04-12 \n", + "4 1503960366 0 48 Tuesday 4 2016-04-12 \n", + "\n", + " TotalSleepRecords TotalMinutesAsleep TotalTimeInBed \n", + "0 1 327 346 \n", + "1 1 327 346 \n", + "2 1 327 346 \n", + "3 1 327 346 \n", + "4 1 327 346 " + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Merging the previously merged DataFrame 'merge_df' with the 'sleep_day' DataFrame\n", + "merge_df2 = pd.merge(merge_df, sleep_day,\n", + " on=['Id', 'ActivityDay', 'WeekDay'], how='inner')\n", + "\n", + "merge_df2.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "41f76b01", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdStepTotalCaloriesWeekDayDateHourActivityDayTotalSleepRecordsTotalMinutesAsleepTotalTimeInBed
97668792009665874Wednesday192016-05-041439463
9767879200966513291Wednesday202016-05-041439463
97688792009665071Wednesday212016-05-041439463
97698792009665070Wednesday222016-05-041439463
97708792009665070Wednesday232016-05-041439463
\n", + "
" + ], + "text/plain": [ + " Id StepTotal Calories WeekDay DateHour ActivityDay \\\n", + "9766 8792009665 8 74 Wednesday 19 2016-05-04 \n", + "9767 8792009665 132 91 Wednesday 20 2016-05-04 \n", + "9768 8792009665 0 71 Wednesday 21 2016-05-04 \n", + "9769 8792009665 0 70 Wednesday 22 2016-05-04 \n", + "9770 8792009665 0 70 Wednesday 23 2016-05-04 \n", + "\n", + " TotalSleepRecords TotalMinutesAsleep TotalTimeInBed \n", + "9766 1 439 463 \n", + "9767 1 439 463 \n", + "9768 1 439 463 \n", + "9769 1 439 463 \n", + "9770 1 439 463 " + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_df2.tail(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "429dab56", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Merge_df2 Dataframe: 24 unique users\n", + "Merge_df2 DataFrame has 0 missing values\n" + ] + } + ], + "source": [ + "print(\"Merge_df2 Dataframe:\",merge_df2.Id.nunique(), \"unique users\")\n", + "print(\"Merge_df2 DataFrame has\",merge_df2.isnull().values.sum(), \"missing values\")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "499c49ba", + "metadata": {}, + "outputs": [], + "source": [ + "#Reorder columns in 'daily_activity' DataFrame based on the specified order in 'new_cols'\n", + "new_cols = [\"Id\", \"ActivityDate\", \n", + " \"WeekDay\", \"TotalSteps\", \n", + " \"TotalDistance\", \"VeryActiveDistance\", \n", + " \"ModeratelyActiveDistance\", \"LightActiveDistance\", \n", + " \"SedentaryActiveDistance\", \"VeryActiveMinutes\", \n", + " \"FairlyActiveMinutes\", \"LightlyActiveMinutes\", \n", + " \"SedentaryMinutes\", \"TotalActiveMinutes\", \n", + " \"TotalMinutes\", \"TotalActiveHours\", \"Calories\"]\n", + "\n", + "daily_activity = daily_activity.reindex(columns=new_cols)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "07adc315", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TotalActiveMinutesTotalMinutesTotalActiveHours
0NaNNaNNaN
1NaNNaNNaN
2NaNNaNNaN
3NaNNaNNaN
4NaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " TotalActiveMinutes TotalMinutes TotalActiveHours\n", + "0 NaN NaN NaN\n", + "1 NaN NaN NaN\n", + "2 NaN NaN NaN\n", + "3 NaN NaN NaN\n", + "4 NaN NaN NaN" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity[[\"TotalActiveMinutes\",\n", + " \"TotalMinutes\", \"TotalActiveHours\"]].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "2d8f44e6", + "metadata": {}, + "outputs": [], + "source": [ + "daily_activity[\"TotalActiveMinutes\"] = daily_activity[\"VeryActiveMinutes\"] + daily_activity[\"FairlyActiveMinutes\"] + daily_activity[\"LightlyActiveMinutes\"]\n", + "daily_activity[\"TotalMinutes\"] = daily_activity[\"TotalActiveMinutes\"] + daily_activity[\"SedentaryMinutes\"]\n", + "daily_activity[\"TotalActiveHours\"] = round(daily_activity[\"TotalActiveMinutes\"] / 60)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "2e0e4634", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TotalActiveMinutesTotalMinutesTotalActiveHours
036610946.0
125710334.0
222214404.0
32729985.0
426710404.0
\n", + "
" + ], + "text/plain": [ + " TotalActiveMinutes TotalMinutes TotalActiveHours\n", + "0 366 1094 6.0\n", + "1 257 1033 4.0\n", + "2 222 1440 4.0\n", + "3 272 998 5.0\n", + "4 267 1040 4.0" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity[[\"TotalActiveMinutes\", \"TotalMinutes\", \"TotalActiveHours\"]].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "26351fa0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDateWeekDayTotalStepsTotalDistanceVeryActiveDistanceModeratelyActiveDistanceLightActiveDistanceSedentaryActiveDistanceVeryActiveMinutesFairlyActiveMinutesLightlyActiveMinutesSedentaryMinutesTotalActiveMinutesTotalMinutesTotalActiveHoursCalories
015039603662016-04-12Tuesday131628.501.880.556.060.0251332872836610946.01985
115039603662016-04-13Wednesday107356.971.570.694.710.0211921777625710334.01797
215039603662016-04-14Thursday104606.742.440.403.910.03011181121822214404.01776
315039603662016-04-15Friday97626.282.141.262.830.029342097262729985.01745
415039603662016-04-16Saturday126698.162.710.415.040.0361022177326710404.01863
\n", + "
" + ], + "text/plain": [ + " Id ActivityDate WeekDay TotalSteps TotalDistance \\\n", + "0 1503960366 2016-04-12 Tuesday 13162 8.50 \n", + "1 1503960366 2016-04-13 Wednesday 10735 6.97 \n", + "2 1503960366 2016-04-14 Thursday 10460 6.74 \n", + "3 1503960366 2016-04-15 Friday 9762 6.28 \n", + "4 1503960366 2016-04-16 Saturday 12669 8.16 \n", + "\n", + " VeryActiveDistance ModeratelyActiveDistance LightActiveDistance \\\n", + "0 1.88 0.55 6.06 \n", + "1 1.57 0.69 4.71 \n", + "2 2.44 0.40 3.91 \n", + "3 2.14 1.26 2.83 \n", + "4 2.71 0.41 5.04 \n", + "\n", + " SedentaryActiveDistance VeryActiveMinutes FairlyActiveMinutes \\\n", + "0 0.0 25 13 \n", + "1 0.0 21 19 \n", + "2 0.0 30 11 \n", + "3 0.0 29 34 \n", + "4 0.0 36 10 \n", + "\n", + " LightlyActiveMinutes SedentaryMinutes TotalActiveMinutes TotalMinutes \\\n", + "0 328 728 366 1094 \n", + "1 217 776 257 1033 \n", + "2 181 1218 222 1440 \n", + "3 209 726 272 998 \n", + "4 221 773 267 1040 \n", + "\n", + " TotalActiveHours Calories \n", + "0 6.0 1985 \n", + "1 4.0 1797 \n", + "2 4.0 1776 \n", + "3 5.0 1745 \n", + "4 4.0 1863 " + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "b2b4ad30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdActivityDateTotalStepsTotalDistanceVeryActiveDistanceModeratelyActiveDistanceLightActiveDistanceSedentaryActiveDistanceVeryActiveMinutesFairlyActiveMinutesLightlyActiveMinutesSedentaryMinutesTotalActiveMinutesTotalMinutesTotalActiveHoursCalories
count9.400000e+02940940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000940.000000
mean4.855407e+092016-04-26 06:53:37.0212766727637.9106385.4897021.5026810.5675433.3408190.00160621.16489413.564894192.812766991.210638227.5425531218.7531913.7755322303.609574
min1.503960e+092016-04-12 00:00:000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000002.0000000.0000000.000000
25%2.320127e+092016-04-19 00:00:003789.7500002.6200000.0000000.0000001.9450000.0000000.0000000.000000127.000000729.750000146.750000989.7500002.0000001828.500000
50%4.445115e+092016-04-26 00:00:007405.5000005.2450000.2100000.2400003.3650000.0000004.0000006.000000199.0000001057.500000247.0000001440.0000004.0000002134.000000
75%6.962181e+092016-05-04 00:00:0010727.0000007.7125002.0525000.8000004.7825000.00000032.00000019.000000264.0000001229.500000317.2500001440.0000005.0000002793.250000
max8.877689e+092016-05-12 00:00:0036019.00000028.03000121.9200006.48000010.7100000.110000210.000000143.000000518.0000001440.000000552.0000001440.0000009.0000004900.000000
std2.424805e+09NaN5087.1507423.9246062.6589410.8835802.0406550.00734632.84480319.987404109.174700301.267437121.776307265.9317672.057646718.166862
\n", + "
" + ], + "text/plain": [ + " Id ActivityDate TotalSteps \\\n", + "count 9.400000e+02 940 940.000000 \n", + "mean 4.855407e+09 2016-04-26 06:53:37.021276672 7637.910638 \n", + "min 1.503960e+09 2016-04-12 00:00:00 0.000000 \n", + "25% 2.320127e+09 2016-04-19 00:00:00 3789.750000 \n", + "50% 4.445115e+09 2016-04-26 00:00:00 7405.500000 \n", + "75% 6.962181e+09 2016-05-04 00:00:00 10727.000000 \n", + "max 8.877689e+09 2016-05-12 00:00:00 36019.000000 \n", + "std 2.424805e+09 NaN 5087.150742 \n", + "\n", + " TotalDistance VeryActiveDistance ModeratelyActiveDistance \\\n", + "count 940.000000 940.000000 940.000000 \n", + "mean 5.489702 1.502681 0.567543 \n", + "min 0.000000 0.000000 0.000000 \n", + "25% 2.620000 0.000000 0.000000 \n", + "50% 5.245000 0.210000 0.240000 \n", + "75% 7.712500 2.052500 0.800000 \n", + "max 28.030001 21.920000 6.480000 \n", + "std 3.924606 2.658941 0.883580 \n", + "\n", + " LightActiveDistance SedentaryActiveDistance VeryActiveMinutes \\\n", + "count 940.000000 940.000000 940.000000 \n", + "mean 3.340819 0.001606 21.164894 \n", + "min 0.000000 0.000000 0.000000 \n", + "25% 1.945000 0.000000 0.000000 \n", + "50% 3.365000 0.000000 4.000000 \n", + "75% 4.782500 0.000000 32.000000 \n", + "max 10.710000 0.110000 210.000000 \n", + "std 2.040655 0.007346 32.844803 \n", + "\n", + " FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes \\\n", + "count 940.000000 940.000000 940.000000 \n", + "mean 13.564894 192.812766 991.210638 \n", + "min 0.000000 0.000000 0.000000 \n", + "25% 0.000000 127.000000 729.750000 \n", + "50% 6.000000 199.000000 1057.500000 \n", + "75% 19.000000 264.000000 1229.500000 \n", + "max 143.000000 518.000000 1440.000000 \n", + "std 19.987404 109.174700 301.267437 \n", + "\n", + " TotalActiveMinutes TotalMinutes TotalActiveHours Calories \n", + "count 940.000000 940.000000 940.000000 940.000000 \n", + "mean 227.542553 1218.753191 3.775532 2303.609574 \n", + "min 0.000000 2.000000 0.000000 0.000000 \n", + "25% 146.750000 989.750000 2.000000 1828.500000 \n", + "50% 247.000000 1440.000000 4.000000 2134.000000 \n", + "75% 317.250000 1440.000000 5.000000 2793.250000 \n", + "max 552.000000 1440.000000 9.000000 4900.000000 \n", + "std 121.776307 265.931767 2.057646 718.166862 " + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "daily_activity.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "be5bd10e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdStepTotalCaloriesDateHourActivityDay
count2.209900e+0422099.00000022099.00000022099.00000022099
mean4.848235e+09320.16634297.38676011.4157652016-04-26 00:21:45.832843264
min1.503960e+090.00000042.0000000.0000002016-04-12 00:00:00
25%2.320127e+090.00000063.0000005.0000002016-04-19 00:00:00
50%4.445115e+0940.00000083.00000011.0000002016-04-26 00:00:00
75%6.962181e+09357.000000108.00000017.0000002016-05-03 00:00:00
max8.877689e+0910554.000000948.00000023.0000002016-05-12 00:00:00
std2.422500e+09690.38422860.7026226.915140NaN
\n", + "
" + ], + "text/plain": [ + " Id StepTotal Calories DateHour \\\n", + "count 2.209900e+04 22099.000000 22099.000000 22099.000000 \n", + "mean 4.848235e+09 320.166342 97.386760 11.415765 \n", + "min 1.503960e+09 0.000000 42.000000 0.000000 \n", + "25% 2.320127e+09 0.000000 63.000000 5.000000 \n", + "50% 4.445115e+09 40.000000 83.000000 11.000000 \n", + "75% 6.962181e+09 357.000000 108.000000 17.000000 \n", + "max 8.877689e+09 10554.000000 948.000000 23.000000 \n", + "std 2.422500e+09 690.384228 60.702622 6.915140 \n", + "\n", + " ActivityDay \n", + "count 22099 \n", + "mean 2016-04-26 00:21:45.832843264 \n", + "min 2016-04-12 00:00:00 \n", + "25% 2016-04-19 00:00:00 \n", + "50% 2016-04-26 00:00:00 \n", + "75% 2016-05-03 00:00:00 \n", + "max 2016-05-12 00:00:00 \n", + "std NaN " + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "fadfbd16", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdStepTotalCaloriesDateHourActivityDayTotalSleepRecordsTotalMinutesAsleepTotalTimeInBed
count9.771000e+039771.0000009771.0000009771.00000097719771.0000009771.0000009771.000000
mean5.000942e+09358.765838100.97891711.4228842016-04-26 08:00:35.3699724801.120356419.350322458.607921
min1.503960e+090.00000042.0000000.0000002016-04-12 00:00:001.00000058.00000061.000000
25%3.977334e+090.00000063.0000005.0000002016-04-19 00:00:001.000000361.000000402.000000
50%4.702922e+09107.00000084.00000011.0000002016-04-26 00:00:001.000000433.000000463.000000
75%6.962181e+09420.000000117.00000017.0000002016-05-04 00:00:001.000000490.000000527.000000
max8.792010e+096357.000000669.00000023.0000002016-05-12 00:00:003.000000796.000000961.000000
std2.061194e+09652.62886563.4403386.921320NaN0.347304118.789342127.597596
\n", + "
" + ], + "text/plain": [ + " Id StepTotal Calories DateHour \\\n", + "count 9.771000e+03 9771.000000 9771.000000 9771.000000 \n", + "mean 5.000942e+09 358.765838 100.978917 11.422884 \n", + "min 1.503960e+09 0.000000 42.000000 0.000000 \n", + "25% 3.977334e+09 0.000000 63.000000 5.000000 \n", + "50% 4.702922e+09 107.000000 84.000000 11.000000 \n", + "75% 6.962181e+09 420.000000 117.000000 17.000000 \n", + "max 8.792010e+09 6357.000000 669.000000 23.000000 \n", + "std 2.061194e+09 652.628865 63.440338 6.921320 \n", + "\n", + " ActivityDay TotalSleepRecords TotalMinutesAsleep \\\n", + "count 9771 9771.000000 9771.000000 \n", + "mean 2016-04-26 08:00:35.369972480 1.120356 419.350322 \n", + "min 2016-04-12 00:00:00 1.000000 58.000000 \n", + "25% 2016-04-19 00:00:00 1.000000 361.000000 \n", + "50% 2016-04-26 00:00:00 1.000000 433.000000 \n", + "75% 2016-05-04 00:00:00 1.000000 490.000000 \n", + "max 2016-05-12 00:00:00 3.000000 796.000000 \n", + "std NaN 0.347304 118.789342 \n", + "\n", + " TotalTimeInBed \n", + "count 9771.000000 \n", + "mean 458.607921 \n", + "min 61.000000 \n", + "25% 402.000000 \n", + "50% 463.000000 \n", + "75% 527.000000 \n", + "max 961.000000 \n", + "std 127.597596 " + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_df2.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "f794c5f4", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAKECAYAAABPdXgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCGklEQVR4nOzdd1iT19sH8G8SIGHvDQICKg4EcRTROop71FlnVRzVVmsrblvF0Yp1vY5qtQ6wVqu/Dm2te6FVcYuKWxRxsPcMI3n/oEYjQWMlEPT76fVclznPeU7ukxTIyX2ecwRyuVwOIiIiIiIiqnaEVR0AERERERER/Tcc0BEREREREVVTHNARERERERFVUxzQERERERERVVMc0BEREREREVVTHNARERERERFVUxzQERERERERVVMc0BEREREREVVTHNARERERERFVUxzQERFRtRMeHg6BQIDY2NgKazM2NhYCgQDh4eEV1mZ117p1a7Ru3bqqwyAiopfggI6IiAAAMTExGD16NGrWrAmJRAITExMEBARg+fLlyM/Pr+rwKszWrVuxbNmyqg5DybBhwyAQCGBiYqLytb5z5w4EAgEEAgEWL1782u0/efIEs2fPRlRUVAVES0RE2kSnqgMgIqKqt3v3bvTt2xdisRhDhgxB/fr1UVhYiBMnTmDy5Mm4du0afvzxx6oOs0Js3boV0dHR+PLLL5XKXVxckJ+fD11d3SqJS0dHB3l5edi1axc++ugjpXNbtmyBRCJBQUHBf2r7yZMnmDNnDlxdXeHj46P2dQcOHPhPz0dERJWHAzoionfc/fv30b9/f7i4uODIkSOwt7dXnBs7dizu3r2L3bt3v/HzyOVyFBQUQF9fv8y5goIC6OnpQSisuokjAoEAEomkyp5fLBYjICAAv/zyS5kB3datW9GlSxf8/vvvlRJLXl4eDAwMoKenVynPR0RE/x2nXBIRveMWLlyInJwcbNiwQWkw95SHhwe++OILxePi4mLMmzcP7u7uEIvFcHV1xYwZMyCVSpWuc3V1RdeuXbF//340btwY+vr6WLt2LSIiIiAQCLBt2zZ8/fXXcHR0hIGBAbKysgAAZ86cQceOHWFqagoDAwO0atUKJ0+efGU//vzzT3Tp0gUODg4Qi8Vwd3fHvHnzUFJSoqjTunVr7N69Gw8ePFBMYXR1dQVQ/j10R44cQcuWLWFoaAgzMzN8+OGHuHHjhlKd2bNnQyAQ4O7duxg2bBjMzMxgamqKoKAg5OXlvTL2pwYOHIi9e/ciIyNDUXbu3DncuXMHAwcOLFM/LS0NkyZNQoMGDWBkZAQTExN06tQJly9fVtSJiIhAkyZNAABBQUGKfj/tZ+vWrVG/fn1cuHAB77//PgwMDDBjxgzFuefvoRs6dCgkEkmZ/nfo0AHm5uZ48uSJ2n0lIqKKwQwdEdE7bteuXahZsyaaN2+uVv2RI0di06ZN6NOnDyZOnIgzZ84gNDQUN27cwI4dO5Tq3rp1CwMGDMDo0aMxatQo1K5dW3Fu3rx50NPTw6RJkyCVSqGnp4cjR46gU6dO8PPzQ0hICIRCIcLCwtC2bVv8888/aNq0ablxhYeHw8jICMHBwTAyMsKRI0cwa9YsZGVlYdGiRQCAr776CpmZmXj06BH+7//+DwBgZGRUbpuHDh1Cp06dULNmTcyePRv5+flYuXIlAgICcPHiRcVg8KmPPvoIbm5uCA0NxcWLF7F+/XrY2Njgu+++U+u17dWrF8aMGYM//vgDw4cPB1CanatTpw4aNWpUpv69e/ewc+dO9O3bF25ubkhMTMTatWvRqlUrXL9+HQ4ODvDy8sLcuXMxa9YsfPLJJ2jZsiUAKL3fqamp6NSpE/r374/BgwfD1tZWZXzLly/HkSNHMHToUERGRkIkEmHt2rU4cOAANm/eDAcHB7X6SUREFUhORETvrMzMTDkA+YcffqhW/aioKDkA+ciRI5XKJ02aJAcgP3LkiKLMxcVFDkC+b98+pbpHjx6VA5DXrFlTnpeXpyiXyWRyT09PeYcOHeQymUxRnpeXJ3dzc5O3a9dOURYWFiYHIL9//75SvReNHj1abmBgIC8oKFCUdenSRe7i4lKm7v379+UA5GFhYYoyHx8fuY2NjTw1NVVRdvnyZblQKJQPGTJEURYSEiIHIB8+fLhSmz179pRbWlqWea4XDR06VG5oaCiXy+XyPn36yD/44AO5XC6Xl5SUyO3s7ORz5sxRxLdo0SLFdQUFBfKSkpIy/RCLxfK5c+cqys6dO1emb0+1atVKDkC+Zs0aledatWqlVLZ//345APk333wjv3fvntzIyEjeo0ePV/aRiIg0g1MuiYjeYU+nORobG6tVf8+ePQCA4OBgpfKJEycCQJl77dzc3NChQweVbQ0dOlTpfrqoqCjF1MLU1FSkpKQgJSUFubm5+OCDD3D8+HHIZLJyY3u+rezsbKSkpKBly5bIy8vDzZs31erf8+Lj4xEVFYVhw4bBwsJCUe7t7Y127dopXovnjRkzRulxy5YtkZqaqnid1TFw4EBEREQgISEBR44cQUJCgsrplkDpfXdP7zssKSlBamoqjIyMULt2bVy8eFHt5xSLxQgKClKrbvv27TF69GjMnTsXvXr1gkQiwdq1a9V+LiIiqliccklE9A4zMTEBUDoAUseDBw8gFArh4eGhVG5nZwczMzM8ePBAqdzNza3ctl48d+fOHQClA73yZGZmwtzcXOW5a9eu4euvv8aRI0fKDKAyMzPLbbM8T/vy/DTRp7y8vLB//37k5ubC0NBQUV6jRg2lek9jTU9PV7zWr9K5c2cYGxtj+/btiIqKQpMmTeDh4aFyzz2ZTIbly5dj9erVuH//vtL9gpaWlmo9HwA4Ojq+1gIoixcvxp9//omoqChs3boVNjY2al9LREQViwM6IqJ3mImJCRwcHBAdHf1a1wkEArXqqVrRsrxzT7NvixYtKndp/fLud8vIyECrVq1gYmKCuXPnwt3dHRKJBBcvXsTUqVNfmtmrSCKRSGW5XC5Xuw2xWIxevXph06ZNuHfvHmbPnl1u3fnz52PmzJkYPnw45s2bBwsLCwiFQnz55Zev1eeXvU+qXLp0CUlJSQCAq1evYsCAAa91PRERVRwO6IiI3nFdu3bFjz/+iMjISPj7+7+0rouLC2QyGe7cuQMvLy9FeWJiIjIyMuDi4vKf43B3dwdQOsgMDAx8rWsjIiKQmpqKP/74A++//76i/P79+2XqqjsYfdqXW7dulTl38+ZNWFlZKWXnKtLAgQOxceNGCIVC9O/fv9x6v/32G9q0aYMNGzYolWdkZMDKykrxWN0+qyM3NxdBQUGoW7cumjdvjoULF6Jnz56KlTSJiKhy8R46IqJ33JQpU2BoaIiRI0ciMTGxzPmYmBgsX74cQOl0QABYtmyZUp2lS5cCALp06fKf4/Dz84O7uzsWL16MnJycMueTk5PLvfZpZuz5TFhhYSFWr15dpq6hoaFaUzDt7e3h4+ODTZs2KW0jEB0djQMHDiheC01o06YN5s2bh++//x52dnbl1hOJRGWyf7/++iseP36sVPZ04Pl8P/6rqVOnIi4uDps2bcLSpUvh6uqKoUOHltm2goiIKgczdERE7zh3d3ds3boV/fr1g5eXF4YMGYL69eujsLAQp06dwq+//ophw4YBABo2bIihQ4fixx9/VExzPHv2LDZt2oQePXqgTZs2/zkOoVCI9evXo1OnTqhXrx6CgoLg6OiIx48f4+jRozAxMcGuXbtUXtu8eXOYm5tj6NChGD9+PAQCATZv3qxyqqOfnx+2b9+O4OBgNGnSBEZGRujWrZvKdhctWoROnTrB398fI0aMUGxbYGpq+tKpkG9KKBTi66+/fmW9rl27Yu7cuQgKCkLz5s1x9epVbNmyBTVr1lSq5+7uDjMzM6xZswbGxsYwNDREs2bNXnqPoypHjhzB6tWrERISothGISwsDK1bt8bMmTOxcOHC12qPiIgqQNUusklERNri9u3b8lGjRsldXV3lenp6cmNjY3lAQIB85cqVSsv+FxUVyefMmSN3c3OT6+rqyp2dneXTp09XqiOXl25b0KVLlzLP83Tbgl9//VVlHJcuXZL36tVLbmlpKReLxXIXFxf5Rx99JD98+LCijqptC06ePCl/77335Pr6+nIHBwf5lClTFEvsHz16VFEvJydHPnDgQLmZmZkcgGILA1XbFsjlcvmhQ4fkAQEBcn19fbmJiYm8W7du8uvXryvVebptQXJyslK5qjhVeX7bgvKUt23BxIkT5fb29nJ9fX15QECAPDIyUuV2A3/++ae8bt26ch0dHaV+tmrVSl6vXj2Vz/l8O1lZWXIXFxd5o0aN5EVFRUr1JkyYIBcKhfLIyMiX9oGIiCqeQC5/jTu1iYiIiIiISGvwHjoiIiIiIqJqigM6IiIiIiKiaooDOiIiIiIiomqKAzoiIiIiIiIVjh8/jm7dusHBwQECgQA7d+585TURERFo1KgRxGIxPDw8EB4ertEYOaAjIiIiIiJSITc3Fw0bNsSqVavUqn///n106dIFbdq0QVRUFL788kuMHDkS+/fv11iMXOWSiIiIiIjoFQQCAXbs2IEePXqUW2fq1KnYvXs3oqOjFWX9+/dHRkYG9u3bp5G4mKEjIiIiIqJ3hlQqRVZWltIhlUorpO3IyEgEBgYqlXXo0AGRkZEV0r4qOhprmYiIiIiI6L+49rvGmg799SrmzJmjVBYSEoLZs2e/cdsJCQmwtbVVKrO1tUVWVhby8/Ohr6//xs/xIg7oSHM0+INIWqZeb8gvba3qKKiSCHwHIui3i1UdBlWSsD6NcLtnk6oOgypJrR3ncPS9VlUdBlWSNqePVXUIVWL69OkIDg5WKhOLxVUUzZvjgI6IiIiIiLSKvKREY22LxWKNDeDs7OyQmJioVJaYmAgTExONZOcA3kNHRERERERUIfz9/XH48GGlsoMHD8Lf319jz8kMHRERERERaZeS4qqOAACQk5ODu3fvKh7fv38fUVFRsLCwQI0aNTB9+nQ8fvwYP/30EwBgzJgx+P777zFlyhQMHz4cR44cwf/+9z/s3r1bYzEyQ0dERERERKTC+fPn4evrC19fXwBAcHAwfH19MWvWLABAfHw84uLiFPXd3Nywe/duHDx4EA0bNsSSJUuwfv16dOjQQWMxMkNHRERERERaRS7TXIZO8Bp1W7dujZdt2x0eHq7ymkuXLr1+YP8RB3RERERERKRdNLgoytuGUy6JiIiIiIiqKWboiIiIiIhIq8i1ZFGU6oAZOiIiIiIiomqKGToiIiIiItIuzNCpjRk6IiIiIiKiaooZOiIiIiIi0iqa3LbgbcMMHRERERERUTXFDB0REREREWkX7kOnNg7oiIiIiIhIq3DbAvVxyiUREREREVE1xQwdERERERFpF2bo1MYMHRERERERUTXFDB0REREREWkVuYyLoqiLGToiIiIiIqJqihk6IiIiIiLSKlzlUn3M0BEREREREVVTzNAREREREZF2YYZObRzQERERERGRVuGiKOrjlEsiIiIiIqJqihk6IiIiIiLSLpxyqTZm6IiIiIiIiKopZuiIiIiIiEircNsC9TFDR0REREREVE0xQ0dERERERNqFGTq1MUNHRERERERUTTFDR0REREREWoX70KmPAzoiIiIiItIunHKpNk65JCIiIiIiqqaYoSMiIiIiIq0iL+GUS3UxQ0dERERERFRNMUNHRERERERahRuLq48ZOiIiIiIiomqKA7r/QCAQYOfOna99XXh4OMzMzCo8HiIiIiKit4qsWHPHW6ZaT7kUCAQvPR8SEoLZs2erPBcbGws3NzdcunQJPj4+FRaHgYEBHBwcEBAQgM8//xx+fn6Kc/369UPnzp3VajM8PBxffvklMjIy3ig2+m/OXbuPDX/+g+iYx0hOz8aqqYMR2KzuS685E30PC8L24M7DRNhbmeLTPm3Qq62fUp0teyOxYec/SM7IQR1XO8wc2Q3ens6a7Aqpacv+s9iw6xRSMnNQp4Ydvg7qBG8PR5V1i4pL8OOfJ7Dz2GUkpmfBzd4KkwYGoqWPh6JOTr4UK/53FIfO3URqZi68XO3w1bCOaOCuuk2qGj3q2qOVmxUM9ES4k5KDzZceIjFHWm79LrVt4edoBjtjCYpKZLibmotfrz5GwnPXWBvqoZ+3E2pZGUJHKMTVhCxsiXqILOnb9yGiujDt1BcWPQZDZGYJaewdJK9fhII711XWdZq3Bgb1/cqU55w/gSffTgBEIlgN/BSGfgHQtXWELC8HeZfPInnz9yhJT9F0V0gNjr17wHlwf+hZWCD3bgxuL1mO7Os3y62vY2QEtzEjYd36feiaGKMgIRF3/m8l0iLPlKlb4+OBcB87Gg+3/Yq7y77XZDeI1FatM3Tx8fGKY9myZTAxMVEqmzRpUqXFEhYWhvj4eFy7dg2rVq1CTk4OmjVrhp9++klRR19fHzY2NpUWE/13edJC1Ha1Q8io7mrVf5iYhtHfbkKz+jXx59LPMbRrAL5evQP/XLqtqLPnxBWEhu3B2I8+wI7FY1HH1R4j5oYhNSNHU90gNe05FY0Fmw9gbJ9W+CN0NGq72GJk6M9IzcxVWX/59iPYfugCvg7qhN2Lx6J/oB/GLdmO6/fjFXVmrt2FU1fv4buxPfHXok8R4O2OoG82IzEtq7K6Ra/QubYt2nlY46eLcZh35BYKS2QIbuEBHWH5XxbWtjbC4ZhkfHP0Fhb/cxcioQATW3pAT1T651RPJMSklp4AgIXH7mD+0VvQEQrwRYA7Xv4VJGmKUUA7WAd9idTt6xE38WNIY+/AcdZKiEzNVdZ/8t0UxAR1VByx4/tBXlKMnFOHAQBCsQTimnWQ+r8NeDDxYzz5bgp0HV3gOGNJZXaLymET2AYeX4xF7PpNOD90FHLuxKDhssXQNTdTWV+go4OGK5ZA394O12bMwpl+H+NW6CJIk8sOzo296sChZ3fk3Lmr4V4QULrKpaaOt021HtDZ2dkpDlNTUwgEAsVjGxsbLF26FE5OThCLxfDx8cG+ffsU17q5uQEAfH19IRAI0Lp1awDAuXPn0K5dO1hZWcHU1BStWrXCxYsXXxmLmZkZ7Ozs4Orqivbt2+O3337DoEGDMG7cOKSnpwMoO+Xy8uXLaNOmDYyNjWFiYgI/Pz+cP38eERERCAoKQmZmJgQCAQQCgSLTuHnzZjRu3BjGxsaws7PDwIEDkZSUpGgzIiICAoEAhw8fRuPGjWFgYIDmzZvj1q1bSvHu2rULTZo0gUQigZWVFXr27Kk4J5VKMWnSJDg6OsLQ0BDNmjVDRETE67w11V6rRrUxYWB7tHuvnlr1t+0/Cycbc0wL6gx3JxsM7uyPDv71EL7rpKJO2K4T+KhdE/T+wA8ezraYM/pDSMR6+P3IBU11g9QUvvs0+rZthN6tfeHhZI05I7tCoqeL3yMuqaz/54krGN2jBVr5esLZ1hwD2jfB+76eCNsdCQAoKCzCgbPXMWlgIJp4ucDFzgKf922NGnYW+OXg+crsGr1EOw8b7LqZgEvxmXiUmY91Z2Nhrq+LRg5m5V6z9EQMTj5Iw5OsAjzMzMeGcw9gZSiGq7kBAMDTyhBWhnpYfy4Wj7IK8CirAOvPxcLV3ABeNsaV1DN6nnn3gcg6uBNZR3ah8NF9JK0JhVxaAJMPVH9hJ8vJQklGquIwaNgMMmkBsk8dKj2fl4vHc8Yh59QhFD15gILb0UhatwgSj7rQsbKtzK6RCs4DPsKTP/9Gwu69yIt9gFvfLYGsoAD2XVXPkLLv1hm6Jsa4OuUrZF6JRkF8AjIuXUbu3RileiJ9fdSd8zVuhS5CUXZ2ZXSFSko0d7xlqvWA7mWWL1+OJUuWYPHixbhy5Qo6dOiA7t27486dOwCAs2fPAgAOHTqE+Ph4/PHHHwCA7OxsDB06FCdOnMDp06fh6emJzp07I/s//PBOmDAB2dnZOHjwoMrzgwYNgpOTE86dO4cLFy5g2rRp0NXVRfPmzctkHJ9mG4uKijBv3jxcvnwZO3fuRGxsLIYNG1am7a+++gpLlizB+fPnoaOjg+HDhyvO7d69Gz179kTnzp1x6dIlHD58GE2bNlWcHzduHCIjI7Ft2zZcuXIFffv2RceOHRWvHZUVdTsO/t4eSmUtfGoh6nYcAKCwqBjXYp6g+XN1hEIhmnu749KtuEqNlZQVFpfg2v0naN6gpqJMKBTAv0FNRN1+pPqaohKIdZVnrEv0dHDhZul7WVwiQ4lM/tI6VLWsDfVgpq+La4nPfrfnF8sQk5YLD0tDtdvR1xUBAHILS6dT6giFkMuBYplcUadIJodcDnhaGVVQ9KQ2HR1I3Osg9/LZZ2VyOXKvnIV+7QZqNWEa2B3ZJw5CLi0ot47IwAhymQyyXM64qEoCHR0Y1a6F9HPPfVEqlyPt3AWYNFD9Ba1VywBkRl9DrckTELBnB5psCYPL0MGAUPkjsuekL5F6MlK5bSItUa3voXuZxYsXY+rUqejfvz8A4LvvvsPRo0exbNkyrFq1CtbW1gAAS0tL2NnZKa5r27atUjs//vgjzMzMcOzYMXTt2vW1YqhTpw6A0vv1VImLi8PkyZMV9Tw9PRXnns84Pu/5gVnNmjWxYsUKNGnSBDk5OTAyevZh4dtvv0WrVq0AANOmTUOXLl1QUFAAiUSCb7/9Fv3798ecOXMU9Rs2bKiIKSwsDHFxcXBwcAAATJo0Cfv27UNYWBjmz59fph9SqRRSqfI9J2KxGOKXvzxvlZT0bFj5Kn9YszIzQk6eFAXSImTm5qNEJoOlmXIdSzMj3HucXJmh0gvSs/JQIpPD0lT5Q7yVqSHuP1Z9P0wLb3eE7zmNxl4uqGFrgcjoezh49gZK/v0Qb6Qvho+nE1b/cRw1Ha1hZWaI3SejEXX7EWrYWWi8T/RqphJdAECWtEipPKugWHHuVQQABvg44XZKDh5nlX7Yv5eaC2mJDH0bOOL36McABOjbwAEioQBmkrf2T67WEhmbQSDSQUlmmlJ5SUYa9BxdX3m9xLMuxC4eSFw1r9w6Al09WA0Zh+x/DkCWr3qaNlUOXTNTCHV0UJiWrlRelJ4OQ9caKq+RONjDzM8XifsP4fKEqTBwdkStyRMg0BEhdsMmAIBNYFsY166FC8NHa7wP9Ay3LVDfW5mhy8rKwpMnTxAQEKBUHhAQgBs3brz02sTERIwaNQqenp4wNTWFiYkJcnJyEBf3+t+qy+WlH+7KW7wlODgYI0eORGBgIBYsWICYmBiV9Z534cIFdOvWDTVq1ICxsbFi0PZifN7e3op/29vbA4BiamZUVBQ++OADle1fvXoVJSUlqFWrFoyMjBTHsWPHyo0vNDQUpqamSkdoaOgr+0JUXX01rCNc7CzQOXgVGgyeh3lhe9GrtQ+Ez/2sLxzbE3IArT5bCu/B32DzvjPoElBfqQ5VnveczfFDj4aKQ1QB78NgX2c4mUiw5sx9RVl2YTFWn74HH3tT/NDDB6s/bAgDXRFi0/PwXNKOqgmTDz6ENPZOuQuoQCSC/aRQAAIkrV1QqbFRxRAIhShKz8CtBYuRc+s2kg4dxYPwn+HQ80MAgNjGGp7Bn+P67HmQFRZWcbREqvHrwhcMHToUqampWL58OVxcXCAWi+Hv74/C//BD/HTw+PR+vRfNnj0bAwcOxO7du7F3716EhIRg27ZtSvezPS83NxcdOnRAhw4dsGXLFlhbWyMuLg4dOnQoE5+u7rNvmJ8OKGUyGYDSxVnKk5OTA5FIhAsXLkAkEimdez4D+Lzp06cjODhYqUwsFgN3/y73ed42VubGSHlhcZOUjBwYGYghEetCKBRAJBSWWQAlNSMHVma8r6YqmZsYQCQUlFkAJSUzF1Zmqv+ftzAxxKpJ/SEtLEZGTh5szI2xZOshONs+W2Shhp0Ffg4ZhryCQuTkS2FjbowJy35TqkOVJyo+E/cOPlvlTkdU+nvRRKyLzIJn3wKbSHTwMCP/le0N9nGCj70pQiNuIz1fOct3LTEbU/ddg5GeCCVyIL+oBMu6NkBybvmrZ5JmlGRnQF5SDJGpcmZcZGaBkozUl14rEEtg3KI9UretVV1BJILDpFDoWtvhYchnzM5pgaKMTMiKi6Fnofx7VtfcHNLUNJXXFKakQlZSDPz7GQkAcmMfQGxlCYGODozr1IaehQUah69TnBfq6MDMpyEc+/TEsffbKV1LFegtvNdNU97KDJ2JiQkcHBxw8uRJpfKTJ0+ibt3Spef19PQAACUv/M9y8uRJjB8/Hp07d0a9evUgFouRkvLfliF+eh9cYGBguXVq1aqFCRMm4MCBA+jVqxfCwsIU8b0Y282bN5GamooFCxagZcuWqFOnjtKCKOry9vbG4cOHVZ7z9fVFSUkJkpKS4OHhoXS8OP3zKbFYDBMTE6VDLH6XJlwCPrVq4PRV5QzmqSt34FOrdIqHnq4O6rk7IPLKs5WxZDIZIq/EwLe26mkgVDn0dESo5+aAyOh7ijKZTI7T0ffgU8vppdeK9XRga2GC4hIZDpy9gbZ+tcvUMZDowcbcGJk5+Thx5a7KOqR5BcUyJOVKFceTrAJk5Beh7nMLlUh0hHC3MMTd1Jd/MB/s44RGjmZYePwOUvLK/7Ivp7AE+UUl8LI2grFYB1FPMiusP6Sm4mIUxNyEgXeTZ2UCAQwaNEH+rasvvdS4eSAEurrIOra37MmngzmHGng0eyxk2XxvtYG8uBg5t27DvMlz204IBDBv0ghZV6+pvCbzSjT0nRyB57egcnaCNDkF8uJipJ+/gLMDh+H8kJGKI+v6TSTuP4TzQ0ZyMEda4a3N0E2ePBkhISFwd3eHj48PwsLCEBUVhS1btgAAbGxsoK+vj3379sHJyQkSiQSmpqbw9PRUrCSZlZWFyZMnvzSj9VRGRgYSEhIglUpx+/ZtrF27Fjt37sRPP/2kcjPx/Px8TJ48GX369IGbmxsePXqEc+fOoXfv3gAAV1dX5OTk4PDhw2jYsCEMDAxQo0YN6OnpYeXKlRgzZgyio6Mxb1758/rLExISgg8++ADu7u7o378/iouLsWfPHkydOhW1atXCoEGDMGTIECxZsgS+vr5ITk7G4cOH4e3tjS5durz281VHuflSxCU8+/b2UVIabtx/AlMjAzhYm2HJz/uRmJqFhV/0BQD079AUW/ZGYuFPe9G7rR9OX72HvSejsfarIYo2grq1wNSVv6G+hxO8PZ2waddJ5EsL0atto0rvHykb1uU9TPthJ+rXdIC3hyM27TmNfGkRerXyAQBMXbUDNhbGmDig9MuZy3ceITE9G14udkhMy8L3vx2DTC7HyO7Ppnn/c/kuIAfcHCzxICENi7YcRE0HK/Rq7VMFPSRVDt5NQjcvOyTmSJGSK0XPeg5Izy/CxScZijqT3/fAxceZOBxTeq/rx77OeM/ZHCtO3UN+UQlMxKV/RvOLSlD075zKFi4WeJJdgGxpMTwsjTCwoRMO3ElS2quOKk/6X1thNz4E0pgbKLhzDWZdB0Ao0UfW4V0AALvxs1GcloyUn1cpXWcS2B05Z46VHayJRHCY8h3ENevg8bcTAKEIIjNLAEBJTiZQzPt+qtLDX/6HOjOnI/vGTWRdvwmnfn0gkugjfnfpwNxr1gxIk5Nx74fSjNvjP3bCsW9PeAaPx6P//Q4DZye4DBuMR//7HQBQkpeP3Hv3lZ6jpCAfRZmZZcqpYr2N2wtoyls7oBs/fjwyMzMxceJEJCUloW7duvjrr78UC4/o6OhgxYoVmDt3LmbNmoWWLVsiIiICGzZswCeffIJGjRrB2dkZ8+fPV2s/u6CgIACARCKBo6MjWrRogbNnz6JRI9Uf1kUiEVJTUzFkyBAkJibCysoKvXr1UixU0rx5c4wZMwb9+vVDamqqYpP08PBwzJgxAytWrECjRo2wePFidO+u3l5pT7Vu3Rq//vor5s2bhwULFsDExATvv/++4nxYWBi++eYbTJw4EY8fP4aVlRXee++9114UpjqLjnmMIbPWKx6Hhu0BAPRs0wgLPu+D5PRsxKdkKM4721pg7VdDERq2Gz/9fQp2lqb45rOeaOlbS1GncwtvpGXlYsUvh5CckQ0vN3usnxnEKZdaoHPz+kjLysPKXyOQnJEDLxc7rJs2SDHl8klKptK9sNKiYizffgQPk9JhINFDKx9PfDe2J0wMJYo6OXlSLP3lMBLSsmBmpI92Tb0woX9b6OqIyjw/VY09txKhJxJimF8NGOiKcDslB0tP3FVaodLGUAwj8bM/lW3dSxfUmta6llJb68/F4uSD0ilddsYS9GngCEM9EVJyC7HrZgIO3Hn92RRUMXJOHkSKiRks+4+GyNwS0vu38XjueMVCKTrWdop73p/SdXCBQV1fPJo9tkx7OhY2MGpaev+66/9tVTr38OvRyL/26q2OSHOSDh2FrpkZ3EYNh56lBXLu3MWVCZNR9O9CKWI7G8jlz7Jq0qRkXP5iMjy+HIsmP29EYXIKHm3/HQ82by3vKYi0jkD+4m8xoopy7feqjoAqS73ekF/iH793hcB3IIJ+44fWd0VYn0a43bPJqyvSW6HWjnM4+l6rqg6DKkmb08eqOoRyZSzopLG2zaapmEpdjb21GToiIiIiIqqmOOVSbW/loihERERERETvAmboiIiIiIhIq3BRFPUxQ0dERERERFRNMUNHRERERERaRV7CPf7UxQwdERERERFRNcUBHRERERERaZcSmeaO17Rq1Sq4urpCIpGgWbNmOHv27EvrL1u2DLVr14a+vj6cnZ0xYcIEFBQU/NdX4pU4oCMiIiIiIlJh+/btCA4ORkhICC5evIiGDRuiQ4cOSEpKUll/69atmDZtGkJCQnDjxg1s2LAB27dvx4wZMzQWIwd0RERERESkVeQlJRo7XsfSpUsxatQoBAUFoW7dulizZg0MDAywceNGlfVPnTqFgIAADBw4EK6urmjfvj0GDBjwyqzem+CAjoiIiIiI6AWFhYW4cOECAgMDFWVCoRCBgYGIjIxUeU3z5s1x4cIFxQDu3r172LNnDzp37qyxOLnKJRERERERaRV5iVxjbUulUkilUqUysVgMsVisVJaSkoKSkhLY2toqldva2uLmzZsq2x44cCBSUlLQokULyOVyFBcXY8yYMZxySURERERE7w55iUxjR2hoKExNTZWO0NDQCok7IiIC8+fPx+rVq3Hx4kX88ccf2L17N+bNm1ch7avCDB0REREREb0zpk+fjuDgYKWyF7NzAGBlZQWRSITExESl8sTERNjZ2alse+bMmfj4448xcuRIAECDBg2Qm5uLTz75BF999RWEworPpzFDR0REREREWkWTGTqxWAwTExOlQ9WATk9PD35+fjh8+LCiTCaT4fDhw/D391cZd15eXplBm0gkKu2TXDPTSJmhIyIiIiIiUiE4OBhDhw5F48aN0bRpUyxbtgy5ubkICgoCAAwZMgSOjo6KKZvdunXD0qVL4evri2bNmuHu3buYOXMmunXrphjYVTQO6IiIiIiISKvIZZpbFOV19OvXD8nJyZg1axYSEhLg4+ODffv2KRZKiYuLU8rIff311xAIBPj666/x+PFjWFtbo1u3bvj22281FiMHdEREREREROUYN24cxo0bp/JcRESE0mMdHR2EhIQgJCSkEiL79zkr7ZmIiIiIiIjUoMltC942XBSFiIiIiIiommKGjoiIiIiItIq8pKojqD44oCMiIiIiIq3CKZfq45RLIiIiIiKiaooZOiIiIiIi0ioyWVVHUH0wQ0dERERERFRNMUNHRERERERahYuiqI8ZOiIiIiIiomqKGToiIiIiItIqzNCpjxk6IiIiIiKiaooZOiIiIiIi0ipc5VJ9HNAREREREZFW4ZRL9XHKJRERERERUTXFDB0REREREWkVmUxQ1SFUG8zQERERERERVVPM0BERERERkVbhoijqY4aOiIiIiIiommKGjoiIiIiItApXuVQfM3RERERERETVFDN0RERERESkVbjKpfo4oCMiIiIiIq0i45RLtXHKJRERERERUTXFDB0REREREWkVTrlUn0Aul8urOggiIiIiIqKnojs301jb9fec0VjbVYEZOtIY+aWtVR0CVRKB70Dg2u9VHQZVlnq9MWX/paqOgirJwg6+iB/TpKrDoEpiv+Yctvq0q+owqJIMjDpY1SGUS84Mndp4Dx0REREREVE1xQwdERERERFpFZmsqiOoPpihIyIiIiIiqqaYoSMiIiIiIq3CVS7VxwEdERERERFpFQ7o1Mcpl0RERERERNUUM3RERERERKRVSpihUxszdERERERERNUUM3RERERERKRVeA+d+pihIyIiIiIiqqaYoSMiIiIiIq0ikzNDpy5m6IiIiIiIiKopZuiIiIiIiEiryGRVHUH1wQEdERERERFplRJOuVQbp1wSERERERFVU8zQERERERGRVuG2Bepjho6IiIiIiKiaYoaOiIiIiIi0Cu+hUx8zdERERERERNUUM3RERERERKRVuLG4+pihIyIiIiIiqqaYoSMiIiIiIq3Ce+jUxwEdERERERFplRJ5VUdQfXDKJRERERERUTXFDB0REREREWkVLoqiPmboiIiIiIiIqikO6IiIiIiISKuUyAUaO17XqlWr4OrqColEgmbNmuHs2bMvrZ+RkYGxY8fC3t4eYrEYtWrVwp49e/7rS/FKnHJJRERERESkwvbt2xEcHIw1a9agWbNmWLZsGTp06IBbt27BxsamTP3CwkK0a9cONjY2+O233+Do6IgHDx7AzMxMYzFyQEdERERERFpFW1a5XLp0KUaNGoWgoCAAwJo1a7B7925s3LgR06ZNK1N/48aNSEtLw6lTp6CrqwsAcHV11WiMnHJJRERERETvDKlUiqysLKVDKpWWqVdYWIgLFy4gMDBQUSYUChEYGIjIyEiVbf/111/w9/fH2LFjYWtri/r162P+/PkoKSnRWH84oCMiIiIiIq1SAoHGjtDQUJiamiodoaGhZWJISUlBSUkJbG1tlcptbW2RkJCgMu579+7ht99+Q0lJCfbs2YOZM2diyZIl+OabbzTyOgGccklERERERFpGk1Mup0+fjuDgYKUysVhcIW3LZDLY2Njgxx9/hEgkgp+fHx4/foxFixYhJCSkQp7jRRzQERERERHRO0MsFqs1gLOysoJIJEJiYqJSeWJiIuzs7FReY29vD11dXYhEIkWZl5cXEhISUFhYCD09vTcLXgVOuSQiIiIiIq1SosFDXXp6evDz88Phw4cVZTKZDIcPH4a/v7/KawICAnD37l3IZDJF2e3bt2Fvb6+RwRzAAR0REREREZFKwcHBWLduHTZt2oQbN27g008/RW5urmLVyyFDhmD69OmK+p9++inS0tLwxRdf4Pbt29i9ezfmz5+PsWPHaixGTrkkIiIiIiKtork1IV9Pv379kJycjFmzZiEhIQE+Pj7Yt2+fYqGUuLg4CIXPcmTOzs7Yv38/JkyYAG9vbzg6OuKLL77A1KlTNRYjB3RERERERETlGDduHMaNG6fyXERERJkyf39/nD59WsNRPcMpl1pEIBBg586dVR0GEREREVGV0uS2BW8bZuhUEAhe/kaHhIRg9uzZKs/FxsbCzc0Nly5dgo+PzxvFcezYMcyZMwdRUVEoKCiAo6MjmjdvjnXr1kFPTw/h4eH48ssvkZGR8UbPQ6pt2X8WG3adQkpmDurUsMPXQZ3g7eGosm5RcQl+/PMEdh67jMT0LLjZW2HSwEC09PFQ1MnJl2LF/47i0LmbSM3MhZerHb4a1hEN3FW3SZXn3LX72PDnP4iOeYzk9GysmjoYgc3qvvSaM9H3sCBsD+48TIS9lSk+7dMGvdr6KdXZsjcSG3b+g+SMHNRxtcPMkd3g7emsya7Qa5DL5bi551c8iDyCovxcWLjVRsOPRsDIxr7ca+7/cwCxJw8hLzUZAGBs74TaHXvBtq6vok7UtnVIvnUVBVnp0NGTwMKtFup+OBDGtvxZryoGrfrCsP1giEwsUfToDrK2L0JR7HWVdS2C10Bcy69MecHVE0hfNQEAYL/mnMprs35fjtyDP1dc4PSfePbrDq+hfaFvaYH02zG48N0qpEbfUlnXrXt7+M+drFRWIi3E9mZdFI8lFmbw+XIU7N7zg56xIZIuXsWF71YhO+6xRvtBpC4O6FSIj49X/Hv79u2YNWsWbt169ovAyMhI4zFcv34dHTt2xOeff44VK1ZAX18fd+7cwe+//67Rneap1J5T0Viw+QBmj+yChh5O2LTnNEaG/oy9S8fB0tSwTP3l24/grxNXMe+TbqjpYIUTl+9i3JLt+GXucNR1K/1wOHPtLtx5lITvxvaEjbkx/vrnCoK+2YzdSz6DrYVJZXeRnpMnLURtVzv0buuHcQu3vLL+w8Q0jP52E/q3b4bFEz5C5JUYfL16B6zNjdHStxYAYM+JKwgN24M5o3ugYS0nbPr7FEbMDcO+lcGwNNP87xB6tbuH/sK94/vQaNBnMLC0xs3d/0PkD6FoO2MxRLqqVyLTN7NE3W4DYGhtB0COuLPHcWbdYrSesgAm9qWDdTNnNzg1bgEDc0sU5uXi1t7fELl6PtqFrIRAyIkxlU3i1w4mfb5E5tYFKIqNhmHbAbD4fCWSZ/eBLDu9TP30NVMg0NFVPBYamsLq6y0ouPhslbvEKR2VrhHXaw7Tj79GwaWjmusIqaVG+1ZoNHE0zn27AilXb6DOoF5oszoUuz4cDml6hsprCrNz8XePoGcFcuUN0N7/vzmQFRfj+IRZKMrJQ52Pe6Ptmu/wd6+RKCko0GBv3m0lcg1uRPeW4V8WFezs7BSHqakpBAKB4rGNjQ2WLl0KJycniMVixY2RT7m5uQEAfH19IRAI0Lp1awDAuXPn0K5dO1hZWcHU1BStWrXCxYsXy43hwIEDsLOzw8KFC1G/fn24u7ujY8eOWLduHfT19REREYGgoCBkZmZCIBBAIBAosoZSqRSTJk2Co6MjDA0N0axZM6X5veHh4TAzM8POnTvh6ekJiUSCDh064OHDh4o6ly9fRps2bWBsbAwTExP4+fnh/PnzFfcia7nw3afRt20j9G7tCw8na8wZ2RUSPV38HnFJZf0/T1zB6B4t0MrXE8625hjQvgne9/VE2O5IAEBBYREOnL2OSQMD0cTLBS52Fvi8b2vUsLPALwffnddVW7VqVBsTBrZHu/fqqVV/2/6zcLIxx7SgznB3ssHgzv7o4F8P4btOKuqE7TqBj9o1Qe8P/ODhbIs5oz+ERKyH349c0FQ36DXI5XLEHNuL2u17wt67MUwdXdDo47EoyExH/JXyfybtGvjBtp4vjGzsYWTjgLpd+0NHLEF67B1FHdeAQFh5eMHA0gZmzm6o0+Uj5KenIi81qTK6Ri8wDByIvJM7kR+5C8Xx95G5NRTyogLoN++usr48LwuyrFTFoefVDPLCAhRcOKSo8/x5WVYqJA3fR+HtCyhJYcamqtX5uDdi/tiLe3/uR9a9OJz9ZjmKC6Rw79HhJVfJUZCa/uxIy1CcMa7hCKuGdXFu/gqkXbuN7AePcO7bFRBJ9ODaqY3G+0OkDg7oXtPy5cuxZMkSLF68GFeuXEGHDh3QvXt33LlT+sf87NmzAIBDhw4hPj4ef/zxBwAgOzsbQ4cOxYkTJ3D69Gl4enqic+fOyM7OVvk8dnZ2iI+Px/Hjx1Web968OZYtWwYTExPEx8cjPj4ekyZNAlB642ZkZCS2bduGK1euoG/fvujYsaMiRgDIy8vDt99+i59++gknT55ERkYG+vfvrzg/aNAgODk54dy5c7hw4QKmTZsGXV3dMnG8jQqLS3Dt/hM0b1BTUSYUCuDfoCaibj9SfU1RCcS6yglviZ4OLtyMAwAUl8hQIpO/tA5VH1G34+Dv7aFU1sKnFqJul76XhUXFuBbzBM2fqyMUCtHc2x2XbvH91gZ5qUmQZmXAunYDRZmuvgHMXTyQHntbrTbkMhkeXTiFEqkU5q61VNYplhYg7kwEDCxtoG9uVSGx02sQ6UC3Rh1Ib5x9ViaXQ3rjLPRqNij/uucYBHRHwfmDkBeqzsQIjS0gbtACeSf/rIiI6Q0IdXRg4VULCWee+8JcLkfCmYuw8i5/Gr2Ovj4+3PMzPty3Be//3xyYurs8a1Ov9LNPibRQqc2SwiJY+9av8D7QM9qwD111wSmXr2nx4sWYOnWqYvDz3Xff4ejRo1i2bBlWrVoFa2trAIClpaXSDvJt27ZVaufHH3+EmZkZjh07hq5du5Z5nr59+2L//v1o1aoV7Ozs8N577+GDDz7AkCFDYGJiAj09PaXs4VNxcXEICwtDXFwcHBwcAACTJk3Cvn37EBYWhvnz5wMAioqK8P3336NZs2YAgE2bNsHLywtnz55F06ZNERcXh8mTJ6NOnToAAE9Pz4p6CbVeelYeSmTyMlMrrUwNcf9xisprWni7I3zPaTT2ckENWwtERt/DwbM3UCIrnS5gpC+Gj6cTVv9xHDUdrWFlZojdJ6MRdfsRathZaLxPVLFS0rNh5as8bdLKzAg5eVIUSIuQmZuPEpmszNRKSzMj3HucXJmhUjmkWRkAALGxqVK52NgUBf+eK0/WkzgcXzoTsuIiiMQSNB05ESb2Tkp17v9zANf+3IKSQimMbBzQ/LMZEOrwT25lExqZQSDSgSwrTalclp0GHTvXV16v61oXuo4eyNw8r9w6+v5dIC/I5XRLLSA2N4VQR4SCVOWptAWp6TBxVX3/cnbsQ5yZvRjpd+5Dz8gQXkP6oF34cuzuPRL5SSnIin2I3CeJaDh+BM7OW4aS/ALUHtwbhnY20Lfi329NehsHXprCDN1ryMrKwpMnTxAQEKBUHhAQgBs3brz02sTERIwaNQqenp4wNTWFiYkJcnJyEBen+tt6kUiEsLAwPHr0CAsXLoSjoyPmz5+PevXqKd3j96KrV6+ipKQEtWrVgpGRkeI4duwYYmJiFPV0dHTQpEkTxeM6derAzMxM0Y/g4GCMHDkSgYGBWLBggdK1L5JKpcjKylI6pFLpS1+Pt81XwzrCxc4CnYNXocHgeZgXthe9WvtA+NwCOwvH9oQcQKvPlsJ78DfYvO8MugTUV6pDRJrx8NwJ/D1pqOKQvcG9yEY2Dmg99Tu8H/wN3ALa4eLPq5EVr5y9d2rcAq2nLEDA+BAY2djjXNhylBQVltMiaSv95h+i6NGdchdQAQCD5t2Rf3YfUMz3tzpKuXID9/8+hIxbMUi6cAXHJ86BND0Dnn1KF0WRF5fg+MQ5MHFxQt9/duCj03/DtklDPDlxFnKZrIqjJyrFrwsrydChQ5Gamorly5fDxcUFYrEY/v7+KCx8+R8AR0dHfPzxx/j4448xb9481KpVC2vWrMGcOXNU1s/JyYFIJMKFCxcgEomUzr3OYi6zZ8/GwIEDsXv3buzduxchISHYtm0bevbsWaZuaGhomXhCQkIQ8qHqKUjaztzEACKhAKmZuUrlKZm5sCpnMQsLE0OsmtQf0sJiZOTkwcbcGEu2HoKzrbmiTg07C/wcMgx5BYXIyZfCxtwYE5b9plSHqgcrc2OkZOQolaVk5MDIQAyJWBdCoQAioRCpL9RJzciBlZlxZYZK/7Jr4Adz12dTYGXFRQAAaXYmJKbPfgal2ZkwdXIpc/3zhDo6MLIunRlhVqMm0uNicO/YXvj0H6Woo6tvAF19AxjZ2MPC1RN7po1A/JVzcPILKK9Z0gBZTgbkJcUQmihnUoTGFpBlpb70WoGeBPpN2iN719py6+h6+EDHzhXp62ZUSLz0ZqTpmZAVl0Biqfx3VWJpjoKUsgvgqCIvLkH6rRgYOT9blTb9xh3s7TcGukYGEOrqQpqeifabVyDt+p2XtERvihk69TFD9xpMTEzg4OCAkydPKpWfPHkSdeuWzs3W0ytdGe3FlShPnjyJ8ePHo3PnzqhXrx7EYjFSUlRP3yuPubk57O3tkZubq3iuF5/H19cXJSUlSEpKgoeHh9Lx/NTM4uJipUVObt26hYyMDHh5eSnKatWqhQkTJuDAgQPo1asXwsLCVMY1ffp0ZGZmKh3Tp09/rb5pEz0dEeq5OSAy+p6iTCaT43T0PfjUcnrJlYBYTwe2FiYoLpHhwNkbaOtXu0wdA4kebMyNkZmTjxNX7qqsQ9rNp1YNnL6qnLU+deUOfGrVAADo6eqgnrsDIq/cVZyXyWSIvBID39o1KjVWKqUr0YeRtZ3iMLZzgtjEDMm3oxV1ivLzkP7gbrn3w5VLLlcMEFWflr+yDmlISTGK4m5CXOfZjBQIBBDXaYLCe1dfeqnELxACHV3kn9lbbh2DgA9R+OA6ih/zg702kBUXI+3Gbdg2fbaNCAQC2DX1RcqV8rOszxMIhTD1cEVBStkBf1FOHqTpmTCu4QiLurXwKOJURYVO9EaYoXtNkydPRkhICNzd3eHj44OwsDBERUVhy5bSpc5tbGygr6+Pffv2wcnJCRKJBKampvD09MTmzZvRuHFjZGVlYfLkydDX1y/3edauXYuoqCj07NkT7u7uKCgowE8//YRr165h5cqVAABXV1fk5OTg8OHDaNiwIQwMDFCrVi0MGjQIQ4YMwZIlS+Dr64vk5GQcPnwY3t7e6NKldAqBrq6uYksEHR0djBs3Du+99x6aNm2K/Px8TJ48GX369IGbmxsePXqEc+fOoXfv3ipjFYvFEIvFZcqr82Kzw7q8h2k/7ET9mg7w9nDEpj2nkS8tQq9WPgCAqat2wMbCGBMHBAIALt95hMT0bHi52CExLQvf/3YMMrkcI7s/+zb+n8t3ATng5mCJBwlpWLTlIGo6WKFXa58q6CE9LzdfiriEZ3+8HyWl4cb9JzA1MoCDtRmW/LwfialZWPhFXwBA/w5NsWVvJBb+tBe92/rh9NV72HsyGmu/GqJoI6hbC0xd+RvqezjB29MJm3adRL60EL3aNqr0/lFZAoEA7q064fb+HTC0toOhpQ1u7P4fJKbmsPdurKh38vt5sPdugprvly5Tf/2vX2BT1wcG5pYolhbg0fmTSLl7Hf6fln6JlZuSiMcXI2FTxxt6RiYoyEjFnUN/Qairp7RXHVWe3ENbYTYsBEUPbqAo9hoM2g6AQE8f+ad2AQBMh82GLCMZ2TtXKV1n0Lw7CqKOQZ6bqbJdgcQQkkYfIPu3ZZruAr2Gm5t/h/+8KUi7fhup0bdQe1BP6OhLcO/P/QAA/3lTkJeUgssrNwIA6n8yGClXbyA77jH0jI3gNfQjGNrb4u6OZwN553bvQ5qegdz4JJh5usFvymd4dPQUEiK5arEmlVTrT5KViwO61zR+/HhkZmZi4sSJSEpKQt26dfHXX38pFg3R0dHBihUrMHfuXMyaNQstW7ZEREQENmzYgE8++QSNGjWCs7Mz5s+fr1iVUpWmTZvixIkTGDNmDJ48eQIjIyPUq1cPO3fuRKtWrQCUrnQ5ZswY9OvXD6mpqYoNz8PCwvDNN99g4sSJePz4MaysrPDee+8pLb5iYGCAqVOnYuDAgXj8+DFatmyJDRs2ACi9fy81NRVDhgxBYmIirKys0KtXr3Kneb6NOjevj7SsPKz8NQLJGTnwcrHDummDFFMun6RkKm1ALy0qxvLtR/AwKR0GEj208vHEd2N7wsRQoqiTkyfF0l8OIyEtC2ZG+mjX1AsT+reFro6ozPNT5YqOeYwhs9YrHoeG7QEA9GzTCAs+74Pk9GzEp2QozjvbWmDtV0MRGrYbP/19CnaWpvjms56KPegAoHMLb6Rl5WLFL4eQnJENLzd7rJ8ZxCmXWsQjsDuKC6W4vG0divLzYFGzNvw/naa0B11uSiIKc56tRizNycTFn1dBmpkBHX0DmDjUgP+n02FTxxsAINTVReq9m7h3bC8K83IgNjaFlbsXWk6YW2YBFqocBRcOIsvYDEbdRv+7sfhtpK0cD1l26UIpIgu7MvuOiWxdoOfpi9TlY8ttV9K4PQQCAfLP7ddo/PR64g4cg8TcDN6fDoXEyhzpt2Jw9LMZiq0IDOxtSrPm/9IzMUKzmRMgsTJHYVYO0m7cwcGhXyDr3rM1DvStLNBo4ujSqZvJabj/90FE//jqPUuJKotALueufe+a8PBwfPnll8jIyNDo88gvbdVo+6Q9BL4DgWu/V3UYVFnq9caU/ar3ZKS3z8IOvogf0+TVFemtYL/mHLb6tKvqMKiSDIw6WNUhlGtRw0CNtT358qFXV6pGeA8dERERERFRNcUpl0REREREpFVKOIlQbczQvYOGDRum8emWRERERET/VYkGj7cNB3RERERERETVFKdcEhERERGRVuG2Bepjho6IiIiIiKiaYoaOiIiIiIi0CjN06mOGjoiIiIiIqJpiho6IiIiIiLTK27gapaYwQ0dERERERFRNMUNHRERERERahRuLq48DOiIiIiIi0ipcFEV9nHJJRERERERUTTFDR0REREREWoUZOvUxQ0dERERERFRNMUNHRERERERaRcZFUdTGDB0REREREVE1xQwdERERERFpFd5Dpz5m6IiIiIiIiKopZuiIiIiIiEirMEOnPg7oiIiIiIhIq5RwURS1ccolERERERFRNcUMHRERERERaRVOuVQfM3RERERERETVFDN0RERERESkVbixuPqYoSMiIiIiIqqmmKEjIiIiIiKtwnvo1McMHRERERERUTXFDB0REREREWkVZujUxwEdERERERFpFS6Koj5OuSQiIiIiIqqmmKEjIiIiIiKtwimX6mOGjoiIiIiIqJpiho6IiIiIiLRKCe+hUxszdERERERERNUUM3RERERERKRVZLyHTm3M0BEREREREVVTzNAREREREZFW4T106uOAjoiIiIiItAo3Flcfp1wSERERERFVUxzQERERERGRVimBXGPH61q1ahVcXV0hkUjQrFkznD17Vq3rtm3bBoFAgB49erz2c74OgVzOfCYREREREWmPLrUaaqzt3bcvq113+/btGDJkCNasWYNmzZph2bJl+PXXX3Hr1i3Y2NiUe11sbCxatGiBmjVrwsLCAjt37qyAyFXjgI40Jui3i1UdAlWSsD6NMGX/paoOgyrJwg6+wLXfqzoMqiz1euNIwt2qjoIqSVs7D7T+TL3sA1V/EaubVnUI5erk2UBjbe+9c1Xtus2aNUOTJk3w/fffAwBkMhmcnZ3x+eefY9q0aSqvKSkpwfvvv4/hw4fjn3/+QUZGhkYHdJxySURERERE7wypVIqsrCylQyqVlqlXWFiICxcuIDAwUFEmFAoRGBiIyMjIctufO3cubGxsMGLECI3E/yIO6IiIiIiISKvIINfYERoaClNTU6UjNDS0TAwpKSkoKSmBra2tUrmtrS0SEhJUxn3ixAls2LAB69at08jrogq3LSAiIiIionfG9OnTERwcrFQmFovfuN3s7Gx8/PHHWLduHaysrN64PXVxQEdERERERFpFkxuLi8VitQZwVlZWEIlESExMVCpPTEyEnZ1dmfoxMTGIjY1Ft27dFGUymQwAoKOjg1u3bsHd3f0Noy+LUy6JiIiIiEiraHLKpbr09PTg5+eHw4cPP4tLJsPhw4fh7+9fpn6dOnVw9epVREVFKY7u3bujTZs2iIqKgrOzc4W8Ni9iho6IiIiIiEiF4OBgDB06FI0bN0bTpk2xbNky5ObmIigoCAAwZMgQODo6IjQ0FBKJBPXr11e63szMDADKlFckDuiIiIiIiEiryLRkZ7V+/fohOTkZs2bNQkJCAnx8fLBv3z7FQilxcXEQCqt20iMHdEREREREROUYN24cxo0bp/JcRETES68NDw+v+IBewAEdERERERFpFVlVB1CNcFEUIiIiIiKiaooZOiIiIiIi0iracg9ddcAMHRERERERUTXFDB0REREREWmV19kv7l3HAR0REREREWkVTrlUH6dcEhERERERVVPM0BERERERkVbhlEv1MUNHRERERERUTTFDR0REREREWoUZOvUxQ0dERERERFRNMUNHRERERERaRcYEndqYoSMiIiIiIqqmmKEjIiIiIiKtwnvo1McBHRERERERaRUO6NTHKZdERERERETVFDN0RERERESkVeRM0KmNGToiIiIiIqJqihk6IiIiIiLSKryHTn3M0BEREREREVVTzNAREREREZFWYX5OfczQERERERERVVPM0BERERERkVbhPXTqY4aOiIiIiIiommKGjoiIiIiItArzc+rjgI6IiIiIiLQKB3Tq45RLIiIiIiKiaooZOiIiIiIi0ipcFEV9zNARERERERFVU1o5oJs9ezZ8fHyqOoxKFRERAYFAgIyMjKoOhYiIiIioSsk1eLxt3njKZXJyMmbNmoXdu3cjMTER5ubmaNiwIWbNmoWAgICKiLFChIeH48svv6y0AVNsbCzc3NwgFAoRFxcHR0dHxbn4+Hg4OzujpKQE9+/fh6urK5o3b474+HiYmppWaByurq748ssv8eWXX1Zou++SHnXt0crNCgZ6ItxJycHmSw+RmCMtt36X2rbwczSDnbEERSUy3E3Nxa9XHyPhuWusDfXQz9sJtawMoSMU4mpCFrZEPUSWtLgyukTlkMvluLnnVzyIPIKi/FxYuNVGw49GwMjGvtxr7v9zALEnDyEvNRkAYGzvhNode8G2rq+iTtS2dUi+dRUFWenQ0ZPAwq0W6n44EMa2juU1Sxp07tp9bPjzH0THPEZyejZWTR2MwGZ1X3rNmeh7WBC2B3ceJsLeyhSf9mmDXm39lOps2RuJDTv/QXJGDuq42mHmyG7w9nTWZFfoNcjlcvy98Wec+Hs/8nNyUbOBFwYGj4WNk3o/h/u3/A87f9yENn0+xEeff6Ioz0xNwx8/bMTNC5dQkJcPW2cndPy4Hxq10p7PQO+qoK6O6BpgDSN9HUTfy8bSX2LxOLn8v9/eHsbo384OtZwNYWWmh6/X3saJyxlKdVr6mKN7SxvUcjaEqZEORs6Pxt1HeRruCdHLvXGGrnfv3rh06RI2bdqE27dv46+//kLr1q2RmppaEfFpHblcjuJi9T90Ozo64qefflIq27Rpk9IADwD09PRgZ2cHgUBQIXFSxehc2xbtPKzx08U4zDtyC4UlMgS38ICOsPz3qba1EQ7HJOObo7ew+J+7EAkFmNjSA3qi0h83PZEQk1p6AgAWHruD+UdvQUcowBcB7uC7X7XuHvoL947vQ8OPRuL94G+goydG5A+hKCkqLPcafTNL1O02AK0mz0eryd/CqlY9nFm3GFnxDxV1zJzd4DvoU3wwYwn8P5sBAIhcPR9ymUzjfaKy8qSFqO1qh5BR3dWq/zAxDaO/3YRm9Wviz6WfY2jXAHy9egf+uXRbUWfPiSsIDduDsR99gB2Lx6KOqz1GzA1DakaOprpBr+nAL7/h6B+7MHDiWExZsxRiiQQrJs1EkbT8n++nYm/cxj9/7YOju1uZc5vmL0Xiw8f4dP4sfB22Cj7vN8f62Qvw8HaMJrpBahrQzh69W9ti6S+x+HTRNeRLZVj0eW3o6ZT/l1aiJ0TMozws2/7gpXWu3s3GjzsflluHKgYzdOp7owFdRkYG/vnnH3z33Xdo06YNXFxc0LRpU0yfPh3du3dX1Bk5ciSsra1hYmKCtm3b4vLly0rtLFiwALa2tjA2NsaIESNQUFBQ5rnWr18PLy8vSCQS1KlTB6tXr1aci42NhUAgwB9//IE2bdrAwMAADRs2RGRkJIDS6YxBQUHIzMyEQCCAQCDA7NmzAQCbN29G48aNYWxsDDs7OwwcOBBJSUmKtp9Ohdy7dy/8/PwgFovx888/QygU4vz580oxLlu2DC4uLpA99yFt6NChCAsLU6oXFhaGoUOHKpW9OOUyPDwcZmZm2L9/P7y8vGBkZISOHTsiPj5ecU3r1q3LZN569OiBYcOGKc4/ePAAEyZMUPT7qRMnTqBly5bQ19eHs7Mzxo8fj9zcXMX51atXw9PTExKJBLa2tujTp0+Z9+Rd0M7DBrtuJuBSfCYeZeZj3dlYmOvropGDWbnXLD0Rg5MP0vAkqwAPM/Ox4dwDWBmK4WpuAADwtDKElaEe1p+LxaOsAjzKKsD6c7FwNTeAl41xJfWMXiSXyxFzbC9qt+8Je+/GMHV0QaOPx6IgMx3xV86Xe51dAz/Y1vOFkY09jGwcULdrf+iIJUiPvaOo4xoQCCsPLxhY2sDM2Q11unyE/PRU5KUmldsuaU6rRrUxYWB7tHuvnlr1t+0/Cycbc0wL6gx3JxsM7uyPDv71EL7rpKJO2K4T+KhdE/T+wA8ezraYM/pDSMR6+P3IBU11g16DXC7HkV//RKeP+6FhC384ubth2IyJyExNQ9SJyJdeW5CXj7BvFmHQ5M9hYGxU5vy9azfQplc3uHrVhrWDPToP6Q8DI0M8uH1XU90hNfRpa4vN+57g5JUM3Hucj9BN92BlqocWDc3Lvebs9Uxs2PUYJy6nl1vn4NlU/LT3CS7czNRE2ET/yRsN6IyMjGBkZISdO3dCKlWdwu7bty+SkpKwd+9eXLhwAY0aNcIHH3yAtLQ0AMD//vc/zJ49G/Pnz8f58+dhb2+vNFgDgC1btmDWrFn49ttvcePGDcyfPx8zZ87Epk2blOp99dVXmDRpEqKiolCrVi0MGDAAxcXFaN68OZYtWwYTExPEx8cjPj4ekyZNAgAUFRVh3rx5uHz5Mnbu3InY2FjFgOh506ZNw4IFC3Djxg10794dgYGBKgdqw4YNg1D47GXt3r070tPTceLECQClA6n09HR069btla9vXl4eFi9ejM2bN+P48eOIi4tTxK2OP/74A05OTpg7d66i3wAQExODjh07onfv3rhy5Qq2b9+OEydOYNy4cQCA8+fPY/z48Zg7dy5u3bqFffv24f3331f7ed8W1oZ6MNPXxbXEbEVZfrEMMWm58LA0VLsdfV0RACC3sDSzqyMUQi4HimXPviMqkskhlwOeVmU/LFDlyEtNgjQrA9a1GyjKdPUNYO7igfTY2y+58hm5TIZHF06hRCqFuWstlXWKpQWIOxMBA0sb6JtbVUjspFlRt+Pg7+2hVNbCpxaibscBAAqLinEt5gmaP1dHKBSiubc7Lt2Kq9RYSbWU+ARkpaWjjp+PokzfyBBuXrVx/9rNl167bdkPqO/fBF6NfVWer1nPC+ePHkduVjZkMhnOHT6GosJC1PJpoLI+aZ69pRiWpnq4cDNLUZZbUILrsTmoW5N/Z6sLZujU90b30Ono6CA8PByjRo3CmjVr0KhRI7Rq1Qr9+/eHt7c3Tpw4gbNnzyIpKQlisRgAsHjxYuzcuRO//fYbPvnkEyxbtgwjRozAiBEjAADffPMNDh06pJSlCwkJwZIlS9CrVy8AgJubG65fv461a9cqZbomTZqELl26AADmzJmDevXq4e7du6hTpw5MTU0hEAhgZ2en1Ifhw4cr/l2zZk2sWLECTZo0QU5ODoyMnv3Qz507F+3atVM8HjlyJMaMGYOlS5dCLBbj4sWLuHr1Kv7880+l9nV1dTF48GBs3LgRLVq0wMaNGzF48GDo6uq+8vUtKirCmjVr4O7uDgAYN24c5s6d+8rrnrKwsIBIJFJkH58KDQ3FoEGDFNk9T09PrFixAq1atcIPP/yAuLg4GBoaomvXrjA2NoaLiwt8fVX/IXubmUpK36MsaZFSeVZBseLcqwgADPBxwu2UHDzOKv1/+l5qLqQlMvRt4Ijfox8DEKBvAweIhAKYSbiTSFWRZmUAAMTGyvexio1NUfDvufJkPYnD8aUzISsugkgsQdORE2Fi76RU5/4/B3Dtzy0oKZTCyMYBzT+bAaEO3+/qICU9G1a+yh8CrcyMkJMnRYG0CJm5+SiRyWBpplzH0swI9x4nV2aoVI6stNKMi4mFcnbG2NxMcU6Vc4eP4eHtu5i2dlm5dUbOnob1c77DpG79IRSJoCcRY/Q3X8PGyaFCYqfXZ2Fa+jc6LUv573d6VhEsTNT7+01V720ceGnKG3+a6N27N7p06YJ//vkHp0+fxt69e7Fw4UKsX78eubm5yMnJgaWlpdI1+fn5iIkpnVt+48YNjBkzRum8v78/jh49CgDIzc1FTEwMRowYgVGjRinqFBcXl1lAxNvbW/Fve/vSRQySkpJQp06dcuO/cOECZs+ejcuXLyM9PV0xXTIuLg516z67Sb5x48ZK1/Xo0QNjx47Fjh070L9/f4SHh6NNmzZwdXUt8xzDhw9H8+bNMX/+fPz666+IjIxU6z48AwMDxWDuaZ+enw76X12+fBlXrlzBli1bFGVyuRwymQz3799Hu3bt4OLigpo1a6Jjx47o2LEjevbsCQMDA5XtSaXSMhnapwP46uQ9Z3MM9auheLzsxJvf/zDY1xlOJhLMj3iW4ckuLMbq0/cwxLcGAj2sIZcDZx6mITY9DzL+9qo0D8+dwOXt6xSP3xs99T+3ZWTjgNZTv0Nxfh6eRJ3BxZ9XI2B8iNKgzqlxC1jXboCCrAzEHPkb58KWo+WEORDp6r1RP4iorLMHj2Lrku8Vjz9bMPu120hLSsavK3/E+CXfQFdc/s/prg2bkZ+Tgy+WfgsjUxNEnTiN9bMXYOKKhXB0d/0P0dPrCmxiiYkDXBWPp/2g3qwKordFhXw9LJFI0K5dO7Rr1w4zZ87EyJEjERISgs8++wz29vaIiIgoc42ZmZlabefklN5Qvm7dOjRr1kzpnEgkUnr8fNbr6f1ispcsOpCbm4sOHTqgQ4cO2LJlC6ytrREXF4cOHTqgsFD5JmlDQ+Updnp6ehgyZAjCwsLQq1cvbN26FcuXL1f5PA0aNECdOnUwYMAAeHl5oX79+oiKinp5x1/oz9M+yeXPPvELhUKlx0BpVu9VcnJyMHr0aIwfP77MuRo1akBPTw8XL15EREQEDhw4gFmzZmH27Nk4d+6cyvctNDQUc+bMUSoLCQkB6qu34IC2iIrPxL2Dz6be6IhK/x8yEesis+DZANxEooOHGfmvbG+wjxN87E0RGnEb6fnK78u1xGxM3XcNRnoilMiB/KISLOvaAMm55a++RRXLroEfzF2fTZGTFZe+R9LsTEhMn32LL83OhKmTy0vbEurowMi6NAtuVqMm0uNicO/YXvj0f/YllK6+AXT1DWBkYw8LV0/smTYC8VfOwcmPK+FpOytzY6S8sLhJSkYOjAzEkIh1IRQKIBIKyyyAkpqRAysz3hdbFbwDmsHVq7bicfG/fxuz0tJhammhKM9Oz4CTR02VbcTduovs9AyEjnr2t1JWIsPdy9E4tmMXVh7cidSEJETs+Bszw1fDwa3094STR03cvRKNYzv/xsCJ4zTRPXrBySvpuBH77OdPV6f01hcLE12lLJ25iS5XpKS3kkbm+9StWxc7d+5Eo0aNkJCQAB0dHZWZKwDw8vLCmTNnMGTIEEXZ6dOnFf+2tbWFg4MD7t27h0GDBv3nmPT09FBSUqJUdvPmTaSmpmLBggVwdi5dWvrFhU5eZuTIkahfvz5Wr16N4uJixZRQVYYPH47PPvsMP/zww3/rgArW1tZKi6SUlJQgOjoabdq0UZSp6nejRo1w/fp1eHgo3xPyPB0dHQQGBiIwMBAhISEwMzPDkSNHVPZx+vTpCA4OVioTi8UYs+vaf+1alSgolqGgWHlAlZFfhLo2xniYWTqAk+gI4W5hiKMxKS9ta7CPExo5muG7Y3eQklf+Cmo5haXvjZe1EYzFOoh6wpusK4uuRB+6En3FY7lcDrGJGZJvR8PUyRUAUJSfh/QHd+Haol05rZRDLlcMEFWflr+yDmkPn1o1cPziLaWyU1fuwKdWaUZfT1cH9dwdEHnlrmL7A5lMhsgrMRjc2b/S4yVAYmAAyXOzSuRyOUwszHHr4mU4e5bOfMnPzcP9G7fQ8sPOKtuo49cQX4etUirbvGAZbGs4of3APhCKRCgsKP2b8eIK1UKhiKvYVqJ8qazMdgSpmYVoVNtEMYAzkAhR19UIfx3nYlT09nmjAV1qair69u2L4cOHw9vbG8bGxjh//jwWLlyIDz/8EIGBgfD390ePHj2wcOFC1KpVC0+ePMHu3bvRs2dPNG7cGF988QWGDRuGxo0bIyAgAFu2bMG1a9dQs+azb8zmzJmD8ePHw9TUFB07doRUKsX58+eRnp5eZiBRHldXV+Tk5ODw4cNo2LAhDAwMFNmolStXYsyYMYiOjsa8efPU7r+Xlxfee+89TJ06FcOHD4e+vn65dUeNGoW+ffuqnZlUR9u2bREcHIzdu3fD3d0dS5cuLbPPnqurK44fP47+/ftDLBbDysoKU6dOxXvvvYdx48Zh5MiRMDQ0xPXr13Hw4EF8//33+Pvvv3Hv3j28//77MDc3x549eyCTyVC7dm2VcYjF4mo5xVIdB+8moZuXHRJzpEjJlaJnPQek5xfh4pMMRZ3J73vg4uNMHI4pvVfmY19nvOdsjhWn7iG/qAQm4tIfs/yiEhT9O6eyhYsFnmQXIFtaDA9LIwxs6IQDd5KU9qqjyiUQCODeqhNu798BQ2s7GFra4Mbu/0Fiag5772dTrk9+Pw/23k1Q8/2OAIDrf/0Cm7o+MDC3RLG0AI/On0TK3evw/3Q6ACA3JRGPL0bCpo439IxMUJCRijuH/oJQV09przqqPLn5UsQlPNta51FSGm7cfwJTIwM4WJthyc/7kZiahYVf9AUA9O/QFFv2RmLhT3vRu60fTl+9h70no7H2q2dfRAZ1a4GpK39DfQ8neHs6YdOuk8iXFqJX20aV3j8qSyAQoG3fD7Hnp22wdnKAlZ0ddm3cDFNLC/i0eDboXjZhBnxa+qN1r26QGBjAsaarUjt6+hIYmpooyu1cnGDt6ICtS75H789GwNDEBJdPROLm+Uv4bEFIJfaQXvTbkUR83MkBj5IKEJ8qxYhuTkjJLFRawXLJ+No4cTkdO46VDvL0xUI4WksU5+0sxfBwMkBWbjGS0ku/nDU2EMHWQgzLf+/Tc7YtrZ+WVVTmnj16U9zMSV1vNKAzMjJCs2bN8H//93+IiYlBUVERnJ2dMWrUKMyYMQMCgQB79uzBV199haCgICQnJ8POzg7vv/8+bG1tAQD9+vVDTEwMpkyZgoKCAvTu3Ruffvop9u/fr3iekSNHwsDAAIsWLcLkyZNhaGiIBg0avNZm2c2bN8eYMWPQr18/pKamIiQkBLNnz0Z4eDhmzJiBFStWoFGjRli8eLFiywV1jBgxAqdOnVJaXEUVHR0dWFlV7Ip2w4cPx+XLlzFkyBDo6OhgwoQJStk5oHQxl9GjR8Pd3R1SqRRyuRze3t44duwYvvrqK7Rs2RJyuRzu7u7o168fgNLpsH/88Qdmz56NgoICeHp64pdffkG9euot8f022XMrEXoiIYb51YCBrgi3U3Kw9MRdpRUqbQzFMBI/+1Fq624NAJjWWnmVw/XnYnHyQenqrnbGEvRp4AhDPRFScgux62YCDtzht4ZVzSOwO4oLpbi8bR2K8vNgUbM2/D+dpnSfW25KIgpznq18Ks3JxMWfV0GamQEdfQOYONSA/6fTYVOn9J5eoa4uUu/dxL1je1GYlwOxsSms3L3QcsLcMguwUOWIjnmMIbPWKx6Hhu0BAPRs0wgLPu+D5PRsxKdkKM4721pg7VdDERq2Gz/9fQp2lqb45rOeaOn77Ge8cwtvpGXlYsUvh5CckQ0vN3usnxnEKZdapP2APijML8DWxSuRl5ML9wZ18fmieUr3xyU/iUdOZtZLWlEm0tHBuIWzsWNtOFZPnwtpfj6sHR0wdHow6r/XRBPdIDX9cjAeErEQkwa6wshAB1djsjHl+9soLH7299vRWgJTo2e3t9SuYYhlE7wUj8f1KZ1Guy8yGQs23wcABHibY9qQZ0mHkBGls53Cdz9G+O7HGu0TUXkE8hdvwqLXMm/ePPz666+4cuVKVYeidYJ+u1jVIVAlCevTCFP2X6rqMKiSLOzgC1z7varDoMpSrzeOJHBPtXdFWzsPtP7sbFWHQZUkYnXTqg6hXK4ubhprO/bBfY21XRXeaB+6d1lOTg6io6Px/fff4/PPP6/qcIiIiIiI6B3EAd1/NG7cOPj5+aF169avnG5JRERERESvQ6DB4+3CXW3/o/DwcISHh1d1GEREREREb5+3b9ylMczQERERERERVVPM0BERERERkZZh3kldfKWIiIiIiIiqKWboiIiIiIhIqwh4E53amKEjIiIiIiKqppihIyIiIiIi7SJghk5dzNARERERERFVUxzQERERERGRVhFo8L/XtWrVKri6ukIikaBZs2Y4e/ZsuXXXrVuHli1bwtzcHObm5ggMDHxp/YrAAR0REREREWkZoQYP9W3fvh3BwcEICQnBxYsX0bBhQ3To0AFJSUkq60dERGDAgAE4evQoIiMj4ezsjPbt2+Px48ev1/3XwAEdERERERGRCkuXLsWoUaMQFBSEunXrYs2aNTAwMMDGjRtV1t+yZQs+++wz+Pj4oE6dOli/fj1kMhkOHz6ssRg5oCMiIiIiIq0iEAg0dqirsLAQFy5cQGBgoKJMKBQiMDAQkZGRarWRl5eHoqIiWFhYvPZroC6ucklERERERO8MqVQKqVSqVCYWiyEWi5XKUlJSUFJSAltbW6VyW1tb3Lx5U63nmjp1KhwcHJQGhRWNGToiIiIiItIuAqHGjtDQUJiamiodoaGhFd6FBQsWYNu2bdixYwckEkmFt/8UM3RERERERPTOmD59OoKDg5XKXszOAYCVlRVEIhESExOVyhMTE2FnZ/fS51i8eDEWLFiAQ4cOwdvb+82Dfglm6IiIiIiISKsIINTYIRaLYWJionSoGtDp6enBz89PaUGTpwuc+Pv7lxv7woULMW/ePOzbtw+NGzfWyOvzPGboiIiIiIiIVAgODsbQoUPRuHFjNG3aFMuWLUNubi6CgoIAAEOGDIGjo6NiyuZ3332HWbNmYevWrXB1dUVCQgIAwMjICEZGRhqJkQM6IiIiIiLSKq+zGqUm9evXD8nJyZg1axYSEhLg4+ODffv2KRZKiYuLg1D4bNLjDz/8gMLCQvTp00epnZCQEMyePVsjMXJAR0RERERE2kWgPXeGjRs3DuPGjVN5LiIiQulxbGys5gN6gfa8UkRERERERPRamKEjIiIiIiKtItCiDJ224ytFRERERERUTTFDR0REREREWkXAvJPa+EoRERERERFVU8zQERERERGRVuE9dOrjK0VERERERFRNMUNHRERERERaRSAQVXUI1QYHdEREREREpFU45VJ9fKWIiIiIiIiqKWboiIiIiIhIqzBDpz6+UkRERERERNUUM3RERERERKRVuCiK+pihIyIiIiIiqqaYoSMiIiIiIq3Ce+jUx1eKiIiIiIiommKGjoiIiIiItArvoVMfB3RERERERKRVOKBTH6dcEhERERERVVPM0BERERERkVYRclEUtQnkcrm8qoMgIiIiIiJ6yrdhF421fenybo21XRWYoSONud2zSVWHQJWk1o5ziB/D9/tdYb/mHI4k3K3qMKiStLXzAK79XtVhUGWp1xtj6jWv6iiokqy5dqqqQygX76FTH3OZRERERERE1RQzdEREREREpFWYoVMfM3RERERERETVFDN0RERERESkVZihUx8HdEREREREpFUEQg7o1MUpl0RERERERNUUM3RERERERKRVhJxyqTZm6IiIiIiIiKopZuiIiIiIiEircFEU9TFDR0REREREVE0xQ0dERERERFqFGTr1MUNHRERERERUTTFDR0REREREWkUg4DBFXczQERERERERVVMc+hIRERERkVbhPnTq44COiIiIiIi0ikDIAZ26OOWSiIiIiIiommKGjoiIiIiItAoXRVEfM3RERERERETVFIe+RERERESkVbixuPqYoSMiIiIiIqqmmKEjIiIiIiKtwnvo1McMHRERERERUTXFoS8REREREWkVbiyuPg7oiIiIiIhIqwiEHKaoi1MuiYiIiIiIqikOfYmIiIiISKtwURT1MUNHRERERERUTXHoS0REREREWoUbi6uPGToiIiIiIqJqigM6IiIiIiLSKgKBjsaO17Vq1Sq4urpCIpGgWbNmOHv27Evr//rrr6hTpw4kEgkaNGiAPXv2/NeXQS0c0BEREREREamwfft2BAcHIyQkBBcvXkTDhg3RoUMHJCUlqax/6tQpDBgwACNGjMClS5fQo0cP9OjRA9HR0RqLkQM6IiIiIiLSKgKhjsaO17F06VKMGjUKQUFBqFu3LtasWQMDAwNs3LhRZf3ly5ejY8eOmDx5Mry8vDBv3jw0atQI33//fUW8LCpxQEdERERERFpFk1MupVIpsrKylA6pVFomhsLCQly4cAGBgYGKMqFQiMDAQERGRqqMOzIyUqk+AHTo0KHc+hWBAzoiIiIiInpnhIaGwtTUVOkIDQ0tUy8lJQUlJSWwtbVVKre1tUVCQoLKthMSEl6rfkXgtgVERERERKRdNLix+PTp0xEcHKxUJhaLNfZ8msYBHRERERERvTPEYrFaAzgrKyuIRCIkJiYqlScmJsLOzk7lNXZ2dq9VvyJwyiUREREREWkVbVgURU9PD35+fjh8+LCiTCaT4fDhw/D391d5jb+/v1J9ADh48GC59SuC1g/oBAIBdu7cqfHnad26Nb788kuNP095YmNjIRAIEBUVVWUxEBERERHRM8HBwVi3bh02bdqEGzdu4NNPP0Vubi6CgoIAAEOGDMH06dMV9b/44gvs27cPS5Yswc2bNzF79mycP38e48aN01iMag9RBQLBS8+HhIRg9uzZKs/FxsbCzc0Nly5dgo+Pz+vEV67Ro0dj/fr12LZtG/r27av2dREREWjTpg3S09NhZmamKP/jjz+gq6tbIbE99fQ1i4yMxHvvvacol0qlcHBwQFpaGo4ePYrWrVvD2dkZ8fHxsLKyqtAYWrduDR8fHyxbtqxC230XmHbqC4segyEys4Q09g6S1y9CwZ3rKus6zVsDg/p+Zcpzzp/Ak28nACIRrAZ+CkO/AOjaOkKWl4O8y2eRvPl7lKSnaLorpAaDVn1h2H4wRCaWKHp0B1nbF6EoVvX7bRG8BuJaZd/vgqsnkL5qAgDAfs05lddm/b4cuQd/rrjA6T+Ty+X4e+PPOPH3fuTn5KJmAy8MDB4LGydHta7fv+V/2PnjJrTp8yE++vwTRXlmahr++GEjbl64hIK8fNg6O6Hjx/3QqFWAprpCL3Hu2n1s+PMfRMc8RnJ6NlZNHYzAZnVfes2Z6HtYELYHdx4mwt7KFJ/2aYNebZV/5rfsjcSGnf8gOSMHdVztMHNkN3h7OmuyK6SmVgN6oX3QIJhYWeDRrbvYPn8pYq/eeOV1jTsFYuTiuYg6fBxrxk9TlK+5dkpl/d8Xf4+DYVsrLG5S9l82ANeEfv36ITk5GbNmzUJCQgJ8fHywb98+xcIncXFxEAqf5ciaN2+OrVu34uuvv8aMGTPg6emJnTt3on79+hqLUe1XKj4+XvHv7du3Y9asWbh165aizMjIqGIje4m8vDxs27YNU6ZMwcaNG19rQFceCwuLCoisLGdnZ4SFhSkN6Hbs2AEjIyOkpaUpykQikUbn1tLrMQpoB+ugL5G0ZgEKbkfDrNsAOM5aidhxfVCSmV6m/pPvpkCg8+wLAZGxKVz+bwtyTpWm3IViCcQ16yD1fxsgjb0DkZExrEdMhOOMJYibPLTS+kWqSfzawaTPl8jcugBFsdEwbDsAFp+vRPLsPpBll32/09cov99CQ1NYfb0FBRefTbFInNJR6RpxveYw/fhrFFw6qrmO0Gs58MtvOPrHLgydPgGW9nbYtWEzVkyaiZBNa6Ar1nvptbE3buOfv/bB0d2tzLlN85ciLycXn86fBUNTE5w7dAzrZy/A9LXL4FzLXVPdoXLkSQtR29UOvdv6YdzCLa+s/zAxDaO/3YT+7Zth8YSPEHklBl+v3gFrc2O09K0FANhz4gpCw/ZgzugeaFjLCZv+PoURc8Owb2UwLM0q7/MQleXX8QP0mTIeW+csQuzVa2j7cT98vvb/MLvrAGSnlf19/pSlgx16TxqHO+ejypyb0qqr0uN6Lfzx8bzpuHQwooKjJ201bty4cjNsERERZcr69u1bIeMTdak95dLOzk5xmJqaQiAQKB7b2Nhg6dKlcHJyglgsVoxcn3JzK/2D5+vrC4FAgNatWwMAzp07h3bt2sHKygqmpqZo1aoVLl68+MpYfv31V9StWxfTpk3D8ePH8fDhQ6XzUqkUU6dOhbOzM8RiMTw8PLBhwwbExsaiTZs2AABzc3MIBAIMGzYMgPKUyxkzZqBZs2Zlnrdhw4aYO3eu4vH69evh5eUFiUSCOnXqYPXq1WWuGTp0KLZt24b8/HxF2caNGzF0qPKH+BenXEZEREAgEODw4cNo3LgxDAwM0Lx5c6VB9LBhw9CjRw+ldr788kvF6zts2DAcO3YMy5cvh0AggEAgQGxsLAAgOjoanTp1gpGREWxtbfHxxx8jJeVZpui3335DgwYNoK+vD0tLSwQGBiI3N7dM/95W5t0HIuvgTmQd2YXCR/eRtCYUcmkBTD7orrK+LCcLJRmpisOgYTPIpAXIPnWo9HxeLh7PGYecU4dQ9OQBCm5HI2ndIkg86kLHylZlm1R5DAMHIu/kTuRH7kJx/H1kbg2FvKgA+s1Vv9/yvCzIslIVh55XM8gLC1Bw4ZCizvPnZVmpkDR8H4W3L6Ak5XFldYteQi6X48ivf6LTx/3QsIU/nNzdMGzGRGSmpiHqxMv3CirIy0fYN4swaPLnMDAu++H93rUbaNOrG1y9asPawR6dh/SHgZEhHty+q6nu0Eu0alQbEwa2R7v36qlVf9v+s3CyMce0oM5wd7LB4M7+6OBfD+G7TirqhO06gY/aNUHvD/zg4WyLOaM/hESsh9+PXNBUN0hNgUP74+RvfyFy527Ex8Ri65yFKCqQonmvruVeIxAKMXzhbOxatR4pj8r+js5KSVM6GrZtidtnLyLl0RNNdoWEOpo73jIVcg/d8uXLsWTJEixevBhXrlxBhw4d0L17d9y5cwcAcPbsWQDAoUOHEB8fjz/++AMAkJ2djaFDh+LEiRM4ffo0PD090blzZ2RnZ7/0+TZs2IDBgwfD1NQUnTp1Qnh4uNL5IUOG4JdffsGKFStw48YNrF27FkZGRnB2dsbvv/8OALh16xbi4+OxfPnyMu0PGjQIZ8+eRUxMjKLs2rVruHLlCgYOHAgA2LJlC2bNmoVvv/0WN27cwPz58zFz5kxs2rRJqS0/Pz+4uroqnjcuLg7Hjx/Hxx9/rNZr+9VXX2HJkiU4f/48dHR0MHz4cLWuA0rfF39/f4waNQrx8fGIj4+Hs7MzMjIy0LZtW/j6+uL8+fPYt28fEhMT8dFHHwEozcYOGDAAw4cPx40bNxAREYFevXpBLper/dzVmo4OJO51kHv57LMyuRy5V85Cv3YDtZowDeyO7BMHIZcWlFtHZGAEuUwGWW7Om0ZMb0KkA90adSC9ofx+S2+chV5N9d5vg4DuKDh/EPJC1e+30NgC4gYtkHfyz4qImCpASnwCstLSUcfPR1Gmb2QIN6/auH/t5kuv3bbsB9T3bwKvxr4qz9es54XzR48jNysbMpkM5w4fQ1FhIWr5qPf/E1WtqNtx8Pf2UCpr4VMLUbfjAACFRcW4FvMEzZ+rIxQK0dzbHZduxVVqrKRMpKuDGnVr40bkeUWZXC7HjdPnULNh+dPdunwahOzUdJz64+9XPoexpTkavN8cJ//YVSEx00sIRJo73jIVMkRdvHgxpk6div79+wMAvvvuOxw9ehTLli3DqlWrYG1tDQCwtLRUmlbYtm1bpXZ+/PFHmJmZ4dixY+jaVfU3KXfu3MHp06cVg8LBgwcjODgYX3/9NQQCAW7fvo3//e9/OHjwoGKX9po1ayqufzq10sbGRukeuufVq1cPDRs2xNatWzFz5kwApQO4Zs2awcOj9Bd4SEgIlixZgl69egEozUJev34da9euLZN9Gz58ODZu3IjBgwcjPDwcnTt3Vrwmr/Ltt9+iVatWAIBp06ahS5cuKCgogEQieeW1pqam0NPTg4GBgdLr/v3338PX1xfz589XlG3cuBHOzs64ffs2cnJyUFxcjF69esHFxQUA0KDBu/NBRGRsBoFIByWZaUrlJRlp0HN0feX1Es+6ELt4IHHVvHLrCHT1YDVkHLL/OQBZ/ruT+dRGQqPS91uWpfx+y7LToGPn+srrdV3rQtfRA5mby3+/9f27QF6Qy+mWWiTr36lXJhbmSuXG5maKc6qcO3wMD2/fxbS1y8qtM3L2NKyf8x0mdesPoUgEPYkYo7/5GjZODhUSO2lWSno2rHyVM69WZkbIyZOiQFqEzNx8lMhkZaZWWpoZ4d7j5MoMlV5gZGYGkY4OslKVf59np6bBzs1F5TXujbwR0Ksbvumt3u0P/h92RkFeHi4dPPbG8RJVlDfO0GVlZeHJkycICFC+2TsgIAA3brz8BtTExESMGjUKnp6eMDU1hYmJCXJychAXV/43XBs3bkSHDh0Ui4d07twZmZmZOHLkCAAgKioKIpFIMQj6rwYNGoStW0tvdJXL5fjll18waNAgAEBubi5iYmIwYsQIGBkZKY5vvvlGKav31ODBgxEZGYl79+4hPDz8tbJs3t7ein/b29sDAJKSkt6ka7h8+TKOHj2qFHudOnUAADExMWjYsCE++OADNGjQAH379sW6deuQnl7+BxypVIqsrCylQyqVvlGM1ZnJBx9CGnun3AVUIBLBflIoAAGS1i6o1Nio4uk3/xBFj+6Uu4AKABg07478s/uA4sJKjIyed/bgUXzZsbfiKCkuee020pKS8evKHxE0c/JL77HbtWEz8nNy8MXSbzH9x2X44KOeWD97AR7HxL5BD4ioookNDBAUOgs/hyxAbkamWtc079kVZ//ej+JC/j7XNG3YtqC6qNIeDR06FKmpqVi+fDlcXFwgFovh7++PwnJ+SEpKSrBp0yYkJCRAR0dHqXzjxo344IMPoK+vXyGxDRgwAFOnTsXFixeRn5+Phw8fol+/fgCAnJzSKXLr1q0rc6+dSFQ2jWtpaYmuXbtixIgRKCgoQKdOnV45rfSp51fefLpqpkwmA1A6xePFaZBFRUWvbDMnJwfdunXDd999V+acvb09RCIRDh48iFOnTuHAgQNYuXIlvvrqK5w5c0ZxP+TzQkNDMWfOHKWykJAQDHx197RSSXYG5CXFEJkqL5QjMrNASUbqS68ViCUwbtEeqdvWqq4gEsFhUih0re3wMOQzZue0gCyn9P0Wmii/30JjC8iyXvF+60mg36Q9sneV834D0PXwgY6dK9LXzaiQeOm/8Q5oBlev2orHxf/+rsxKS4ep5bP3Pjs9A04eNctcDwBxt+4iOz0DoaPGK8pkJTLcvRyNYzt2YeXBnUhNSELEjr8xM3w1HP7NCDh51MTdK9E4tvNvDJyouWWrqWJYmRsjJUN5KnxKRg6MDMSQiHUhFAogEgqR+kKd1IwcWJkZV2ao9IKcjAyUFBfDxFL597mxpQWyUtLK1Leu4QgrJwd8tmqhokzw72qFqy4fR0jXAUh5+OyeOo9GDWFX0wXrJs3UUA+I/ps3HtCZmJjAwcEBJ0+eVMqKnTx5Ek2bNgVQuikfUDrwet7JkyexevVqdO7cGQDw8OFDpYU5XrRnzx5kZ2fj0qVLSgOn6OhoBAUFISMjAw0aNIBMJsOxY8cUUy6fV14sL3JyckKrVq2wZcsW5Ofno127drCxsQEA2NrawsHBAffu3VNk7V5l+PDh6Ny5M6ZOnapy0PdfWFtbIzo6WqksKipKaRCop6dXpq+NGjXC77//DldXV6WB8fMEAgECAgIQEBCAWbNmwcXFBTt27EBwcHCZutOnTy9TLhaL8aD/7v/atapVXIyCmJsw8G6C3LP/TqkQCGDQoAky9v760kuNmwdCoKuLrGN7y558OphzqIFHM8dAlq3et4GkYSXFKIq7CXGdJpBefvZ+i+s0QW7Ey99viV8gBDq6yD+j4v3+l0HAhyh8cB3Fj+9UZNT0miQGBpAYGCgey+VymFiY49bFy3D2LF15Mj83D/dv3ELLDzurbKOOX0N8HbZKqWzzgmWwreGE9gP7QCgSobCgdHbCi1v9CIUiyP/9Mo60m0+tGjh+8ZZS2akrd+BTqwYAQE9XB/XcHRB55a5i+wOZTIbIKzEY3FlzGwfTq5UUFSPu+i3Uec8Pl48cB1D6s1inWWNE/PJ7mfoJ9x5g7oeDlcq6j/8EEkMD/C90GdITEpXOBfTuigfRN/D4Fhc4qhRasm1BdVAhr9TkyZMREhICd3d3+Pj4ICwsDFFRUdiypXR5YBsbG+jr62Pfvn1wcnKCRCKBqakpPD09sXnzZjRu3BhZWVmYPHnySzNsGzZsQJcuXdCwYUOl8rp162LChAnYsmULxo4di6FDh2L48OFYsWIFGjZsiAcPHiApKQkfffQRXFxcIBAI8Pfff6Nz587Q19cvd8uFQYMGISQkBIWFhfi///s/pXNz5szB+PHjYWpqio4dO0IqleL8+fNIT09XOejp2LEjkpOTYWJi8rovb7natm2LRYsW4aeffoK/vz9+/vlnREdHw9f32Y36rq6uOHPmDGJjY2FkZAQLCwuMHTsW69atw4ABAzBlyhRYWFjg7t272LZtG9avX4/z58/j8OHDaN++PWxsbHDmzBkkJyfDy8tLZRxisRhisbjC+qUN0v/aCrvxIZDG3EDBnWsw6zoAQok+sg6X3gRtN342itOSkfKz8oc7k8DuyDlzrOxgTSSCw5TvIK5ZB4+/nQAIRRCZWQIASnIygeLiSukXqZZ7aCvMhoWg6MENFMVeg0HbARDo6SP/VOn7bTpsNmQZycjeqfx+GzTvjoKoY5Dnqh6cCySGkDT6ANm/LdN0F+g1CQQCtO37Ifb8tA3WTg6wsrPDro2bYWppAZ8Wzz6UL5swAz4t/dG6VzdIDAzgWNNVqR09fQkMTU0U5XYuTrB2dMDWJd+j92cjYGhigssnInHz/CV8tiCkEntIT+XmSxGX8Czb/igpDTfuP4GpkQEcrM2w5Of9SEzNwsIvSpcY79+hKbbsjcTCn/aid1s/nL56D3tPRmPtV0MUbQR1a4GpK39DfQ8neHs6YdOuk8iXFqJX20aV3j9SdmjTNgyb/zUeXLuJ2KvX0fbjftDTl+DUjtIFT4bNn4mMpGTsXLYGxYWFeHL3ntL1+f/OoHqxXGJogEbt2+K3RSsrpyNEr6FCBnTjx49HZmYmJk6ciKSkJNStWxd//fUXPD09S59ERwcrVqzA3LlzMWvWLLRs2RIRERHYsGEDPvnkEzRq1AjOzs6YP38+Jk2apPI5EhMTsXv3bsV9bc8TCoXo2bMnNmzYgLFjx+KHH37AjBkz8NlnnyE1NRU1atTAjBml050cHR0xZ84cTJs2DUFBQRgyZEiZVTKf6tOnD8aNGweRSFRme4CRI0fCwMAAixYtwuTJk2FoaIgGDRootj54kUAgqPBNwzt06ICZM2diypQpKCgowPDhwzFkyBBcvXpVUWfSpEkYOnQo6tati/z8fNy/fx+urq44efIkpk6divbt20MqlcLFxQUdO3aEUCiEiYkJjh8/jmXLliErKwsuLi5YsmQJOnXqVKHxa7OckweRYmIGy/6jITK3hPT+bTyeO16xUIqOtV2Z6a66Di4wqOuLR7PHlmlPx8IGRk1LM9iu/6f8//DDr0cj/9qrt+sgzSm4cBBZxmYw6jb6343FbyNt5XjIskvfb5GFHfDC+y2ydYGepy9Sl5d9v5+SNG4PgUCA/HP7NRo//TftB/RBYX4Bti5eibycXLg3qIvPF81Tuj8u+Uk8cjKz1G5TpKODcQtnY8facKyePhfS/HxYOzpg6PRg1H+viSa6Qa8QHfMYQ2atVzwODdsDAOjZphEWfN4HyenZiE/JUJx3trXA2q+GIjRsN376+xTsLE3xzWc9FXvQAUDnFt5Iy8rFil8OITkjG15u9lg/M4hTLrXAhX2HYWxhhm7jRpVuLH7zDlaODkZ2aulaABb2tpDLXz9b3rhzOwgEApzbc7CiQ6ZyyN/Ce900RSB/Z9aip8p2uyc/vLwrau04h/gxfL/fFfZrzuFIAqccvSva2nkA18pOV6O3VL3eGFOveVVHQZVkzbVTVR1CuTr3/kNjbe/5vZfG2q4KHPoSEREREZF2Eb59+8VpCgd0RERERESkXTigU9sb70NHREREREREVYMZOiIiIiIi0ipyZujUxgwdERERERFRNcUMHRERERERaRVm6NTHDB0REREREVE1xQwdERERERFpF2bo1MYMHRERERERUTXFDB0REREREWkVuZB5J3VxQEdERERERFqFi6Koj0NfIiIiIiKiaooZOiIiIiIi0ioyEfNO6uIrRUREREREVE0xQ0dERERERFqFi6Koj68UERERERFRNcUMHRERERERaRVm6NTHV4qIiIiIiKiaYoaOiIiIiIi0iowZOrVxQEdERERERFpFzm0L1MZXioiIiIiIqJpiho6IiIiIiLSKXCio6hCqDWboiIiIiIiIqilm6IiIiIiISKvIRMzQqYsZOiIiIiIiomqKGToiIiIiItIqvIdOfczQERERERERVVPM0BERERERkVZhhk59HNAREREREZFWkYuqOoLqg1MuiYiIiIiIqilm6IiIiIiISKtwyqX6mKEjIiIiIiKqppihIyIiIiIi7cK0k9r4UhEREREREVVTzNAREREREZF24SqXamOGjoiIiIiIqJpiho6IiIiIiLQL005q40tFRERERERUTTFDR0RERERE2oVpJ7VxQEdERERERFpFwAGd2vhSERERERERVVMCuVwur+ogiIiIiIiInmq+IEpjbZ+a5qOxtqsCp1ySxhx9r1VVh0CVpM3pY9jq066qw6BKMjDqIFp/draqw6BKErG6KcbUa17VYVAlWXPtFHDt96oOgypLvd5VHQFVAE65JCIiIiIirSIQau7QlLS0NAwaNAgmJiYwMzPDiBEjkJOT89L6n3/+OWrXrg19fX3UqFED48ePR2Zm5ms9Lwd0REREREREb2jQoEG4du0aDh48iL///hvHjx/HJ598Um79J0+e4MmTJ1i8eDGio6MRHh6Offv2YcSIEa/1vJxySUREREREWkUoquoIXs+NGzewb98+nDt3Do0bNwYArFy5Ep07d8bixYvh4OBQ5pr69evj99+fTXF2d3fHt99+i8GDB6O4uBg6OuoN1ZihIyIiIiKid4ZUKkVWVpbSIZVK36jNyMhImJmZKQZzABAYGAihUIgzZ86o3U5mZiZMTEzUHswBHNAREREREZGWEQo1d4SGhsLU1FTpCA0NfaN4ExISYGNjo1Smo6MDCwsLJCQkqNVGSkoK5s2b99JpmqpwQEdERERERFpFIJRr7Jg+fToyMzOVjunTp6uMY9q0aRAIBC89bt68+cb9zcrKQpcuXVC3bl3Mnj37ta7lPXRERERERPTOEIvFEIvFatWdOHEihg0b9tI6NWvWhJ2dHZKSkpTKi4uLkZaWBjs7u5den52djY4dO8LY2Bg7duyArq6uWrE9xQEdERERERFpFaGWzCO0traGtbX1K+v5+/sjIyMDFy5cgJ+fHwDgyJEj+P/27jyq5vz/A/jz3vZ9oQgtolJI9m1IWYaQdeyDCvO1TEZjHTO2MRODEcbIb4bCWIYZy5gZWb6ZjJhIWpAtKUxJKm3Sdn9/9HXHnYrKvX26t+fjnHtO9/353Nvz3uvmvu57Ky0tRdeuXSu9XXZ2Nt59911oaWnhl19+gba2drUz1pGnioiIiIiISDk5Ojpi4MCBmD59Oi5duoTw8HDMmTMH48aNk65w+ejRI7Rq1QqXLl0CUFbMDRgwAHl5edixYweys7ORmpqK1NRUlJSUVPl3s4eOiIiIiIjqlLrSQ1cde/fuxZw5c9C3b1+IxWKMGjUKmzdvlh4vKirCrVu3kJ+fDwCIioqSroDZsmVLmftKTEyEjY1NlX4vCzoiIiIiIqK3ZGpqin379lV63MbGBhKJRHq9T58+MtdrigUdERERERHVKcrYQycUPlVERERERERKij10RERERERUp7CHrupY0BERERERUZ3Cgq7q+FQREREREREpKfbQERERERFRnaImfvvVH+sL9tAREREREREpKfbQERERERFRncI5dFXHp4qIiIiIiEhJsYeOiIiIiIjqFPbQVR2fKiIiIiIiIiXFHjoiIiIiIqpT1NjtVGUs6IiIiIiIqE4Ri4ROoDxY+xIRERERESkp9tAREREREVGdwiGXVcenioiIiIiISEmxh46IiIiIiOoUbltQdXyqiIiIiIiIlBR76IiIiIiIqE7hHLqq41NFRERERESkpNhDR0REREREdQp76KqOBR0REREREdUpLOiqjk8VERERERGRkmIPHRERERER1SnctqDq+FQREREREREpKfbQERERERFRnaImEjqB8mAPXR0WHBwMY2Pjt76fP/74AyKRCFlZWW99X0REREREVHewh06BUlNT8cUXX+C3337Do0ePYG5uDhcXF3z00Ufo27dvreXo0aMHUlJSYGRkVGu/UxU0HTUclpPGQdPUFHl3E3B7wybk3LhZ6fnq+vpo/p9pMOvTGxqGBihIfYw7G7cg42JEuXOt3p+AFrM/wIMDh3A34BtFPgyqIruxnnCc8h50Gpgi83YCrqzdiqfXblV4bnPPAei+aoFMW8mLQvzYdbD0urapMVw+mo7G3TpC00APaVFxuLJ2K3KSHyn0cVD1eA1piiE9zaCvo45r93Lw9f77ePTkRaXnO7c0wLj+jWFvqYeGxpr4dPttnI/Jkjmnl4sJPHuZw95SD0b66pj25TXcfZiv4EdCr+M6fiQGeE2EYUNTPLx1Fz9++TXux8W/8XadBvXDtPWrEP3fcwj0XSxtD7x+ocLzf17/DU4H7ZNbbqq+y9cTsePYn7iW8AhPMnOwddEk9Ovq9NrbRFy7hzVBv+POg8ewaGiEmaPdMNK9o8w5e09cxI6jf+JJVi5a2TTGZ9OGwtnOUpEPpd7jKpdVx6dKQe7fv4+OHTsiNDQU69atQ1xcHEJCQuDm5obZs2fXWo6ioiJoamqicePGEInYd11V5v3c0HLubNz/fhcip0xH7p0EtAtYDw0T4wrPF6mro93mDdCxaIzrnyxDxNj3cct/HV48SS93roFjKzQZ4YncO3cV/CioqqwGuKLDxx/g2vYfcGL8TGTdvge3b/2hVcnrDQCFOXk43HeM9HJs0ESZ4703roR+08Y4N28ZToybibyUx3APXAs1bW0FPxqqqvH9LTCqTyN8vf8+Zq67jucvSrHuQwdoqlf+t1JbU4yEh/kI+DHptefE3c3B/x19oIjYVE0dB/bF6IW++PXbnfjyPS88vHUXH27fCANTk9ferkGTxhg1fw7uREaXO7bQdYjMZdfSL1BaWoqrp/9QzIOgKst/UQgHm8ZYPt2zSuc/eJyBD77Yha5tbHHs6w8xZUhPfPrtEfx59bb0nN/Px8I/6HfMHtMXR9bPRisbC/isCsLTrFxFPQyiamFBpyCzZs2CSCTCpUuXMGrUKNjb26N169bw8/PDX3/9BQD4+uuv0bZtW+jp6cHS0hKzZs1Cbu7r/zhs27YNLVq0gKamJhwcHLBnzx6Z4yKRCNu2bYOnpyf09PTwxRdfVDjk8vz58+jVqxd0dHRgaWkJX19f5OXlSY9/++23sLOzg7a2Nho1aoTRo0fL78lRApbjx+DvY78i9bcTyL+fhFtrN6C0oAAWQzwqPN9iqAc0DA0Qt3ApnsVeQ0FKKrKuxiDvboLMeWo6OnBa+Slu+a9DUU5ObTwUqoJW749CwuETuHfsJLLvJePS6k0oLniBFsPffc2tJCh4mvnPJSNLesTAqikatnPC5S83I+P6beQkPcTlLzZDTVsTNoPcFP54qGpGuzfCnpC/ER6bhXuPnsN/1z00NNLEO+0q/6B/6cYz7Dj+COdjMis95/Slp9h94m9cuflMEbGpmvpNGYfwn37BxaO/ISXhPvat/ApFBS/QY+SQSm8jEovh/dUKHN/6PdIflu9Vz07PkLm0c++F25eikP7wb0U+FKoC1w4OmDdhAPp3a12l8w+cvIRm5iZY7OWBFs3MMcmjO97t3hrBx8Ol5wQdP48x/TtjVN+OaGnZCCs/GAZtLU38HHpFUQ+DUNZDp6iLqlHBhyS8jIwMhISEYPbs2dDT0yt3/OW8OLFYjM2bN+P69evYtWsXQkNDsXDhwkrv98iRI5g7dy4+/vhjXLt2DR988AG8vLxw9uxZmfNWrFiBESNGIC4uDt7e3uXuJyEhAQMHDsSoUaMQGxuLH3/8EefPn8ecOXMAAJGRkfD19cWqVatw69YthISEoHfv3m/xjCgXkbo69B3skXn5lT/UEgkyLl+BYduK/4No2Ksnnl27DvsF89Dz9yPovDcI1lMmlVtz127+R3gaflH2vklQYnV1mDraIzUi6p9GiQSpEVFo6Fz5MB11HR0M+/0HDAvZi94bV8KohfU/96mpAaBsGOar91lSWASz9m3k/hio+iwaaKGBkSau3MyWtuUVlODG/Vw42eoLmIzkSU1DHVZODoi/GCltk0gkiP/rMmzbVf5eHDzTCzlPM3Hh8K9v/B0GDUzQtncPhB8+LpfMVLuibyeju3NLmbZ3XOwRfTsZAFBYVIzrCX+jxyvniMVi9HBugau3kms1a32jLhYp7KJqWNApwN27dyGRSNCqVavXnvfRRx/Bzc0NNjY2cHd3x+rVq3Hw4MFKz1+/fj2mTp2KWbNmwd7eHn5+fhg5ciTWr18vc96ECRPg5eUFW1tbWFlZlbsff39/TJw4ER999BHs7OzQo0cPbN68Gbt370ZBQQGSk5Ohp6eHIUOGwNraGu3bt4evr2/NngwlpGFsBLG6OgozZL+BL8rMhFYD0wpvo93EAmZuroBYjJh5i5AUtBuWE8bAxut96Tnm/dxh4GCPe9u+U2h+qh4tEyOI1dVQ8FT29S54mgnthhX31OTcf4CIFesRNm85Li5dC5FYhP7Bm6Bj3hAAkH3/AfL+fox2vj7QMNCHWF0djlPHQq+xOXQaVvxviGqXqVFZ0Z2RXSTTnpldBFNDDSEikQLoGxtDTV0d2U8zZNpznmbAsJL3YosOzug5cij2LF9Tpd/RfZgHCvLzcfV02FvnpdqXnpmDhsayX+I0NNZHbv4LFLwoQmZOPkpKS9HgX+c0MNZHehZH2lDdwEVRFEAikVTpvDNnzsDf3x83b95EdnY2iouLUVBQgPz8fOjq6pY7Pz4+HjNmzJBp69mzJzZt2iTT1qlTp9f+3piYGMTGxmLv3r0ymUtLS5GYmIj+/fvD2toatra2GDhwIAYOHIgRI0ZUmAkAXrx4gRcvZBcR0NLSem0GVSMSi1GUmYVba9YDpaXIvXUbWmZmsJw4Dvd37IKWuRns/D5EtO/HKC0sfPMdUp2WHhuP9Nh/FlR4EnMdQw7vgN3owYj9dhckxSU49/FKdFvxMd778whKi0uQGhGFv89fEjB1/davcwN8PN5Gen3xttuVn0z1lpauLrz8l+GH5WuQl1W1IbM9RgzBpV9Poph/24nkShWHRioKCzoFsLOzg0gkws2bla+IeP/+fQwZMgQzZ87EF198AVNTU5w/fx4+Pj4oLCystHiqioqGeb4qNzcXH3zwQYW9blZWVtDU1ERUVBT++OMPnDp1CsuWLcOKFStw+fLlCrdR8Pf3x8qVK2Xali9fDtcaPwJhFWU9Q2lxMTT/NWFew8QEL/71Le9LhelPUVpSDJSWStvy7idBq2EDiNTVYdDKAZqmpugU/E/vnFhdHcYu7dB09AiE9e4vc1uqPS8yn6G0uATaDWRfb+0GJihIr3ye1KskxSXIvJUAfcum0rbM+Ds4MfY/0NDXhVhDAy8yn2HAns3IuHFHrvmpasJjMxF//585yhrqZZ8UTA01ZHrpTAw1uCKlCsnNykJJcTEM/zW6wqCBKbLTy/89N7NqiobNmmDW1q+kbaL/DZ3fGnMOy4eMR/qDf+bUtezQDo1trfHd/M8U9AhI0RqaGCD9X4ubpGflQl9XC9paGhCLRVATi8stgPI0KxcNjQ1qMypRpVj7KoCpqSneffddbN26VWahkZeysrJw5coVlJaWYsOGDejWrRvs7e3x99+vn0zt6OiI8PBwmbbw8HA4Ob1+Od5/69ChA27cuIGWLVuWu2hqagIA1NXV0a9fP3z11VeIjY3F/fv3ERoaWuH9LVmyBM+ePZO5LFmypFqZ6hJJcTFyb92GSedXliwWiWDSuQOy465XeJtnsdeg06wp8MpKorqWzfDiSTokxcXIjLyCSxOmInLyNOkl+8ZNPD55BpGTp7GYE1BpcTEy4m+jUZf2/zSKRGjcpT3SY29U6T5EYjGMWtqgIP1puWNFufl4kfkMBlZNYepkj4d/VLzcOSnW8xelePTkhfRyP+U5nj4rRAcHQ+k5utpiONno48Y9rlynKkqKipF84xZadfvn77lIJEKrrp1wL+ZaufNT7yVh1bBJ+GLUVOkl9ux53L4UhS9GTUVm6mOZ83uOGoKka/F4dIurFisrF3sr/BUnu4DZhdg7cLEvm7KiqaGO1i2a4GLsP69xaWkpLsYmoL1D+WktJD9qIsVdVA176BRk69at6NmzJ7p06YJVq1bB2dkZxcXFOH36NLZt24YDBw6gqKgIW7ZswdChQxEeHo7AwMDX3ueCBQswZswYtG/fHv369cPx48dx+PBhnDlzplrZFi1ahG7dumHOnDmYNm0a9PT0cOPGDZw+fRrffPMNfv31V9y7dw+9e/eGiYkJfv/9d5SWlsLBwaHC+9PS0lK5IZYP9h9Eq8+WICf+JrJv3ESzsaOhpq2DlN9OAAAcl32CF0+eSOfDPTp8FE3fGwE7P188PPgzdC2bwXrqJDw8+DMAoCT/OfLuJcr8jpKC5yh69qxcO9W+m3t+RvfPFyLjxm08vXYLDhNHQF1HG/eOnQQAdP98IfLT0hGzZScAoM2MSUiPi0dO8iNoGujDccoY6Fk0wt0jJ6T3adm/N15kZiEvJQ3Gds3RceEsPDx7AakXuSBOXfFT6GO8P6gJHqYVIOXpC/gMbYb0Z4UyK1hu8HXA+ZhMHAlLAwDoaInR1OyfrScaN9BCy2a6yM4rRlpm2ZA7A101NDLVQoP/zdOzbFR2fkZ2Ubk5e6R4Z3YdwNQvP0XS9Zu4H3cD7u+PhaaONi4cKVvwZOqXnyEr7QmOBgSiuLAQf9+9J3P75/9bkfjf7dp6uugwwB0/rdtSOw+EqiTv+Qskp/7z5drDtAzEJ/4NI31dNDEzxoYfTuLx02x8Nfc9AMC4d7tg74mL+Gr3CYxy74i/4u7hRPg1bF86WXofXkPfwaItP6FNy2ZwtmuGXcfD8fxFIUa6d6j1x0dUERZ0CmJra4uoqCh88cUX+Pjjj5GSkgIzMzN07NgR27ZtQ7t27fD1119j7dq1WLJkCXr37g1/f39Mnjy50vscPnw4Nm3ahPXr12Pu3Llo3rw5goKC0KdPn2plc3Z2RlhYGJYuXYpevXpBIpGgRYsWGDt2LICyVTgPHz6MFStWoKCgAHZ2dti/fz9at67aEsCqIO3MWWgYG6P5dG9oNjBF7p27iJ23AEX/WyhFq7E5JJJ/etVepD1BzNwFaPnRbHT+YScKn6Tj4Y8/I2kPN5hVBsmnwqBtYgznmVOg3dAEmbcScHbWJ9KtCHQtzGXmxmoa6qPrZ/Og3dAEhdm5yIi/g9NT5iL73j8rnuk0NEWHjz8oG7r5JAOJv57Gtf/b++9fTQLafzoF2lpizJ9gA31ddcQl5GDhN7dRWPzPa93UTBtG+v8skuJgpYeAeY7S63NGl61uGnLxCdbsKftypqezCRZPtpWes9ynbHW84N8eIfg3bixf266E/BcGpsYYOmd62cbiN+9gywd+yPnfQkimFo1k/p5XVSeP/hCJRLj8+2l5R6a3cC3hESYv+1563T/odwDACLcOWPPhaDzJzEFKepb0uGUjU2xfOgX+Qb9h968X0LiBEVbPGoFe7e2l53i844yM7Dxs3n8GT7Jy4NjcAt9/5sUhlwrGOXRVJ5JUdQUPomo6201ZZ9FRdbn9FYZ9Lv2FjkG1ZEL0afSZxQVe6os/vu2C/7TuIXQMqiWB1y8A138WOgbVltajhE5QqU/PXFXYfa/u1/7NJykR9tAREREREVGdwh66qmNBR0REREREdYqaCm4AriisfYmIiIiIiJQUe+iIiIiIiKhO4ZDLquNTRUREREREpKTYQ0dERERERHWKKm4ArijsoSMiIiIiIlJS7KEjIiIiIqI6hatcVh176IiIiIiIiJQUe+iIiIiIiKhO4SqXVceCjoiIiIiI6hQOuaw61r5ERERERERKij10RERERERUp3DIZdXxqSIiIiIiInpLGRkZmDhxIgwNDWFsbAwfHx/k5uZW6bYSiQSDBg2CSCTC0aNHq/V7WdAREREREVGdIhaJFHZRlIkTJ+L69es4ffo0fv31V5w7dw4zZsyo0m0DAgIgqmE2DrkkIiIiIiJ6C/Hx8QgJCcHly5fRqVMnAMCWLVvg4eGB9evXo0mTJpXeNjo6Ghs2bEBkZCQsLCyq/bvZQ0dERERERHWKmlhxF0W4ePEijI2NpcUcAPTr1w9isRgRERGV3i4/Px8TJkzA1q1b0bhx4xr9bvbQERERERFRvfHixQu8ePFCpk1LSwtaWlo1vs/U1FSYm5vLtKmrq8PU1BSpqamV3m7evHno0aMHhg0bVuPfzR46IiIiIiKqU9TEIoVd/P39YWRkJHPx9/evMMfixYshEolee7l582aNHuMvv/yC0NBQBAQEvMUzxR46IiIiIiKqYxS5bcGSJUvg5+cn01ZZ79zHH3+MqVOnvvb+bG1t0bhxY6Slpcm0FxcXIyMjo9KhlKGhoUhISICxsbFM+6hRo9CrVy/88ccfr/29L7GgIyIiIiKieqM6wyvNzMxgZmb2xvO6d++OrKwsXLlyBR07dgRQVrCVlpaia9euFd5m8eLFmDZtmkxb27ZtsXHjRgwdOrRK+QAWdEREREREVMeoiRW3vYAiODo6YuDAgZg+fToCAwNRVFSEOXPmYNy4cdIVLh89eoS+ffti9+7d6NKlCxo3blxh752VlRWaN29e5d/NOXRERERERERvae/evWjVqhX69u0LDw8PvPPOO/i///s/6fGioiLcunUL+fn5cv297KEjIiIiIqI6Rdl66ADA1NQU+/btq/S4jY0NJBLJa+/jTccrwh46IiIiIiIiJcUeOiIiIiIiqlMUucqlquFTRUREREREpKTYQ0dERERERHWKWAnn0AmFPXRERERERERKij10RERERERUpyjjKpdCYUFHRERERER1ChdFqTo+VUREREREREqKPXRERERERFSncMhl1bGHjoiIiIiISEmxh46IiIiIiOoUbltQdeyhIyIiIiIiUlLsoSMiIiIiojqFq1xWHZ8qIiIiIiIiJcUeOiIiIiIiqlO4ymXVsaAjIiIiIqI6hQVd1XHIJRERERERkZISSSQSidAhiFTBixcv4O/vjyVLlkBLS0voOKRgfL3rF77e9Qtf7/qFrzcpOxZ0RHKSnZ0NIyMjPHv2DIaGhkLHIQXj612/8PWuX/h61y98vUnZccglERERERGRkmJBR0REREREpKRY0BERERERESkpFnREcqKlpYXly5dzQnU9wde7fuHrXb/w9a5f+HqTsuOiKEREREREREqKPXRERERERERKigUdERERERGRkmJBR0REREREpKRY0BERERERESkpFnREbyEhIQGffvopxo8fj7S0NADAiRMncP36dYGTkbxFRUUhLi5Oev3YsWMYPnw4PvnkExQWFgqYjIje1vPnz5Gfny+9npSUhICAAJw6dUrAVEREVcOCjqiGwsLC0LZtW0RERODw4cPIzc0FAMTExGD58uUCpyN5++CDD3D79m0AwL179zBu3Djo6uri0KFDWLhwocDpqDZkZ2fj6NGjiI+PFzoKydmwYcOwe/duAEBWVha6du2KDRs2YNiwYdi2bZvA6ag28P1NyowFHVENLV68GKtXr8bp06ehqakpbXd3d8dff/0lYDJShNu3b8PFxQUAcOjQIfTu3Rv79u1DcHAwfv75Z2HDkUKMGTMG33zzDYCyHpxOnTphzJgxcHZ25muuYqKiotCrVy8AwE8//YRGjRohKSkJu3fvxubNmwVOR4rA9zepEhZ0RDUUFxeHESNGlGs3NzdHenq6AIlIkSQSCUpLSwEAZ86cgYeHBwDA0tKSr7eKOnfunPRD/pEjRyCRSJCVlYXNmzdj9erVAqcjecrPz4eBgQEA4NSpUxg5ciTEYjG6deuGpKQkgdORIvD9TaqEBR1RDRkbGyMlJaVc+9WrV9G0aVMBEpEiderUCatXr8aePXsQFhaGwYMHAwASExPRqFEjgdORIjx79gympqYAgJCQEIwaNQq6uroYPHgw7ty5I3A6kqeWLVvi6NGjePDgAU6ePIkBAwYAANLS0mBoaChwOlIEvr9JlbCgI6qhcePGYdGiRUhNTYVIJEJpaSnCw8Mxf/58TJ48Weh4JGcBAQGIiorCnDlzsHTpUrRs2RJA2fCsHj16CJyOFMHS0hIXL15EXl4eQkJCpB/yMzMzoa2tLXA6kqdly5Zh/vz5sLGxQZcuXdC9e3cAZb117du3FzgdKQLf36RKRBKJRCJ0CCJlVFhYiNmzZyM4OBglJSVQV1dHSUkJJkyYgODgYKipqQkdkWpBQUEB1NTUoKGhIXQUkrNvv/0Wc+fOhb6+PqysrHD16lWIxWJs2bIFhw8fxtmzZ4WOSHKUmpqKlJQUtGvXDmJx2ffdly5dgqGhIVq1aiVwOpI3vr9JlbCgI3pLDx48QFxcHHJzc9G+fXvY2dkJHYkUKDIyUroKmqOjIzp16iRwIlKkyMhIPHjwAP3794e+vj4A4LfffoOxsTF69uwpcDqSt7t37yIhIQG9e/eGjo4OJBIJRCKR0LFIQfj+JlXBgo6IqAoePnyI8ePHIzw8HMbGxgDKljfv0aMHDhw4gGbNmgkbkBSmsLAQiYmJaNGiBdTV1YWOQwrw9OlTjBkzBmfPnoVIJMKdO3dga2sLb29vmJiYYMOGDUJHJAXh+5tUAefQEdXQqFGjsHbt2nLtX331Fd577z0BEpEiTZs2DUVFRYiPj0dGRgYyMjIQHx+P0tJSTJs2Teh4pAD5+fnw8fGBrq4uWrdujeTkZADAhx9+iDVr1gicjuRp3rx50NDQQHJyMnR1daXtY8eORUhIiIDJSFH4/iZVwoKOqIbOnTsnXbr+VYMGDcK5c+cESESKFBYWhm3btsHBwUHa5uDggC1btvD1VlFLlixBTEwM/vjjD5lFEvr164cff/xRwGQkb6dOncLatWvL9bTb2dlx2wIVxfc3qRL2LRPVUG5ursyG4i9paGggOztbgESkSJaWligqKirXXlJSgiZNmgiQiBTt6NGj+PHHH9GtWzeZeVStW7dGQkKCgMlI3vLy8mR65l7KyMiAlpaWAIlI0fj+JlXCHjqiGmrbtm2F3+IdOHAATk5OAiQiRVq3bh0+/PBDREZGStsiIyMxd+5crF+/XsBkpChPnjyBubl5ufa8vDwulKFievXqhd27d0uvv9yK5quvvoKbm5uAyUhR+P4mVcIeOqIa+uyzzzBy5EgkJCTA3d0dAPDf//4X+/fvx6FDhwROR/I2depU5Ofno2vXrtKJ88XFxVBXV4e3tze8vb2l52ZkZAgVk+SoU6dO+O233/Dhhx8CgPRD3vfffy/dp4xUw1dffYW+ffsiMjIShYWFWLhwIa5fv46MjAyEh4cLHY8UgO9vUiUs6IhqaOjQoTh69Ci+/PJL/PTTT9DR0YGzszPOnDkDV1dXoeORnAUEBAgdgWrZl19+iUGDBuHGjRsoLi7Gpk2bcOPGDVy4cAFhYWFCxyM5atOmDW7fvo1vvvkGBgYGyM3NxciRIzF79mxYWFgIHY8UgO9vUiXctoCIiKgSCQkJWLNmDWJiYpCbm4sOHTpg0aJFaNu2rdDRSI6Sk5NhaWlZ4VC75ORkWFlZCZCKFI3vb1IVLOiI3lJhYSHS0tJQWloq084PAKonISEBQUFBSEhIwKZNm2Bubo4TJ07AysoKrVu3FjoeEdWQmpoaUlJSys2pevr0KczNzVFSUiJQMiKiN+OiKEQ1dOfOHfTq1Qs6OjqwtrZG8+bN0bx5c9jY2KB58+ZCxyM5CwsLQ9u2bREREYHDhw8jNzcXABATE4Ply5cLnI4UQU1NDWlpaeXanz59CjU1NQESkaJIJJIKe+dyc3NllrQn5fbqCtTZ2dmvvRApE86hI6qhqVOnQl1dHb/++issLCy4KpaKW7x4MVavXg0/Pz8YGBhI293d3fHNN98ImIwUpbIBLC9evKhwyxJSPn5+fgDKFsT47LPPZLYuKCkpQUREBFxcXARKR/JmYmIi7Yk1Njau8P/tl8U9e2VJmbCgI6qh6OhoXLlyBa1atRI6CtWCuLg47Nu3r1y7ubk50tPTBUhEirJ582YAZR/yv//+e+jr60uPlZSU4Ny5c3zfq4irV68CKPsQHxcXJ1Ooa2pqol27dpg/f75Q8UjOQkNDYWpqCgA4e/aswGmI5IcFHVENOTk58YN8PWJsbIyUlJRyw2mvXr2Kpk2bCpSKFGHjxo0Ayj7kBwYGygyv1NTUhI2NDQIDA4WKR3L08kO9l5cXNm3aBENDQ4ETkSK9XIG6uLgYYWFh8Pb2RrNmzQRORfT2uCgKUQ2Fhobi008/xZdffom2bdtCQ0ND5jg/GKiW+fPnIyIiAocOHYK9vT2ioqLw+PFjTJ48GZMnT+Y8OhXk5uaGw4cPw8TEROgoRCRnBgYGiIuLg42NjdBRiN4aCzqiGhKLy9YU+vcYfI6/V02FhYWYPXs2goODUVJSAnV1dZSUlGDChAkIDg7mIhlESszd3f21x0NDQ2spCdWWYcOGYeTIkZgyZYrQUYjeGodcEtUQx9/XL5qamvjuu++wbNkyxMXFITc3F+3bt4ednZ3Q0UhBvL29X3t8586dtZSEFK1du3Yy14uKihAdHY1r167xA7+KGjRoEBYvXoy4uDh07NgRenp6Msc9PT0FSkZUfeyhIyKqglWrVmH+/Pkyq+ABwPPnz7Fu3TosW7ZMoGSkKCNGjJC5XlRUhGvXriErKwvu7u44fPiwQMmotqxYsQK5ublYv3690FFIzl6OsqkIR9mQsmFBR/SW8vPzkZycjMLCQpl2Z2dngRKRInDjYQKA0tJSzJw5Ey1atMDChQuFjkMKdvfuXXTp0gUZGRlCRyEiqhSHXBLV0JMnT+Dl5YUTJ05UeJwf8FVLZRsPx8TESJfBJtUnFovh5+eHPn36sKCrBy5evMiNxYmozmNBR1RDH330EbKyshAREYE+ffrgyJEjePz4MVavXo0NGzYIHY/kxMTEBCKRCCKRCPb29jJFXUlJCXJzc/Gf//xHwIRU2xISElBcXCx0DJKjkSNHylyXSCRISUlBZGQkPvvsM4FSkaKFhYVh/fr1iI+PB1C2HdGCBQvQq1cvgZMRVQ8LOqIaCg0NxbFjx9CpUyeIxWJYW1ujf//+MDQ0hL+/PwYPHix0RJKDgIAASCQSeHt7Y+XKlTAyMpIee7knWffu3QVMSIri5+cnc/3lh/zffvuNC2WomFff10BZT6yDgwNWrVqFAQMGCJSKFOmHH36Al5cXRo4cCV9fXwBAeHg4+vbti+DgYEyYMEHghERVxzl0RDVkaGiI2NhY2NjYwNraGvv27UPPnj2RmJiI1q1bIz8/X+iIJEdhYWHo2bMn1NX5PVh94ebmJnNdLBbDzMwM7u7u8Pb25r8FIiXm6OiIGTNmYN68eTLtX3/9Nb777jtprx2RMuD/RkQ15ODggFu3bsHGxgbt2rXD9u3bYWNjg8DAQFhYWAgdj+SkuLgYJSUlcHV1lbY9fvwYgYGByMvLg6enJ9555x0BE5KicGuS+qewsBBpaWkoLS2VabeyshIoESnKvXv3MHTo0HLtnp6e+OSTTwRIRFRzLOiIamju3LlISUkBACxfvhwDBw7E3r17oampieDgYGHDkdxMnz4dmpqa2L59OwAgJycHnTt3RkFBASwsLLBx40YcO3YMHh4eAiclopq6ffs2fHx8cOHCBZn2l4shcZEr1WNpaYn//ve/aNmypUz7mTNnYGlpKVAqopphQUdUQ5MmTZL+3LFjRyQlJeHmzZuwsrJCw4YNBUxG8hQeHo5vvvlGen337t0oKSnBnTt3YGRkhEWLFmHdunUs6FTQ48ePMX/+fPz3v/9FWloa/j1DgR/yVYeXlxfU1dXx66+/wsLCosIVbUm1fPzxx/D19UV0dDR69OgBoOzvfXBwMDZt2iRwOqLq4Rw6ohriRtP1g56eHq5du4bmzZsDKFsNr1mzZti8eTMA4MaNG+jTpw/S0tKEjEkKMGjQICQnJ2POnDkVfsgfNmyYQMlI3vT09HDlyhW0atVK6ChUi44cOYINGzZI58s5OjpiwYIFfG+T0mFBR1RD3Gi6fmjQoAH+/PNPODk5AQCaNGmCdevWYeLEiQDK5mG0adOGi+CoIAMDA/z5559wcXEROgopWOfOnbFx40bOhyUipSQWOgCRsuJG0/WDi4sL9uzZAwD4888/8fjxY7i7u0uPJyQkoEmTJkLFIwWytLQsN8ySVNPatWuxcOFC/PHHH3j69Cmys7NlLkREdRl76Iiq6eVG08+ePYOhoWGlG01v3bpVwJQkL2FhYRg0aBAsLCyQkpKC8ePHY8eOHdLjs2bNQl5eHnbt2iVgSlKEU6dOYcOGDdIVbEl1icVl32//+0s6LoqiWl7+/10VGRkZCk5DJD9cFIWomrjRdP3i6uqKK1eu4NSpU2jcuDHee+89meMuLi7o0qWLQOlIkcaOHYv8/Hy0aNECurq60NDQkDnOD3yqg1tU1A8BAQFCRyBSCPbQEdUQN5omUm1v6nWdMmVKLSUhIiKqHAs6ohqKioqChoYG2rZtCwA4duwYgoKC4OTkhBUrVkBTU1PghPS2fvnllyqf6+npqcAkRCRvsbGxaNOmDcRiMWJjY197rrOzcy2lIiEUFBSgsLBQps3Q0FCgNETVx4KOqIY6d+6MxYsXY9SoUbh37x6cnJwwcuRIXL58GYMHD+bQDhXwcl7Nm3COjerIzs6WfpB702IY/MCn3MRiMVJTU2Fubg6xWAyRSFThIjh8f6umvLw8LFq0CAcPHsTTp0/LHedrTsqEY8WIauj27dvS5cwPHToEV1dX7Nu3D+Hh4Rg3bhwLOhVQWloqdASqZSYmJtLtSIyNjStcQIELZaiGxMREmJmZSX+m+mXhwoU4e/Ystm3bhvfffx9bt27Fo0ePsH37dqxZs0boeETVwoKOqIYkEon0A/+ZM2cwZMgQAGVLnaenpwsZjYhqKDQ0VLrtCBfKUG3W1tYV/kz1w/Hjx7F792706dMHXl5e6NWrF1q2bAlra2vs3btXutcokTJgQUdUQ506dcLq1avRr18/hIWFYdu2bQDKvult1KiRwOlIEfLy8hAWFobk5ORy8y18fX0FSkXy5OrqWuHPpJrOnTtXpfN69+6t4CRU2zIyMmBrawugbPj0y1Vr33nnHcycOVPIaETVxoKOqIYCAgIwceJEHD16FEuXLkXLli0BAD/99BN69OghcDqSt6tXr8LDwwP5+fnIy8uDqakp0tPToaurC3NzcxZ0KiQ5OblK51lZWSk4CSlanz59pMNqK1tSgMNrVZOtrS0SExNhZWWFVq1a4eDBg+jSpQuOHz8OY2NjoeMRVQsXRSGSs4KCAqipqZXbs4qUW58+fWBvb4/AwEAYGRkhJiYGGhoamDRpEubOnYuRI0cKHZHkRE1NTfrzy/8iX51Lxzl0qqNBgwYwMDDA1KlT8f7776Nhw4YVnvfqfqOkGjZu3Ag1NTX4+vrizJkzGDp0KCQSCQoLC7Fx40bMnTtX6IhEVcaCjoioCoyNjREREQEHBwcYGxvj4sWLcHR0REREBKZMmYKbN28KHZHkRF1dHc2aNcPUqVMxdOjQSveabNeuXS0nI3krLCzEkSNHsHPnTvz555/w8PCAj48PBg4cWOGCOKS6kpKScOXKFdjZ2Um3IyJSFlVbk5uIAEA6zA4oWw3P1NS00gupFg0NDek2Bubm5tJheUZGRnjw4IGQ0UjOHj58iJkzZ+LAgQMYPHgw9uzZA01NTbRr107mQspPU1MTY8eOxcmTJ3Hz5k04Oztjzpw5sLS0xNKlS1FcXCx0RJKz0NBQODk5lduWxNraGn379sW4cePw559/CpSOqGbYQ0dUDbt27cK4ceOgpaWFXbt2vfbcKVOm1FIqqg0DBgzA1KlTMWHCBEyfPh2xsbHw9fXFnj17kJmZiYiICKEjkgKcP38eQUFBOHToEJycnODj4wMfH58q71FIyicxMRE+Pj4ICwvDkydP+AWdivH09ISbmxvmzZtX4fHNmzfj7NmzOHLkSC0nI6o5FnRERFUQGRmJnJwcuLm5IS0tDZMnT8aFCxdgZ2eHHTt2SPckJNX0+PFjjB8/nh/yVdSLFy/w888/Y+fOnbh48SIGDx4Mb29vDBw4UOhoJGfW1tYICQmBo6Njhcdv3ryJAQMGVHlxJKK6gKtcEtXQs2fPcPr0ady/fx8ikQi2trbo27cvDA0NhY5GCtCpUyfpz+bm5ggJCREwDdWWCxcuYOfOnTh06BAcHBywdetWroCnQi5duoSgoCAcOHAANjY28PLywsGDB1mwq7DHjx+/dtEydXV1PHnypBYTEb09FnRENfDDDz9gzpw55cbgGxkZITAwEGPHjhUoGSmKu7s7Dh8+XO7DfHZ2NoYPH47Q0FBhgpHcpaSkYPfu3QgKCkJmZiYmTpyI8PBwtGnTRuhoJGfdunWDlZUVfH190bFjRwBlw2z/zdPTs7ajkYI0bdoU165dk2419G+xsbGwsLCo5VREb4dDLomqKSoqCl27dsXEiRMxb948tGrVChKJBDdu3EBAQAAOHDiAy5cvc9EEFSMWi5Gamgpzc3OZ9rS0NDRt2hRFRUUCJSN509DQQNOmTTFlyhR4enpW+m2+s7NzLScjeavKXEhuUaFaPvzwQ/zxxx+4fPkytLW1ZY49f/4cXbp0gZubGzZv3ixQQqLqY0FHVE1eXl7Izc3FoUOHKjw+evRoGBoaYufOnbWcjBQhNjYWAODi4oLQ0FCZoVglJSUICQnB9u3bcf/+fYESkry9+iG/sk2n+SGfSDk9fvwYHTp0gJqaGubMmQMHBwcAZXPntm7dipKSEkRFRaFRo0YCJyWqOhZ0RNVkb2+Pb7/9Fv369avw+JkzZzBr1izcvn27lpORIojF4ko/1AOAjo4OtmzZAm9v79qORgqSlJRUpfOsra0VnISIFCEpKQkzZ87EyZMnpX/XRSIR3n33XWzduhXNmzcXOCFR9bCgI6omfX193LhxA1ZWVhUeT05OhqOjI/Ly8mo5GSlCUlISJBIJbG1tcenSJZiZmUmPaWpqwtzcHGpqagImJCJ52LNnDwIDA5GYmIiLFy/C2toaGzduhK2tLYYNGyZ0PFKAzMxM3L17FxKJBHZ2djAxMRE6ElGNcCMdomrKz88vN+7+VVpaWigoKKjFRKRI1tbWsLGxQWlpKTp16gRra2vpxcLCgsWcCrOxscGqVau4fHk9sG3bNvj5+cHDwwNZWVnS4bQmJiYICAgQNhwpjImJCTp37owuXbqwmCOlxh46omoSi8XYtWsXjIyMKjyelZUFLy8vzq9RQQkJCQgICEB8fDwAwMnJCXPnzkWLFi0ETkaKEBAQgODgYFy7dg1ubm7w8fHBiBEjoKWlJXQ0kjMnJyd8+eWXGD58OAwMDBATEwNbW1tcu3YNffr0QXp6utARiYgqxYKOqJq4Klr9dPLkSXh6esLFxQU9e/YEAISHhyMmJgbHjx9H//79BU5IihIVFYXg4GDs378fJSUlmDBhAry9vdGhQweho5Gc6Ojo4ObNm7C2tpYp6O7cuQNnZ2c8f/5c6IhERJViQUdEVAXt27fHu+++izVr1si0L168GKdOnUJUVJRAyai2FBUV4dtvv8WiRYtQVFSEtm3bwtfXF15eXtKFc0g5OTk5wd/fH8OGDZMp6LZs2YKgoCC+v4moTuPG4kREVRAfH4+DBw+Wa/f29uYcGxVXVFSEI0eOICgoCKdPn0a3bt3g4+ODhw8f4pNPPsGZM2ewb98+oWPSW/Dz88Ps2bNRUFAAiUSCS5cuYf/+/fD398f3338vdDwiotdiQUdUDb/88kuVz/X09FRgEqptZmZmiI6Ohp2dnUx7dHR0uc3GSTVERUUhKCgI+/fvh1gsxuTJk7Fx40a0atVKes6IESPQuXNnAVOSPEybNg06Ojr49NNPkZ+fjwkTJqBJkybYtGkTxo0bJ3Q8IqLXYkFHVA3Dhw+v0nmcQ6c6Vq1ahfnz52P69OmYMWMG7t27hx49egAom0O3du1a+Pn5CZySFKFz587o378/tm3bhuHDh0NDQ6PcOc2bN+cHfhUxceJETJw4Efn5+cjNzeUXNUSkNDiHjojoNdTU1JCSkgIzMzMEBARgw4YN+PvvvwEATZo0wYIFC+Dr68s5VCqmpKQEP/zwAzw9PbmceT2wevVqTJw4kRtKE5FSYkFHRPQaYrEYqampMt/W5+TkAAAMDAyEikW1QFtbG/Hx8fyQXw+0a9cO165dQ9euXTFp0iSMGTMGDRs2FDoWEVGVcMgl0VvIy8tDWFgYkpOTUVhYKHPM19dXoFQkb//ufWMhVz+0adMG9+7dY0FXD8TExOD69evYu3cv1q9fj48++gj9+/fHxIkTMXz4cOjq6godkYioUuyhI6qhq1evwsPDA/n5+cjLy4OpqSnS09Ohq6sLc3Nz3Lt3T+iIJAdisRhGRkZvHFKZkZFRS4motoSEhGDJkiX4/PPP0bFjR+jp6ckcNzQ0FCgZKVp4eDj27duHQ4cOoaCgANnZ2UJHIiKqFHvoiGpo3rx5GDp0KAIDA2FkZIS//voLGhoamDRpEubOnSt0PJKjlStXwsjISOgYVMs8PDwAlK1Y+2pBL5FIuPCRitPT04OOjg40NTWlQ6yJiOoq9tAR1ZCxsTEiIiLg4OAAY2NjXLx4EY6OjoiIiMCUKVNw8+ZNoSOSHFQ0h47qh7CwsNced3V1raUkVBsSExOxb98+7Nu3D7du3YKrqysmTJiA0aNH8wsdIqrT2ENHVEMaGhoQi8UAAHNzcyQnJ8PR0RFGRkZ48OCBwOlIXrh6Zf3Fgq3+6NatGy5fvgxnZ2d4eXlh/PjxaNq0qdCxiIiqhAUdUQ21b98ely9fhp2dHVxdXbFs2TKkp6djz549aNOmjdDxSE44iIHy8/MrXPjI2dlZoEQkb3379sXOnTvh5OQkdBQiomrjkEuiGoqMjEROTg7c3NyQlpaGyZMn48KFC7Czs8OOHTvg4uIidEQiegtPnjyBl5cXTpw4UeFxzqEjIqK6gAUdERFRBSZOnIikpCQEBASgT58+OHLkCB4/fozVq1djw4YNGDx4sNAR6S34+fnh888/h56eHvz8/F577tdff11LqYiIqo9DLolqyN3dHYcPH4axsbFMe3Z2NoYPH47Q0FBhghGRXISGhuLYsWPo1KkTxGIxrK2t0b9/fxgaGsLf358FnZK7evUqioqKpD8TESkr9tAR1VBlqx+mpaWhadOm0g8KRKScDA0NERsbCxsbG1hbW2Pfvn3o2bMnEhMT0bp1a+Tn5wsdkYiICGKhAxApm9jYWMTGxgIAbty4Ib0eGxuLq1evYseOHVwdjUgFODg44NatWwCAdu3aYfv27Xj06BECAwNhYWEhcDqSJ29v7wr3m8vLy4O3t7cAiYiIqo49dETVJBaLpUvZV/T20dHRwZYtW/ghgEjJ/fDDDyguLsbUqVNx5coVDBw4EBkZGdDU1ERwcDDGjh0rdESSEzU1NaSkpJQbcZGeno7GjRujuLhYoGRERG/GOXRE1ZSYmAiJRAJbW1tcunQJZmZm0mOampowNzeHmpqagAmJSB4mTZok/bljx45ISkrCzZs3YWVlhYYNGwqYjOQlOzsbEokEEokEOTk50NbWlh4rKSnB77//Xq7IIyKqa9hDR0REVIFVq1Zh/vz50NXVlWl//vw51q1bh2XLlgmUjOTl1REXFRGJRFi5ciWWLl1ai6mIiKqHBR3RW0hISEBAQADi4+MBAE5OTpg7dy5atGghcDIieluVDcN7+vQpzM3NuQ+dCggLC4NEIoG7uzt+/vlnmJqaSo9pamrC2toaTZo0ETAhEdGbccglUQ2dPHkSnp6ecHFxQc+ePQEA4eHhaN26NY4fP47+/fsLnJCI3oZEIqmw9yYmJkbmgz8pL1dXVwBlQ+mtrKxe21tHRFRXsYeOqIbat2+Pd999F2vWrJFpX7x4MU6dOoWoqCiBkhHR2zAxMYFIJMKzZ89gaGgo8yG/pKQEubm5+M9//oOtW7cKmJLkKSgoCPr6+njvvfdk2g8dOoT8/HxMmTJFoGRERG/Ggo6ohrS1tREXFwc7OzuZ9tu3b8PZ2RkFBQUCJSOit7Fr1y5IJBJ4e3sjICAARkZG0mOampqwsbFB9+7dBUxI8mZvb4/t27fDzc1Npj0sLAwzZsyQbl9BRFQXccglUQ2ZmZkhOjq6XEEXHR3NVdGIlNjL3pjmzZujR48e0NDQEDgRKVpycjKaN29ert3a2hrJyckCJCIiqjoWdETV9HLlu+nTp2PGjBm4d+8eevToAaBsDt3atWvh5+cncEoieluurq4oLS3F7du3kZaWhtLSUpnjvXv3FigZyZu5uTliY2NhY2Mj0x4TE4MGDRoIE4qIqIo45JKoml6ufGdmZoaAgABs2LABf//9NwCgSZMmWLBgAXx9fTm5nkjJ/fXXX5gwYQKSkpLw7/8qRSIRV7lUIYsWLcKPP/6IoKAgaaEeFhYGb29vjB49GuvXrxc4IRFR5VjQEVWTWCxGamqqzLDKnJwcAICBgYFQsYhIzlxcXGBvb4+VK1fCwsKi3Jc0r86tI+VWWFiI999/H4cOHYK6etngpdLSUkyePBnbtm2DlpaWwAmJiCrHgo6omsRiMR4/fgwzMzOhoxCRAunp6SEmJgYtW7YUOgrVkjt37iA6Oho6Ojpo27YtrK2thY5ERPRGnENHVAP29vZvHFKZkZFRS2mISBG6du2Ku3fvsqCrR+zs7KQLXWVnZ2Pbtm3YsWMHIiMjBU5GRFQ5FnRENbBy5UoOtyJScR9++CE+/vhjpKamom3btuVWu3R2dhYoGSnS2bNnsXPnThw+fBhGRkYYMWKE0JGIiF6LQy6JqqmiOXREpHrEYnG5NpFIBIlEwkVRVMyjR48QHByMoKAgZGVlITMzE/v27cOYMWO4wBUR1XnsoSOqJv7nTlQ/JCYmCh2BFOznn3/Gjh07cO7cOQwaNAgbNmzAoEGDoKenh7Zt2/LvPREpBRZ0RNXETm2i+oELYqi+sWPHSrcs4CrFRKSsyo8nIaLXKi0t5XBLonpiz5496NmzJ5o0aYKkpCQAQEBAAI4dOyZwMpIHHx8fbN26FQMHDkRgYCAyMzOFjkREVG0s6IiIiCqwbds2+Pn5wcPDA1lZWdI5c8bGxggICBA2HMnF9u3bkZKSghkzZmD//v2wsLDAsGHDIJFIUFpaKnQ8IqIqYUFHRERUgS1btuC7777D0qVLoaamJm3v1KkT4uLiBExG8qSjo4MpU6YgLCwMcXFxaN26NRo1aoSePXtiwoQJOHz4sNARiYheiwUdERFRBRITE9G+ffty7VpaWsjLyxMgESmanZ0dvvzySzx48AA//PAD8vPzMX78eKFjERG9Fgs6IiKiCjRv3hzR0dHl2kNCQuDo6Fj7gajWiMViDB06FEePHsWDBw+EjkNE9Fpc5ZKIiKgCfn5+mD17NgoKCiCRSHDp0iXs378f/v7++P7774WOR2/pl19+qdJ5IpEIQ4cOVXAaIqKa48biREREldi7dy9WrFiBhIQEAECTJk2wcuVK+Pj4CJyM3lZFG8dXhJvIE1Fdx4KOiIjoDfLz85Gbm8stS4iIqM5hQUdERERERKSkOIeOiIjof9q3bw+RSFSlc6OiohSchmpTXl4ewsLCkJycjMLCQpljvr6+AqUiInozFnRERET/M3z4cOnPBQUF+Pbbb+Hk5ITu3bsDAP766y9cv34ds2bNEighKcLVq1fh4eGB/Px85OXlwdTUFOnp6dDV1YW5uTkLOiKq0zjkkoiIqALTpk2DhYUFPv/8c5n25cuX48GDB9i5c6dAyUje+vTpA3t7ewQGBsLIyAgxMTHQ0NDApEmTMHfuXIwcOVLoiERElWJBR0REVAEjIyNERkbCzs5Opv3OnTvo1KkTnj17JlAykjdjY2NERETAwcEBxsbGuHjxIhwdHREREYEpU6bg5s2bQkckIqoUNxYnIiKqgI6ODsLDw8u1h4eHQ1tbW4BEpCgaGhrSbQzMzc2RnJwMoKyo58biRFTXcQ4dERFRBT766CPMnDkTUVFR6NKlCwAgIiICO3fuxGeffSZwOpKn9u3b4/Lly7Czs4OrqyuWLVuG9PR07NmzB23atBE6HhHRa3HIJRERUSUOHjyITZs2IT4+HgDg6OiIuXPnYsyYMQInI3mKjIxETk4O3NzckJaWhsmTJ+PChQuws7PDjh074OLiInREIqJKsaAjIiIiIiJSUpxDR0REVImsrCx8//33+OSTT5CRkQGgbP+5R48eCZyM5Mnd3R1ZWVnl2rOzs+Hu7l77gYiIqoE9dERERBWIjY1Fv379YGRkhPv37+PWrVuwtbXFp59+iuTkZOzevVvoiCQnYrEYqampMDc3l2lPS0tD06ZNUVRUJFAyIqI346IoREREFfDz88PUqVPx1VdfwcDAQNru4eGBCRMmCJiM5CU2Nlb6840bN5Camiq9XlJSgpCQEDRt2lSIaEREVcaCjoiIqAKXL1/G9u3by7U3bdpU5oM/KS8XFxeIRCKIRKIKh1bq6Ohgy5YtAiQjIqo6FnREREQV0NLSQnZ2drn227dvw8zMTIBEJG+JiYmQSCSwtbXFpUuXZF5XTU1NmJubQ01NTcCERERvxjl0REREFZg2bRqePn2KgwcPwtTUFLGxsVBTU8Pw4cPRu3dvBAQECB2RiIiIBR0REVFFnj17htGjR0v3KGvSpAlSUlLQvXt3nDhxAnp6ekJHJDlKSEhAQECAdM9BJycnzJ07Fy1atBA4GRHR67GgIyIieo3z588jNjYWubm56NixI/r27St0JJKzkydPwtPTEy4uLujZsycAIDw8HDExMTh+/Dj69+8vcEIiosqxoCMiInrFxYsX8fTpUwwZMkTatmvXLixfvhz5+fkYPnw4tmzZAi0tLQFTkjy1b98e7777LtasWSPTvnjxYpw6dQpRUVECJSMiejNuLE5ERPSKVatW4fr169LrcXFxmD59Ovr374/Fixfj+PHj8Pf3FzAhyVt8fDx8fHzKtXt7e+PGjRsCJCIiqjoWdERERK+Ijo6WGVZ54MABdOnSBd999x38/PywefNmHDx4UMCEJG9mZmaIjo4u1x4dHV1us3EiorqG2xYQERG9IjMzE40aNZJeDwsLw6BBg6TXO3fujAcPHggRjeRs1apVmD9/PqZPn44ZM2bg3r176NGjB4CyOXRr166Fn5+fwCmJiF6Pc+iIiIheYW1tjT179qB3794oLCyEsbExjh8/Lu21i4uLg6urKzIyMgROSm9LTU0NKSkpMDMzQ0BAADZs2IC///4bANCkSRMsWLAAvr6+EIlEAiclIqoce+iIiIhe4eHhgcWLF2Pt2rU4evQodHV10atXL+nx2NhYLmWvIl5+py0SiTBv3jzMmzcPOTk5AAADAwMhoxERVRkLOiIiold8/vnnGDlyJFxdXaGvr49du3ZBU1NTenznzp0YMGCAgAlJnv7d+8ZCjoiUDYdcEhERVeDZs2fQ19eHmpqaTHtGRgb09fVlijxSTmKxGEZGRm8cUsnhtURUl7GHjoiIqAJGRkYVtpuamtZyElKklStXVvpaExEpA/bQERERUb0kFouRmprKrQmISKlxHzoiIiKql7h6JRGpAhZ0REREVC9xkBIRqQIOuSQiIiIiIlJS7KEjIiIiIiJSUizoiIiIiIiIlBQLOiIiIiIiIiXFgo6IiIiIiEhJsaAjIiIiIiJSUizoiIiIiIiIlBQLOiIiIiIiIiXFgo6IiIiIiEhJ/T/JOsKUU7SAagAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Corr1 = [\"TotalDistance\", \"TotalSteps\", \n", + " \"SedentaryMinutes\", \"TotalActiveMinutes\", \"Calories\"]\n", + "\n", + "# Create a correlation matrix and visualize it using a heatmap\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "ax = sns.heatmap(daily_activity[Corr1].corr(), \n", + " annot = True, \n", + " fmt = \".2f\",\n", + " linewidths=0.5,\n", + " cmap=\"icefire\")\n", + "\n", + "ax.set_title('Correlation Matrix');\n", + "\n", + "save_path = '../Images/correlation_matrix.png'\n", + "plt.savefig(save_path)" + ] + }, + { + "cell_type": "markdown", + "id": "f9407f01", + "metadata": {}, + "source": [ + "#### From the correlation matrix, it can be concluded that `TotalSteps` and `Calories` are strongly correlated. Similarly, `TotalSteps` and `TotalActiveMinutes` are strongly correlated." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "f5ea520c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/arjit/Jupyter/notebookenv/lib/python3.10/site-packages/matplotlib/collections.py:1080: UserWarning: Collection without array used. Make sure to specify the values to be colormapped via the `c` argument.\n", + " warnings.warn(\"Collection without array used. Make sure to \"\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAANECAYAAADfROz+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXgT1f4/8HcaaMvWQjeKtLKLsokCYlUQpVIVFCyIggIiIAiiBQXlJ1Lq1YuiV+C6r6BXy1JaRUHhAraIgjsoi3IRi0Ch7LSsrU3P74/znTRJs8wkk0zSvl/PM0/pZDJzMjMp5zPnnM8xCSEEiIiIiIiIKODCjC4AERERERFRbcWAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIqIbp06cP+vTpo+s+9+7dC5PJhEWLFum6X6q5WrZsifvuu8/oYhARBT0GZEREBtuzZw/Gjx+P1q1bIzIyElFRUbj22muxYMECnD9/3ujiGaagoAAmk8luiYmJwdVXX42PPvrI0LLt3LkTs2fPxt69e1VtP3v2bLvPERYWhmbNmmHAgAH49ttvdSnTfffdV+18OVvUBEmff/45Zs+erUu5PDlz5gwyMzPRqVMnNGjQALGxsejatSseeeQRHDx40JAyEREFUh2jC0BEVJutWrUKd955JyIiIjBy5Eh06tQJ5eXl+PrrrzFt2jTs2LEDb731ltHFRIsWLXD+/HnUrVs34Md++OGH0aNHDwDA8ePHsXTpUtx77704deoUJk2aFPDyADIgy8rKQp8+fdCyZUvV73v99dfRsGFDVFZWYv/+/Xj77bfRu3dvfP/99+jatatPZRo/fjxSU1OtvxcWFmLWrFl44IEH0KtXL+v6Nm3aeNzX559/jldffdXvAdDff/+N3r174/fff8eoUaMwefJknDlzBjt27EB2djbuuOMOXHTRRQEtExFRoDEgIyIySGFhIe6++260aNECX375JZo1a2Z9bdKkSfjjjz+watUqA0sIVFRUoLKyEuHh4YiMjDSkDL169cKQIUOsvz/44INo3bo1srOzdQvIzp49iwYNGuiyL3eGDBmCuLg46++DBg1Cp06dkJOT43NAlpKSgpSUFOvvP/74I2bNmoWUlBTce++9Pu3bXz755BNs2bIFH330EYYPH2732oULF1BeXm5QyYiIAoddFomIDDJ37lycOXMG7777rl0wpmjbti0eeeQR6+8LFy7EjTfeiISEBERERKBDhw54/fXXVR3ryJEjGDNmDJo2bYrIyEhcfvnleP/99+22UcaJvfjii5g/fz7atGmDiIgI7Ny50+UYst9//x1DhgxBTEwMIiMj0b17d3z66ad22/z999/IyspCu3btEBkZidjYWFx33XVYu3atyjNlLzw8HE2aNEGdOlXPFN2NcTOZTHatKkr3wZ07d2L48OFo0qQJrrvuOgBy3NOAAQPw9ddf46qrrkJkZCRat26NDz74wPr+RYsW4c477wQA3HDDDdaugAUFBZo/S2JiIgBYP8uZM2fQoEEDu+uuOHDgAMxmM+bMmaP5OLZycnLQrVs31KtXD3Fxcbj33ntRVFRkff2+++7Dq6++CgB2XR0VL774Iq655hrExsaiXr166NatG5YvX+5VWfbs2QMAuPbaa6u9pnTfVVOmyspKzJ8/Hx07dkRkZCSaNm2K8ePH4+TJk3b7VK7vf//7X3Tt2hWRkZHo0KED8vLy7LbT+54lInKHLWRERAb57LPP0Lp1a1xzzTWqtn/99dfRsWNH3H777ahTpw4+++wzTJw4EZWVlW5bis6fP48+ffrgjz/+wEMPPYRWrVohJycH9913H06dOlWt8r9w4UJcuHABDzzwACIiIhATE4PKyspq+92xYweuvfZaNG/eHE888QQaNGiAZcuWYdCgQcjNzcUdd9wBQAZAc+bMwdixY3HVVVehtLQUP/74I37++WfcdNNNHj/36dOncezYMQDAiRMnkJ2dje3bt+Pdd99Vdd5cufPOO9GuXTv885//hBDCuv6PP/7AkCFDMGbMGIwaNQrvvfce7rvvPnTr1g0dO3ZE79698fDDD+Pf//43/t//+3+47LLLAMD6050TJ04AkAFEUVER/vGPfyAyMhJDhw4FADRs2BB33HEHli5dipdeeglms9n63sWLF0MIgXvuucfrz7xo0SKMHj0aPXr0wJw5c3D48GEsWLAA33zzDbZs2YLGjRtj/PjxOHjwINauXYv//Oc/1faxYMEC3H777bjnnntQXl6OJUuW4M4778TKlSvRv39/TeVp0aIFAOCDDz7AzJkz7YIsW57KNH78eOtne/jhh1FYWIhXXnkFW7ZswTfffGPX1Xb37t246667MGHCBIwaNQoLFy7EnXfeidWrV1vvR1/vWSIiTQQREQVcSUmJACAGDhyo+j3nzp2rti4tLU20bt3abt31118vrr/+euvv8+fPFwDEhx9+aF1XXl4uUlJSRMOGDUVpaakQQojCwkIBQERFRYkjR47Y7VN5beHChdZ1ffv2FZ07dxYXLlywrqusrBTXXHONaNeunXXd5ZdfLvr376/6cyry8/MFgGpLWFiYePbZZz2WTwFAZGZmWn/PzMwUAMSwYcOqbduiRQsBQHz11VfWdUeOHBERERHi0Ucfta7LyckRAER+fr6qz6Ic03Fp3LixWL16td22a9asEQDEF198Ybe+S5cudtfVkx9++MHunJSXl4uEhATRqVMncf78eet2K1euFADErFmzrOsmTZokXFURHO/D8vJy0alTJ3HjjTfarW/RooUYNWqU2zKeO3dOtG/fXgAQLVq0EPfdd5949913xeHDh6tt66pMGzduFADERx99ZLd+9erV1dYr1zc3N9e6rqSkRDRr1kxcccUV1nXe3rNERN5gl0UiIgOUlpYCABo1aqT6PfXq1bP+u6SkBMeOHcP111+PP//8EyUlJS7f9/nnnyMxMRHDhg2zrqtbty4efvhhnDlzBhs2bLDbfvDgwYiPj3dblhMnTuDLL7/E0KFDrS1Yx44dw/Hjx5GWlobdu3dbu8E1btwYO3bswO7du1V/VluzZs3C2rVrsXbtWixduhTDhg3Dk08+iQULFni1P8WECROcru/QoYNdEoz4+Hi0b98ef/75p0/HA4Dc3FysXbsW//3vf7Fw4UJccsklGDx4MDZt2mTdJjU1FRdddJFdJsnt27fj119/9Wks2I8//ogjR45g4sSJduMB+/fvj0svvVT1eEXb+/DkyZMoKSlBr1698PPPP2suU7169fDdd99h2rRpAGQL3pgxY9CsWTNMnjwZZWVlHveRk5OD6Oho3HTTTdb78NixY+jWrRsaNmyI/Px8u+0vuugia+stAERFRWHkyJHYsmULiouLAfh+zxIRacEui0REBlDGxpw+fVr1e7755htkZmZi8+bNOHfunN1rJSUliI6Odvq+v/76C+3atUNYmP0zOKWL3V9//WW3vlWrVh7L8scff0AIgaeeegpPPfWU022OHDmC5s2b4+mnn8bAgQNxySWXoFOnTrj55psxYsQIdOnSxeNxAKBz58522QOHDh2KkpISPPHEExg+fLjH4NEVV5/z4osvrrauSZMm1cYjeaN37952ST2GDBmCdu3aYfLkyfjpp58AAGFhYbjnnnvw+uuv49y5c6hfvz4++ugjREZGWseueUO5zu3bt6/22qWXXoqvv/5a1X5WrlyJZ555Blu3brULmFx1N/QkOjoac+fOxdy5c/HXX39h/fr1ePHFF/HKK68gOjoazzzzjNv37969GyUlJUhISHD6+pEjR+x+b9u2bbWyXnLJJQDkWMTExESf71kiIi3YQkZEZICoqChcdNFF2L59u6rt9+zZg759++LYsWN46aWXsGrVKqxduxZTpkwBAKdjvLxl2wLiinK8xx57zNp65bi0bdsWgAxC9uzZg/feew+dOnXCO++8gyuvvBLvvPOO12Xs27cvLly4gO+//x6A62DAYrG43Ierz2k7bsuWsBlnppeGDRuiZ8+e+Pnnn3H27Fnr+pEjR+LMmTP45JNPIIRAdnY2BgwY4DLoDpSNGzfi9ttvR2RkJF577TV8/vnnWLt2LYYPH67L+WnRogXuv/9+fPPNN2jcuLGq+eYqKyuRkJDg8j58+umnNZfDH/csEZErbCEjIjLIgAED8NZbb2Hz5s126cqd+eyzz1BWVoZPP/3UrgXHsTuWMy1atMCvv/6KyspKu1ay33//3fq6Vq1btwYguz7atl65EhMTg9GjR2P06NE4c+YMevfujdmzZ2Ps2LGajw3IdPyAzEoIyBYsADh16pTddo6tf3rxtjXIGdvPoqTe79SpE6644gp89NFHSEpKwr59+/Dyyy/7dBzlOu/atQs33nij3Wu7du2yuw9cfb7c3FxERkZizZo1iIiIsK5fuHChT2Vz1KRJE7Rp08bugYWrMrVp0wbr1q3Dtddeq+phgtK6a7u///3vfwBgN6ec3vcsEZErbCEjIjLI9OnT0aBBA4wdOxaHDx+u9vqePXus46SUVhvbVoiSkhJVFeFbb70VxcXFWLp0qXVdRUUFXn75ZTRs2BDXX3+95rInJCSgT58+ePPNN3Ho0KFqrx89etT67+PHj9u91rBhQ7Rt21bV+CBXVq5cCQC4/PLLAcgWx7i4OHz11Vd227322mteH8MdJXByDAC1OnHiBDZt2oTExMRqXe5GjBiB//73v5g/fz5iY2Nxyy23+HSs7t27IyEhAW+88Ybduf/iiy/w22+/2WVIdPX5zGYzTCaTXcvj3r178cknn3hVpl9++cWaQdPWX3/9hZ07d9p1r3RVpqFDh8JiseAf//hHtf1UVFRU2/7gwYP4+OOPrb+Xlpbigw8+QNeuXa3TEPjjniUicoUtZEREBmnTpg2ys7Nx11134bLLLsPIkSPRqVMnlJeXY9OmTdbU9ADQr18/hIeH47bbbsP48eNx5swZvP3220hISHAaENl64IEH8Oabb+K+++7DTz/9hJYtW2L58uX45ptvMH/+fE2JRWy9+uqruO6669C5c2eMGzcOrVu3xuHDh7F582YcOHAAv/zyCwCZJKNPnz7o1q0bYmJi8OOPP2L58uV46KGHVB1n48aNuHDhAgAZwHz66afYsGED7r77blx66aXW7caOHYvnnnsOY8eORffu3fHVV19ZWz701rVrV5jNZjz//PMoKSlBRESEdY44d5YvX46GDRtCCIGDBw/i3XffxcmTJ/HGG29UawEaPnw4pk+fjo8//hgPPvigXep2b9StWxfPP/88Ro8ejeuvvx7Dhg2zpr1v2bKltfsrAHTr1g0A8PDDDyMtLQ1msxl33303+vfvj5deegk333wzhg8fjiNHjuDVV19F27Zt8euvv2ou09q1a5GZmYnbb78dV199NRo2bIg///wT7733HsrKyuzmj3NVpuuvvx7jx4/HnDlzsHXrVvTr1w9169bF7t27kZOTgwULFthNLH7JJZdgzJgx+OGHH9C0aVO89957OHz4sN3DDV/vWSIiTQzM8EhEREKI//3vf2LcuHGiZcuWIjw8XDRq1Ehce+214uWXX7ZLKf/pp5+KLl26iMjISNGyZUvx/PPPi/fee08AEIWFhdbtHNPeCyHE4cOHxejRo0VcXJwIDw8XnTt3rpYiXkkd/8ILL1Qro6u08nv27BEjR44UiYmJom7duqJ58+ZiwIABYvny5dZtnnnmGXHVVVeJxo0bi3r16olLL71UPPvss6K8vNzteXGW9j48PNzl+8+dOyfGjBkjoqOjRaNGjcTQoUPFkSNHXKa9P3r0aLVjtmjRwmm6c2fn9O233xatW7cWZrPZYwp8Z2nvGzRoIFJSUsSyZctcvu/WW28VAMSmTZtcbuOKY9p7xdKlS8UVV1whIiIiRExMjLjnnnvEgQMH7LapqKgQkydPFvHx8cJkMtmlm3/33XdFu3btREREhLj00kvFwoULrZ/Plpq093/++aeYNWuWuPrqq0VCQoKoU6eOiI+PF/379xdffvml6jIJIcRbb70lunXrJurVqycaNWokOnfuLKZPny4OHjxoV6b+/fuLNWvWiC5dulg/Q05Ojt2+vL1niYi8YRLCD6OUiYiIyGd33HEHtm3bhj/++MPootQILVu2RKdOnaxdXomIggHHkBEREQWhQ4cOYdWqVRgxYoTRRSEiIj/iGDIiIqIgUlhYiG+++QbvvPMO6tati/HjxxtdJCIi8iO2kBEREQWRDRs2YMSIESgsLMT7779vzfxHREQ1E8eQERERERERGYQtZERERERERAZhQEZERERERGQQJvXQSWVlJQ4ePIhGjRpVm9yTiIiIiIhqDyEETp8+jYsuughhYe7bwBiQ6eTgwYNITk42uhhERERERBQk9u/fj6SkJLfbMCDTSaNGjQDIkx4VFWVwaYiIiIiIyCilpaVITk62xgjuMCDTidJNMSoqigEZERERERGpGsrEpB5EREREREQGYUBGRERERERkEAZkREREREREBuEYMiIiIiIiIgcWiwV///2309fq1q0Ls9msy3EYkBEREREREf0fIQSKi4tx6tQpt9s1btwYiYmJPs9BzICMiIiIiIjo/yjBWEJCAurXr18t4BJC4Ny5czhy5AgAoFmzZj4djwEZERERERERZDdFJRiLjY11uV29evUAAEeOHEFCQoJP3ReZ1IOIiIiIiAiwjhmrX7++x22VbVyNM1OLLWREREQ1jcUCbNwIHDoENGsG9OoF6DT4nIioNlAzLszXsWMKBmREREQ1SV4e8MgjwIEDVeuSkoAFC4D0dOPKRURETrHLIhERUU2RlwcMGWIfjAFAUZFcn5dnTLmIiMglBmREREQ1gcUiW8aEqP6asi4jQ25HRERBgwEZERFRTbBxY/WWMVtCAPv3y+2IiChoMCAjIiKqCQ4d0nc7IqJarLKyUpdt1GBSDyIioppA7cSkPk5gSkRUk4WHhyMsLAwHDx5EfHw8wsPDnU4MXV5ejqNHjyIsLAzh4eE+HZMBGRERUU3Qq5fMplhU5HwcmckkX+/VK/BlIyIKEWFhYWjVqhUOHTqEgwcPut22fv36uPjiixEW5lunQwZkRERENYHZLFPbDxkigy/boEx5ujt/PucjIyLyIDw8HBdffDEqKipgcZEIyWw2o06dOrrMRcYxZERERDVFejqwfDnQvLn9+qQkuZ7zkBERqWIymVC3bl1ERkY6XerWravbxNCGBmSvv/46unTpgqioKERFRSElJQVffPGF9fU+ffrAZDLZLRMmTLDbx759+9C/f3/Ur18fCQkJmDZtGioqKuy2KSgowJVXXomIiAi0bdsWixYtqlaWV199FS1btkRkZCR69uyJ77//3i+fmYiIyK/S04G9e4H8fCA7W/4sLGQwRkQUpAztspiUlITnnnsO7dq1gxAC77//PgYOHIgtW7agY8eOAIBx48bh6aeftr6nfv361n9bLBb0798fiYmJ2LRpEw4dOoSRI0eibt26+Oc//wkAKCwsRP/+/TFhwgR89NFHWL9+PcaOHYtmzZohLS0NALB06VJMnToVb7zxBnr27In58+cjLS0Nu3btQkJCQgDPCBERkQ7MZqBPH6NLQUREKpiEcDby1zgxMTF44YUXMGbMGPTp0wddu3bF/PnznW77xRdfYMCAATh48CCaNm0KAHjjjTfw+OOP4+jRowgPD8fjjz+OVatWYfv27db33X333Th16hRWr14NAOjZsyd69OiBV155BYBMYZmcnIzJkyfjiSeeUFXu0tJSREdHo6SkBFFRUT6cASIiIiIiCmVaYoOgGUNmsViwZMkSnD17FikpKdb1H330EeLi4tCpUyfMmDED586ds762efNmdO7c2RqMAUBaWhpKS0uxY8cO6zapqal2x0pLS8PmzZsBAOXl5fjpp5/stgkLC0Nqaqp1G2fKyspQWlpqtxAREREREWlheJbFbdu2ISUlBRcuXEDDhg3x8ccfo0OHDgCA4cOHo0WLFrjooovw66+/4vHHH8euXbuQl5cHACguLrYLxgBYfy8uLna7TWlpKc6fP4+TJ0/CYrE43eb33393We45c+YgKyvLtw9PRERERES1muEBWfv27bF161aUlJRg+fLlGDVqFDZs2IAOHTrggQcesG7XuXNnNGvWDH379sWePXvQpk0bA0sNzJgxA1OnTrX+XlpaiuTkZANLREREREREocbwgCw8PBxt27YFAHTr1g0//PADFixYgDfffLPatj179gQA/PHHH2jTpg0SExOrZUM8fPgwACAxMdH6U1lnu01UVBTq1asHs9kMs9nsdBtlH85EREQgIiJC46clIiIiIiKqEjRjyBSVlZUoKytz+trWrVsBAM2aNQMApKSkYNu2bThy5Ih1m7Vr1yIqKsra7TElJQXr16+328/atWut49TCw8PRrVs3u20qKyuxfv16u7FsREREREREejO0hWzGjBm45ZZbcPHFF+P06dPIzs5GQUEB1qxZgz179iA7Oxu33norYmNj8euvv2LKlCno3bs3unTpAgDo168fOnTogBEjRmDu3LkoLi7GzJkzMWnSJGvr1YQJE/DKK69g+vTpuP/++/Hll19i2bJlWLVqlbUcU6dOxahRo9C9e3dcddVVmD9/Ps6ePYvRo0cbcl6IiIiIiKh2MDQgO3LkCEaOHIlDhw4hOjoaXbp0wZo1a3DTTTdh//79WLdunTU4Sk5OxuDBgzFz5kzr+81mM1auXIkHH3wQKSkpaNCgAUaNGmU3b1mrVq2watUqTJkyBQsWLEBSUhLeeecd6xxkAHDXXXfh6NGjmDVrFoqLi9G1a1esXr26WqIPIiIiIiIiPQXdPGShivOQEREREREREKLzkBEREREREdU2DMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIIYGZK+//jq6dOmCqKgoREVFISUlBV988YX19QsXLmDSpEmIjY1Fw4YNMXjwYBw+fNhuH/v27UP//v1Rv359JCQkYNq0aaioqLDbpqCgAFdeeSUiIiLQtm1bLFq0qFpZXn31VbRs2RKRkZHo2bMnvv/+e798ZiIiIiIiIoWhAVlSUhKee+45/PTTT/jxxx9x4403YuDAgdixYwcAYMqUKfjss8+Qk5ODDRs24ODBg0hPT7e+32KxoH///igvL8emTZvw/vvvY9GiRZg1a5Z1m8LCQvTv3x833HADtm7dioyMDIwdOxZr1qyxbrN06VJMnToVmZmZ+Pnnn3H55ZcjLS0NR44cCdzJICIiIiKiWsckhBBGF8JWTEwMXnjhBQwZMgTx8fHIzs7GkCFDAAC///47LrvsMmzevBlXX301vvjiCwwYMAAHDx5E06ZNAQBvvPEGHn/8cRw9ehTh4eF4/PHHsWrVKmzfvt16jLvvvhunTp3C6tWrAQA9e/ZEjx498MorrwAAKisrkZycjMmTJ+OJJ55QVe7S0lJER0ejpKQEUVFRep4SIiIiIiIKIVpig6AZQ2axWLBkyRKcPXsWKSkp+Omnn/D3338jNTXVus2ll16Kiy++GJs3bwYAbN68GZ07d7YGYwCQlpaG0tJSayvb5s2b7fahbKPso7y8HD/99JPdNmFhYUhNTbVu40xZWRlKS0vtFiIiIiIiIi0MD8i2bduGhg0bIiIiAhMmTMDHH3+MDh06oLi4GOHh4WjcuLHd9k2bNkVxcTEAoLi42C4YU15XXnO3TWlpKc6fP49jx47BYrE43UbZhzNz5sxBdHS0dUlOTvbq8xMRERERUe1leEDWvn17bN26Fd999x0efPBBjBo1Cjt37jS6WB7NmDEDJSUl1mX//v1GF4mIiIiISD2LBSgoABYvlj8tFqNLVCvVMboA4eHhaNu2LQCgW7du+OGHH7BgwQLcddddKC8vx6lTp+xayQ4fPozExEQAQGJiYrVsiEoWRtttHDMzHj58GFFRUahXrx7MZjPMZrPTbZR9OBMREYGIiAjvPjQRERERkZHy8oBHHgEOHKhal5QELFgA2CTRI/8zvIXMUWVlJcrKytCtWzfUrVsX69evt762a9cu7Nu3DykpKQCAlJQUbNu2zS4b4tq1axEVFYUOHTpYt7Hdh7KNso/w8HB069bNbpvKykqsX7/eug0RERERUY2RlwcMGWIfjAFAUZFcn5dnTLlqKUNbyGbMmIFbbrkFF198MU6fPo3s7GwUFBRgzZo1iI6OxpgxYzB16lTExMQgKioKkydPRkpKCq6++moAQL9+/dChQweMGDECc+fORXFxMWbOnIlJkyZZW68mTJiAV155BdOnT8f999+PL7/8EsuWLcOqVaus5Zg6dSpGjRqF7t2746qrrsL8+fNx9uxZjB492pDzQkRERETkFxaLbBlzlmhdCMBkAjIygIEDAbM54MWrjQwNyI4cOYKRI0fi0KFDiI6ORpcuXbBmzRrcdNNNAIB58+YhLCwMgwcPRllZGdLS0vDaa69Z3282m7Fy5Uo8+OCDSElJQYMGDTBq1Cg8/fTT1m1atWqFVatWYcqUKViwYAGSkpLwzjvvIC0tzbrNXXfdhaNHj2LWrFkoLi5G165dsXr16mqJPoiIiIiIQtrGjdVbxmwJAezfL7fr0ydgxarNgm4eslDFeciIiIiIKOgtXgwMH+55u+xsYNgw/5enhgrJeciIiIiIiMjPmjXTdzvyGQMyIiIiIqLaolcvmU3RZHL+uskEJCfL7SggGJAREREREdUWZrNMbQ9UD8qU3+fPZ0KPAGJARkRERERUm6SnA8uXA82b269PSpLrOQ9ZQBk+MTQREREREQVYerpMbb9xI3DokBwz1qsXW8YMwICMiIiIiKg2MpuZ2j4IsMsiERERERGRQRiQERERERERGYRdFomIiIiIgp3FwvFeNRQDMiIiIiKiYJaXBzzyCHDgQNW6pCSZvp4ZEUMeuywSEREREQWrvDxgyBD7YAwAiork+rw8Y8pFumFARkREREQUjCwW2TImRPXXlHUZGXI7ClkMyIiIiIiIgtHGjdVbxmwJAezfL7ejkMWAjIiIiIgoGB06pO92FJQYkBERERERBaNmzfTdjoISAzIiIiIiomDUq5fMpmgyOX/dZAKSk+V2FLIYkBERERERBSOzWaa2B6oHZcrv8+dzPrIQx4CMiIiIiChYpacDy5cDzZvbr09Kkus5D1nI48TQRERERETBLD0dGDhQZlM8dEiOGevViy1jNQQDMiIiIiKiYGc2A336GF0K8gN2WSQiIiIiIjIIAzIiIiIiIiKDMCAjIiIiIiIyCAMyIiIiIiIigzAgIyIiIiIiMggDMiIiIiIiIoMwICMiIiIiIjIIAzIiIiIiIiKDMCAjIiIiIiIyCAMyIiIiIiIigzAgIyIiIiIiMggDMiIiIiIiIoMwICMiIiIiIjKIoQHZnDlz0KNHDzRq1AgJCQkYNGgQdu3aZbdNnz59YDKZ7JYJEybYbbNv3z70798f9evXR0JCAqZNm4aKigq7bQoKCnDllVciIiICbdu2xaJFi6qV59VXX0XLli0RGRmJnj174vvvv9f9MxMRERERESkMDcg2bNiASZMm4dtvv8XatWvx999/o1+/fjh79qzdduPGjcOhQ4esy9y5c62vWSwW9O/fH+Xl5di0aRPef/99LFq0CLNmzbJuU1hYiP79++OGG27A1q1bkZGRgbFjx2LNmjXWbZYuXYqpU6ciMzMTP//8My6//HKkpaXhyJEj/j8RRERERERUK5mEEMLoQiiOHj2KhIQEbNiwAb179wYgW8i6du2K+fPnO33PF198gQEDBuDgwYNo2rQpAOCNN97A448/jqNHjyI8PByPP/44Vq1ahe3bt1vfd/fdd+PUqVNYvXo1AKBnz57o0aMHXnnlFQBAZWUlkpOTMXnyZDzxxBMey15aWoro6GiUlJQgKirKl9NAREREREQhTEtsEFRjyEpKSgAAMTExdus/+ugjxMXFoVOnTpgxYwbOnTtnfW3z5s3o3LmzNRgDgLS0NJSWlmLHjh3WbVJTU+32mZaWhs2bNwMAysvL8dNPP9ltExYWhtTUVOs2REREREREeqtjdAEUlZWVyMjIwLXXXotOnTpZ1w8fPhwtWrTARRddhF9//RWPP/44du3ahby8PABAcXGxXTAGwPp7cXGx221KS0tx/vx5nDx5EhaLxek2v//+u9PylpWVoayszPp7aWmpl5+ciIiIiIhqq6AJyCZNmoTt27fj66+/tlv/wAMPWP/duXNnNGvWDH379sWePXvQpk2bQBfTas6cOcjKyjLs+EREREREFPqCosviQw89hJUrVyI/Px9JSUlut+3ZsycA4I8//gAAJCYm4vDhw3bbKL8nJia63SYqKgr16tVDXFwczGaz022UfTiaMWMGSkpKrMv+/ftVfloiIiIiIiLJ0IBMCIGHHnoIH3/8Mb788ku0atXK43u2bt0KAGjWrBkAICUlBdu2bbPLhrh27VpERUWhQ4cO1m3Wr19vt5+1a9ciJSUFABAeHo5u3brZbVNZWYn169dbt3EUERGBqKgou4WIiIiIiEgLQ7ssTpo0CdnZ2VixYgUaNWpkHfMVHR2NevXqYc+ePcjOzsatt96K2NhY/Prrr5gyZQp69+6NLl26AAD69euHDh06YMSIEZg7dy6Ki4sxc+ZMTJo0CREREQCACRMm4JVXXsH06dNx//3348svv8SyZcuwatUqa1mmTp2KUaNGoXv37rjqqqswf/58nD17FqNHjw78iSEiIiIiolrB0LT3JpPJ6fqFCxfivvvuw/79+3Hvvfdi+/btOHv2LJKTk3HHHXdg5syZdi1Sf/31Fx588EEUFBSgQYMGGDVqFJ577jnUqVMVbxYUFGDKlCnYuXMnkpKS8NRTT+G+++6zO+4rr7yCF154AcXFxejatSv+/e9/W7tIesK090REREREBGiLDYJqHrJQxoCMiIiIiIiAEJ6HjIiIiIiIqDYJmrT3RERERFRDWCzAxo3AoUNAs2ZAr16A2Wx0qYiCEgMyIiIiItJPXh7wyCPAgQNV65KSgAULgPR048pFFKTYZZGIiIiI9JGXBwwZYh+MAUBRkVyfl2dMuYiCGAMyIiIiIvKdxSJbxpzli1PWZWTI7YjIigEZEREREflu48bqLWO2hAD275fbeWKxAAUFwOLF8ieDOKrBOIaMiIiIqCYxKqHGoUP6bMcxaFTLsIWMiIiIqKbIywNatgRuuAEYPlz+bNkyMGO3mjXzfTuOQaNaiBND64QTQxMREZGhlGDGsWpnMsmfy5f7t4XJYpHBX1GR83FkJpNs6SosdN5ip7zfVbdHT++33Q9T7pPBODE0ERERUW0SDAk1zGbZrRCoCgIVyu/z57sOjvQYg2ZkCyGRlxiQEREREYU6PRNq+CI9XbbENW9uvz4pyXMLna9j0NjdkUIUk3oQERERhTq9EmroIT0dGDhQe7dBX8ageWohNJlkC+HAgey+SEGHARkRERFRKLNYgMOH1W2rNujxldkM9Omj7T29esmWNE9j0Hr1qv6alhZCreUi8jN2WSQiIqoJOG9T7aSMmZoyxf12JhOQnOw8mAkWvoxBC6YWQiKNGJARERGFOiYyqJ1cjZlypCahRrDwdgyaHin3iQzCtPc6Ydp7IiIyhNGpzskYnlLE24qPB159FbjzTr8XSzdaU9f7mnKfSGdaYgMGZDphQEZERAGn17xNFHoKCmRLqFpJSbI7YE0OzpWHE4B9UMaHE2QAzkNGRERUGwRLqnMKPK1joWpD6vf0dGDpUiA21n69mpT7RAbSJSA7deqUHrshIiIiLZjIoPbSOhYqUJNDGykvD5g6FTh2rGpdfDzw0ksMxiioaQ7Inn/+eSxdutT6+9ChQxEbG4vmzZvjl19+0bVwRERE5AYTGdReSop4x2yE7tTkFlNXCU6OHQOGDq3ZLYMU8jQHZG+88QaSk5MBAGvXrsXatWvxxRdf4JZbbsG0adN0LyARERG54KlSHgqpzsk77lLEexLoFlN/T8ngaVJooGa3DFLI0xyQFRcXWwOylStXYujQoejXrx+mT5+OH374QfcCEhERkQu+zNtEoc9VinhPAtliGogpGTiWkkKc5oCsSZMm2L9/PwBg9erVSE1NBQAIIWDhkwciIqLA8nbeJqoZ0tOBvXuB/Hzgww/lmKlgaTF11Y1Q7wQjHEtJIa6O1jekp6dj+PDhaNeuHY4fP45bbrkFALBlyxa0bdtW9wISERGRB+npwMCB2uZtoprDbAb69JH/rldPBjsmk/PU7/5uMVXmDysqAqZMcd2N0GSS3QgHDvS9PBxLSSFOc0A2b948tGzZEvv378fcuXPRsGFDAMChQ4cwceJE3QtIREREKthWyqn2UlpMH3nEvmUqKUkGY/5sMc3Lq35cV2y7Efp63ypjKT1NCs2xlBSkODG0TjgxNBEREQUNpaUqUC2mSvdErdXK7Gxg2DD9jg9wUmgKClpiA80tZACwa9cuvPzyy/jtt98AAJdddhkmT56M9u3be7M7IiIiItJTIFtM3WU59ESvboRGtgwS+UhzQJabm4u7774b3bt3R0pKCgDg22+/RadOnbBkyRIMHjxY90ISERER1RiBbr3yN09ZDp3xRzdCjqWkEKU5IJs+fTpmzJiBp59+2m59ZmYmpk+fzoCMiIiIyJWcHGDiRDlhsSIpSU5fEKqtOFqzF/ozwQjHUlII0pz2/tChQxg5cmS19ffeey8OMZ0oERERkXPTpwNDh9oHY4BsXdIzDXygae12yCkZiOxoDsj69OmDjU4m1vv666/Ri9lriIiIiKpbvhx44QXXrwsh08CH4pyuSpZDV/OfAXJ+tA8/lPOlFRYyGCOyobnL4u23347HH38cP/30E66++moAcgxZTk4OsrKy8Omnn9ptS0RERFSrWSyym6IneqWB15Oa8W5ms+xy6W7+szfeYBBG5ILmtPdhYeoa1UwmEyyh+JTHS0x7T0REuqhpCR+CjRHnt6AAuOEGddvqlQZeD87mFXM33s3Z9snJzHJItZKW2EBzl8XKykpVi5pgbM6cOejRowcaNWqEhIQEDBo0CLt27bLb5sKFC5g0aRJiY2PRsGFDDB48GIcPH7bbZt++fejfvz/q16+PhIQETJs2DRUVFXbbFBQU4Morr0RERATatm2LRYsWVSvPq6++ipYtWyIyMhI9e/bE999/r/X0EBEReS8vD2jZUlbehw+XP1u2DN2xRcHGqPOrZYy9XmngvWGxyOBx8WLg6adli5dj9sSiItfj3dLTgb17ZbfE7Gx2TyRSSXNAZuvChQs+HXzDhg2YNGkSvv32W6xduxZ///03+vXrh7Nnz1q3mTJlCj777DPk5ORgw4YNOHjwINJtvtgWiwX9+/dHeXk5Nm3ahPfffx+LFi3CrFmzrNsUFhaif//+uOGGG7B161ZkZGRg7NixWLNmjXWbpUuXYurUqcjMzMTPP/+Myy+/HGlpaThy5IhPn5GIiEgVZWJbLRVgUs/I86s2yAoLA665xn/lcMcxWM3MdD6vmLLO1Xg3JcvhsGHyJ1t3iTwTGlVUVIinn35aXHTRRcJsNos9e/YIIYSYOXOmeOedd7Tuzs6RI0cEALFhwwYhhBCnTp0SdevWFTk5OdZtfvvtNwFAbN68WQghxOeffy7CwsJEcXGxdZvXX39dREVFibKyMiGEENOnTxcdO3a0O9Zdd90l0tLSrL9fddVVYtKkSdbfLRaLuOiii8ScOXNUlb2kpEQAECUlJRo/NRER1XoVFUIkJQkhq7vVF5NJiORkuR1p5+/zW1EhRH6+ENnZ8qfjfioqhIiPd3182yU/38cP64XcXHkO1JTP6LIShQgtsYHmFrJnn30WixYtwty5cxEeHm5d36lTJ7zzzjs+BYclJSUAgJiYGADATz/9hL///hupqanWbS699FJcfPHF2Lx5MwBg8+bN6Ny5M5o2bWrdJi0tDaWlpdixY4d1G9t9KNso+ygvL8dPP/1kt01YWBhSU1Ot2xAREfmNp4l1hahK+EDa+fP8qukGaTYD99yjbn+BnkLIYpHjvrSlFJA43RGRLjQHZB988AHeeust3HPPPTDbNENffvnl+P33370uSGVlJTIyMnDttdeiU6dOAIDi4mKEh4ejcePGdts2bdoUxcXF1m1sgzHldeU1d9uUlpbi/PnzOHbsGCwWi9NtlH04KisrQ2lpqd1CRETkFbUVW1aAveOv86ulG+TAger2GegxZJ6CVXeMHO9G5Mh2DGRBQUhNIaE5ICsqKkLbtm2rra+srMTff//tdUEmTZqE7du3Y8mSJV7vI5DmzJmD6Oho65KcnGx0kYiIKFSprdiyAuwdf5xfdy1LzsZZKXN1uWIyyYyEgZ7TtahI+3uMKiuRKyGeEElzQNahQwenE0MvX74cV1xxhVeFeOihh7By5Urk5+cjyeaPVWJiIsrLy3Hq1Cm77Q8fPozExETrNo5ZF5XfPW0TFRWFevXqIS4uDmaz2ek2yj4czZgxAyUlJdZl//792j84ERER4HliXVaAfeOP86u1G6QyV5fJVL0cyu/z5wc2CUZeHjBlirb3GFVWIldqQEIkzQHZrFmz8NBDD+H5559HZWUl8vLyMG7cODz77LN2mQ3VEELgoYcewscff4wvv/wSrVq1snu9W7duqFu3LtavX29dt2vXLuzbtw8pKSkAgJSUFGzbts0uG+LatWsRFRWFDh06WLex3YeyjbKP8PBwdOvWzW6byspKrF+/3rqNo4iICERFRdktREREXlEq60DwVNZrEn+cX2+6QaanA8uXA82b22+TlCTXBzI9vFKJPXpU2/uMKCuRK1pbqoOVN1lDvvrqK5Gamiri4+NFvXr1xLXXXivWrFmjeT8PPvigiI6OFgUFBeLQoUPW5dy5c9ZtJkyYIC6++GLx5Zdfih9//FGkpKSIlJQU6+sVFRWiU6dOol+/fmLr1q1i9erVIj4+XsyYMcO6zZ9//inq168vpk2bJn777Tfx6quvCrPZLFavXm3dZsmSJSIiIkIsWrRI7Ny5UzzwwAOicePGdtkb3WGWRSIi8llubvVsgMnJcj35Ts/zm5/vfSZCT1kZ/c1T1knHJSvLuLISuePL99DPtMQGXgVkegHgdFm4cKF1m/Pnz4uJEyeKJk2aiPr164s77rhDHDp0yG4/e/fuFbfccouoV6+eiIuLE48++qj4+++/7bbJz88XXbt2FeHh4aJ169Z2x1C8/PLL4uKLLxbh4eHiqquuEt9++63qz8KAjIiIdGF0Zb2m0+v8KkGNq3TxwTxVgdpKbHw8HwZQcMvOVncvZ2cHvGhaYgOTENrynLZu3Ro//PADYmNj7dafOnUKV155Jf78808d2u1CT2lpKaKjo1FSUsLui0RERKHCYpHjvA4dkkk9evVS33VR6fYH2HeZUrpBBmvXvsWLZeIDTz74ABgxwv/lIfJWQYFM4OFJfr6cqDyAtMQGmseQ7d27FxYn/TDLyspQ5E2mHiIiIiIj+JqZLZjGhGmhNpvk1KkhkRCBarEakhCpjtoNP/30U+u/16xZg+joaOvvFosF69evR8uWLXUtHBEREZFfKK1bjh2FlMxsagOq9HQ5x5i3rWxGUCqxRUXuJ4Q+dkzbuSAKNCVhz5AhMvhy1lIdAgmRVHdZDAuTjWkmkwmOb6lbty5atmyJf/3rXxgwYID+pQwB7LJIREQUIiwW2RLmKm29ySQDlsLCoK/Iec1Vd0tHteFcUOjLy5PZFm2/08nJMhgz6GGClthA8xiyVq1a4YcffkBcXJxPhaxpGJAREVHQ82W8VE0SxONOAiovD5gwQV3q+5p+Lij0BdnfNy2xgeoui4rCwkKvC0ZEREQGcfYEOSlJdvcJhe5oela2vJlDzB+MrkCmpwPnzwP33ut5Wz3OhdGfl2o2szlkHxqoTuqxefNmrFy50m7dBx98gFatWiEhIQEPPPAAysrKdC8gERERLBbZqrF4sfwZ7JN8Bhule5pjFz1lvFSwJ27wNfmGI7VJLdRu5w1PnylQ97xjQhJXfD0Xel9DohpEdUD29NNPY8eOHdbft23bhjFjxiA1NRVPPPEEPvvsM8yZM8cvhSQiolqMFTnfWCyyZczZCAVlXUZG8Aa5egeTFotcYmJcb+PvzGyePtP06YG75wORpS7UHwgQ+ZnqMWTNmjXDZ599hu7duwMAnnzySWzYsAFff/01ACAnJweZmZnYuXOn/0obxDiGjIjID1xlwgv2eZ6CSSiPl9I7+YazbpvO9gn4797y9Jlc8We5/DmfGhOoUC3ll3nITp48iaZNm1p/37BhA2655Rbr7z169MD+/fu9KC4REZETod6yEyyCZbyUNzZudB+4CAHs3y+388RVK40jf88h5ukzueLPe96f86npeQ2JaijVAVnTpk2tCT3Ky8vx888/4+qrr7a+fvr0adStW1f/EhIRUe3Eipw+gmG8lLf0CibdBfeKmBhg3TrZUuPPVldfAl9/3vPp6cDevbKlNDtb/tTjXITyAwGiAFGdZfHWW2/FE088geeffx6ffPIJ6tevj142/Yl//fVXtGnTxi+FJCKiWogVOX14mgRY6TLmr/FSvtArmFTTKnXihOwy5+9uc3oEvv665/2RpS6UHwgQBYjqFrJ//OMfqFOnDq6//nq8/fbbePvttxEeHm59/b333kO/fv38UkgiIqqFWJHTh9ksU9sD1RM3KL/Pnx+c43f0SjgRTMG9p8+kRijd84FIGkIU4lQHZHFxcfjqq69w8uRJnDx5EnfccYfd60pSDyIiIl2wIqcff44R8ie9gslgCu7dfSZPQvGeD+UHAkQBojogU0RHR8Ps5EsTExNj12JGRETkE1bk9OWvMUL+pkcwGWzBvavPlJwMTJsmy1OT7nlfriHnIKRaQHXae3KPae+JiPzEWary5GRZMQ32YIL0Y7HIsWCHDsmWrF69tAUm/kzt7i1Xn6mm3vNar6Gz85CUJB/UhPJ5oFpBS2zAgEwnDMiIiPzI18q40funwKoJgU5tvyc5ByGFOAZkBmBARkQUokLtKXxtr6h74ul68vwFP04mTTUAAzIDMCAjIgpBofYUPtSCx0ALtetJzhUUADfc4Hm7/Hz90/QT6URLbKBqHrJPP/1U9cFvv/121dsSEREZxt1kwULISnxGBjBwYHA8hXcVbBQVyfW1PdgItevpDFvvpGCapoAoAFQFZIMGDVK1M5PJBAuz3xARBQ4rcK55OjeeJgsWAti/X25n9FP4mhBs+FsoXU9n2PpZJZimKSAKAFVp7ysrK1UtDMaIiAIoL0+Os7jhBmD4cPmzZUu5vrZTc25C6Sm8lmCjtgql6+lIaf10vMZK62dt+04H2zQFRH6meR4yIiIKAqzAuab23ITSU/hQDjYCJZSupy1PrZ+AbP2sTQ+9OQch1TJeJfU4e/YsNmzYgH379qG8vNzutYcffli3woUSJvUgooBhBjLXtJwbQG5bVOS8MgwAsbHA4cPGn0cmOfDM07VXLFsG3HlnQIqkSihfW393mQ6laQqIHPg1y+KWLVtw66234ty5czh79ixiYmJw7Ngx1K9fHwkJCfjzzz99KnyoYkBGRAETyhU4f9N6bvLygMGD3W+bm2t85U8JNlwFj7U5CLe1fLnnYCs5ObjO0+LFslutJ9nZwLBh/i+PWoEa88ZxshSitMQGmrssTpkyBbfddhtOnjyJevXq4dtvv8Vff/2Fbt264cUXX/S60EREpBK7r7mm9dwMHChbwVxRkmUY3V2MXbjcs1hkMP7LL563DbaxdqHY1TKQXabNZvnwZNgw+bO23uNUo2kOyLZu3YpHH30UYWFhMJvNKCsrQ3JyMubOnYv/9//+nz/KSEREtkKxAhcoWs/Nxo3A8eOutwumZBnp6bIFqHlz+/VJSbU75b1tApdnnlH3nmB6WBFqCSw45o1Id5oDsrp16yIsTL4tISEB+/btAwBER0dj//79+paOiIiqC7UKXCBpPTeh1tqYng7s3Su7XGZny5+FhbU7GHPWUuNJMD2sCLXWT2b8NIbSCrx4sfzJgLdG0RyQXXHFFfjhhx8AANdffz1mzZqFjz76CBkZGejUqZPuBSQiIgehVoELJK3nJhRbG9mFS3LXUuNKsD6sCKXWz1B7iFETcIqTGk9zQPbPf/4Tzf7vP6Znn30WTZo0wYMPPoijR4/izTff1L2ARETkRKhU4Ix4qqvl3LC1MXR5aqlxFOwPK0Kl9TMUH2KEMk5xUit4lfaeqmOWRSIyRDBnIAtUFjZXnJ0boPq6FStkxQZw3tqSkSGTfwTTua3pXN3Xtut37lQ/ZgxgunS9MONn4HCKk5Dm17T3N954I/Ly8tC4ceNqBx00aBC+/PJLzQWuCRiQERH9H4sFePZZIDOz+mtKK4URrXjuAkSg+mtKAOC4LSv0zun1cMDVdRo2TLa0ah0vBgAzZwKzZ4dupVXtuQ3UAxql1QawD8qM/H7XRJziJKT5Ne19QUFBtcmgAeDChQvYyAGcRES1mzLWwVkwBhiXhc1Ttx+gqrtYRob83bF87CLkml5jXFxdpwMHgBde8C4YA4C+fUM3GHN2bhMSgKeftr9HAznOKFS6TIc6jterNVS3kP36668AgK5du+LLL79ETEyM9TWLxYLVq1fjzTffxN69e/1S0GDHFjIiqtXctYq5Eqinulq6/QC1t4uQp9YVV68rQZSr7mvLl8sun55abjxdJ28F20TQWrg7t4CcQ++hh4Dt2+UE5o68bbEKtha5UKH3+WALWUjTFBsIlUwmkwgLCxNhYWHCZDJVW+rXry/effddtbsTQgixYcMGMWDAANGsWTMBQHz88cd2r48aNUoAsFvS0tLstjl+/LgYPny4aNSokYiOjhb333+/OH36tN02v/zyi7juuutERESESEpKEs8//3y1sixbtky0b99eREREiE6dOolVq1Zp+iwlJSUCgCgpKdH0PiKikJebK0RSkhCy2qh+yc4OTPny89WVJz9f27Y1ibNrmJQk17t7PSfH87Vv0ECIuDj7dTExQmRlCVFRUVUGtede66J8hlBTUeHd98pxMZmESE62P9fueLoXyDl/nDflHjCZ9Lm2FFBaYgPVXRYLCwuxZ88eCCHw/fffo7Cw0LoUFRWhtLQU999/v6bI8ezZs7j88svx6quvutzm5ptvxqFDh6zL4sWL7V6/5557sGPHDqxduxYrV67EV199hQceeMD6emlpKfr164cWLVrgp59+wgsvvIDZs2fjrbfesm6zadMmDBs2DGPGjMGWLVswaNAgDBo0CNu3b9f0eYiIah1v54ECApeFTUu3n9rYRchTd87p012/fuednq/92bPAsWP2606ckK2pTZtWdanzxznNygrd7nNas0i6omVeMGb0846/zhunOKk9/B8fqgMXLWQDBw50+Z6dO3cKAOKHH36wrvviiy+EyWQSRUVFQgghXnvtNdGkSRNRVlZm3ebxxx8X7du3t/4+dOhQ0b9/f7t99+zZU4wfP151+dlCRkS1jrdP8AP9VJctZK6puYZms39armzvh9xc/VvIkpJCu+UgO1vf8+GpRdrTvcDWGOcCcd6ctb4lJ7PVMsj5pYXM1p49ezB58mSkpqYiNTUVDz/8MPbs2aNnnGhVUFCAhIQEtG/fHg8++CCOHz9ufW3z5s1o3Lgxunfvbl2XmpqKsLAwfPfdd9ZtevfujfDwcOs2aWlp2LVrF06ePGndJjU11e64aWlp2Lx5s18+ExGRU0bM2aWFY/kKCrx/gh/Ip7pa5hqrbfOSqWmF8fd9KIRMpHLNNe7PvVomk1wWLAjtlgO9W5A97c/TvaClpa02CcR5C5U56shrmgOyNWvWoEOHDvj+++/RpUsXdOnSBd999x06duyItWvX6lq4m2++GR988AHWr1+P559/Hhs2bMAtt9wCy//951BcXIyEhAS799SpUwcxMTEoLi62btO0aVO7bZTfPW2jvO5MWVkZSktL7RYiIq8FMkOaN5yVb+hQ7fsxIgublm4/ta2LULB0vdy/H3j5ZfcJLNSqKZn+lIcDvlL7EKE2dtfVQ6DOm9ksE3cMGyZ/1pS/QQQAqKP1DU888QSmTJmC5557rtr6xx9/HDfddJNuhbv77rut/+7cuTO6dOmCNm3aoKCgAH379tXtON6YM2cOsrKyDC0DEdUQrjKpKeMPjK5cuirfiRPa9pOZCTz1lDEVCSVNt7P5rRwnC9aybagL1Dg+NR57rOrfYWFAZaX6986bJ8ej1aRMf8rDgcGDfd+Xp4cIFgtw+LC6fQXTPRMM1J4PnjdyQ3ML2W+//YYxY8ZUW3///fdj586duhTKldatWyMuLg5//PEHACAxMRFHjhyx26aiogInTpxAYmKidZvDDn9klN89baO87syMGTNQUlJiXfbv3+/bhyOi2slikRV/Z60CyrpHHgHWrzemK6O78mnl7VNdvbpyaun2U1u6CHnqomkULcEYIIOxmthykJ4u09nHxnr3fjWthUrr95Qp7vdV07rr6kVNN+ekJPl3K1i7o5PhNAdk8fHx2Lp1a7X1W7durdZ9UG8HDhzA8ePH0ez/njKkpKTg1KlT+Omnn6zbfPnll6isrETPnj2t23z11Vf4+++/rdusXbsW7du3R5MmTazbrF+/3u5Ya9euRUpKisuyREREICoqym4hItJMzfiDAweA1FRjujLqlekN8K7Ljt5dObV0+6kNXYTcddEMJTW59SE9XbZeZWUBNnPAepSVJR8qeArG1GZJFaJmddfVi6duzkIA588b9zecQoPaTCFZWVni7NmzIisrSzRu3Fg899xz4quvvhJfffWVmDNnjmjcuLF4+umnNWUfOX36tNiyZYvYsmWLACBeeuklsWXLFvHXX3+J06dPi8cee0xs3rxZFBYWinXr1okrr7xStGvXTly4cMG6j5tvvllcccUV4rvvvhNff/21aNeunRg2bJj19VOnTommTZuKESNGiO3bt4slS5aI+vXrizfffNO6zTfffCPq1KkjXnzxRfHbb7+JzMxMUbduXbFt2zbVn4VZFonIK95kUjOZqjLTBWP5XC1aMxPm5jqffyeQn7+2WLZMiNhY/2ZT9HYJC2PmP0VFhfweZWfLedxiYqqfk9hYdd8NrVlSY2Nrz3n2hrNMiK6+U/wbVitoiQ1UB2RhYWHi8OHDorKyUrz00kuiefPm1kmhmzdvLubPny8qKys1FTQ/P18AqLaMGjVKnDt3TvTr10/Ex8eLunXrihYtWohx48aJ4uJiu30cP35cDBs2TDRs2FBERUWJ0aNHu50Yunnz5uK5556rVpZly5aJSy65RISHh4uOHTtyYmgiCoysLO8qqYGqiOqRitybsqqpLMbHC2EzpQl5yduJvQO19Ozp/t6qzZXaigoh1q0TYuZMuaxbp/575s13u6ZM9+AvtgHzunVCNG9u/N9wMoyW2MAkhBBqWtLCwsKqZTU8ffo0AKBRo0Z6NtqFpNLSUkRHR6OkpITdF4lInbw83wfs5+fL7nT+YrEACQnqE3goXXRsfwe0JyYpKJBdezyJjwfeeKPmje0KFFcJW0LFtGnA3LlGlyI0LV4su9BpkZ0tu/CSZ2r/hvn7bzgZRktsoGkMmcmhb2yjRo0YjBEReUNJluErf6egNpvVlzMqCrjoIvt13qYgV/u5jh6VAUUwj8cI1vnl9EzYYgSTCViyJHjOZ6jxZtxdTR6rpzdOI0AaaEp7f8kll1QLyhyd0JoGmYioNvJlUmVbgaggPfkk8K9/AZ7mWywtlZna+vSRlQxfUpBr/VwZGcDAgcGXcCAvz3n6/AULZHk3bvT9XHlLz4QtRhCiasJdtjBop2QHLCryHJQrmQJrY4ZFi8W77ynT4ZMGmgKyrKwsREdH+6ssRES1w7JlwOjRvu0jkBUksxm4/36ZYc2TrCygSxffuzVpqSwGa8Xc3fxygwfLVObHj1etVwK1QHW/XLHCf/vOygJeeUW2YPobWxi8o2QHHDKkeldjWzVxQnS13D1Q8fQ99fQ3rDYHuVSNT2PIqArHkBGRKoMGaa8I6zUuyxdqx0MAcq6iwkLfK29axzcF0/gWi0WmtvamBSo3V9/r6uwJPyD/7a+AKTtbBp3NmwPHjrnftmFDeU//37h0ALKiOm6cnEzck1Abg+Nti4u/OAs6bCUnGzshulHny9XfHy1/f5V9AMb/DXcl2O7HGkRTbKA2U4iSZZGcY5ZFIvLo0Ue1ZybMyameAS85OfCZ5bSmyNYrG1turhBxceqOuW6dPsfUgy/ZKfVML+4sg2JSkvfZPbVef2XqAmfTF9je6yaTLFN2tnxvRUXVPefqvUZnqbPNqKeU2RNX18PoTJGO2QHXrdP2ufzFqPPl6e+dlnvP2Wcw4m+42rIFw/1YQ/gl7b3JZGJA5gYDMiJyq6zM/XxKzhblP0VvKn7ecnes3Fz1Zc/O1q9MZWUyxb2nYwZTRcLX+dtmz/a9DO7mcVNbDi3b2l4Hx/vGXfpvdxVcVwGd0fM4eVORdXU9lCUriynQbRk5D6HaBypqHzwF8m+4Wpzn0e/8EpCRewzIiMitefO0V2wD/R+iu9YUpSKRmamu7FlZ+pdNTfAQLBUJPeZv8/Q53FXytLZo6rk4K/e6dd5XcIOthcGbiqza6xFMDxWMpGcLlafjOPsOqX2gkpHh6yc1RqDOby3HgMwADMiIyK2HHtJWqQ30f4ient4rS/PmQsTE6BNQaLFsWXCeN1c8dbdTs7j7HJ5aaHwNCE0m9ddZWWJjXV9ztRVcVy2rwdLCUFbmvgutq/tPy/UIlocKvvD1eundQuWMu++Q2uPHxxv/t8YbgTi/pCk20DQPGRERealNG23bC1GVOdDftMxHdfCgukmiTSaZil7rHFHO5uxavlx9so5Anjd3lAx2QNUAfq1cfQ5lQnHHJAwHDsj1eXm+ZR5Uynv77eq2v/deYN064PBh1wkKfE0BbjbLxB3DhsmfRiQdyMvznKTE1f2n9Xp4890JFnl5MqHNDTfIiadvuEH+rmWuQH/P4aUk23D8DhUVyfXHjslJ5z05etT4vzXe4BxpQYcBGRFRIEycCIR58SdX63+IriYhdrZeWTd7tvpsgELICrvnjFHaAyNnFbmmTYE779ReOQ2GikR6ugwmmze3X6/lPnD8HBYL8MAD7t/zwAOALxmRY2LksmiR523j44F33wX69nUfJCkpwF0FpyaTzOYXrCnAlSDYU8ZIhWMmVS1zTQXLQwVveAp01AZl/pzDy90DKGXd1KnqHwIFw98arThHWtDRNA8ZERF5KTxcBhZLl2p7n5b/EF3NmTNsmAzEbNfHxsqftvNgqSWE50miFWorK65STHtTPiB4KhLp6dUngD56FBg6VN37HT9HQYHnc3L8OFBZqX4eN1t33aXtHj16VLb+epqXyd2cV8E+z5WaINjR/PkyuFTOybFj8rNpebDgLBgP5vTkngIdpdVczQTu/pzDy9OE6EpA3KqVuv0Fy98aLThHWtBhCxkRUaAMHKh+W60tBq6eTB84ALzwQvX1x497H+xooaayoqXLpCfB2NLi2N3uzjvl5ODuWspcfY6CAnXH/Oor77pMLlumfluFu9YP25bZmBi5f8cWw6Qk/8zHpBz7o49kgPTRR/atxmqpCYKdUbod5uXJAFzrcW2/O3p0A/Q3tYGOmpY/d11+fQ3g1T4kio+X96Yrwfi3Ri1/nl/yClvIiIgCReuTVLX/IeoZ0GgRFycrqlqesDp7yu+pIqdVKFQk7rxTnqM776z+ml4VIqXLpLtJfx15cw+5av1w1WL70kuysuvPlh53kx3HxQGvveb83Duzbp13Zdi/XwZzWr+bjt8dV63HSiAcDJMLA/qPS3J1/yYlOZ+oWm0Lotq/w4mJricnD8WgxfH8DByo7fySfwUgyUitwCyLROSRv1Jf65FiXcuiZJJbtkzbHFGuspoNGKBPucxmWaZQojWlu9r08baTZFdUCDFzZmDuDccJoZ3dO/7OIqg2Y+i0aer2FR7u/fnQet4dz08opSf3V+Y+NRkbtcwLt2yZ/Fvh7pzGxro/78EysbNa7s5PRYX8ezFzplzWrQuO+6kGYNp7AzAgIyKPcnPlf/SeKixagwpfJyH2ZlEqI2oDCrWVZF+XUEzTrCVFeEWF53soNrb6PrKyAnNfZGcbG0RonX8tJ8f1vvS4Z7UGZI7fHbVBzrx5xk8J4GmqB39dd0/Bf05O1fdLj+9BqE3g7en8TJumfZJzUkVLbGASQghj2+hqhtLSUkRHR6OkpARRnrKPEVHt46rbkSOlu1JhofquMAUFckxJoDRsCJw6VVU+T12FLBY53kXPbomuZGerz44WKhzP77Fj7rvb5ebadzeyWIAWLWQXN39bt05eezX3Y36+HFOnJ63fhfh4eV9u2mR//wK+3bPK93jhQiA11fP2M2fKTJWO353Fi+WYMS2SkjwnWfEX5e8cYP+3Tunip3f3SjV/W7QkUwkLA5o0cT1m0Ju/z0by9m+vv65XLaMlNmBSDyIif9MyxksI7SmvPaUU19uZM8Czz1b97mmOKL3HiLnjz4xnrqYU8CdnyRzGj5fZEC+6yH7bpKTqwRggz38ggjGFkXMcad3n0aPyvDkmy3j2Wd+CMUCOw+nTR126/9mznX93vLmftaaY15OrqR78lbhFzd8WLd/Tykr3CVy8+ftsJG//9ir/V4XyfHghhgEZEZG/efOfopaKpR6TEGv173+r/4/a14r3gAGet/F3xjMjsty5ypx54oRMTV9WJhMOzJwpl0WLnGfyDOQ8SUeOGDvHkTf7PHrU/veiIueJHNSyDT58zWbnzcMWoyvT6enA3r2yBTQ7W/4sLPRPS4tRc4CFytxjvpQz1ILPEMeAjIhIL44tKOXlwPr1VRUyLbRO7OvqybS/HD+u/j9qXyvejz4qW36UudOcEcJ/Gc/0muxWCzWtqsePA1lZwDPPyCU11XmQGMh5kpQuf0ZNAq1Ha7HWkRyxsbKrpqvgw12r0bJlcjoAV62u3j5sMboy7anVXC++TIDui1CZe0yPcoZK8BnimPaeiEgPztJsO06A62+2kxC/9x7wn//493ie/qNWxj4VFQGNGgGnT2s/hlJxN5tldyK1qcpdlUVrqnU9Jrv15tjedjVylgrd0ySwelFStRs5CbTtsQPlrbfk+C93XE0QPmVK9ZTjjuO/vJm+QMHKtHomU1XQXFMmTNbjux8qwWeo83uKkVqCWRaJajF/ZBDMzvatTA89pG95nC3uMho6y77ozaKkJleTPS8pSaZsdsw2pyUltiNfU3mrPbZjpsUPP/TtvDlmswtElsvYWPvPpTWlv570uv8A1+fN8fM64yqDpjfTAtjua94837+jNYFeGWZtz7tybdRO5xHs3H0eT+ckWKZUCFFMe28ABmREtZTWNNtqF18rUmorbN5WXpz9R61UGDMy9DuWchxv5lpLSpIBnS/zYamt8DkLoJct81z5E8J58BAfr/89pFeQEham7nPZ3hNGpGRXjv3II0JER3t3frOyqp+z2Fh1qc9dBeM5Ob5PC2BUivlgo9ccjI4PCox8mOAPrj6P8vexpgSfQYZp7w3AtPdEtZTeKef1SqtcXg7Ur6//oH5X6ZCdddnUS36+7HqlNf23J2rOtdrr65jCffly4O67XZ9/5dgvvQQMHSqrQY6v+/rfc0YGMG+e/TqLRWYQ9CZphXLtmzSRiUVcbePvtODedAF1fM811wBt2njumlZYKH93PJ6zdbZlcDXNhZbr6mlagECnmPc3b69ry5bauuQp52f2bKBdO9fH8rabc7By9Xmc/e1OTpbdikPp/glCmmIDv4eHtQRbyIhqKT1bg/R+Kjltmvvj1atX/cm/46TDZrPnp8T+7g6ntK74a//uWiO9aYnIzVV/bD1awlwtMTHOu3CqmVza2ZKcrH5iXX91lfOl+6mzfXnTOuCsDM2by3OTnS3PuTfn19l97835CMWWHF+uq6cueY7XIhTPj78Z2ZJdg7HLogEYkBHVQhUVvlWo4+L8X1EYONBzGTIyqv4TdvyPuazM/X/U/uqy6Vi59+dxPFV8tVTc/VHOyEh99qNUcLUEt/Hxcjybcg186cLpK0+Bv5puhM72qaZLoj+646q579UItsq01vJ4M57O2T5cBabBdn6o1mBAZgAGZES1kC+tNklJnoMdX6lpufK1Vc7XlitX45GUstm2PmlpedK74qu2JcKfLXm+Lsq11hpU2J4fX5OceEttoNu8ufZ7uaJCBmAxMdW/o0qSB38/dHB334cSrS1dnq6rlnPBwIuCDMeQGYBjyIhqocWLvR/XlJvr3/75ytgKNWO6fBn348s5AICHH5aTTDsrE1B9HMzTT/s2aa/jMdyNEzKb7cddKHMeKZMfOxtT4uv58DeTCYiLqz4ZsjuDB8ulWTOgZ085hYG7sYlmM3DuHBAe7nt5FVrGappM2sZP6THey1uupgUIxvFfnsZUuTuPgPPP5O0YTV/KSRQgWmIDTgxNROQtb+ZnqVfP/8EYICs6ahNsCCEnkX35Ze1JQHydo6ZVK5l8Ii7Ofn1cnBxoHhNjX6YnngDCdPivS6kkvvSSTHKRkCArhsOHy58tWwLTp8ufyvrUVOC++4CICNeT3Qb7nD1CyGAsPl79e3Jzq85Ls2ae7xGLBdi0yfl624nTtdxrWufTyshQV87164Fx45wHXv4MxmJj5aTQziaLDsZgLC/P/rugfEeUScg9zdcHOL8maq+r2u08lZMoWPm9va6WYJdFolrIm/FCEyf6tzuN0v2qQQPvuks5di/y1A3IU9ILLUt8vBADBlQfW2dbJj3TXE+b5n3yhZwc1+dfj/Ph7znDMjL8n4jFlq/JOLy57o7dJm3v5aws2b3Rn+fY3ZKVpe77FQzUjPHytiurnl1g9RiLRqQjjiEzAAMyolrAWcKLu+7yrkLmbWY4d3JyhIiK8q2i6DhBqppKtKukF3ovubn6TARrMgkxZIhv+zCb5TxjzuhxPpTEEv46l/n5spx6ZAN0tX/H8+HuXvPEm0DXNigM9DgwT9c2GAMvZ9SO8VI7kbljoK7XfGp6jkUj0gkDMgMwICOq4ZxV6NwlpPC0BDrFvdayxcZqq0QHosIbGytTihtdobZd3KVGd2yBcWz5c7coSV/0an20vX5KxbSiQp7Pq67S95zYVnz1rChrTeqiBIX+npZBr3smGKltwVI7Eb2zli5vpx/wppz+mo6ByAktsQHHkBEReaIMVncck1VZ6f0+hZA/1Yx18SQnB3jhBd/2YUsI4PjxqjI6vgZUL/fAgcCYMfqVwZnjx+Vg/aSkqjFgRnN3/RzLGB4OqE36dOCAHIe1YIHzfXlD2cf8+cCKFXJsTWoq8P33vu/b1tixVf/2NJZRCDl+cePGqnXl5bKMkyfLn+XlVa/FxqorQ2ysTObgbmxToCUnB2b8qJ7Ujt2Kj3f/vTSZ5OdXJtW2NXCgnKS5SRP79VrG0+k9Fo0owBiQERG5488KnbPKqFYWCzBxon5lUsOx3Hl5QIsWQFaW/4/98ssy8AuGCjbg/Pq5CuAPHgRKS9Xvu6hIVkaXL5fJTXylVHAB5+XTS2ZmVVKUoUPVvaeoSP6cPh2oXx+YMgV45RX5s359YNAgWebjx9Xt7/z5qiQi3n5O2+DCMdBQfs/IkPd9UpL968nJMmlHfj6QnS1/FhaGVjAGqE9S07y564cHtg8CHBPhKEk4MjOBEyfkupgYeU61nC+15Qz2pDtUa9UxugBEREFt40b/VVwV3jy1VVI7r18PHDumf5nUOHTIdaprfzlxwnXgl5wM/OtfwNSp/r9mtmyvn8UCPPCAPufDNjW92kDE0cyZQIcOVem/AVkB9vf1OnBAW6vtxImypXfFiuqvWSzO17tz7pxstfGlFTspSQYRgHwoY3tPKa8pAcOTT9bMVOu9esnPWlTk/J5Rpo5QPu/y5Z7PlcLV346TJ2WLWadO6gMyLeUkCkKGtpB99dVXuO2223DRRRfBZDLhk08+sXtdCIFZs2ahWbNmqFevHlJTU7F79267bU6cOIF77rkHUVFRaNy4McaMGYMzZ87YbfPrr7+iV69eiIyMRHJyMubOnVutLDk5Obj00ksRGRmJzp074/PPP9f98xJRCApEFxetT21tUzs/84xfiqRKQkLwdAdTnqjfeScwb15gj217/Z591vvgyVF8fFULrbf69gWGDatK0x+IBwzeKC3VHnSp2adDfUCVmBhg3bqqFpr0dGDv3tBq7XI3xYCW6QfMZm0tX2rPlbdp8vUqJ1Gw8f+QNtc+//xz8eSTT4q8vDwBQHz88cd2rz/33HMiOjpafPLJJ+KXX34Rt99+u2jVqpU4f/68dZubb75ZXH755eLbb78VGzduFG3bthXDhg2zvl5SUiKaNm0q7rnnHrF9+3axePFiUa9ePfHmm29at/nmm2+E2WwWc+fOFTt37hQzZ84UdevWFdu2bVP9WZjUg6iG8iXTnbvkGFoTGij0TlDgbCA9oK7cwZJgw/Y8BjKbnuP1q6gQIiZGv/3n53uf5t9kkudh3Tr7lOpqs+HVxsXbRDu+pvTXm7vyeFtWZ+9LTvb+M/orCYfe5STyQUhmWXQMyCorK0ViYqJ44YUXrOtOnTolIiIixOLFi4UQQuzcuVMAED/88IN1my+++EKYTCZRVFQkhBDitddeE02aNBFlZWXWbR5//HHRvn176+9Dhw4V/fv3tytPz549xfjx41WXnwEZUQ1UUeH9XEW2FSBfM4jZlkePYEM59rRprisvrjLa2ZZbjxT0ei5ZWYHLpufs+uk1R5pyHSoqvDvHtkG14z05apTx1ylYF28q7p4yPwY6EHA3xYCWe9kZPedMU3tfO6bJVyMU5najWqFGZFksLCxEcXExUlNTreuio6PRs2dPbN68GQCwefNmNG7cGN27d7duk5qairCwMHz33XfWbXr37o3w8HDrNmlpadi1axdOnjxp3cb2OMo2ynGcKSsrQ2lpqd1CRDXMxo1VyQa0yMqS3XaU7k7Ll8tB77a0ZBBTPPusPt3NlGPPneu+e5GzjHYxMVXlDrYB8gsWyGpcIDi7fnp2b1UyFXpzjpUEII5dJ4uKgPff961cNdHEid51Q1TGC7rzwAO+Z1HVUh5P3QCdUV7z1EXQbJZdX227wHrLn0k49CwnUYAEbVKP4uJiAEDTpk3t1jdt2tT6WnFxMRISEuxer1OnDmJiYuy2adWqVbV9KK81adIExcXFbo/jzJw5c5AViIxiRGQcrRXs5GTng9fT02VqZ18G/eflyUxkvnjoIWDwYPtjK5UXx2O5StShZEIDgGuuAcLCfEucoCfbsvnD6NHATTe5vn4OY5x9kpkpswwOHw7ExalP3BIXB0REOH8tUMFqqGnXrvp3QI2CAs/jBY8fl9v17etFwTTyZXygEFUZQ705Fwol2ZCnv3NMwkFkJ2hbyILdjBkzUFJSYl32799vdJGISG9qn87OnOn5CbsvT219TeygGDzY87HVpPlXnqRv2hQ8wZi/xcYCb7/t+vrl5cnMcFooyQbuusv560ePylY/LVk0jx3zrlW3NouP9+59BQX6bucrPVpofdmHbbKh4cPlz5Yt5XpHTMJBZCdoA7LExEQAwOHDh+3WHz582PpaYmIijhw5Yvd6RUUFTpw4YbeNs33YHsPVNsrrzkRERCAqKspuIaIaRnmK62my09mz/ds1Ro/MeMpEua4omddmz1Y/kW9tmmT1rbdcX19v56pLSpJzVX3zje/lq+muvNJ/+3bsThyq9OhC7O0+XM29V1Qk1zsLyvTszk0U4oI2IGvVqhUSExOxfv1667rS0lJ89913SElJAQCkpKTg1KlT+Omnn6zbfPnll6isrETPnj2t23z11Vf4+++/rdusXbsW7du3R5P/mxU+JSXF7jjKNspxiKiW8vYprpa00mroEfg8/LB9OW3L+PTT2tPoK12SahrHa5mcDOTmuq8cagmYGzeWY5bmzQP++EO2zgRbGvp69aqvM/Kho8kkHwL4Q3Ky993i1Hbt86ULoBaeHiC5ozxc8uZc+JLCPhSnFCDyhwAkGXHp9OnTYsuWLWLLli0CgHjppZfEli1bxF9//SWEkGnvGzduLFasWCF+/fVXMXDgQKdp76+44grx3Xffia+//lq0a9fOLu39qVOnRNOmTcWIESPE9u3bxZIlS0T9+vWrpb2vU6eOePHFF8Vvv/0mMjMzmfaeqLazzdSVlVU926KrjGz+SIHta/a+2Fj7TGN6pIZXspclJWnPbBgZaXxGPXcZ5wAhMjLUZ2jzNttkUpI8jp5lT0ry7pooS0SE8dcgkIsv38uKCiEaNnS//4YNA5vlz11WV2f/Vn73Jt2/wl8p7IlCXMikvc/PzxcAqi2jRo0SQsjU90899ZRo2rSpiIiIEH379hW7du2y28fx48fFsGHDRMOGDUVUVJQYPXq0OH36tN02v/zyi7juuutERESEaN68uXjuueeqlWXZsmXikksuEeHh4aJjx45i1apVmj4LAzKiIKU1BXJFhQzAHOeTiokR4r775DxOrvbjLuW0LxUebwMfZ5VOX+cxs517q6xMnhOjK9V6L8pnLCtTd+/4MleYL2V0dY+5qpSrWaKi/FvuYFoyMrz7Ptp+Lx2nFnBcHB+GBIK7ubj8MU+XlhT2TElPtUjIBGQ1CQMyoiCktbUqN1ddBcvZ+z3NEebNJNCOZXNXyW7YsHrZHStavs5jZlvpnzZNCLPZ+Eq1P5f4eHX3jq/n1WzWFuRkZXmuVHvTCqomGHN1XsLCjL9eWhdfW2yCuWXIXeCjd1CkdoL4zMzgmkCbyM8YkBmAARlRkNHaWuVpglfHfTi+PxCVM2eV7NhYWUGvqPBc0fK166NS6Z82zfjKtBGLu5ZOLfePu/17el0J6tVUqpVtZs5Ud/whQ9Rtp7QS2x47lO4JXx+OKPw5uXEoURuQaf1O+YItcRQEtMQGQTsPGRGR1zwNMjeZ5CDzgQNlEgetaeWFsH8/oD7xhtYEHY7z+uzZI9PNu5rnx10CAW+Tg8ycKedR6tVLlmfoUO/2E+qU++n++4GzZ6uSIJjNMglBbq6cCNjT3FTOZGTIzHKuEnw4SyLjKVmEMtWC2ut+6aXqtmvevPqx58wB9u2TWSOdfe+ChZ4p1f05uXEgqZ07zJWVK70/trO/x77Ky5N/z22/S0lJMkETk4VQsApAgFgrsIWMKIhoba3ytuXItrVLrxYyx2Qienbx0fok21lLwrx5xrdwBNPieD1cjUFUc18o1z4jQ4i4OPvXfRnno/beXLdOXTfHnBz7/TtruY2MFGLECO3nQa8lOVm22uk9XsqWp7GderXE+ZPabt2uWpwqKqrfq94uenTt9Nc4XiIvsMuiARiQEQURrV2JvM2SZ9sVKSdHXSXRXeVMzbgfbysWWscUuTrOQw8ZU8EO5sXZeVIqsB9+6L7C6qrSrmeXKy2Bw5Il2u5jT0libr89cNfhpptk98x16+wDBleBhB7n111Ww2APANQGL+6CNl+7Qdsuvnbt9Pc4XiKNGJAZgAEZURDR2lrl7RgI5f1qkzosW+a6zFqyH5pMMrGCu4yP3u7bscJlq6JCiJtvDlwFW8/FWcITZy0ojgkrtJwvV9chGCrtasqQm6u+tWPePM/BplGLp1Zkvaem8EfmQn9TG7zk5LgP2h55RL/rVpOTrFCtxIDMAAzIiIKIlhaB3Nzqc4x5WhyftPpaEfA1S5+7yqTafTueq+bN7fe5bJn6LHzBtkybZt9ipQQT+fnVU9uXlXk/xUBWlut7Mhgq7Z7SodeUdPaekq/4a2oKtS1uwZBwQu3fLHcPKEwmIRo3VrefqCj/d+1kkhUKMgzIDMCAjCjIqG0R0FoJdVZx87Ui4Gu3H3eVSV/3nZMTWhn0HM/Lo4/a3xNqWkZ8CU7cVeiDoSLurAy+PhAIxsVZJT8YurT5Y+J4b+4rb7tpe7s8/LD/W4nZQkZBhgGZARiQEQUhdy0C3rYcOWvV8LUioEflyFVl0td9h3KriZrg2900CN50x/N3hd4fQZ2e44D8tYSHe/c+2++c2q7J/qqw+6N1ztsAL9DXPD/f/63ENSHJCtUoWmIDkxBCGJPfsWYpLS1FdHQ0SkpKEBUVZXRxiEjhKqVzQQFwww2e379mDRAe7j4ltMUCtGwJFBXJ//odmUwy7XJhofO0zmrLokZ+vn1Kcj33HYpMJpmmHXCfUt7Z9Tl/HmjYEKis1HZMx2ugF2/TeXtKaz5likwDH8yysoAzZ4CXXpKfR62MDGDePHnuxo0DTpzw/J7sbGDYMK+L6pTyN0LrPehOXh4wZEj1vzlKav/ly13fF2r+ZsXFAUePei5HXBxw7Jjr15OTqz6Xryn2PVHOCWD/udScEyKdaYoN/B4e1hJsISMKMXqPN/AlcYOnJ7taFsfylpUJYTYb27oRKsu6dfbnzttWBH+MUfG2dcVTC4oeE1qrXXy5D5VzWlYmxwAOGqT+vY89pu1Y/mgh07s7na/dL5XpGVy912SS40bVtDgtW2Z80hpbwTBek0hoiw3CAhEhEhEFHb0ndU1Pl09fldYYRVKS56eyZrNs5QCqnuR6y7G8mzZpa1GozYYOlU/YFd5OpK33RMCeJjoHZEuQ43VWWgscW2WKiuT65cu1TYjuK4sFiI727r3KOQ0Pr5pEOylJ3fflxRfVHcNkqprsW296Txy/caPr1jZA3hf798vtHOXlydaxzEzn71X+Zt15p+u/S7YTbN95p/d/+/whPR3Yu1e2VGdny5+FhWwZo6DGgIyIaqdevYDYWPfbxMZqq5z5UhFwFdCppXR5sliAxYtlV0WLxfugojY6cUIGKkpQ5k1gpfWeUcObyreaIG7iRPf79YeSEu3vSUqqOqcWi7y3ly2TXRCdfT5fzJ+vbxc6hd4PgLwN8FwF6YqsLPu/WWofNAVbEGQ2y27Dw4bJn/64pkQ64hgynXAMGVGIsViAxo3luBRXGjUCTp4M7H/m5eWysqNm7Iaj2Fjg+PGq35OSZKXV1ZPw2qJhQyAyUp4bT//l2Y7lsVi8uxa5ucDAgfqNlVm8GBg+3PN2tmOf9B47mJwM3H13VWtTIKsODRsC778v/+04hq5hQ/ffYbViYoC33/ZfAOHrOFNHaq+v7XhGX8ax+XvsF1ENpCU2qBOgMhERGcdZZaKgwHNF7vRpuV3fvq73o2elxGIBXnvNu2AMsA/GAFn5mz1bBmonTgS2Eh1MzpxRX2lXWpuefVZW0L25FqNGyWDfMfnGuHFAu3ba7x1vWlf0bBm9917gvvtkxf6qq4AxY4DSUvttYmPluVOTNEOrM2eAwYNdv6aHZcuqvuf+oHRLHjJEBj6230Xb7n9q74leveQ95SnAs22t1dLS6piURmlxIiK/YJdFIqrZlPESN9wgWxluuEH+/uqr6t5fUOB+P7ZjjvQo55Qp+uwPsK+oCeH7+LRgZTLJFik9g+PMTO+78505U/29Bw7IfWq5d5TueUVFQHy86+vnbOyT2iAuLs7zffHhh0BqKtC0KTB6dPVgDJCBmD+CsUBITg5MsOHLOFNH7sadugrw9B7HRkS6YUBGRDWXq/ESBw4AH3/s+36U5Ai+BmWexnX4QgjZcpaV5f34ND3pHRQmJwOPPQZ8+mloJS/xdO/YPgC4917ZUueqJQSoXvlWWlA8BXGvvWa/H3eOH3fdIhXKra/+GjfmjJ5jrbQGeHqPYyMi3XAMmU44howoyHgaL6HWmjWyi5ae8wfZ0qucnmRnyyyCSpfLzz+XLR+BEh0NvPOObAG0/axRUXLc3IUL7t+/dCmQkCADmaNHZYtR8+bANdcAbdoEPjmFHlzdO67ml3ImOVkGFM4q9K7mZFLk5FRlW5w40fuussEiJsa+lU6Z98oVsxlYsqTqHKkVbOOp1JZH7d8a5b4gIp9oiQ0YkOmEARlRkNEjqUFsrAwEUlM9b+vtZMCBmrjZsXz//S+Qlub/4yratQN++03+e+NGYMUKGRDaTijrOLYGkNfgrbdctyDUhImvtSReAGQwOm+eDEg9BQPOJpNWJCXJJCCLF4dmQOto3Tp5LpTA5OhR4K675GvOqjrLlsmU7Vp4Ozl3sMjJkQ9m3LGdyJmIvMakHkREeoyDeOst4MgR/x7P3+M1nA3uVyqVgbR7txyD9NZb8vcFC1y3AA0ZAlx6qQxSPKWsrgnjXWw/g6fEC4AMNJo3d/4AwLG1ZOBAuc5ZJfzAAeCFF3wqelBQ7nFn94rZXD2Acteq6I6rlkvbed2CKShz1nIWH+/5fa4SexCR3zAgI6KayZdxEA0aAB98ICtXSlIPfx3Pn+M1bMcXAfKzrFhR9XugHT8us+UpGfkcKYlHvvtOdiVT84S+Jox38SY7orPtcnJk10PbVsfmzT13Bw11QsiU/M7ul/R0faYg8DSvm8kkJ6zWO7mMt1y15KntilgTHnQQhRAGZERUM3lKC+1OVpasWCkZ7qKinGeWA5y3QGnx2Wfa3xMfbz/eR5kjyrHrWVJSVfAViHFqajmm57flLvW2M75cZ6M5u3e8Tbwwfbrz1q6iIu/LF0ymTZM/XbXovfgicPXVzluo9EjZ7kvK+ECPOXPXkqf2YUxNeNBBFEIYkBFRzeRu3h93wsKAkhKZQEJNGm8hvM/S9thjwEsvqd9eqcD/8QewaVP1Ct6cOdUrfitWqE8QEUxcPaF3Vrn15jp766675NgjPY7j7N7xZn6p5ctrRtdDdxYv9ryNP1uovG25DPSYMzUteWFhrpOd+PqAiYi8wrT3RFRzuUoL7U54OPCPf6ifUyk2VlYCgap5oxYvlj/dZXhbvhz417/Ul8u2+2F4uHwKP2yY/bgZpSVAWQ+4rpwFO2dP6F3NBQc4v86xsfJc6V2u5cvVjcXxxPbeUWidX8pikd0Ua7oDB9S3UPmDNy2X/p4uwxk1LXnK3yW185cRkd8xy6JOmGWRKIjZtqokJMjEEjk59oFKWBhQWend/vPzZQDn+CQ8Lk4GDq1aycr38ePy55EjwOzZrud0csZdIgJXXaJCMQOh1lTwSiVy+XL7sUK7d8vr7I8ue7m5wIABMgC0Ha/lDVfZOZ21rDi7B0LpGs+aJct66JDM8rlokf7HyM6WDyT0pmS/9NRyqdy3nrJlapkuQ0uXx8WL5d8cTzIy5HdGj2QnROSUpthAkC5KSkoEAFFSUmJ0UYjIldxcIZKShJBVKrk0aCDEyJFCNG9uv17LkpEhhMnk/fs9LfPmCVFRof4zJSXJ9RkZ/iuTL0tYmPP1JpNccnPtP2NFRfXP6Pi+5OSqc5Sb67/rYXss5TiOx9Jy7Oxs1/drRYUQ+flym/x85/dAdrbx11PrZ83N9d8x8vO1/U3Qwt31drxv8/P1Ka+777czWo6r5v4iIq9piQ0QgPLUCgzIiIKcq0q6HhX3uDj/VTDj490HY/76TGqXu+7S73ixsc4rmlorme6CN70WpSLtrMKcnCxEVpa6/bgLttVQe26CYVGuj9aHHyaTPMdJSe7vtfh4IcrKvD+Xari63o73rdpA2V1A7u777ezBhRBV97+r8+T48IKI/EZLbMAxZERU83ka6O4tk0mOJfK125o7r71W1QXKdnxaebl/PpMWSUnARx/JMoWp+O/E0zb16lUfUwVoS6igZh4vPShlSk8H9u6VXQ+zs+XPwkLgySfl+XEcp+NoyhTZtc3b8UTXXGPseJ/kZNn919NnVRJFbNyorRupss8FC1yPrVMcPQq0aeOfsVkKV9fbsZuft9kyFWr+ZmVkVB+nqnUMIhEFBQZkRFTz+aOSrlRu7rlH3/3aevTRqsH/jskskpKMS2NvMsllwQKZxXHyZHXj7zxtc+CA86QMaiu3CQnA+vXqtvWVbZkck6mYze4rxo58SfKwaZP75DH+0q9fVTAyZIjnz3rqFPDss9rH9CUlVU24rCZJjz8TZiicXW9HSrZMV+fDZJLBrKtshlrS7DtydZ5szyURBRUGZERU8/ljklOlcuOsRUcPjz4q51ZylanNdh6yQFM+e2WlnOhZz7I4u1ZqKrexscB99wHPPKNfWVwdy11F2pbaLJ/uWjxsOcviuWKFyoLr7JZb7IMR5bPGxDjf/swZIDNTW0bIefOqtz6lpwN79siEOc6oPZf+5mtLlS8ThAPqW/KIKChwHjIiqvm0THLqai6rmBjZhahdO/tMZxaLvq1V8fGym+KQIe67LQXaXXfJ4FP57Hl5/slm5+xauZtTTvnd3WTT3nJ2LEBbl6/0dHneXn5Zdk90xbbFQ23WRSVzZ6CZzdUDK4sFiI72fK+6mmDdUVKSbHl1dp43bXLfTdjTuQwUJUh1Ng+Zp2yGvnZ5BPSZEJuIAoItZERU86ntPpST47o1o149oFMn53N/6RGYxMQA69bJJ95Dhsh1gRoP5U5UlJwIeckSYOhQWfG+666qf6uhpPhu3tx9972YGLlPZ/t11drUvLkMTPSWlaVfly+zGWjaVN22zlo8XLWSGhGMAcDUqfbzuyldalNT1c/f58mCBf5rPQokb1uqfO3ySEQhhS1kRFTzeWphAaqeWAshgw1HBw/K9ztWyC0W2YXMFyYT8PbbQN++9uuDoUJZp44MlHJygAcf9C4IEAJ46SV5HZxdA8WJE7JSn5QEjBtXvTVSaW2ynZPJYpHv0YsSPD75pFzUzv/kibctHsHUSmo2y2Bs7tyqda7mh1OjUSPg9Gn7dbGxcv44dwHL7t3q9q+lZdyfvGmpUvs3i8k5iGoETgytE04MTRQCPE22W17ufrJfk0m+vmgRUFwsx04dPQr885/el8ndZKxPPy3H3dQESUlVY2ocr4Ha9zo7R2onwlXDdpJpvcfaWCyylcxVQGsyyXFR8+bJe8zoyb0HDwbGjAF27pQtPG3ayG6Kti1jniY/9uTDD4HERPkZARm0uEqSofWYSUmy3KEesKidIJyIgk6NmRg6MzNTALBb2rdvb339/PnzYuLEiSImJkY0aNBApKeni+LiYrt9/PXXX+LWW28V9erVE/Hx8eKxxx4Tf//9t902+fn54oorrhDh4eGiTZs2YuHChZrLynnIiEKEq8lQc3PlPEaBmI8pOlqIhx92PxmrN/M1hcKSlSXnilq3ToiYGHXvcTfvkp7zcMXHu55w11daJ0NWJv81auLn5s09z1Xl67n3ZhJntcfMyvLiIgUpTuBMFJK0xAZB32WxY8eOWLdunfX3OnWqijxlyhSsWrUKOTk5iI6OxkMPPYT09HR88803AACLxYL+/fsjMTERmzZtwqFDhzBy5EjUrVsX//y/J9qFhYXo378/JkyYgI8++gjr16/H2LFj0axZM6SlpQX2wxKR/znrPuRLtyu15s2TLSRqu755kyI8FGRmyu6Z48apH28khGxBysiQXRaVZCrKnFZxcfrMBTdvnn9aHZRuh1oo6dtnz9a/PGqP7ykphrddapVuod6Mf1J7zHbttO87WDE5B1HNF4AA0WuZmZni8ssvd/raqVOnRN26dUVOTo513W+//SYAiM2bNwshhPj8889FWFiYXavZ66+/LqKiokRZWZkQQojp06eLjh072u37rrvuEmlpaZrKyhYyohBVUSFbI/zV0mAyCZGcrO2pttbWlNq05OfL8+OPa+ZNi40avrQkxcXJ1iqTKfDnOjtb/8/lrrVTz3Ppr2tJRKSSltgg6LMs7t69GxdddBFat26Ne+65B/v27QMA/PTTT/j777+RajOY+9JLL8XFF1+MzZs3AwA2b96Mzp07o6lNdqu0tDSUlpZix44d1m1SHQaEp6WlWffhSllZGUpLS+0WIgpB/sxk6M3ge29aU2qTFSucZxz0VXy8/zLW+TJX2LFjMlW8EJ4nmNbb4cPuM2l6ygQIVH/N18mJmX2QiGqgoA7IevbsiUWLFmH16tV4/fXXUVhYiF69euH06dMoLi5GeHg4GjdubPeepk2bori4GABQXFxsF4wpryuvudumtLQU58+fd1m2OXPmIDo62rokJyf7+nGJyJGziXD15s9Mht5UPoMh1b23wgLwX8pHH8ngRG+vvuqfBBB5eTIg94WSibBBA9/2owQxagO7KVOAhASZXKa8vPp30dPkxyaTnDJBz8mJfZ1wmYgoCAX1GLJbbrnF+u8uXbqgZ8+eaNGiBZYtW4Z69eoZWDJgxowZmDp1qvX30tJSBmVEenKWXcxdtj1v+SM19syZMoW9N2nSgyHVvbf8ESjZio6WWS31Nm0acOed+u5TeZgwbpx++zxzRtv28fH25ysuTk46/v33wAsvqNvHiRNy3F9WFlBZWbXe9rvo7eTH3jLimEREfhTULWSOGjdujEsuuQR//PEHEhMTUV5ejlOnTtltc/jwYSQmJgIAEhMTcfjw4WqvK6+52yYqKspt0BcREYGoqCi7hYh04moiXCXRQV6efsdS0+1Ki+RkmYjBU/puR0oFfudOfcphBH8HZCUl+u4vPl7Or2Y7r5Ye/DFRslbx8cDLL8sgTHH0qGz1uvpqGYRqadG0DcYA+++it5Mf+8KIYxIR+UlIBWRnzpzBnj170KxZM3Tr1g1169bF+vXrra/v2rUL+/btQ0pKCgAgJSUF27Ztw5EjR6zbrF27FlFRUejQoYN1G9t9KNso+yCiAHM3Ea6yLiNDv+6LShcovYIJb7pLKRX4G24AnnlGn3IYzTYQ0KpJE/3K4Sgrq6oCf+iQDCq85axLrauHCYE2ciQwbFj17JNKIHX11cD588CLLwLXXqt9/47fRSUT4LBh2h9GeMuIYxIR+UMAkox47dFHHxUFBQWisLBQfPPNNyI1NVXExcWJI0eOCCGEmDBhgrj44ovFl19+KX788UeRkpIiUlJSrO+vqKgQnTp1Ev369RNbt24Vq1evFvHx8WLGjBnWbf78809Rv359MW3aNPHbb7+JV199VZjNZrF69WpNZWWWRSKdGJVFLSvL96x0mZnaj5uba0wGPW8WLeX88EPvz+l//yuzC+pZdr3mGFPmhMrIqD5vXVKSELGxxl+nxx5zn4XSMfOnr3OdMaMhEVE1NSbL4oEDBzBs2DC0b98eQ4cORWxsLL799lvEx8cDAObNm4cBAwZg8ODB6N27NxITE5Fn05XJbDZj5cqVMJvNSElJwb333ouRI0fi6aeftm7TqlUrrFq1CmvXrsXll1+Of/3rX3jnnXc4BxmRUdSOodJ7rJUe8xa9+6627pTuWgODTUYG0Ly5+u2bNwdmzQJyc2WXUDWUDHlhYfrMK6aIj5ctVr52Z7NtyZw/v/p4tgMHgOPHfTuGL+LjZRKN/v3dt9AJAezfLxPIAL6PowzlcY9EREHAJEQo1ASCX2lpKaKjo1FSUsLxZERaKBP8HjokK4YWixx740l+vr6TpRYUyIq2L5RxaGozK+pxTG+ZzTId+9ChwLlznrfPz5fj7QoK5HtcjY1SJv0tLKzqQqZ07SsoAH7/XZ4fZ+8DZEDxyy/6dd00mXxLs64IxOTh3pg0SX7GNm2AiROB8HDZhXL4cM/vzc6W3f0sFhloetvNUu/vIhFRDaAlNgjqLItEVMO5yqQYGysr/M4qv0qFX+95ho4dky0zjskLtBBCli8jAxg4sPqYFsfgs6jIpyL7ZOpUmUZdTTCmzNFlNsvskW+/XTX2yvYauUo7vmJF9etsNtuPA0xKAu6+Wyad0Gv8VWws8NZb2oIxx2uk3GfB2JJpNst0/Ypnn5VZFNW2eO3cKYPkXr3kOMrBg7Ud31/fRSKi2sbvHShrCY4ho6CmjHvJzpY/lbEjRnI1dsp2nePrJpNc9BgL5FgWvcfxOI6ryc2tPq5H73FSahazWYhp02SZ1I4dysiofs5ycqqPoUpOrn5tPI2Ry8iQ52rZMn3H0t1wg/b73Nk1SkrSZ3xhIJdHH5XlVns+k5LkZ8/NVT8Gzl/fRSKiGkJLbIAAlKdWYEBGQctVJdPIilRFheekA7GxQjRv7rnC7+3xlQB13TohYmL0rxRnZ1cdL1gSd9xwgxBlZVXl8jaBiqvgctkybdcZkEHduXOet/Pl/Kuh5gFBsCxms+dtHnusKmjytK1tcFVRIQNQx++E4zH1+i4SEdVQWmIDjiHTCceQUVByNe5F61gnvakdO7VuneyWZdt9zNfU1s66SfqDMq7G1/E5ejKbgdOngU2b5DWorJRd+twl0EhOth8PpuWeUnudo6KA0lKtn8Y9LeOa9LxGJhMQEwNERhrbJTU+XnZnnDpV3edyHPvn2HXzmmvkfaPnd5GIqAbjGDIi8jyfl7uxTv6mNivbkSMy6YBeApGYwXFczcaNwRGMAfKeiItTN25Mcffd9sk5tNxTagMSvYOx5GRt45r0vkZvvSXPwT/+Iec9M8LRozIo27tXfr71690nShGiKvOiMqeXY0DLxB1ERH4R1GnviWo0Z5PK6slTJdO2AhZoWpMOeHtubM/x+vX6JWa46y4ZfCitQgpnSS2MbCVxRkswBgBLllSdf633lGNa+EDROjm3nmnbhw4FysrkfWebcMMIhw5VBVYdOqh/DxERBRQDMiIj2M5nNHy4/NmypbY5rDzxZj4vfweJil69ZCuSY0Dj6JlnvD83juc4NdX3VpDkZDmv1pIlsmue47xcSUnVu4EaFZToZf9+eS8A2u+p/5szMmAiI+X10doNV+0DgsxMz4He0qVV95uec6kBVa2vcXHqtrd9oKH2M/o6JxkREWnGgIwo0JRuc47BQVGRXK9XUKa1AhaIIFFhNss024DnoAzQfm5cnWNvNWwox7MVFlZV9tPTZXew/Hw5n1N+vv3rikAEJZmZwOefqzuX3hg6VJ5TrfeUlomk9VBW5t37PD0gUCas7tXLfw8pFMo4A1etrwsWyNT2atg+0Dh2TP1nJCKiwPJ7ipFaglkWSRU12QWTk/VJS68cy1WWNdtjucsw58/U1s6y9blb1JwbNZn9tC5aP7+SxfHDD4WYNMl/2fYcs2VOm+a/Y5lMMtW9p3Nre438cS08ldHb74/yHXA31YLaaQK8XRo3llkwnX0vHLMaarnWymeYNs3zZyQiIl0w7b0BGJCRKt6mGfeWmkqmP4JELfOeKdvOnKnPuVF7jtUuQ4eq/9xCaA8yvVliYmS6fmfnddq06inKw8J8P6ZyHzz6qPvtlDnObM+H2vTr7pZ58/S7R7RcO9tASO97y3HJyakqi5rv0JIl6q+tcv2WLfMc7BERkc+0xAbMskgUSN6M6/JFeroc0+SY5j0pSSY+SE+XY0zUJmpQk2XNWVr5pCTZ1crZ2B4l6YDaz7xihfty6J2UYNMm2U3N2dghJTV4UZEcK7Z3b1VXTH9Qupu9/TbQt6/zbebOlV3VXnsN2LMHaNMGGD8euOQS37pwKvfBBx+4327xYiAtTWbIbNZMZhtcuhSYONH7MVXJycDkycCyZeq2d3UPOKZyV1K3K+vLyoBFi+S2Svlt07v36gXExgLHj3v3Ody54QbZzVbhLMuho6ZN5dQFaijXzzbzIlPYExEFBQZkRIFkxMD69HRZKXZVAdMzSHSVVl4ZA+Zu3jO1n/mjj4AXX3RdgdQ7KcGBA86D0UDNZ2bLNpB2Jzxcpp+3tWABMHiw72XwlKTkwAGZ0EIRGyt/+hLEKFkTffn+OLtecXHA1VcD335rHywqDxACmeZ9zBjt7/Hm4YNt5kUiIgoKTOpBFEhakgfoSamADRtWNceQQq8g0dMcVYAMElwlRejVS132uKNH3afqV1ox9ORY8dU7aYg7M2e6TxqiVnq6zEDo7NzExsrEIP5w/LhvwVhWVtVnVvP9iY+XDwBss4S6ul7HjgErV1ZvuXOVRGbjRv+0jgHeJUDx5uEDsygSEQUdBmREgeQuu6CzOawCQa8g0dd5z8xm4N571ZXZXcvAihX6V5ptK7HuAk9/6NvXeSDtjfR04PBhmTFy5ky5rFsn1z31lLqpCAIpKQl48smq3z1l5xRCBuz33luVXTAnR/v1cvYAwWKRc9n5g7cPYdROHwEwiyIRURBjQEYUaMq4LjVzWAWCXkGiHl0fBw5Utw9XT/nLy4EJE9TtQy3HFhdPgade/Nla2rcv8I9/yKVvX7lO61QE/qRMur1gQfX7ztX3x5miIpmy35vrZfsAIS8PaNFCjs3Tm8lU/fuldj5AtdfMqIc9RESkCgMyIiOoncMqkOVxFSQuXQrExHiuHOrR9dGX1rq8PFl+vSdidmxxWbFC3/27E+gKtJZgx588PZyw/f58+KHrrq56tGKuWCHH3hUVeff+rCz5eZxJTq7+ObXOB6jmmhn1sEdPgZq0nojIACYhAtXvpmYrLS1FdHQ0SkpKEKVM7EkUahyz0B07BkyZoi5josUiK45FRc4rwiaTfG9hofsgQxnvA9jvRwnSnFUsXSUTCVXx8cAbbxhXgbZYgJdfltc+0CZNct4y5kpBgQxa/CUyErhwwfv3Z2fLVjrbbJzx8TKAcsxu6Oo+dnfvK2y/uwkJcp2zTJFGc5Xp0h2tmVuJiIKAptjA70n4awnOQ0Y1jjeTRauZ90ztsdXOlaT35MP/7/8JER/v3/mmPC0ffujbtdODvydB1uuzG1VOtYvaOdECOWm8UZx9rx0nN3f2HiMmrSci8pGW2IBdFomoOm8zJuo1Pk5Ll069xnQp3SFvvFH/bo9aGd1lEDAuG5/Wzx6sWQO1jgH0NSlOsHOV6dJVRkvA98ytREQhgvOQEVF1WiqHjvMZeZr3TC21cyXpMabLNunBkSO+78+XciQlBUcmPGU8n6suqP4QG6v9s6stpx7zoanlTRKNQE8aH0ieAiuTSQZWAwfany9f/g4REYUQtpARUXW+Vg7dzXumJ4tFThTtK9sWPKNaXIItE55tBr9gpracJ07IYCwrS1b+4+P1K4NjUhFvkmgYMWl8oHjb+leTg1QiIhtsISOi6oK1cuiYEMBi8a57ockEzJ4NtGtXvQXPcZJgf4mNtW+tSUqSwVgwJSlQuqA+9FBgKr3Hj8vr26uXuhZW5X4oK5OJM5Yudb1vpSXmnXdk99cXX5QJQYYOlcGat2JjZevcpk2+tQh7aukLptZTrbwNrIL17xARkc4YkBFRdcFYOXSWaS0mRvt+HLOzOWany8jQpbgwmeS5CwsDKiur1pvNwNSpwJw5vnfr1JuzDHjffhvYbpwrVgAjRlS/zo88IieJVs6Rs/vBE8cubn37Am+/LdPae+utt4DwcN+7zCktfUOGVN07imBrPdXK28AqGP8OERH5AdPe64Rp76nG8Sb9vL/Losefq3XrZEVc2a/WSr0rZrN9cgHHFjCFEedPDWfnomFD4MwZ48rkKDZWBkCAb/dDdrbsTqt4+mkgM1PbPvyVdt3ZdUhODr7WUy18mRIjmP4OERFpoCU2YECmEwZkVCMFQ+VQqczpETQBVZXx5cuBO+/UZ58mE7BsmRxLpLS03Xef6zKrnZMtUPw9j5tSeY6Jkd0DXVXKw8LUZcxzFeyqlZ9v36JlsQCJieq6q86cKQN6f7ZoejNXV7DzJbAKhr9DREQaMSAzAAMyqrECVTl0dRy9J/7Nz5fjzoYN0yddtrOKodoyOwYGRtA74G3UCIiKkq0hCuUcAa4r5YH6ryg52XkgrCZAd/VeUseXwKomBqlEVKNpiQ04hqy24X9qpJXa9PO+yMsDHn7YvhLfvDnw73/LhA1qKK0vriitUseOyUQOvggPl8khlHmmHL9DoZQdTq953BSnT8uEKZdfLseeOf6dWb68eqU8KUmO41KCNn8xmVyPwxoyBJg2DXjhBe3vJXV8mRIjEH+HiIgMwrT3tUlennwSfsMNwPDh8mfLls4n5CTylsUiW4gWL5Y/PbVC5eXJyrhtMAbI3wcPBnbvVnfcZctkSnNnlG5R//oXMH68uv25M3GiTDzhKqV/KGWH80dQ+OijsstmRET1c+Rq0u+BA/Uvh63YWM/jjebOrep6ais5mWOV9BKoKTGIiEIIuyzqJOi7LLoaI8KB0aQnZ12S3CU/sFiApk3djweKjQUiI4GDB9UlBHDXLWrZMvep0dXy1NXQlyQGgaZ3l1CF1r8teneddGSbzEVNWdiTgIiIfKAlNmALWW1gscgKqrOKobIuI0Of8TRUeylBv2OFuqhIrnfWEltQ4Dk5w/HjwNix8t9KJV/hLB24qxaYykrfgzGTqaqboju2kxWrKbM/qG2pVFKLO5bTV1r/tijnTE05YmPldlrKXFysflu24hARUQAxIKsNPI0RsZ2bh8gbnoJ+IYAJE4DycvvXCgrU73/5cjmuzFZSkvMWGMcKNSC7GfpCayClTKqstsxqqA2ytHRPdhc8+krr35aBA+X4s4YNPW/72GPa5qHzZgJxIiKiAGBAVhuEUoIBCk1qEkMcPSqDE2/HLLpq+VKTne3ll9VXyE0mWdlPSrJf700g5W2ZncnLA1q0sA+yWrSofj69aal0FTzqxXF8oC2LBVi/XpatSRM5H5gy95mrAPHECdfJN1yJj9e2PRERUYBwDJlOgmYM2ZkzMtnAnj1AmzbAf/4D/Pij9hTceo6h8Md4jGAd4xGs5fK3xYtlkKCGyVQV2KxfD6Smen6PlvE/gAx6OnQALlxQ/x5FZqZspSkvB157req7NHIkMHo0sG2bbJl5+mkgLc3++mq5/o77nzhRZm9UFBUBnTvLrIUREcDZs67LnJsrz2d5uQwc3QWfUVGynOfPA/XrAzt2ABdfbF/+3FzglVc8n6t77wU+/NDzdnFxwJtvyjJu3QpccUXVa+Hh1VtO/SEYphjwp9r6t4eIKEhpig0E2XnllVdEixYtREREhLjqqqvEd999p+p9JSUlAoAoKSnxcwnd6NFD6Rxmv3TvLkRSkhAmk/PXASFiY4WoqJD7yc2V29u+npQk12ul5778uU89BGu5AiE/3/W95biYTEIkJ8v7raJC3nvutre9N9UIC1NfFsclKkoey9m1dLbUrVt1fbVc/2nThDCb7bc1m+V6IYQID9dW7thYIZYtEyIuzrvPXaeO99czFBblfqupavPfHiKiIKUlNkAAyhMylixZIsLDw8V7770nduzYIcaNGycaN24sDh8+7PG9hgdkroIxZWnTxnOlJTdXLs4CN5NJLlr+g9dzX/7cpx6CtVyBUlHhOeh3XPLz5Xtzcz3fl2r5EowBMqhxdS3dLdOmqb/+06a535evn8HbxTYo83Q9tZ4fo5ea/P2r7X97iIiClJbYgF0WbfTs2RM9evTAK//XVaeyshLJycmYPHkynnjiCbfvNbTL4pkzQKNGnrdzN3GuySTHjwjheryHllTdnlJYe5P22x/71EOwlivQXE2t4Ep2tky6obxXS7p8ZwoLgdattZXZ1rRpwJw53qVeDwuTWRydsb3+FovsJhisGU3/+quq+6JyPQH7a6qM6wqF/zrMZtmd9s47jS6Jf/BvDxFR0GLaey+Ul5fjp59+QqrNeJawsDCkpqZi8+bN1bYvKytDaWmp3WKYESPUbecqGANk5erAAfeD74VQnzHNH5kdgzVbZLCWK9CUxBBqkyfYTorsLPnF3r3akl906KCltPYyM+WkwGqSkzjjKhgD7K//a68FbzAGAB07Vv3bXZbIYGAyeU5/v2RJzQ3GAP7tISKqIRiQ/Z9jx47BYrGgadOmduubNm2KYifz18yZMwfR0dHWJTk5OVBFrW7PnsAeT002Rn9kdgzWbJHBWi4jpKfLCmJcnOttXM3l5evcT2VlWktbpX17+dOf1+jQocB/V7U6d87+d1dZIo1uHVMCsLfech40JifLxCRKC19Nxb89REQ1Qh2jCxCqZsyYgalTp1p/Ly0tNS4oa9NGZn4LFNuWDV+20bKdv/aph2Atl1HCw2VGPXfd3fwxKXJEhHdZFYGqa+PPa9SsmfyuBrP69auvUwJlW+66aPpDbKz9BOJJSfIeUlpQBw6snRkG+beHiKhG4Biy/1NeXo769etj+fLlGDRokHX9qFGjcOrUKaxYscLt+0NiDFnz5sDBg86fbtuOIXO3jdYxZEVFvu/Ln/vUQ7CWy2jOxoUlJ9tXpPXkzRgyx2vj6Vq6EhZWlU7B3TH8NYYsNlZ2Sfb1z7ntGDJ3du60797oL7GxshWstgZcnvBvDxFR0OIYMi+Eh4ejW7duWL9+vXVdZWUl1q9fj5SUFANLpkLDhkCPHu636dED+Pe/5b8dx1sovy9Y4HkbtS0bZrPcnx778uc+9RCs5TKanpMiq9GqlQyM1HJ2bdxdS3cefdT5exyPER4O2LSsO6XlMyQlya55b73l/Pha1KmjLhgDfBuvp0bDhkBWFnD4sLxffO3OWlPxbw8RUc3g54yPIWXJkiUiIiJCLFq0SOzcuVM88MADonHjxqK4uNjjew1Pey+E69T3PXpUbeNsvprkZPvUyGq2UUvPfflzn3oI1nLVNmrTxru7NmrnIQsPdz8PmatjeDsPWXi4nC4gO1v+tJ1by9XxBw6sfizHxXEeMrXUpp1X5sRyt83MmXJZt65mzxnmD/zbQ0QUdJj23gevvPIKXnjhBRQXF6Nr167497//jZ49e3p8n6FdFm2dOSOzLu7ZI8er/Oc/8mmzLYvFc/cfNduopee+/LlPPQRruWqbwkLZinPhAlC3LrBwocy2t2mT+mvjeC2vuAIYOVKO14yJAZ5+GkhLs9+HlutfXi6zLirf1YkTZQuaoqgI6NwZOH1adknetq168gpPZVaOb3us6GjZqnLunOw+uWOH+pYxZ3bulOVUxpSlpwPXXivXHTtW/Txs3SrPpWLLFqBrV++PTxL/9hARBRUtsQEDMp0ETUBGRERERESG4hgyIiIiIiKiEMCAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCB1jC5ATaHMr11aWmpwSYiIiIiIyEhKTKDECO4wINPJ6dOnAQDJyckGl4SIiIiIiILB6dOnER0d7XYbk1ATtpFHlZWVOHjwIBo1agSTyWRoWUpLS5GcnIz9+/cjKirK0LJQ6OH9Q77g/UO+4P1DvuD9Q97yx70jhMDp06dx0UUXISzM/SgxtpDpJCwsDElJSUYXw05UVBT/IJHXeP+QL3j/kC94/5AveP+Qt/S+dzy1jCmY1IOIiIiIiMggDMiIiIiIiIgMwoCsBoqIiEBmZiYiIiKMLgqFIN4/5AveP+QL3j/kC94/5C2j7x0m9SAiIiIiIjIIW8iIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIiIiIiMggDMiIiIiIiIgMwoCMiIiIiIjIIAzIiIiIiIiIDMKAjIiIiIiIyCAMyIiIiIiIiAzCgIyIKMT06dMHffr0MboYIWfRokUwmUzYu3ev0UUJebNnz4bJZDLs+CaTCbNnz9Z1n7w/iMgoDMiIiHSybds2DBkyBC1atEBkZCSaN2+Om266CS+//LLRRdNs06ZNmD17Nk6dOmV0Uarp06cPTCYT2rVr5/T1tWvXwmQywWQyYfny5QEuHfDaa69h0aJFAT9uMCsoKEB6ejoSExMRHh6OhIQE3HbbbcjLyzO6aEREhmNARkSkg02bNqF79+745ZdfMG7cOLzyyisYO3YswsLCsGDBAqOLp9mmTZuQlZUVlAEZAERGRuKPP/7A999/X+21jz76CJGRkdXWjxgxAufPn0eLFi38WjYGZPYyMzNxww03YPv27Rg/fjzeeOMNTJs2DWfOnMHgwYORnZ1tdBEBBO7+ICJyVMfoAhAR1QTPPvssoqOj8cMPP6Bx48Z2rx05csSYQgUZIQQuXLiAevXq+byvNm3aoKKiAosXL8ZVV11lXX/hwgV8/PHH6N+/P3Jzc+3eYzabYTabfT42qbd8+XI8/fTTGDJkCLKzs1G3bl3ra9OmTcOaNWvw999/G1hC4OzZs2jQoAHvDyIyDFvIiIh0sGfPHnTs2LFaMAYACQkJ1dZ9+OGH6NatG+rVq4eYmBjcfffd2L9/f7Xt3nrrLbRp0wb16tXDVVddhY0bNzo9fllZGTIzM9G2bVtEREQgOTkZ06dPR1lZmd12JpMJDz30ED755BN06tQJERER6NixI1avXm3dZvbs2Zg2bRoAoFWrVtbuf8rYmoULF+LGG29EQkICIiIi0KFDB7z++uvVytSyZUsMGDAAa9asQffu3VGvXj28+eabuP7663H55Zc7/Rzt27dHWlqa09ccDRs2DEuXLkVlZaV13WeffYZz585h6NCh1bZ3NkZIKePXX3+Nq666CpGRkWjdujU++OADu/e6GjPluM+WLVtix44d2LBhg/W82Y73O3XqFDIyMpCcnIyIiAi0bdsWzz//vN1nAIAlS5agW7duaNSoEaKiotC5c2dVLa0vvvgirrnmGsTGxqJevXro1q2b026bau4Dxddff40ePXogMjISbdq0wZtvvumxHIqnnnoKMTExeO+99+yCMUVaWhoGDBgAACgvL8esWbPQrVs3REdHo0GDBujVqxfy8/NVHWvLli245ZZbEBUVhYYNG6Jv37749ttv7bZRrteGDRswceJEJCQkICkpye41xzFkX3zxBXr16oUGDRqgUaNG6N+/P3bs2GG3TXFxMUaPHo2kpCRERESgWbNmGDhwIMejEZEqbCEjItJBixYtsHnzZmzfvh2dOnVyu+2zzz6Lp556CkOHDsXYsWNx9OhRvPzyy+jduze2bNliDereffddjB8/Htdccw0yMjLw559/4vbbb0dMTAySk5Ot+6usrMTtt9+Or7/+Gg888AAuu+wybNu2DfPmzcP//vc/fPLJJ3bH//rrr5GXl4eJEyeiUaNG+Pe//43Bgwdj3759iI2NRXp6Ov73v/9h8eLFmDdvHuLi4gAA8fHxAIDXX38dHTt2xO233446dergs88+w8SJE1FZWYlJkybZHWvXrl0YNmwYxo8fj3HjxqF9+/Zo2LAhxo0bV+1c/fDDD/jf//6HmTNnqjrnw4cPx+zZs1FQUIAbb7wRAJCdnY2+ffs6DYJd+eOPPzBkyBCMGTMGo0aNwnvvvYf77rsP3bp1Q8eOHVXvBwDmz5+PyZMno2HDhnjyyScBAE2bNgUAnDt3Dtdffz2Kioowfvx4XHzxxdi0aRNmzJiBQ4cOYf78+QDkGLhhw4ahb9++eP755wEAv/32G7755hs88sgjbo+/YMEC3H777bjnnntQXl6OJUuW4M4778TKlSvRv39/u2093QeAHBfZr18/xMfHY/bs2aioqEBmZqb1M7mze/du/P7777j//vvRqFEjj9uXlpbinXfewbBhwzBu3DicPn0a7777LtLS0vD999+ja9euLt+7Y8cO9OrVC1FRUZg+fTrq1q2LN998E3369MGGDRvQs2dPu+0nTpyI+Ph4zJo1C2fPnnW53//85z8YNWoU0tLS8Pzzz+PcuXN4/fXXcd1112HLli1o2bIlAGDw4MHYsWMHJk+ejJYtW+LIkSNYu3Yt9u3bZ92GiMglQUREPvvvf/8rzGazMJvNIiUlRUyfPl2sWbNGlJeX2223d+9eYTabxbPPPmu3ftu2baJOnTrW9eXl5SIhIUF07dpVlJWVWbd76623BABx/fXXW9f95z//EWFhYWLjxo12+3zjjTcEAPHNN99Y1wEQ4eHh4o8//rCu++WXXwQA8fLLL1vXvfDCCwKAKCwsrPZZz507V21dWlqaaN26td26Fi1aCABi9erVdutPnTolIiMjxeOPP263/uGHHxYNGjQQZ86cqbZ/W9dff73o2LGjEEKI7t27izFjxgghhDh58qQIDw8X77//vsjPzxcARE5OjvV9CxcurPaZlDJ+9dVX1nVHjhwRERER4tFHH7Wuy8zMFM7+y3S2z44dO9pdH8U//vEP0aBBA/G///3Pbv0TTzwhzGaz2LdvnxBCiEceeURERUWJiooKt+fBGcdrU15eLjp16iRuvPFGu/Vq74NBgwaJyMhI8ddff1nX7dy5U5jNZqfnw9aKFSsEADFv3jxVZa+oqLC714WQ17Rp06bi/vvvr1b+zMxMu3KGh4eLPXv2WNcdPHhQNGrUSPTu3du6Trle1113XbXz63gtT58+LRo3bizGjRtnt11xcbGIjo62rj958qQAIF544QVVn5OIyBG7LBIR6eCmm27C5s2bcfvtt+OXX37B3LlzkZaWhubNm+PTTz+1bpeXl4fKykoMHToUx44dsy6JiYlo166dtXvWjz/+iCNHjmDChAkIDw+3vv++++5DdHS03bFzcnJw2WWX4dJLL7Xbp9Jq5NjlKzU1FW3atLH+3qVLF0RFReHPP/9U9Vltx4CVlJTg2LFjuP766/Hnn3+ipKTEbttWrVpV64IYHR2NgQMHYvHixRBCAAAsFguWLl2KQYMGoUGDBqrKAchWsry8PJSXl2P58uUwm8244447VL8fADp06IBevXpZf4+Pj0f79u1Vnw+1cnJy0KtXLzRp0sTuOqWmpsJiseCrr74CADRu3Bhnz57F2rVrNR/D9tqcPHkSJSUl6NWrF37++edq23q6DywWC9asWYNBgwbh4osvtm532WWXqepWWlpaCgCqWscAOcZPudcrKytx4sQJVFRUoHv37k7Lr7BYLPjvf/+LQYMGoXXr1tb1zZo1w/Dhw/H1119by6IYN26cx/Fia9euxalTpzBs2DC762U2m9GzZ0/r96pevXoIDw9HQUEBTp48qeqzEhHZYpdFIiKd9OjRwxoc/PLLL/j4448xb948DBkyBFu3bkWHDh2we/duCCFcpmxXxtn89ddfAFBtu7p169pVOgHZNey3336zdil05JhUxLZyrWjSpInqyuQ333yDzMxMbN68GefOnbN7raSkxC5gbNWqldN9jBw5EkuXLsXGjRvRu3dvrFu3DocPH8aIESNUlUFx991347HHHsMXX3yBjz76CAMGDFAdACh8PR9q7d69G7/++qvH6zRx4kQsW7YMt9xyC5o3b45+/fph6NChuPnmmz0eY+XKlXjmmWewdetWu/GDzsa/efrcR48exfnz553eq+3bt8fnn3/utixRUVEAgNOnT3sst+L999/Hv/71L/z+++92yT5c3UdKOc+dO4f27dtXe+2yyy5DZWUl9u/fb9f91N3+FLt37wYA64MNR8rni4iIwPPPP49HH30UTZs2xdVXX40BAwZg5MiRSExM9HgcIiIGZEREOgsPD0ePHj3Qo0cPXHLJJRg9ejRycnKQmZmJyspKmEwmfPHFF06f0Dds2FDz8SorK9G5c2e89NJLTl+3HW8GwGXLgNJa5c6ePXvQt29fXHrppXjppZeQnJyM8PBwfP7555g3b1615BSuMiqmpaWhadOm+PDDD9G7d298+OGHSExMRGpqqscy2GrWrBn69OmDf/3rX/jmm2+qZVZUQ835cDUJssViUX2cyspK3HTTTZg+fbrT1y+55BIAMgnM1q1bsWbNGnzxxRf44osvsHDhQowcORLvv/++y/1v3LgRt99+O3r37o3XXnsNzZo1Q926dbFw4UKnqeV9uQ/UuPTSSwHIcWhqfPjhh7jvvvswaNAgTJs2DQkJCTCbzZgzZw727NmjS5kUajJ9Kvfyf/7zH6eBVZ06VVWojIwM3Hbbbfjkk0+wZs0aPPXUU5gzZw6+/PJLXHHFFfoVnIhqJAZkRER+1L17dwDAoUOHAMh07UIItGrVyloBd0aZC2n37t12T+j//vtvFBYW2mUpbNOmDX755Rf07dvXZeCglav9fPbZZygrK8Onn35q18KiNhOewmw2Y/jw4Vi0aBGef/55fPLJJ6q6kTkzfPhwjB07Fo0bN8att96q+f1qNGnSBIDMkmibSVNpybTl6ty1adMGZ86cURV0hoeH47bbbsNtt92GyspKTJw4EW+++SaeeuoptG3b1ul7cnNzERkZiTVr1iAiIsK6fuHChR6P50x8fDzq1atnbSmytWvXLo/vv+SSS9C+fXusWLECCxYs8PiwYfny5WjdujXy8vLszmFmZqbHctavX99pmX7//XeEhYVVeyihhtKdMyEhQdU1a9OmDR599FE8+uij2L17N7p27Yp//etf+PDDDzUfm4hqF44hIyLSQX5+vtOWBaVbl9KdKj09HWazGVlZWdW2F0Lg+PHjAGQgFx8fjzfeeAPl5eXWbRYtWlRtsuahQ4eiqKgIb7/9drXjnz9/3m0WOVeUcVyOx1ICJtuyl5SUeFXpHzFiBE6ePInx48fjzJkzuPfeezXvAwCGDBmCzMxMvPbaa3bj7fSkVM6VcV6AnL/KWYtVgwYNnE6oPXToUGzevBlr1qyp9tqpU6dQUVEBANZ7QBEWFoYuXboAQLVpDGyZzWaYTCa7Vru9e/dWy7KpltlsRlpaGj755BPs27fPuv63335z+hmcycrKwvHjxzF27Fjr57P13//+FytXrrQeD7C/t7777jts3rzZYzn79euHFStW2KWZP3z4MLKzs3HddddZuxdqkZaWhqioKPzzn/90Olfa0aNHAcjsmRcuXLB7rU2bNmjUqJHb60VEpGALGRGRDiZPnoxz587hjjvuwKWXXory8nJs2rQJS5cuRcuWLTF69GgAsqL2zDPPYMaMGdi7dy8GDRqERo0aobCwEB9//DEeeOABPPbYY6hbty6eeeYZjB8/HjfeeCPuuusuFBYWYuHChdXGkI0YMQLLli3DhAkTkJ+fj2uvvRYWiwW///47li1bZp0HTItu3boBAJ588kncfffdqFu3Lm677Tb069fP2nqjBFJvv/02EhISrK2Aal1xxRXo1KmTNSnJlVdeqen9iujoaMyePdur96rVr18/XHzxxRgzZgymTZsGs9mM9957D/Hx8XbBCiDP3euvv45nnnkGbdu2RUJCAm688UZMmzYNn376KQYMGGBNq3/27Fls27YNy5cvx969exEXF4exY8fixIkTuPHGG5GUlIS//voLL7/8Mrp27YrLLrvMZRn79++Pl156CTfffDOGDx+OI0eO4NVXX0Xbtm3x66+/evW5s7KysHr1avTq1QsTJ05ERUUFXn75ZXTs2FHVPu+66y5s27YNzz77LLZs2YJhw4ahRYsWOH78OFavXo3169dbu1MOGDAAeXl5uOOOO9C/f38UFhbijTfeQIcOHXDmzBm3x3nmmWewdu1aXHfddZg4cSLq1KmDN998E2VlZZg7d65Xnz0qKgqvv/46RowYgSuvvBJ333239XqvWrUK1157LV555RX873//Q9++fTF06FB06NABderU+f/t3Xt8FNX9P/7XZjEBDAkkhADZIKh4QVu1YhEtCg/yEFut+At4QepH0Upb8RJRvFQqxmrxykVbqrb10mJAMEE++v3QFjAgKqICIkpLqUWFcAdJQCGQ5Pz+OJ1kdzOzc+a2M7v7ej4e8wjsTmZmZ2c35z3nnPcbCxYswM6dO3H11Vfb2jcRZRifsjsSEaWVRYsWiRtuuEGccsopIjc3V2RnZ4sTTzxR3HrrrWLnzp3t1q+urhY/+MEPxLHHHiuOPfZYccopp4gJEyaIjRs3xqw3a9Ys0a9fP5GTkyMGDhwo3n77bXHhhRe2S6t+5MgR8dhjj4nTTjtN5OTkiG7duomzzz5bVFZWivr6+tb1AIgJEya0O57jjjtOXHfddTGP/frXvxYlJSUiKysrJh34//7v/4rvfve7omPHjqJv377iscceEy+88IJuSvlLLrkk4Xl7/PHHBQDxm9/8JuF60aLT3huxkvZe7xj1zvHq1avFoEGDRHZ2tujTp4+YNm2a7jZ37NghLrnkEtGlS5d2JQoOHDgg7rvvPnHiiSeK7Oxs0b17d3HeeeeJJ598srVEwmuvvSYuuugi0aNHj9Z9/exnPxPbt283PTd/+tOfRP/+/UVOTo445ZRTxIsvvqibst/KdbB8+XJx9tlni+zsbHH88ceLZ5991rAMgJGlS5eKkSNHih49eogOHTqIoqIi8eMf/1gsXLiwdZ2Wlhbxm9/8Rhx33HEiJydHnHXWWeLNN98U1113nTjuuOPaHX902nshhFizZo0YMWKEyM3NFZ07dxbDhg0T7733Xsw62vv14YcftjtGvfdSCHktjRgxQuTn54uOHTuKE044QVx//fXio48+EkIIsWfPHjFhwgRxyimniGOPPVbk5+eLQYMGiXnz5imfHyLKbCEhXJq9S0REZNHMmTNxxx134IsvvtDN+kdERJTuGJAREZEvhBA444wzUFhYaDkpCBERUbrgHDIiIkqqb775Bv/7v/+L2tparF+/HgsXLvT7kIiIiHzDHjIiIkqqL774Av369UPXrl1x880345FHHvH7kIiIiHzDgIyIiIiIiMgnrENGRERERETkEwZkREREREREPmFSD5e0tLRg27Zt6NKlC0KhkN+HQ0REREREPhFC4MCBA+jduzeyshL3gTEgc8m2bdtQWlrq92EQEREREVFAbNmyBZFIJOE6DMhc0qVLFwDypOfl5fl8NERERERE5JeGhgaUlpa2xgiJMCBziTZMMS8vjwEZEREREREpTWViUg8iIiIiIiKfMCAjIiIiIiLyCQMyIiIiIiIin3AOGRERERERUZzm5mYcPXpU97ljjjkG4XDYlf0wICMiIiIiIvovIQR27NiB/fv3J1yva9eu6Nmzp+MaxAzIiIiIiIiI/ksLxnr06IHOnTu3C7iEEPj222+xa9cuAECvXr0c7Y8BGREREREREeQwRS0YKywsNFyvU6dOAIBdu3ahR48ejoYvMqkHERERERER0DpnrHPnzqbrausYzTNTxR6yNHPwIHDttcDnnwMnnAD85S9Abq7fR0WUXJs3AwMGAI2NQE4OsGED0K+fs20ePAiMHQusXw8UFAAPPQSMGAFE3xBrbgZWrAC2bwd69QKGDIl9PprZunV1wHe+Axw4AHTpIvdbUpL4GI22eeQIMGuW/F7IzwdmzgS+/Rbo3Bn47DOgTx/752XDBnmcLS1AVpY8zpNPNn5tH38MnHVW2++vXQuceabaOQkyN997P44pWfsL4nscxGMiIv+pzAtzOneslSBX1NfXCwCivr7et2M45xwhgPbLOef4dkhESZeVpf85yMqyv02jz9YxxwhRXS3Xqa4WIhKJfT4SaXs+mtm62dn6+8vONj5Go22OHClEOKy/PW3p0MHeeUm0Tb3XlmgdK+cvaNx87/04pmTtL4jvcRCPiYj8dejQIbFhwwZx6NAhR+taiQ0YkLnE74DMqMHIoIwyiVEwpi2hkBBNTda2afbZAoSYNEluW29/oVD7RqlZcJTo+WOOEaKqSoja2rbXUl2tv38ri9WgzMm+VBe98xc0Rufe6L1XXTdZx5Ss/SX7mNw6biLKPH4EZCEhhHCnry2zNTQ0ID8/H/X19cjLy0vqvg8elEOazBw4wOGLlL42bwaOP958vU6dgNmzgfJy83VVP1tZWXLInp5QCIhE5PEBQHExsHev+TZVRCLA9OnAHXcAW7c6396XX6oNX9ywATjtNOf7UxF9/oI2jKy5Gejb1/jcx7/3qus6eZ1WjsmN86myv5ISGerU1SXnmFQk+zwRUeo4fPgwNm/ejH79+qFjx46217USGzCpRxq49lp31yNKRQMGqK136BAwahRQU2O+rupnxigYA2RDdMsWOUdl2TL3gjFANiavuMKdYAxQD7K+8x139qci+vwFzYoVic999LFbWTdZx+QGlf1t3WocjHlxTCqSfZ6IiBJhUo808Pnn7q5HlIoaG62tX1EBjByZ+O63m5+Z7dtlz1KQfftt+8f0Eh4kCkC9sn178vdpRvWYrBy709fpxTElYztub8utfQXxuiOi5GhR+GOnso4KBmRp4IQTZGYzlfWI0lVODnD4sPr62t3voUON11H9bKno1Sv4AVl8ht+aGuD222N7EiIROZwr2YPd9Wpu+p0dT7UOqJV6oQ5ri3pyTMnYjtvbcmtfyTwmIgqG7OxsZGVlYdu2bSgqKkJ2drZuYegjR45g9+7dyMrKQnZ2tqN9cg6ZSziHjMhfqnPIolVVAWPGGD9vZQ6ZlhIgXvRclGXLgLIya8eYTNFzyGpqgNGj278m7W9SMv9yhMOy9y76751RsDhzptr8QDdo85Dq6szfe0B9XTtBpRac1tXJOYV79nizH739mr0ubQ7Ztm3JOSYVVt47ziEjyjxHjhzB9u3b8a3e0JEonTt3Rq9evXQDMs4hyzC5ucA55yRe55xzGIxReuvXTwZGVpjd/Vb5bAHAnXfKn/HlSLT/z5ghG3VDhwKFhdaO0Qon5VA6dGgLxpqbZbCj11D14xZeczPw3ntt/9eCxfg5QHV18nGV+YFuCIdlAAiYv/dW1rWqpkYGF8OGAT/5CbB7t3GQ4WQ/elRe18yZwNNPJ17HzWNS4eX7QUSpLzs7G3369MGJJ56Ifv366S4nnngi+vTp47h3DGBAljY++MC44XjOOfJ5onTX3KwelBQVyQb8smXy94wk+mxlZwPV1cDjjwOvvda+cHMkIh/XemzCYeD55xMfV3V1bE+QqilTzAtHG+nQATh6tO3/KgkPkm3pUvk+qQSLFRWJ31M3lZervfdW11VlFJzqcbKfRFRelxev3akgHhMRBUcoFMIxxxyDjh076i7HHHNM5hSGXr58ubj00ktFr169BACxYMECw3V/9rOfCQBi+vTpMY/v3btXXHPNNaJLly4iPz9f3HDDDeLAgQMx66xbt0784Ac/EDk5OSISiYjHHnvM0nH6XYdMc+CAEJdfLsR3viN/xr1Moowwa5a1eldFRULMn594mwcOCHHZZUL06yfE2WcL8f/+X/uaZk1Nsj5YfJ2weNXVQpSUxB5DfDHarVuF6NbNvC4ZIERhodxXY6N8LYnWzcsT4thjZc223Fwhvvyy/fFVVamdt9mzhSguNl+vpETWaosvwGt1iUSEqKxUW7e21sIF4wLV997qumb7NDunRUXyfXKyHyvHY/a63HrtbgriMRFR6rMSGwQ+qcc333yDM844AzfccAPKE9yuWrBgAd5//3307t273XNjx47F9u3bsXjxYhw9ehTjxo3D+PHjUVVVBUCO8bzoootQVlaGZ599FuvXr8cNN9yArl27Yvz48Z69Ni/k5gILFvh9FET++sUvgPHjgUcekcOS9u1LvP7u3TJ9/KRJsrdLT24usHBh4u1owxI1zc2yBy4+6UR5uczwmCghRUlJ23HX1MhU/Uaef17+7ooV8rUk0tAA1NbqJzPR5iGpJh/ZvRvYudN8vZtuAiornfes1dXJnkAV1dXyZ7ISfcS/926tm4hZTyYg36OSEnf2Z0bldbn12t0UxGMiogyThADRNTDoIdu6dasoKSkRn376qTjuuONiesg2bNggAIgPP/yw9bFFixaJUCgk6urqhBBCzJo1S3Tr1k00Nja2rnPPPfeIk08+WfnYgtJDRkSxtLvfs2eb9x4BQsyd685+q6vb917E94JZ3Z5Zr5pqz1ZVldrxGi2hkBClpfKcqqxfUGC+PSc9Z2a9anbPedA5eb+JiMhbVmKDlJ9D1tLSgmuvvRaTJk3CaTpVTVeuXImuXbti4MCBrY+VlZUhKysLq1atal3nggsuiJmUN2LECGzcuBFff/217n4bGxvR0NAQsxBR8Gh3v0tKzHuPAOCaa+T8ESe8SDpRXi6zINbWyuyQtbXAF1/EznOxm8rbyjyk6IQHqnPWzHootZ4zLxKebN2a3EQfycTU7URE6SHlA7LHHnsMHTp0wG233ab7/I4dO9CjR4+Yxzp06ICCggLs2LGjdZ3i4uKYdbT/a+vEmzp1KvLz81uX0tJSpy+FiDykWuC1pUUOX7TbgPcy6YQWXI4ZI3/GD8UbMqStTpieUAgoLZXrqRyvnuiEByr7sxJkdeoE/PKX6uurzqUWIrmJPpLFzvtNRETBk9IB2erVqzFz5ky89NJL7mU5UXTfffehvr6+ddmyZUtS909E1ljtJbDbgFfJUKgVpXabnVTeKvOQAGDyZNkrt3lzbNZIs/0Z3CvTtXWrzH6porLSWlZJr865Vdq8wjlzzDN8mmHqdiKi9JDSAdmKFSuwa9cu9OnTBx06dECHDh3w5Zdf4s4770Tfvn0BAD179sSuXbtifq+pqQn79u1Dz549W9fZGTczXfu/tk68nJwc5OXlxSxEFFxDhqg39gH7DXjVnjjV9ayymspb9TgGDNDvlTPb3/33y3+rKipS6/W5/345ZHP6dPVte3XOVUXXC7vmGvmzb19nwymZut17bgbRRER6Ap9lMZFrr70WZWVlMY+NGDEC1157LcaNGwcAGDx4MPbv34/Vq1fj7LPPBgC89dZbaGlpwaBBg1rXuf/++3H06FEcc8wxAIDFixfj5JNPRrdu3ZL4iojIK+EwMGuWHI6oavFiWf8KkMGIXkASz4t5PVr2Q6OMjPFUsji6ebxm+5s5M3GWyGglJXL90aNl8BU9lFKv18dKkO3nXCptnl780FBtXqGT4MnK+03W1NTIIb3RvciRiLxGGewSkWuSkGTEkQMHDoi1a9eKtWvXCgBi2rRpYu3ateJLveI5QrTLsiiEEBdffLE466yzxKpVq8Q777wj+vfvL8aMGdP6/P79+0VxcbG49tprxaeffirmzp0rOnfuLJ577jnl42SWRaLUMGmS/Yx9eXnm9cq02lBGmQO1DIWqtY7cztZo53gjESGWLHFWp2n+fCHCYfPMjdq29V53aWn71z19utp7l5+fnNpgRttOlMHS6jVByVFdrf+5CIXkkq7ZO4nIHVZig8AHZLW1tQJAu+W6667TXV8vINu7d68YM2aMyM3NFXl5eWLcuHEJC0OXlJSIRx991NJxMiAjSh1z58rCyHYDs0mT2m8zukFfWdnWaHPSkEtWg1Dbj97xArLwtBsB4bx5xgGJ3utRCZJUU+/ffnvi1x8fMB17rBDXXy+LbeuxEsDV1qodY7KLWZMxBtFE5FRaBWSpggEZkb+s9nDMn28/IANkcKHRa9AXFrYPZPR6eBK9nmQ2CI1eQ6IAqrLSeo+Sas+XKqfBjlHQqy1ZWe0DcKu9lqwXlnoYRBORU1Zig5SeQ0ZEBOjP88jPB66/Hrj8cv35NKNHA9XV7X9P1YQJcg7JwoX6c4P27ZOPVVYC/ftbn9djJVvj0KHWjz9e/DykHj3k+TPaNwBMmdL2WPfuwE9+IreR6HW6Pd9p9275u4kSLWip3+Pn4p13nnnK/5YW4Ikn5L8ff1xea3rz4bZulY9XV7efW8R6YanH7+Q8RJRZQkIk+lNEqhoaGpCfn4/6+npmXCRKIqNkCdESTcKPbqRv2AA8/LD6vpcskUGLUeAUCsl9b95sPeCYM0dm4jNTVSXrkrlt2TKZBdCOZCU9UHnvARkUDxgA3HFH7HtVVKRWLByQ79+BAzK427vXeL3CQkBL2hsf3NbV6R+rk+uEvKF6/dfWunNDhIjSj5XYIKXT3hNRZlMtarx1q2y466UXjy62PHy4tf0vW2a/5phZKm2/e1Wc3PnXMgc6Sedu5sgR4Gc/M3/vAdmTd8UV7d8r1WAMkO/PxImJgzFAPv/ww7Hp7cvKgEOHjIMxgPXCgoZFt4komRiQEVHKUi1qDMjGsFmxZ60R5rb44EalHpXfDUIngZ4WeNgtrm2mpkaemz173N92Im+9pbbegw+2vy6NAjnWCwsmFt0momRiQEZEKctqL45ZsefoRpiZ0lL1oUrRwY02zC6+wR7fq+R3g9AsIDSTqHfQCe38Wendcsu//uX+Np96isFYULHoNhElCwMyIkpZdnpxzIbRlZfLxAy5ucbrhEIyGBo61FovVqIhlnq9Sn42CBMFhFa4mfRAdYhqKpk40bgX0WxYK3mvvBz44gs5V6yqSv7cvJnBGBG5i0k9XMKkHkTJ19wsgzKrvSWXXSYTPCTK8tfcDPz618C0aTKZg6a0VAZjWoNM67EBYgMFLYh59VWZPGL7dpns4Y47zI9vyZLY+Wzx2QGdZCW0Si+DpRVuJj1wkmgkyCorgQceiH1M77wnK1kKERE5ZyU2YEDmEgZkRP547TWZsMEJ1SyMRsGQXuO5tBS4+mrZu2E1mCkoAP7wh+A0vKPPwaZNsenujXiROVA182Qqik6Xb5Q9UgvyOVyOiCj4GJD5gAEZkX+uvlr2RNnlRkM3PnDbswe48kr7w+tCoeA2vGtqgPHjjRNVeBU4JLuH7MILgeXLk7OvggJg3jwZ8J9wQuIgPhKRw+iYUIKIKLgYkPmAARmRf5qbZa2nffvsb8PNHp3mZpk10e4wP7ePJ57TIZBm9b8KC4Hnn1cPxlSPRzuvRvW8ACAvD2hokOfP7K+bUS+mNiy1oCD5QyRVa6NVVgL33+/fUFYiIkqMAZkPGJAR+Uu1SLCZyZPl/C0njVs3e3KczsGKD3Z275aJJIzmJpkFRyrBppUeHKtzpczm7L32mvypN4T0qafa5vNFvzaj16wSAPqpsDC2lzIV5pj5OR+SiCiZLMUGglxRX18vAIj6+nq/D4UoY1VXC1FSIoRsPjtbIhG5PTuqqtw5BkBuy8n5iETM9xEKyWXSpPbra+ehqUmI2lohJk9WO+7aWrXjC4WMj8fo/Ou9rtLS2PW1462qkj+bmuyfQ+143HpPvVwSnTe/6b1vTj5nRERBZiU2YA+ZS9hDRhQMzc3AQw/JxSm787iC0EPmVo+hNvQvvjfGTFUVMGaM8fNmPW1mQzaT2dOi14tXUOBsiKyXCgtlRs8g9TwxUQkRZRorsQHrkBFRWgmH5fyakSOdb0uI2LpgqpwWVdYUFrbVMAPU61K5Wa9L24aVYAwANmxIfIwrViQe9ihE4sLS4bAMVMeMkT+9Dj7iz2VWgP967t0LPPKI30fRxmr9PSKiTBPgPylERPa9/jpw553OG86JggIj0UWVndi7F1i4UP67pkb2KA0bJlO/Dxsm/69X6Nos2EmGhx9OfIyqBaPdLCxth9azU1cX+/iePf4cj6qZM4MT4DgNvomI0l0Hvw+AiMgrTz4J/OY3wE9/CvzlL/a3s3Ch2rDB+GF08+YBN9wQW1jaqooKoKVFP4V+XZ0MFqKLT/fq1T548JN2jPFD0nr1Uvt91fVURb9HPXrIx3btMk5g4lZPY7Lt2ydfp1tFuZ1IleCbiMgvnEPmEs4hIwoup3O6tGAnflhcfMHk55+PDYYiEWDcOODXv7a/b23/iVKhaxkBNd27B6sHR28+mFkGQy/S/uvNBYsWn6Uw2XXP3GY2jy9ZVM+jnfmSzNpIREHFOWRERFGGDJFJGOzavbv9cKr4IYRTprTvmaqrk8FYbq79fWv7TyR+aFqyg7Gf/CTx83pD0qKHdcbPtdP+P2OGu8HY6NGJh85pvXnaEMug9NgUFcX+X/Wen9PeRdU5i2bM5lSGQrIsQfR8SRVWhvESEQUZAzIiSnvhsOwZcSI62FJp3AMyEAmFgJwcZ/v2WkGBvaBRa0irBrvxAU55uRzKWFIS+3gk4m7WPdWhh/EJJpwGNIWFzn5fO79bt8reo6oq+XP3bvNtFxbK15AoiEoUcLkZ7HgRfBt9BuODaiKiVMAhiy7hkEWiYGtuBoqLrWcL1OTlySGJ3bvL+VxWU55XVgLPPQds22bt9/Lzgfp6a7+TDFpD+q67gCeeUPsdoyFpXg87szP0sLZWHoedwtC33AKMGiV/f+FCYPx4/etOKykQ/2/t/4BxYFpTI/dhxqhYdKKC3ICzFPVG7+f8+cDNN8f24JaWymDMSvDttGQCEVEycMgiEVGccFgGVHY1NABXXw2UldmrP9W/P/DVVzIws+K669xJoe+2SEQmLZkzx3xdsyFpXqewtzP0UJszaNSzk8ioUW2vo7xc1gSrrGzfkxiJANXVcrHaS1heLn/PrKdMr8coUe/SqFEygFRNUR/fyzZ/vn7P2t13AxMnxgZj3bvLpDeNjdaGRDJrIxGlG/aQuYQ9ZESpoabGuMfCS9G9QzU1wM9+pjbXa/p04MsvZS9CfC+KH0aPBiZMkMHVihXqPU/V1f4V/rXbQxb9ft12m3n2SifFrO30Elop/l1aKo8LSNy7pKq2Vt6YSJQkxSqj3rx4c+bIYM9MUJKaEFFmshIbMO09EWWU8nJZNHrZMrn885/yp1eJMLRGenTvUHk5cOmlslck0X7DYeCOO2K35XdA9v77wNy58thUe55uv132Ds2Zk9xMeFqQU1ennnlS7/3SHjf7PSDxXCitJ9Dqc3qspuSP7jFyI4BasAB4+mnn24lmVCIhnl8lE4iIvMIeMpewh4wodWkN93nzgN//3r3tqswDGj1a/juVvom13iPVnqf4tP1FRcCsWW2v3QtmKe716L1fqr1QduZCxbPSS2an16+iAvj+99V6l8xkZcn6eG5Tmf/lR8kEIiKrOIeMiMgCrXfipJPc3a7KPCC9LINBb0RqPWNm6cw18Wn7d+8GrrhCzisC2uYhvfKKDGpeeaVtTlH8HKUjR8xTsatmwYwX/36p9EIVFABLlsjGv5NgzGpWw9dft76PV15pK4btlBfBGKA2/yvZJROIiLzGIYtERP8VX+/JqkgEuOkmmcBDdWieNoRSG1r3zjvAs886Ow4jXboABw443442FExrGI8ebW845RNPyIb9q6/qB095efL5gwfbHosvgh0/78gsiAqF5PDF6dOBnj3lY7t26b9fZskjADmPKhx21vg36oUzGsLX3Ay89JL1/WiBcSRiPXNkspkNh9VuZuhlinTaU0lElGwMyIiI/iu+p0pVQYEc7mg3Q2A43JYgwctkI3fdJQtY22U0H06vYRw/TNHIU08ZP9fQ0P6x+B6x+KBFJQPf7t3yvTabs6U6R85JAelEAaRWx66iQgbt2rW1YoX9Ugi7djkLopNFZf5X9M0MtxKlEBH5gUMWiYj+a8gQ2Xti1XPPAcOH22/saTWlvM78eOqp5kMMtQLRVoaClZcDX3wRW7x4+nS3jjqx+FTsbgZRyUgeYSeFu1m2x0R69TIeKltY6H95BaMSCUZFrI1KJrhZ2JqIyGsMyIiI/iscBn7yE+u/ZyWI05sTdfvt1vdpx003Aaed1tbzEi0UksvLL+vXxerevS1bot68rfiGsd3eRjuigxY3gyizOXJm9dVU2AkgVXoe48Ufa3wQXVkpbwh40WPWpQsweLD558Qo6LcaXCWqsxZfk42IKAgYkBERRRk50vrvRDeWje7kNzcDDz0kkypENyxLStyr42Smvh7429/kv+Mb3tEJLaIb6xUVsiG9e7dsKKv2NAwZ4nxOnlXbt7sbRCUjeYSVAFK7tjZtsrYPo2MNh+V5KCwEHn3U2jatOHAAWLlSlh3Iy5PXVGWlWjFsq8GV2RBQILawNRFRIAhyRX19vQAg6uvr/T4UInKgqUmISESIUEgI2YQzX2pr5e9WV8vfjX4uEhFi0iQhCgvVt5fM5dJL5fE3NbU/F9XV+uchFJJLdXXiczl/fnJfS/T7oB2jnePWOw/x72tpqfXt6DG73kIhua/589sfg+pidKzV1f5dlxUVQixZIpeqqrZrsKlJ/ruqSj6X6DVr5yb62q2ttXatEBF5xUpswDpkLmEdMqL0oVp7Krre0cKFar8TNOGw7MFYtSo2+QEge8KMeu9Uaz3dfbfMpuglvWPRq0PmpFaYlwkijOrRaT1bd90FPPmktWurqEgmTNm7V/67pCT2mLV5i36LzpJpp3Yc0FYXD5A90yp11qqq5PBaIiKvWIkNmGWRiCiOUebAaNHDwADzelVB1dwsA4zorH3duwMXXqiebCJRtsJzz5Xzzvbti328sBC44QbrgUY87X146qnYgGnkyMQZ+KzS5sh5IVEK96eeAiZOtH6OTj9dDs2LPu9a8DNyJDB+vCuH7pg29NBO0KmJHjKcjEQsRERuC/wcsrfffhs//vGP0bt3b4RCIbweVQ3z6NGjuOeee/Cd73wHxx57LHr37o3/+Z//wbZt22K2sW/fPowdOxZ5eXno2rUrbrzxRhyMLmwD4JNPPsGQIUPQsWNHlJaW4vHHH0/GyyOigIqfRxU/Hyp6votKvSqnzj7bu23Hp1Dfs0cm9lBRXW1eoDk+GANkz82558pzGImoH2tW3F+tSEQ25idObJ/04ZFHUifluV6mys2b5XVn59qqrW1/3rXg59e/9j6jpyotAJs2zX5gHh1cJSMRCxGR2wI/ZHHRokV49913cfbZZ6O8vBwLFizA5ZdfDgCor6/H6NGjcdNNN+GMM87A119/jdtvvx3Nzc346KOPWrfxwx/+ENu3b8dzzz2Ho0ePYty4cTjnnHNQVVUFQHYpnnTSSSgrK8N9992H9evX44YbbsCMGTMwXvE2IocsEqW3REPWVIdJmcnLa197q7AQeP552cs0bJjzfXhFr0BzoiGPgHxtr74qz+V778mAYfduGYi88kps0NCtmwyM771Xrqu9D3v2AFdead6Yj+4d8qs2lZ1hj25dW5pQSGY91KvxZmUbQWg5GA2bNRsCOm+e7AVOlWCdiFKTpdjA4/lsrgIgFixYkHCdDz74QAAQX375pRBCiA0bNggA4sMPP2xdZ9GiRSIUCom6ujohhBCzZs0S3bp1E42Nja3r3HPPPeLkk09WPjYm9SDKXKqJBMwSLzQ2ykQGkyfLZcmStoQFdpKNJHOJT5hh5ZxEIrFJJ4ySo8QnptDOierxAe2TWOht1wuqrymeG9eWm8uFFwpRUBD7WGGhf8lB5s1TP9+lpTLBjp33gYjIKiuxQeCHLFpVX1+PUCiErl27AgBWrlyJrl27YuDAga3rlJWVISsrC6tWrWpd54ILLkB2dnbrOiNGjMDGjRvx9ddf6+6nsbERDQ0NMQsRZaYhQ2QPlhM//akc/hcOAw8+KIeVRRebTpSCPQiEkD+tFmgGYlOYW0lzbmWoqHZ88UP1klGbykldrCFDklvTzczy5e2HQnbsCFx/ffLLHAByqKre+dMbAvrUU3KeGuuTEVHQpFVAdvjwYdxzzz0YM2ZMa9fgjh070KNHj5j1OnTogIKCAuzYsaN1neLi4ph1tP9r68SbOnUq8vPzW5fS0lK3Xw4RpYhw2H5x59xcOXRvyhTzorda8ocgNdCjCWG9QLP2e4A8h1ZqSFkJ+sz27VVtKqd1scLh4CTgMFJXJ4MdOwWrAXmDIdGQwVBIfkaM9q0STDU3A3fcYf99ICLyUtoEZEePHsWVV14JIQR+//vfe76/++67D/X19a3Lli1bPN8nEQXX/fcbNxr1FBQAV10FfPONtV6b+Dv/XqeUt0OlQHM8IWTPhWpmR8C9THnx23WTWS+eyr7793f/uIJECOCHP9R/zmy+mlEwVVMjb2xoiV7KyuTnKtF2vLoGiIjMpEVApgVjX375JRYvXhwzca5nz57YtWtXzPpNTU3Yt28fevbs2brOzp07Y9bR/q+tEy8nJwd5eXkxCxFlrnBYJt/QowUllZVtw6e2bwfefdfeHXstBfuYMcHsLevVy9shllrPmNWgT3W7bmluBpYudb5vL1O0d+zo3batePNN+TO+pywSkZ+bRFkh44MpoyGiKty+BoiIVKR8QKYFY5s2bcKSJUtQGHeLevDgwdi/fz9Wr17d+thbb72FlpYWDBo0qHWdt99+G0ePHm1dZ/HixTj55JPRrVu35LwQIkp55eVyHlh8GvdIRD7+wAMyiBo6VGYKdNpzAgSrnlJ8SnGvhlhqr9ntoE/bbnOzTOU/Z45xSn8zWg/Nww9b27cetwPPaIcPu79NJ1pa5M/bbgOmTwemTgXWr1f73aVLgb/8Rda3S9SrlkiQPk9ElEG8zzHizIEDB8TatWvF2rVrBQAxbdo0sXbtWvHll1+KI0eOiMsuu0xEIhHx8ccfi+3bt7cu0RkTL774YnHWWWeJVatWiXfeeUf0799fjBkzpvX5/fv3i+LiYnHttdeKTz/9VMydO1d07txZPPfcc8rHySyLRKRpapLZ8aqq5E8tU2K0qiq1LHJVVeb7ClL2Rb1sdU1NMmNkfHa+6CUUkq8j0WsJhWSmvPjzqZdRz8oSvV272RDjj8fK+1FQEJtRM9E247erPTZpUuLzm2pLOJzc/RldW0REdlmJDZCE43GktrZWAGi3XHfddWLz5s26zwEQtbW1rdvYu3evGDNmjMjNzRV5eXli3Lhx4sCBAzH7WbdunfjBD34gcnJyRElJiXj00UctHScDMiKyQjWdeWWl+basBgBeLWbHahRUaEt1tXngYRQYRQfBlZVClJTE/r6Wlj3Rdo3Oo7bOvHnmgbaVVPzxi1ngZ5TKXfudJUv8vwZSeQla6nuVGztEFFxpFZClCgZkRGSFas9WoiAk2qRJ/jdozXrzhJCvRa9mVWFh2+s0CzxUz298YzbRdlUCqfheG70AykndMLOg0+h1RT8XpN7SVFoqKtSvrWRwo6eWiPxlJTYICSFEsodJpiNL1biJiCDnGY0alXidUEjOH9q82Tg1eHOznK9kJ4mBm2pr5fy4RLSEC/F/ebT5Ua+9JueeNTfL+XPbt8t5PUOGJE6Nrip+u+edJ+fzLV2qPt/L6JgBOe/smmvsH5/K+52I0fn1Q2kpcMYZbQk7gkzl2k2G5mbgkUdkGYx4etcbEQWXldiAAZlLGJARkR0PPaTf+IqXqMG4bJlM7+0X1SDCLHB0GoxYDeJqamSNMCeBbPwxu/VeOAkQ3Hhd8XJz5Ws9cMB83cJC4NVX5fGvWOHvtWnG6TVnl3at1tXJ+m1FRcDnn8tMrYnS8/t1vERknZXYoEOSjomIiHSo1phKlI7bz1Td2l37adPMgyErNbmsBiN6QUgkIrMw6vUmuNWTFH/MWkbEujpn207UKDdTXg6MHCmDwyuvBPbts7edY44B7roLGD5cvraFC817dAGZoj4clot2PvzuvdWjXbszZiQ3uHntNeDmm+0V0nbyGSGi4Er5tPdERKlMNc12ovX8TNUdichG+x13tBXhHTZM9oTFF7ZWDRyXLrWWct6o7pRRge3mZhm8uTk+RHttWip+p9u+4w79wuCqwmEZSP3hD/bT5R89KtPOX3mlHEY3cqSsjaci/nyEQt6k7beioCD2/yUlwIMPAo2N9ssbWHX33cAVV9gLxqI5CdgT0Sv54EYZCCIy4fF8tozBpB5EZIdZIgaVdNx+JXMYO1ZmHkyUmTA6CYGdhBdmiQzMknHonT8niTeMlqjEvkIImSTC6TZVE7qYcVoWQFsKC2UGSzvnwyihyu23J+96DYXk8Rtl4vQ6aca8ee69lu7d3T9WvfeosLB9Eh4754kZIykTMcuiDxiQEZFddlO9q2wjenG7ttMvf2ktGLITOJqdA9XgKjpAUK0Bp7oUFbVvYLoV9LlVG6upSYinnnL3dVs9Zr1GuRfBsdn1aHQTQVsqKtwPGpqaZBDl9utxKyizUjrDyveStm1mjKRMZCU24JBFIiKflZfLeSUlJbGPWxlSZbSNaNrvX3CB0yOW8vLU54QBbcPXrBBC/qyo0H/9qsMgo9fbtEntd0aOVFtvzJj2c5DOO08mt3Aq+vw5EQ7LjIfJMG2a/pyscFjOexozRv7U5pglumbdpF2PN9/cdl3pmTHDeNitXStWAHv2uLOtaEafCyuOHAF+9rPE5ySa2WcymtXhxESZigEZEVEAlJcDX3whs+tVVQGVlfLxKVMSz8uK38bnnwPduyfe19tvu5PE4N571daLDoZGjpRzkqyID+yiWZ2DV1Mjg9xEQiGZsn3IELVt9+sX+/+aGqB3b5ncwg1uJW3Ztcud7Zgxu/6ihcPA0097dyx6VAMj1aBBZY6VF4l3En0uVNXUyHmgVoNFlX0nmqtpJagjygQMyIiIAkLrQcjJkUGDnbvK772n1rhKZiMoOhg67jiZEt0OvUatlsXPKGFEdHClmsxDCNlL0rOn2nEVFbX9W6st51YwBrSdv/iG/5Ej1pItJCv5i9WkLOXlQHW1fo9iQYF83I+EICpBQ02NvFFiltDGy3NvN9jTeq+cJBhJtG8rWVWJMh0DMiKiAHF6V9nPFPh6cnNlMKQ1/pxkh9u5s332txUr2tLXxzfa49OaL1umln69slIGCapD6bT1mpuB225TfDGKiorazl98w79z59j/9+wph60aMQte3fLww+q9uprycvn+LlkCTJ4slyVLZK/e88/LdZwedygUGzyrSBQ0WBmON2SItZ5DK+wEe25lGk20b9XPetC+s4h8kYQ5bRmBST2IyA12klTY+f1kLrfeKhNfuLlNvexv8UlLSkvbEgdUVwtRUKC27aoq+TtmGRy1fWjJH7w49/Pny8XK70yaZHx9WUne4MZiNQFEouN2kilSO4758+1tR7smNHaye6pm3hw1Su5vyRKZCdJJBlYjTq9Vs33Pny9Efr7atoy+y4hSHZN6EBGlKDtJKqIlqxfEimeecV53Kd7eve2HBWq9hhUVci7e5s2y50XryVAtkKzd9U9UQ0t7LLqosNt3+idNkk3Wq6+29ntPPCGHvOr1opaXA5ddlvj3O3a0tr9EhJA/VecKGc3HMppjadQrGj/8MRKRvYejR1tPLAO07wky620Von3PWrduavv67ndl4pPhw9vm15n1/mq08/fKK/K5V17RHzrq5Fo1K6it1VqrrzffjpW5mqpYN41SUhICxIzAHjIicoPTHjIhkt8LEqTFKNW+k7v+RjW04nt93Ooh695dpmavrna2Hb3U4iq9bW6XR9AWs54Qq+nRE70v8Sn2Gxtj/3/bberHHX9NeNXbGr1Ev2bV6y9RL2L8eXRyrertW6Naa82tntN4TLFPQcI6ZD5gQEZEbnCjULQQsgESX/g2kxat8W+l4ZmogahS2Lapyfk5r6yU27HagFd5TU1N7g8dtbLED/uLv15VC4xbfV/0GulWzkN8cGTlZofd6zD+M272OlWOK/5asFITUCuonag+m5Vaa0VF3gRjdq6hVMIC26mFAZkPGJARkVvcKBQthPxjXVlp3Djzq2GejEVr/KsWgS4ocKfBZrdXK37/bvW2RTfu/Z5faNRDZmc+lpX3w6iRbna84bDs8VE9zkTHbKcYuercKivHFX1MKsXkE/WGxbNyfc2erfoOunMOnFxDQcHev9TDOWRERCnMqMizNg+mvFxtO+Ew8MADMqV4JBL7XJDmmHlBm/OjmoFu3jz185rIyJFyflOnTtZ+L37/bs1HE6JtLpOX2exUimDv3q0/v8er9OgqGUsTmTtXzoXSmB1nvOg5VnYyIaq+X1aOK/o8Gn3PFBW1n4cJmM/NsnJ9uV0MPN1T7LPAdvrr4PcBEBFRe+XlsnGvNaR79ZKT3+0UdI7e1sKFsqHY0uL6IQdCKCSDTy1RgJbkpK5OvxGurT90qPN919TIAMBKox2QiQ3i9+923SrtGnJbYaFMS9/SEhu86PnFL4CJE2PPTyQiG5QqrAaUqoFK9+6xtftKS+VnJD5AV91/Xh7wxz/G/r7ZdahH9f2yel6i11f9ntG7tiMRmSBFe52qx6uVcnCT02RIQWZ2YyEUkgH0yJH2/j5QMDAgIyIKKK1QtFvbGjIEuPZad7YXRHrZ37RMiaNHy+ejGzVm2eKs0O5gqza2o+ntX2vAWw3ujGgNbTe3CbRlrlSpsaVXLLuuTr5+FVYDStXG94wZssfG7MaH6v4bGmTgGQ63BSuJrsN48TcVomk9itHHavW8xK9v9j1jdG1rvTNar73q9TVrlvuBg+o5SFZxdDdZ6f1z6+8FJR+HLBIRZQirQ66CLjc39v8lJTLde2Nj+5TpbgwBNWK3yG44bDxUUmvAOxWdWjw6jb+bKirsF/zW7vAnaqDbTY+u2vguKZEN2TFj5E+jY7FSUkJvKJnRdRgt0U0CveLgffvKoaBWSl1E9waasVKoXuX6mjRJvUfUCrP3xqsU+8mQzr1/1IYBGRFlrEyrV5Nuf7Bffz22LpUQwJQpsY1VrUEcX8cqfn6ME3YD3fg5SvHKy+X8P6P5WVrj89xzEz8/bZo8xjlzgIICGQTGzym0S7s7v3Sps21onz3Velsq3G6kRwfJZsFPfLCiib4OKyra9ywa3SRINIfoyiuB889XvyEwcaL6d53VuVnl5fL6KiqKXa+oSD7++ONq+7Uq0XvjZk+4H9K594+iJCHJSEZglkWi1JKJGav8zrLn5hKfLS7Rul6/p1Yz6FnJXCdEW7bM+NpXkUhbOvLKSv1aVZMm6V/n8+YJMXmy/+9j9FJRoVZvywq3MpaavReJlkTZElXLKbhRAkH1mKKpXttaVlO971Wtrl4yqNZsSyVulUKh5LMSG4SEEMLvoDAdNDQ0ID8/H/X19cjLy/P7cIhSjt7cCK/uZhrNidDupLoxjC2Imptlr5GVxAJBVV0t36PmZqC4WH9+kqawENi5053rSe86XbFC9siZmTwZGD7c/rUdve9Nm2QyjeihgiUlwPjxQP/+8th27wauusr4On/wQdmjGBS1tW3n083vAb2EFEaJO6xuR0VVlRwOadeyZWrXlxWqx6S679paOZ/Qi+9Vq38bkvm3JFm0v1lA7PlN979Zqc5SbOB5eJgh2ENGZF8ye6syoV5NIiq1h4K8hMNCTJnS1qPw97+r/d6TTzovpmp0nc6fn9w72CoFcFWu80gkecXDO3f29zPntKCu1YLQ0Ytqb5QROzXM3Dom1d6ZxkZvvlczcSSDkXTs/Ut3LAztAwZkRPaoNC7dpDpsz2kjKsj0/rAXFSWnYe50KSyM/X+XLta3YadBZ3adTprk7tA4I6o3FJYsUTsXV17p7/vp1efcTU6HDH77rbP9uznU2E5gpDLs04vv1WT/bUgFTm8sUHKxMDQRpQQrGbzcwoxV+gkutm5VS13uFy2xRfzQxAMHrG9r61Zg1Cj1Yqoq1+ncucCrr3qXyVGjmmRh2TK17c2bZ/9Y8vJkMhUn3D4/XnCanfS555zt30p2x0TsJrdQyVLq9veqH38b9I4haEmftBIFZhlBKfWwDhkR+caP+irMWCXp1R6aNUtmbAua7t29KWQ9frxaMVXV67SoSAa6Xs5fCdKNggMHgAED5Ovevdv67xcVAf/+N5Cd7f6xucnpOf/8c2e/b6WGWSKRiPV5cxqzAtJufK9Gz/36+9/9rb2lUgibyE3sISMi3/jRW5XO9WqcuuIKWScoaPbsaStA7Ka9e4FHHjFfz8p16vUdbNWG79Ch7vSqmJk40X7Cit27gffec/d49Djt6XB6c+aEE5z9PqBWwyyaVlx6yRL3yjwkuradfq/G11h76SW1Y/LiBkWiEgPxteWI3MKAjIh840dvVTrXq3HD448D8+fr1xFKR08/bd5AD1KvqmrDd+hQdwpLJ6L1UvTrZ38bXvf4GRVTttKodjJkMBwGbr7Z+u/piR9qXFkpj8noe2zmTJnVMxnD25x8rxoFQCrc/swFYagkZSYGZETkG796q1TmRLgpiHMREhk9WjaU4+eYJaPHxQk7c+D27m0ramskSL2qZsWJhQBOO002fnNzZeOySxdvj6moyH6h6Z07238u3Pq8uNXTEX3OrZo40d0hmdG9VA88kNzvMTN2vlcTBUBmvPjMWS2ETeSaJCQZyQjMskhkj9uFW61IRsaqdErbHNSU+VrmuG+/lUVorf6+VtTWzmv3K+Ob3nXl11Jb6861EYkYF7K2U8DZzTTsTU1CXHVV+9cXDgtxzjnyZ/zjkyZZflttCVrmPSvH4ySDpBefOauFsIkSYdp7HzAgI7IvXeurpGPaZr33KifH/6CgslI91bteQGH3tft5nWoN30sv9eacFhTIMgOq9dW8ChLtfF7cTMNeXd2+3EL8sc2dK8T06ULccov82dho+e3MSHZrrFVWenM8LItCbrISG4SEEMLfPrr0YKkaNxG1E51hy4vsdMnW3CznqhgNf9Em3W/enHqvM/69WrwY+M1vvN1nKAQUFACdOhmf04ICa8k/7LwHQbtOjxwBOnd2dxhsYSFw223A/fcDCxfK4X2AbIrGq66OHYoWfX527gTuuMOdY7L6Xs2ZI+eMmamqSpyUpKZGlkhw89iozbJlcl6fFZGInEvnxbnWvrfr6vSvd77XZIWV2IBp74nIM1Yar3pp2FOZHyn9kyX+vVq61Nv9aXOlnn9ept5+5BFgypT261kNxgDrCVyCdp3OmuUsGCstBZ56Ss4D0/ucavOCxo9vXwNOqw0XLfr8zJlj/7jiJfq86H3PuJWG/fbbnR0bJabNzzQKgKJFJyvxKhhKVGKASZ/IS4FP6vH222/jxz/+MXr37o1QKITXX3895nkhBB544AH06tULnTp1QllZGTZt2hSzzr59+zB27Fjk5eWha9euuPHGG3Hw4MGYdT755BMMGTIEHTt2RGlpKR5//HGvXxpRWnMju1kqy6QC1F43QuOTAvzhD+5vM1XZqXE1eXJsKvQrrjBP1a8X7O7blzg5hhdZJ+M/L0bfM3v2OE/EYrUgdDp8lpPNLElNtGR9ZpOd9IkISIEesm+++QZnnHEGbrjhBpTrfAoef/xxPP3003j55ZfRr18//OpXv8KIESOwYcMGdOzYEQAwduxYbN++HYsXL8bRo0cxbtw4jB8/HlVVVQBkl+JFF12EsrIyPPvss1i/fj1uuOEGdO3aFePHj0/q6yVKB1p2s/g7nlp2s0z4oxakVOleGzoUyMsDGhrM1338cdkI27wZOHhQDnesq2t73qzHxmojOV5Fhexl83uooVvs1LgaPlw9iDZLAx4KtZ3T+PNppfdDVfTnJdH3zJVXAnfdBTz5pP2eDqsBVjp8lv2gBUB6hZhvugno3z/5w4PNCmETuc7rCW1uAiAWLFjQ+v+WlhbRs2dP8cQTT7Q+tn//fpGTkyPmzJkjhBBiw4YNAoD48MMPW9dZtGiRCIVCoq6uTgghxKxZs0S3bt1EY9Qs3HvuuUecfPLJysfGpB5EktvZzVKVdh5UEyKkuvnzzSfCFxYKUVIS+1hJiZygr5ohzm4SgHRIEqOnsbF9hj83P3tOkxy4lZkz/thVv2fmzbOfiMVKBsB0+iz7JWjZIomcshIbeDJkcc2aNVi/fn3r/xcuXIjLL78cv/zlL3HkyBHX9rN582bs2LEDZWVlrY/l5+dj0KBBWLlyJQBg5cqV6Nq1KwYOHNi6TllZGbKysrBq1arWdS644AJkRxULGTFiBDZu3Iivv/5ad9+NjY1oaGiIWYiIdVw0mVaAevRoYNKkxOvs3RvbGwYA27YBDz4I5OQYD5eLrku1c6f1Y6uslD1y6dgrm50ta12ZsXvNOR16azT8ywrt2J96Sn5vzJkDPPOM2vdMUVFsMWVtmKbKtaBaEDoUSq/Psl+ia6x5XciaKGg8Cch+9rOf4V//+hcA4D//+Q+uvvpqdO7cGfPnz8fdd9/t2n527NgBACguLo55vLi4uPW5HTt2oEePHjHPd+jQAQUFBTHr6G0jeh/xpk6divz8/NaltLTU+QsiSgOZNHfKjFFjtHt34NVX0y9AePxxYN689gWaIxH9BBBA21Cyigr95BTxc4TuuAPIsvCXKxQC/vhH9fVT0eOPy2A4UQPW7vwXN4belpfLuW7TpwO33CJ/VlWpN7gjETn8cOLE2OtAxfbt9hv6KvObsrLksaXbZ5mIksuTOWT/+te/cOaZZwIA5s+fjwsuuABVVVV49913cfXVV2PGjBle7Dap7rvvPkyMui3Z0NDAoIwImTV3SkV5OdDSAtx8M7B7t3xs927ZuAyH068hd8UV8jVFz71obgaiBjK0E5+lTsuat3Ch7HmI19KifjyZkgHv8ceBhx+WWRc//1wGsd/5juyVdDL/xWwemJYGPFFyjJqa9vODiorUskNOny63f+WV9uahOf2eSZRlEpDX4pNPAueem36fZSJKHk8CMiEEWv77F3PJkiW49NJLAQClpaXYs2ePa/vp2bMnAGDnzp3oFfWtu3PnztaAsGfPnti1a1fM7zU1NWHfvn2tv9+zZ0/sjBsHo/1fWydeTk4OcnJyXHkdROnEjQZcOqmp0W9MpnOCk/jU8Krpz7dv12+8uyETemTDYeDMM4HiYveSEDhNA26UeEO7OWGmqEj2hlkNxtz8nhk50jz9vVFiEyIiFZ4MWRw4cCAefvhh/OUvf8Hy5ctxySWXAJBzvuKHBjrRr18/9OzZE0ujiuA0NDRg1apVGDx4MABg8ODB2L9/P1avXt26zltvvYWWlhYMGjSodZ23334bR48ebV1n8eLFOPnkk9GtWzfXjpcoEwR17lT0PKRly9wtpJton4ky1AHGQ/XSiWovxaZNsvHudjBm5Rj8uE7c4GWZCbtpwBNd/6p277Z+Pbj9PcN5sUTkOS+yiqxbt06cfvrpIi8vTzz44IOtj99yyy1izJgxlrZ14MABsXbtWrF27VoBQEybNk2sXbtWfPnll0IIIR599FHRtWtXsXDhQvHJJ5+IkSNHin79+olDhw61buPiiy8WZ511lli1apV45513RP/+/WOOY//+/aK4uFhce+214tNPPxVz584VnTt3Fs8995zycTLLIlGs6mr72c2ScSyRiPfH4jRDXbpQyTgZiSTOmudWdr5E/LpOnNIyGeq99lDIveO3mgXPSpZCo/dt9mzrv2v2PWP1dahm9qyqsnQ6iSjNWYkNPAnIjBw6dEgcOXLE0u/U1tYKAO2W6667TgghU9//6le/EsXFxSInJ0cMHz5cbNy4MWYbe/fuFWPGjBG5ubkiLy9PjBs3Thw4cCBmnXXr1okf/OAHIicnR5SUlIhHH33U0nEyICNqLwhpjJPVWNXDhlwbo/Tn2mOVld4EY6rvsR/XiRufjyCXmbBboiD6nKsGddOnq51HO0E3b6wQkR1WYoOQEEJ40fO2f/9+vPbaa/j8888xadIkFBQUYM2aNSguLkaJk/y3AdXQ0ID8/HzU19cjLy/P78MhIsghU337Gg830uaZbN7szRDKZcvk0DEztbXpnXBCozc/rLRUDi1rbJRD7dykbdtsjp4f14neuYhE5HBfK3MKk3WNaYlWrBTJVT227t2B6Onl0e+b9t6YzUlVeW+M5rNpQxyNhl+6eQxElDmsxAaezCH75JNP0L9/fzz22GN48sknsX//fgBATU0N7rvvPi92SUTUjt9zP8zqGIVCsvGZKQlOysuNa0I5zYYXCsmlstJ6valkXydaYBC/Ty3Ri5V5X8koM2F3fprq9V9XZ1wnzK05qU7mcwZ1XiwRpQ9PArKJEydi3Lhx2LRpEzp27Nj6+I9+9CO8/fbbXuySiKgdv2uisSHXnlFNKNUivICsaRZf1ywSkTXQLrjA+jEl8zpxO9GL12UmrAaP0UlRVqyQaeuBxNd/drZ8/3v1kud4xYrY1283qUg0p0G3G8fglVRNRENEUbwYM5mXlyf+/e9/CyGEyM3NFZ9//rkQQogvvvhC5OTkeLFL33EOGVHwqM79qKz09jiClODEa07mRSWaZwYIUVHRts34/cybZz8hRzLnCLm9L5WEKXbnkFmdn2Y0P2vSpMTXv+q8LifXllvzOYMwLzZaqiaiIcoEvif1KCoqEmvWrBFCxAZkf//730UkEvFil75jQEYUPGaN1eiGpdcNmKA15LzgRuPQTvDqNCGHl0FNPC8SvZglTLF7bVsJHs3eg3nz9K9/r5OpaJ+7yZOTF3Qni58Ji4jInO9JPX76059i7969mDdvHgoKCvDJJ58gHA7j8ssvxwUXXIAZM2a4vUvfMakHUTDV1ACjRiVeh5PynbObMEGPlQQSbiXk0I4fiH0Ndo4/Ea+ScCRKmGL3uOfMUUu0Mns2cO+91t8Dr5OpWCkynmrfAX4nLCIic74n9Xjqqadw8OBB9OjRA4cOHcKFF16IE088EV26dMEjjzzixS6JiHSVl8tED4kIwcKuTrg9L8ponpketxJyJGuOkFeJXhIlTLFLdd6ZWfFmo/fAy2QqRnPf9KTifE6/ExYRkbs6eLHR/Px8LF68GO+++y7WrVuHgwcP4nvf+x7Kysq82B0RUUL9+6ut51Vyj3RnpXHodnp/NxNylJcDI0daT+9uhZboZfRoGQjo9cbZDQy0QNYtWvBolO4dAIqKgE2b1LYX/x54lUwl0Q0CPZGIs55EP/idsIiI3OVJQPbnP/8ZV111Fc4//3ycf/75rY8fOXIEc+fOxf/8z/94sVsiIl1eZ6LLdFYbh3ZqWhlx+711O6jRo/XG6dUhC1JgkCh41OzeDcyapba9+PfAq8+l2Q0CzeTJwPDh7gfdVtj9LPA7jSi9eDKHLBwOY/v27ejRo0fM43v37kWPHj3QnIY5WTmHjCi4WNjVW1bmRe3b505BZE0qv7duBqZesjIXS4/ZHDK33zvVuW9VVXJYrF+cFAdP5eueKFP4PodMCIGQzgD5rVu3Ij8/34tdEhEZYj0wb2lD28y8+aZ7BZE1qfzeWpkrZ4db9ami56fNni2HKapK9B549d6lQu+R0+LgqXzdE1F7rvaQnXXWWQiFQli3bh1OO+00dOjQNiKyubkZmzdvxsUXX4x58+a5tcvAYA8ZUfA5yUSXKr0Zfpk/H7jyysTrhMPGQYEXGfWcZhlMZUa9L9OmyYDK7nWs2huqUXkP3H7vgt575GaGRF73RMFlJTZwNSCr/G8qs8rKStx5553Izc1tfS47Oxt9+/bFqFGjkJ2d7dYuA4MBGVFqsBNYORlalCmsNtSNWE33Ho1Bs2RUgkCP1etYdTjgRRcBP/whcPPNgMqffLffu2SVMbDD7dIHvO6Jgsm3gEzz8ssv46qrrkLHjh3d3nRgMSAjSk9u1tdKB0aNP9WGuhm/5/WkOrPel3hWr2OrgbefNy6C2nuUKnPciMgZ3wOyTMSAjNIB77TGYvHVWIl6CgsK/O8hI3s9lVauY7PhgHrbBrwrDJ7MbbnFq+LgRHYE8TOSLnxP6pGVlYVwOGy4EFHw1NTIhtawYfLu7bBh8v92Ei2kCxZfbWOWhGD3bvOCxyoGDXJ2nJnOTt0pK9dxomQSRtsG1AuDu/095HXiFDu8Kg5OZBX/7geHJwFZTU1NzPLqq6/i3nvvRa9evfD88897sUsicsBpxq90xeKrUqJCu9pjd94JTJ8u/62X9U11LMZzz9k/TnKWOVD1OtbqqJWUqK2vF/DpZYDMlO8hZkikIMiUz1uqSOqQxaqqKrz66qtYuHBhsnaZNByySKmKw/KMqQ4tCkKBWS85rTNWWgqcfjqwaJH5Nm65BXjmGduHmvGsDimMZnWInDbUqboa+O1vzdfX5kTpDX0tKQEOHwb27tX/3XT8HgrqHDdKf/y7nxy+D1k0cu6552Lp0qXJ3CURmeCwPGNmQ4s0Dz+c3kM9rPQURtesqqqSPzdvlln3VJxwgu3DJFgfUqitZ2eInDYccNQotfV79Up8V94oGAPS83vI6LPCYIy8xr/7wdPBfBV3HDp0CE8//TRKVMc4EFFScFieMa1xO3q02rA7bahHumVetFpoV2uoR7v5ZuCuuxLPIwqH5XpBnmQe5GPTaEMK43tf9LgxRE67cWFW9+u882TA7WRcTrp9D+l9Voi8xr/7weNJD1m3bt1QUFDQunTr1g1dunTBCy+8gCeeeMKLXRKRTVYb25lCm+PS2Ag8+CDQu7f571hNYJAq3EhCkJ0NTJyYeD8TJwJvvhncSeZuTIDXmzvlBb3el/nz5fsYLRJxfgNBdU7Ue++pp+M3kmnfQ0Re4N/94PGsDlm0rKwsFBUVYdCgQejWrZvbuwsEziGjVGU25yQTx5IbpXe/6Sbg6FE5RNFMuqWsNiq0C8hrRLVRf/fdwLRpsYFIOCyDsXPPDW7NNzfq0flRYDy+R++882Rg5EUPn9mcKCe16jLxe4jIK/y7nxysQ+YDBmSUyowa20FoCCebWcP79ttlA9NMoqKuqTDsTU9NDTB+fPu5Pnl5wB//CFxxhdp2jhwBZs0CPv9cDmG7+Wb5+oM6ydyNCfB+FBh3EgDavUYT/d5DDwFTplh/HfHnKFU/P0RBwr/73gtEQLZ//3588MEH2LVrF1paWmKe+5//+R8vdukrBmSU6pjxS63h3b27rLllxqiHzI9eErfU1CRO4DBpEvD44+bb0WtQr1gR3GK5Tgv5+pHRzEkA6MU1anQ88cdWUAB06mT8PZTKnx+ioOHffW/5HpC98cYbGDt2LA4ePIi8vDyEogaVh0Ih7Nu3z+1d+o4BGaWDoNx59us4VBve3bvLXiKjb8/CQuDVV9sXovWjl8QtZkGFZv78truueowa1KNHO+959IrqUDujY1u6FCgrM/99u8Gm3rDEE06wFwB6cY2qXjuATKE/cqT+5z+VPz9EQRWUv/vpyPeA7KSTTsKPfvQj/OY3v0Hnzp3d3nwgMSAjcoefd8BVG96jRsmGo5no4/aqlyT6j2mPHvKxXbvc/8OqGqwWFclj0dtvoga16l8iN3rIVBsg2npLl9qfN1hTI+ceqtyHtBNs6n1eiors9eJ6dY2qXjuVlcADD+g/x7pJ1rGhTeQvK7GBJ2nv6+rqcNttt2VMMEZE7jBqsCcrnbxqRimVYAyQxz1qlGxoHj2qXvdFNeDQa4xH0wLCSy9tP2crO1ttHxrV9Me7d+u/huZmeax6gZeV24IqgUYiqgG/2bmNpgUD8VkmVYbpRbOa0cxo+6rnKP49tVKbSPUabW6WAa2K/v2Nn/Pi2NIZh3YSpRZP0t6PGDECH330kRebJqIUYCe1t0qD3et08qqFoFVpxz1liloPC6Ae+BgV2I2mBYSdOgF33AH89rfyZ+fOMtuhFVaChYULY//f3Aw884zzlOcAcOed9q+BREWJR49uS1+vcm41RnW8El3PetuwWpjZyvaNxL+nbtcm0soEqF77ia6x+GvKCOsmqV/nySrBQEQKhAf++Mc/ij59+ogpU6aI1157TSxcuDBmSUf19fUCgKivr/f7UIh8VV0tRCQihGwqyiUSkY8nUlsb+ztGS22t98cfCslF5XjcXlReX1NT+3NsZ5k0Sf28NDUJ0aWL2nbz8uT62vl041idXgNm5ywUEqK0VIjGRmvHW1qqf22rXs/avs0+H062b/RatffI6jZVzr/2OXJyPNHvXffu3l0b6UT1Op83z973NBGpsxIbwIsDCIVChktWVpYXu/QdAzIi40aYFuAk+mNfVaXW4KqqSs7rcDuIUFkKC40bpdGcNMajl3BYBiAqmprk8alue8kSa41yK4uda0D1nE2frrbe5Mlym0bvl+r1XFhorxGsun2jRW+fWmPe6D0zC5zit6NyHCrfDarvXVGR2ufHC01N8jirqhJfF15zGqjbuTmgCco5IAoKK7GBJ0MWW1paDJdm9okTpSWnQw5Vh8RZnWdjR3k58MUXMulBVRUwebL3+wRk5kaVoVluDcvShhKqWLGiff2xRJYscT6kzoida0D1nH3+udp6Awa0pevXG/KleoyvvmpvTo+Tz0FhocxkGC8clnOMgPbDdo2GZuoxm+8VLRIxnxuq+t6NHetP0gptaOawYTIp0LBh8v/a0MBkcvLdoPI9bUT1HHCYJJGBJASIGYE9ZJTpnA53cuvuvBfc6pFSWSIR89fo5vEce6zaHXGrPTLZ2e6fGyfXgNs9ZJWViYd8eX09m23f7udQCP0eYr2hmUY9IqrXyuTJ7vYI+zFc0cmoAC+49d1g5VyqngO7w9mJUpWV2MC1tPdPP/00xo8fj44dO+Lpp59OuO5tt93mxi4DhWnvKdM5rdUEtE1GB+Sfa43fdYa0lNt1dbHH5RWz1O5uH08olPjcaj1pd9zhfF92JboGVNJ7m50zLVPiv/8tM1EmWq+gQKaxj38+/hi9vp6Ntq/CLMW+2TlNlMWvoMDdIt8q13tpafJT3gcxFb9b3w2qJRhUz8FTTwFXXWX+mSFKJ5ZiA7eiwL59+4o9e/a0/tto6devn1u7DBT2kFGmc+suturdeaei7+4vWSKXRHMfjJJ9aI9NmiTnsLhxd1pljpSbyUcS9db4NZ8ufjGaa2XlrrvZexh9J99oPe1YVM+l19ez3ffHSW+SWY+IljDCzd5B1fcumZLVc2d1bpbZ9evmMaueg0RJWfwc/UDkJd+TeiRTU1OTmDx5sujbt6/o2LGjOP7448VDDz0kWlpaWtdpaWkRv/rVr0TPnj1Fx44dxfDhw8W//vWvmO3s3btXXHPNNaJLly4iPz9f3HDDDeLAgQPKx8GAjDKdm0O0vJ4cbtaITdSgN2pcNzUJ8ctfuhN8qDaG3A6W4vfrVVKO6KWgQC5m62lDOaOvjcpK42vNqJGuGiBVVwtRUtL+GIz2mehcen09x99cKCnxfqikWeN6/nxrAZTKOUrWzRpVyUhEZHeYn9G5mj/f3WDZaXIZO997RKkiowKyRx55RBQWFoo333xTbN68WcyfP1/k5uaKmTNntq7z6KOPivz8fPH666+LdevWicsuu0z069dPHDp0qHWdiy++WJxxxhni/fffFytWrBAnnniiGDNmjPJxMCAjCuZdbKNjTNQwSHS8eg1HNwMjlTlk8cczebI7+45uOLqVWt9ssRLw6c3bSrRdo4al3cZ/JCJERYX1c5lsqp9DO4GilV4hK8GvatARpEx+XveQOZ2fZnSu3PyednM+q5+fGSIv+DKHDAAeeughpfUeeOABt3aJSy+9FMXFxfjTn/7U+tioUaPQqVMnzJ49G0II9O7dG3feeSfuuusuAEB9fT2Ki4vx0ksv4eqrr8Y//vEPDBgwAB9++CEGDhwIAPjrX/+KH/3oR9i6dSt69+5tehycQ0Yk6c0tKS2V2dn8niNgNt8hmur8D20ej1vfpNXV1s/TsmVqc3bMRM/pcWubflOdpxTN6D0NhdTfZzv7dZPR53DaNKB7d5nN85VXgN27257X5oAluv6szhVVmYtmdK6BYM8tUp2XaGcOmdfz09z6nlY5B927x15nRvz+zBC5zZc5ZELI+mMlJSXirLPOEmeeeabuctZZZ7m5S/HII4+I4447TmzcuFEIIcTHH38sevToIWbPni2EEOLzzz8XAMTatWtjfu+CCy4Qt912mxBCiD/96U+ia9euMc8fPXpUhMNhUVNTo3Qc7CEjahOEu9h6x2Dnbm6iu9t26i1NmqQ/B8luParo40jU2xQOWxumpDoUya8C2l7ddVd5T62eS7/Efwb0igHrXaNu1ARzo8C50bkMwveLxqtRAcmYn+bWeTQ7B24PkyRKFVZigw5uRoI//OEP8dZbb2HgwIG44YYbcOmllyIry5NSZ63uvfdeNDQ04JRTTkE4HEZzczMeeeQRjB07FgCwY8cOAEBxcXHM7xUXF7c+t2PHDvTo0SPm+Q4dOqCgoKB1nXiNjY1obGxs/X9DQ4Nrr4ko1YXDwesdiETaMtJZkaiuj9V6S9rd56lTZQ/UsmXyuaFD5WI3E5tWP2r06Pa9OFpPw8SJwJNPGj+v1ZfSejQ2bFDbd/S2gshqvS6V91SrnWR2LpPJqCdK+xzW1OhnuYsmhHwNFRWyTpneaxgyRF7LZr1CQ4aYH7PZuRYC2LJFrhf9OoyyO/rRk1ZeLnvx9I7JyagA1XpiTuqOufU9rXIOsrISfz/58ZkhChS3o8G6ujrxm9/8Rpx00kmiZ8+e4u677xb//Oc/3d5Nqzlz5ohIJCLmzJkjPvnkE/HnP/9ZFBQUiJdeekkIIcS7774rAIht27bF/N4VV1whrrzySiGE7GU76aST2m27qKhIzJo1S3e/U6ZMEQDaLewhI/JXonkXdnpYliwx3pdqL1KXLvIucTJee3yPQ2GhnHtlNNctek6P1blwQe4ds3vXXfU9rahwN8GEk94KszlYduYDmtUpS9QjUlnZ9joaG41fl9WkGGbzP7Xr3A9u99oFufaaEbNzELSkLEReC0xSj+XLl4vrr79edOnSRZx33nni22+/dX0fkUhE/Pa3v4157Ne//rU4+eSThRDeDVk8fPiwqK+vb122bNmifNKJyBtOh5vpLSUlxg0GK0Mgk5XUpKlJNkzjMxdqDfSmJhlkTp4ss0I++aQQs2fL3wlygGVlcTJczEpD2M0hX3YL5qokfrAzVNdsqKdR8B8/HDccNn5dVs+1SlCZ6PMazcl7l4whk14XFrdzPG68Zj+GmwZpiCtllsAEZN9++614+eWXxfe//33RqVMnT4KVgoKCdr1Yv/nNb0T//v2FEDLlfc+ePcWTTz7Z+nx9fb3IyckRc+bMEUIIsWHDBgFAfPTRR63r/O1vfxOhUEjU1dUpHQfnkBH5z2qA5LRxrzJ3K9kNKLMG+qRJwagrZnXp0kV9Xac9VclsCDvJpKc6B2v2bOvne/Jk88arSgmCRK9r3jwhsrLUPjNu3vxwGgDb/V2rgpK1Npmv2W2pfOyU+nwPyN577z3x05/+VOTl5YmBAweK3/3ud+Lrr7/2YlfiuuuuEyUlJa1p72tqakT37t3F3Xff3brOo48+Krp27SoWLlwoPvnkEzFy5EjdtPdnnXWWWLVqlXjnnXdE//79mfaeKMU4GW5m1sBLVDjZi4KrdiQrVb0fy+jRauv98pfOg6VkNYTtJrXQqAYp06fbP+96jdf4HofGRuufp0TFtaPX0/Ztpd6Vnc+rynvrNA29HX4P87PympuahPjb34T4yU+EuPxy2fve2Jic43R67ERe8C0ge+yxx8Spp54qioqKREVFhVi3bp2bm9fV0NAgbr/9dtGnT5/WwtD333+/aIz6FtAKQxcXF4ucnBwxfPjw1qyMmr1794oxY8aI3NxckZeXJ8aNG8fC0EQpxu5wsyefVP89PdXVasWNAW9r7bhZE8jqovr6o5cLLlDftup71L27ea+SyvAlpw1hlf04nSekGqTMnq3ek6vXeAXkTYza2raMedHrFBW5fz2FQkK8+qr1c5XovDkJgJ0Gz074NeTOymuurhYiN7f9OllZslc+2fx8v4g0vtUhy8rKQp8+fXDppZciOzvbcL1p06a5tcvAYB0yIv/ZrQukWltp8mRgwAD9ekpLlwJlZebb8LLWjurr8MJTTwFffw00Ncl/Hz3q3rbz8gAriWxDIf36VVYz9JnV0DKiuh+rNb3iqdaKq60F9u1zt15eMnTvDjz3nDxnZp9tPfHnzcr5iv+MOvndVKX6misrgSlTEq8zaRLw+OOuHJaSTHy/KHisxAaupr2/4IILEAqF8NlnnxmuE9JynBIRuSxR+ndA/v+pp9o3qlVToz/8cNu/4xvYQ4e6lw7cLqsp3t0SDgN33mnvd7OygJaWxOvYqSoSn7rdqABxXZ18XC+As5MW3Mp+VN8vo/WspKAPh4G77gKeeEL9tfhtz57Yc6Z9tlXFnzcnqeSTkYY+aFRfy4wZ5utMmya/PxPcq3dVJr5flOI876/LEByySBQcidK3G82JsTqkK34egpbdUGVdr9h5Hem8aEPWkjV8SXU/Wir42bPlEEsnx6U63y2V5xdGn4N589pnbtRbIpH2583JEFHV362s1L8uUjHLn9tDoKdPD96xB6lsAKUf35N6ZCIGZETBMn++cSNXLzgyatgmWrQGs968mvgGpVGWRrcbanZeRxCXvDzn25g8WZ5b1aQWThtnqo3AREGY2XVq9J6bzXfzc36hG8v06dayLRoFRnYzaFq52RF93pOR5S+6lMXkyfLfbnyXqJwvleQs2nLLLc6Pyc1j5xwy8hoDMh8wICMKDrs9ItXVso6Rmw1Jo2K1XjbUjBroV13lf8NaddFLEOD1UlFh/VxHB9WTJ7t3LFYz6ZkF91ayFAZ1iUTke6SyrlHyHCcZNFUyqsYnunAzy5/ee1xdrR8UFRa6911iVgRc9f1LZg+ZyrFrdRlTsfeSUgMDMh8wICMKDrvDVRINdbSzJAr8vE7HHN3QWLJELrNnW6vnlYmLlXPv5vUSCslshbNne9MwTPUeMqtL9HBVvSDGbgZN1QBkyRJ3h8kaFeJ263pOFJgkOl9NTWo3scJhf1LgJzp21igjrzEg8wEDMqLgUO0NiL6LbrWemJ3GoRDuzWdykr6di7Nz7+X14tWclqYma8PLUnkpLJQBkd5QYq3BbbdnRPW7RbW3VBuKmYiTa01vLp3e9s0CE7OAzew4/Eh9rzEKylmjjLzGgMwHDMiIpCAMAbHaQ9bY6E0tJW2JDvzs9N7Fn9N589rflS4pMZ4X53cDOdUWs6DIy+Cmqsqbz5CXx+zlZ8ftxWmDW/Xza2X4aqJeGTeSsehdz9o1ZjQE1Op5ClodskSs3hQLwt80Sk2+B2THHXecqKysFF9++aUXmw8kBmREwRkCotqImTdPHptKkgW3GkRWivlqDSYrDd5UyaoXDgc3WDQr3m1l3oy2qL6HlZXefIbcGrJYWio/N9EN1MbGYF9r8YuThA6qySKWLLF2PEbBjxvvW/z1rNprbvU8NTUJ8be/CfGTnwhx+eWymLsfwxTNWLkpFpS/aZSafA/Ipk+fLs444wwRDodFWVmZmDNnjjh8+LAXuwoMBmQkRGbfSUv2vCiz82uUZTF66djRWUNnyhTrmbxUG2p2ezMKC61lo/N7CWJQlqiHrKlJiIICte1oWR5ra4X49tvEQVmijHVufIacJPVQmdum8nkL2mJ3eKhqsggrJSiMgh83krFEv047vebplhpe9ZxWVHBYIzljJTbI8qK2WUVFBT7++GN88MEHOPXUU3HrrbeiV69euOWWW7BmzRovdknku5oaoG9fYNgw4Jpr5M++feXj6a65Gbj9dvnnKp72fQjPUwAAQDtJREFUWEWFXM8uq+e3e3fzbR4+bP94AODkk2WxWkAW4Y2m/X/GjPaFqFXs3WvvmPbuBW68Eaiutvf7yVRRAZSUJHef4XD79ypaXp4stLxsmf71umIFsG+f2r6GDwfGjJHrn3QSsHu3/nqJjgdw5zPkpGj47t3yfRo6VP9arqkB7rjD/vb9YrcocHm5LFYdf+1GIm1FrLUi9YD5+wvI93jLFnl9RXNa7D26GH2i7+lE0q14suo5nT3b279pRDGSECCKI0eOiBkzZoicnByRlZUlzjjjDPGnP/1JtLS0JGP3ScEessyW6ROEvS7Caef8JiPNt/Z6jIa1VFa2781Lh/Tjbp4/rYaSaq+T3UW7ViZNUv8dvaFJqu9fbm7i5AHRS2mp+jBIu58hp0XDzdLI+30t2VmWLLF3LqPPqVmPvdWkOvHn2en75kYtunTrIVMZdqo6xDjdzg25y/chi5ojR46IV199VVx88cUiHA6L888/X7zwwgvioYceEsXFxWLMmDFe7j6pGJBlLrey5qUyO1kNVdk9v1bmcFhd9PYZ3ThLNA8oVYYSRi+dOnl//lQytTlZotN0qw4H1Qv4rbx/ZgXDAdnwa2z09jMUfY7tNuz1ghc35yk+9ZT3QXn8kqy5QE1NzoqTJxoiCegn09CrQ2bnZpBKlsZUZDbs1Gm9OyIhAjBkcc2aNTHDFE877TR8+umneOeddzBu3Dj86le/wpIlS7BgwQIvdk+UVCtWAFu3Gj8vhP5QlHSiOgTEzvCboJ1fo6GI4bAc0pWTAzz4YPtjrqsDRo8G9uyRw4hUhjEFxaFD7m5PiLbz19wshwc2NgLjxrm7H82UKcCLL8p9PPOM+nBQIeTP6KFJQ4aov38335z42gXkcMBZs4ANG9SOyckQtvJyYN48e0No9Zh9Nq3o1UsOtU0m7TPp9bDycBi49dbE100oBJSWtg0vjJZoiGR1NbB/P7BkCTB5slyWLAG2bQMKCoA5c9qG39q5dm66yb3rxWtHjsjvlVtvlT+PHDFe12zY6ciRavt0OqSUqJUXEWFWVpYYMWKEmDdvnjhy5IjuOgcPHhTXX3+9F7v3BXvIMlcy7mwHnWrmMTt3Wu2eX6+GBubny7unekOUVHvz5s1Lbk9AEBejwqxZWe7vy40hdfGJEZJ9vtzqabfbQ6v3/eXmZ8yskHLQz6sKlWQgiTipPRiJyO8dq8MfU+Xv1qRJMnNr9LGHw+Yp943OqZVMvURGfB2y2NTUJF566SWxb98+tzcdaAzIMpfX86dShdPGhhG75zcZQwPjhzyp7rOy0p8ivTk5yd+n0dKli//HYGWJb5iqDmlyY3FzLurs2faOQe/7S/V6797d3TTxqktpqRBXXmn/9XlBL1jShtO6tf1E820nTbIWkKXC3y2zeaF266CpZA5N9+kI5Izvc8hycnLEf/7zHy82HVgMyDKXl71DqcaLxobd8+t0MrydhnKyEnYUFtrrSbr+em/OgRdzf7zoKXOy2A34EwUjqktRkWwcOlVdbb2Ic6LPl1kylugeYbObNW5+do49VtbA+vZb9WszmT1BXpVHUe2hV5nbmCp/txob2/eMxS/hcPt6aCrvAW+2klO+B2Rnn322WOI0fVGKYUCW2bzqHUpFXjQ27J5fo99zc4luuHjZK1dUFDtU0sqwR+0YGxvt9czl5SXetp1Cyam0FBVZD/jNghGri9MEFHYSehh9vlQyB8b/rtnNGi8+O1aCz3RoVFsJIJqajD+3qfR3SzVZyvTpbb+jWuzZznD5TK5FSu35HpAtWrRInHnmmeKNN94Q27ZtE/X19TFLOmJARl4PRcl0ds+v1bTTdhftj6/bvXK33+4spXZ848pOAd+KisRzNNzMthfEpaLC+NpSuVHgxjXopJFs9/3R+3ypBnbRv6s1Uv/8ZyEmTBDi5ptlAzm61yIZPdpGi1ZMPdXZCSBS/e/WLbeoveZbbpHrWymhYrWHTDXQo8zhe0AWCoVal6ysrNZF+386YkBGQvDumNfsnl/t97yc96M1ctyuy2R25z4+3X7v3sYNAruBQWWleSPGz0QlXs/HSzTgQ7VBG/0+qd7V1zvfdoaRWRleqVc7L/o1mF0/BQXyfGm/m+iai2+sJqNH2+j69koy/ybYHWKXyn+3VD9L119vvYSKleHymV6LlPT5HpAtW7Ys4ZKOGJARpQavesyiG+3z55vPa1BdrMxtSXSH1u6QtUhEiJIS80aM20kZCgrMe0y0xr/dYFA1sYjZCHyrDVqnvUFWh9ep9pzMnp14O3Z6DMxeY3xjNVk92triZe9YsntMMnE+s8ocMm2xU3xdpRectUjJiO8BWSZiQEaUOtzorYhfSkq8mQ+j2vhOdIdWa3ha2a/W4FBtxEye7G5DubLSncaQG4vRkEUnnPQGWU1A4VZyAitD4lTfF73GajJ6tLXFq+DIrx6TTJzPbJZlUVv0CmirfL7cmv+YDvMUyZrABGTffPON+Mc//iHWrVsXs6QjBmREqcmtBr0XGeNU76p6EZRoDQ7V1+JmQBbda6HXGCoqaqv/k4zyBnpJPdxgtzfIasPOrZ4TKw1Pq++L0WuqrnYni2f37vrXtxf87jFJ9Xlhdlx1lXufd71rMVEvOGuRkhErsUEHL4pN7969G+PGjcOiRYt0n29ubvZit0REli1cCBw65Hw7QgChEFBRAbz4ovPtAcDVV8ufy5YBdXXA7t1AURFQUgIMGQKEw/L5FSuArVud72/yZGDAAKBXr7btL1um9rtDhwIvvSSPUwhnx9HYKN+X8nK5tLQAN98sXz8gf06cKI+vsdHZvlTs3i3P8dCh7m63vBwYOVJue/t2oEcP4LrrgG3b9M9hKAREIvK9sSIcBmbOBEaPltuI3nYoJH/OmNF2PRkZMkTu3+g9jj6+efOsHeP27fqPl5cD+flAWZm17cUf07//Dbz3ntxP9PXtBbPPoxDAli3eXFNA++vK69cbBCNHAq++ar6edr1b/XyFw8bvVa9easeouh5lKC8iwmuuuUacf/754sMPPxTHHnus+Pvf/y7+8pe/iJNPPlm8+eabXuzSd+whI0o9ZnNcOna0d4d1yRJ3MsYVFqolRHCrR87ozrDVie1uJWVINPfN6pBKp4sXwxYTXZNeDDlzo+dE9fjc6iETwtrwR7fPmR3sMUk+q9ebm9dKJs7dIzW+D1ns2bOnWLVqlRBCiC5duoiNGzcKIYRYuHChOP/8873Ype8YkBGlFi/nHlVVJa8GWnW182F7Zg0GK0GCm0kZIhHzbZklHXFzSVbD3sshZ25k1FM5PidzyPSYzRMaOTI4w/Q4p8iYl0WxVYe2VlS4f61k4tw9Mud7QNalSxexefNmIYQQffr0Ee+8844QQoj//Oc/olOnTl7s0ncMyIhSi5dzjxLVpXF70Qo+m92hLSx01mCwEiRoja4RI7x97dpy7rn2f7ewUAZ0qrW1knWXO+ipyFWOz06WRaN9mX2OiopknbPp02W2SD/PGXtM9HmdddJKFkUvPl+ZOHePEvM9IBs4cKD461//KoQQ4sc//rG49tprxdatW8Xdd98tjj/+eC926TsGZESpxa1hfmYNLe0P/+zZ7RMLuLXU1qrdoXXaYLDSiKmu9u71ur2oZmnTznU68TrwS3RTQvXas3rzRK+Rn+wAlz0msZKRdbKpKXE22WQEwkG/kULJ5XtA9pe//EW8+OKLQgghPvroI9G9e3eRlZUlOnbsKObOnevFLn3HgIwotbjdQ6bSsPBqGGN0UWqVoWReNxjcLo7t5aI10m67zdq5TgfJqpMVfVPCTg+W1Zsn8Z/FefPa3xzwsh6Yhj0mUjKzTlZX2/9+JnKbldggJIQQXicO+fbbb/HPf/4Tffr0Qffu3b3enS8aGhqQn5+P+vp65OXl+X04RGSiuRno29deVsDRo4GVK+XvakpLZaa68vLEv1tTA9x+uztZETW1tW0ZwJqb/c2upp1Xp68vFJLZJAF3z5WR6dOBO+4wX6+yEnjgAXv7SNZ7Y7af5mbgkUeAKVPa/66Whe6118yv5WRZtgwYNsza72gZ8668EnjqKeN1vH6dfn8eg3BMqu9f9PeYE3rfsarfz+ksiNdiurMUG3gREVZWVopvvvmm3ePffvutqKys9GKXvmMPGVHqsdtj5XQOQlOTe9kBgzYXxY2ex/hhlsnoKZs9Wy0zpt277MnqjTLbj8q8xqDNcTKbk5VOnx+vJes6jOZH1kkOHYzlx/tOARiymJWVJXbu3Nnu8T179oisrCwvduk7BmREqclK4g23GqpuFqMO2h9UO3Pz4hva8cO6pkzxPiDT5uF5cQ0kY/6Myn4mTbIW1ARpvpyXWUuD9Dq9lKzrMB6zTvrLr/edrMUGWV500QkhENLGPURZt24dCgoKvNglEZEt5eXAF1/I4TJVVXJIWijUNnRLo1JAt7lZDs+ZM0f+bG7WX8+NQs5FRcEaVqZRLX46fbo837W1wOHDwJIlsjD15MmysPbIkW3rWi2EbEUoJIczDRkiz2VlZeL1hWgr6quiuVkOnxJCf1uALCZudK2oUtnPtGn6zxsxKtbsh/Jyeb1rw1jdFKTX6ZVkXYd6tILiOs1CALGfQXKXn+87WdPBzY1169YNoVAIoVAIJ510UkxQ1tzcjIMHD+LnP/+5m7skInIsHI6du3D66e3nIEQiiecg6M1bKCkBxo8H+vePHbPvRgNw+nTjY/FzroDW+DKam6fN7bn11rZjij93Dz8s15k5U77GXbusH8d11wFvvAHs22e8jl6Q3b+/2vZV30Oz4Ds6wHMyf0ZlP1YbXarBdbKUl8vXcPPNwJ497m03aK/TC8m6DvWEw/KzPHq0/MxFfy+o3Ogi+/x838kaVwOyGTNmQAiBG264AZWVlcjPz299Ljs7G3379sXgwYPd3CUAoK6uDvfccw8WLVqEb7/9FieeeCJefPFFDBw4EIDssZsyZQr+8Ic/YP/+/Tj//PPx+9//Hv2j/vLu27cPt956K9544w1kZWVh1KhRmDlzJnJzc10/XiIKtvJy2UNjFtRogc/ChbJBEa+uLjZxghZkuNEANOop0AsMo4Mbr1ltfNXUyHXjg7e6Ovn4a6/ZO18jRgB/+lPbe7hpE/D887GJWPSCbNV9qa6nGrhFr2cnoHazl0cLmoPWY1FTA1x1lXkvX/x1l0hRUfBepxfsXIdu0no4rd7oImf8ft/JAi/GTC5btkwcOXLEi023s2/fPnHccceJ66+/XqxatUr85z//EX/729/Ev//979Z1Hn30UZGfny9ef/11sW7dOnHZZZeJfv36iUOHDrWuc/HFF4szzjhDvP/++2LFihXixBNPFGPGjFE+Ds4hI8oM2mTxigpZjNbqXKlQSIj5850lKYhErBXi9WOugGoKfpV02I2N1mua6eWPUpno73ZRX6vzZ+xOvnezjEMQ55VYmXdZWtr2GTNbd948v19Zcng1j8tq8gwm20guzt/zl+9JPYQQorm5WWzcuFGsWLFCLF++PGZx0z333CN+8IMfGD7f0tIievbsKZ544onWx/bv3y9ycnLEnDlzhBBCbNiwQQAQH374Yes6ixYtEqFQSNTV1SkdBwMyovRnJQGIWZAxb579JAWFhfqFb5NV60eVXuMr+rHp09UbC/PmWTtHRkFromPTuFnU10qApxpQG51Xs/2Ew2rnLWjBmBDqDcvp09veS7N6eJMm+fmKksvtGw1CMHNfKvDifSd1vgdkK1euFP369RNZWVkiFArFLG5nWTz11FNFRUWFGD16tCgqKhJnnnmmeP7551uf//zzzwUAsXbt2pjfu+CCC8Rtt90mhBDiT3/6k+jatWvM80ePHhXhcFjU1NQoHQcDMqL05naxYy2rn50ATy8wSIU7oXZfb1WVbDBcdZX1c6yJDmIqK4UoKUnckHSzqG+iAA+QxzN7duIe1+hA3qgRbBZIalkWja7jykr7DTOnPR9mv283dbre+1hUJHvQMo2bNxqC1BtPibn5vpM1vgdkZ5xxhrjiiivEhg0bxNdffy32798fs7gpJydH5OTkiPvuu0+sWbNGPPfcc6Jjx47ipZdeEkII8e677woAYtu2bTG/d8UVV4grr7xSCCHEI488Ik466aR22y4qKhKzZs3S3e/hw4dFfX1967JlyxYGZERpyq009XoNx+ghkFaG5cXf2fSj1o8VTgLaykr7gZy2b5XaW/GNEzeHV+kdQ2GhXJxeS/F12xIFkm4GmolemxYkqpxDlZ4WJzccOEyujRvvv0pvfFGRvMmQ6ec7KLz43AdR0D7rvgdknTt3Fps2bfJi0+0cc8wxYvDgwTGP3XrrreLcc88VQngXkE2ZMkUAaLcwICNKP27Oz4kOMuJpf0xmzxZiwgRrDdAg95DZDWhDIWcBi9YLqRoIej18J76Xzs0e1+hjN2uUuB1oGvWUAO3fP72eSNVhmhx65Q6n14fV70OnwxiD1shOVel+HoM4hNb3gGzYsGFi0aJFXmy6nT59+ogbb7wx5rFZs2aJ3r17CyG8G7LIHjKizGGn2LFKIyXRH0TVfd5yi/zj2tgY3AarnYBWa5DbDcgKCoT4+9/bD01UWbwOWr3ocU3WsTt9HdGBltV5jxx65T2VRq3V70Mn708QG9kUPEEdQut7Yehbb70Vd955J1566SWsXr0an3zySczipvPPPx8bN26Meexf//oXjjvuOABAv3790LNnTyxdurT1+YaGBqxatao1Bf/gwYOxf/9+rF69unWdt956Cy0tLRg0aJDufnNycpCXlxezEFF66tHD/W1u3Zq4uLBqWvXf/hYYNgw44QRgzBj5mJ2i1l6yk1I5EgEefBDYu9fePvftAy66KDbNvSqvU0C7URjcSDLTV9t5HULInxUVsni6ao0kwLg4dCQSzCLpqUYrQRH/nmglKGpq5P+tlqGIfs+t1MJTPR7KbGlT/NqLiDA+kYeWzMOLpB4ffPCB6NChg3jkkUfEpk2bxCuvvCI6d+4sZs+e3brOo48+Krp27SoWLlwoPvnkEzFy5EjdtPdnnXWWWLVqlXjnnXdE//79mfaeiIQQQixZ4k1vRqL5XE1N1nqHohM3BG2uQGWl2muYPj12OI0XPZNB6GWy08MQlGN38jril8mT7X1OUmXoVaocpxDWeivNho+6cX0GMWssBVOQh+tbiQ1cLQyt2bx5sxeb1XXOOedgwYIFuO+++/DQQw+hX79+mDFjBsaOHdu6zt13341vvvkG48ePx/79+/GDH/wAf/3rX9GxY8fWdV555RXccsstGD58eGth6Keffjppr4OIgmvXLm+2m+hO88KF1nqHhJA9YXPnAp9/Drz3nrXCwl6pqZE9XYlohYhvvTX2ON0ooG1FsgoiW31dkQgwbRpwxx2yd0CI9uv4Ucw5We9P/H7CYWDo0OTs2y6/C7RbZdbbKURbb+XQocbF382o9uBaPR7KXOlS/NqTgEwbLpgsl156KS699FLD50OhEB566CE89NBDhusUFBSgqqrKi8MjohTndsPTrPGsDcGwSmukvPdeMBopiYaSRBNCfzjlkCHyPBkFIW4yGtbZ3CwbfW4Gtyqvq6gImD5dDs/T9pmVpd8I9mtIqtP3Z+hQ4KWXghVk2hV9nWzaJG9CxL8mbahdEIdXWm3UasNH44NOM6rfpenSyCbvqV5Tyb7BZ5Unc8gA4C9/+QvOP/989O7dG19++SUAYMaMGVi4cKFXuyQiDzQ3y7kec+bIn4Efh+0BreEZPzfLSPR6duZzOZ1jFJRGiurrqKzUb6CGw/JOPKB+7u3Sm4dUUwP07Svn6F1zjfzZt6/zuSuJXlcoJJdnnwXGjpVBi3adBG0Old33JxQCSkvbelr0ft/veY9WxF8nU6boB5jaY0Gcz2KnUVteDnzxBVBbC8yeDXTvbvx72nuuGlynSyObvGf299nqtecbL8ZMzpo1S3Tv3l08/PDDolOnTuLzzz8XQgjx4osviqFDh3qxS99xDhmlI2a4amOU4U1v0eZs2a394nRujpWx8lbmuVidE+NWbTS98xgOOztHhYVtBZmnT29fMykZWbvsXh9Bm5tkVGNNO19m5y+VayTZra/nZ4F2PW6UFXAzCybLHJAVQc3A6nva+1NPPVUsWLBACCFEbm5ua0C2fv16UVhY6MUufceAjNJNUNPI+smo4Th/vnED2U7j2W7dM6uNFCsBt53g3M3J1vHnsbGx7f9LllhPMhCJCDFvnv5r0nvcq8Zg0IIru/Reh5VAKxXPg5PyBW4VaPeippyTRq2bwXVQG9kUTEG8sWMlNggJIYTbvW6dOnXCP//5Txx33HHo0qUL1q1bh+OPPx6bNm3Cd7/7XRw6dMjtXfquoaEB+fn5qK+vZwp8SnnNzXIIjtFwM21ux+bNwR9O5DYv5hTp7SPR+dejDddQHbqmpZSO/wugtx0r60bTXofZHCE3riPtGAH9famykqSgtjYYc/WCLBmfl2SJfy3NzUBZmb1tuXHteJE4RG+bpaVy6KjqNt18z904HsocQfu+sRIbeBKQDRgwAFOnTsXIkSNjArJnnnkGL774ItasWeP2Ln3HgIzSybJlcj6EGTZI3RP/h2TPHuCKK9R/v7AQeP55tUaKlYAbcBacGwVKVgNIFXqNNy9VVbXVfqP0pndtFRTIendWuHUTwu5NEhXJbtSa7S9ojWwiVVZiA0+yLE6cOBETJkzA4cOHIYTABx98gDlz5mDq1Kn44x//6MUuichFzHCVXEZ3ui+9FHjzTbVtdOoEjByptq6VlNKAs/TTRtnYIhH373KXl8tz8MwzMkW815hQIDMYBT92gjHAeaISs0K4oZBMHDJypL39JLOsgEovXyqUOUh1DHr950lA9tOf/hSdOnXC5MmT8e233+Kaa65B7969MXPmTFx99dVe7JKIXMQMV8lj1Nirq7PW07N1q3lNHu2PbnW12jatBNyJ1tUCpWT8wQ+HZT2zp57yLl1+KqVjJ2dUSzeocOsmRLrU6Er03RfU8gDpKNVq5qUrTwIyABg7dizGjh2Lb7/9FgcPHkSPHj282hURucysvhAbpO4wu9MNyABDNUV2oqDIznA+KwG32brJvMutpWMfNar9c1YL2eoRIjXSsZNzdktQaNdZZSXQv7+7NyHSYQSD1718pIZBcXB4VodM07lzZwZjRCnGrE4SwAapG1Qae1bqFRkFRdofXdWGZXTdllSu8VJY2P6xggJg/nxrdeX0tqs6PJRSm2pQU1AQ+/9IRPZEP/CAnGcYXU/OqXQYwWB12DS5T+WGYBBr5qUr13rIzjrrLIQU/7qlY1IPonSTzLk/mcrNO9h5efpBkZ0hV0LIIX9aA3LmTBnQxfcuBTU4N7rrC8h5P1lZxq9Jxd69wR8ORu5QDWrmzZOfgWTMwUmHEQxe9/JxTpS5dBn6mi5cC8guv/zy1n8fPnwYs2bNwoABAzB48GAAwPvvv4/PPvsMN998s1u7JCKPJXPuT9Ak4w+6m3ewGxqAu+6S71f0sdodcjVxotxGeXlqBecqAWhFhcxyp/eaVDPnBXk4mBcytYGrGvy42QNmRhvBkEo3SeJ52cvHOVFq0mHoa1rxohDajTfeKCZPntzu8QceeECMGzfOi136joWhidKHnSLIdmiFZY0KGodCQhQVWS86G32sVVX2CtfqFV9NheK9VotRx7+mJUus/X4mSNbnIaiCWqA4iIVwVal899kpvq69VyrfZ5nO6nclWed7Yej8/Hx89NFH6N+/f8zjmzZtwsCBA1FfX+/2Ln3HOmRE6cHL+j6J9gfo3+meN0+mcLdbJLqgQK2mnNF2Uq0A+Jw5wDXXmK9nVEMsmcWsU0GyPw9BFdQCxancc+l2jUIr9RVT5Rx5qbkZKC6WQ7D18Hw5ZyU28CSpR6dOnfDuu++2e/zdd99Fx44dvdglEZFjfkxy1oYDlpTEPh6JyGCse/e2Rouq6GM97zz7CSxScWK906FQ4TAwfbpxMAYEfziYWzjpv015OfDFF0BtrQzma2tlQ9XvYFTLXup24pBkSPTdZyfQZ6IQaxYuNA7GAGaTTTZP0t5XVFTgF7/4BdasWYPvf//7AIBVq1bhhRdewK9+9SsvdklE5Jhfk5z15urt3m29Z0zvWN97z1kCCyC15hA4TXhQU2NcVDpZc+aC0uvBSf+xWKDYfW7OU+acKHXazZZEmE02uTwJyO69914cf/zxmDlzJmbPng0AOPXUU/Hiiy/iyiuv9GKXRESO+fkHPbqxV1MDXHWVO8Vot2+Xd8/1ElgUFcnAz0yQ02fHc5LwIFF2RkBmnvQ6GAtSQgI2cCkZ3Ap006EcQLKoJHtiNtnk8qwO2ZVXXol3330X+/btw759+/Duu+8yGCOiQAvCH3Q7aeoT0Y5Vb8jV1q3mNcYiEXlMc+YAy5alxvA0O0OhzM57KATceae3r/+112Qx6/iGklaktaYm9niXLfP2fQnC54FIVSrXTEw23mwJHk+SegDA/v378dprr+E///kP7rrrLhQUFGDNmjUoLi5GSfxfyTTApB5EqS8ICR2WLbOfhCOa6rEmmlgvhBy2Ej3PIJXSR1sZ+qd63mtrvbljPH++7Mk0Cqyi38+FC5PTixaEzwORFW4nCnFLUIYha/z+vssUvif1+OSTT3DSSSfhsccewxNPPIH9+/cDAGpqanDfffd5sUsiIse04W5A+7usyUrooHpHcvJkmVABcHasRr1JBQXyZ/ykb73emqCykvDAzzvGNTXAlVcm7uXS5ms98og8//G9aFu3yt61hx5yr7csCJ8H8kcyemC94HaiEDfU1MgbG8OGyQyww4bJ//v5HcrexADyIu/+8OHDxaRJk4QQQuTm5orPP/9cCCHEu+++K4477jgvduk71iEjSh9+1vexWhvGrWONrse1ZIkQJSWJa5TZqREUZH7V5NHqManWhysoMF+npMTdazWV612RdelQdy4oNRODXBctqPX10kkg6pCtWbMGJ5xwArp06YJ169bh+OOPx5dffomTTz4Zhw8fdnuXvuOQRaL04tcQEzvDxNw+1kwczuLX8Dy3hqjGC4Xc7REI2pAr8gbrzrknFeqiBbW+XrqwEht4kmUxJycHDQ0N7R7/17/+haKiIi92SUTkKr9SXNvJEuj2sWbihG8n2Rn1qAYwVs5h/Hw+MxUVMm21G409pnxPf2Z150Ihd6+pdJcKZSPcLDtAzngyh+yyyy7DQw89hKNHjwIAQqEQvvrqK9xzzz0YNWqUF7skIkobfs+D2LRJbb10y67n1nm3MmfEyjm87Tb1dVkEl6xiYWV3pcqNrVQuLp5OPAnInnrqKRw8eBA9evTAoUOHcOGFF+LEE09Ely5d8Mgjj3ixSyKitKKXpn7z5sRBgRsT8ZubgeefN18vUXHlVGbnvEfThnyppK4HzCfXA7KBNH8+cP/95uvG87uxR6kjVQKIVMGyEWSFJ0MW8/PzsXjxYrz77rtYt24dDh48iO9973soKyvzYndERGnJyjAxtwoKr1ghgwczN92UvndS7Q7PszPkK9FQSc2cOW2pvLV1VbGxR6oYQLhLu9liNi81HW9skXWeFYYGgPPPPx8333wz7r77bgZjREQu03rE7rhDvaCwGdW73/37q28zU9gd8mU0VLK0FKiuBq64ov26kUjiY2Ha6uAJeip5pkJ3F8tGkBWuBmQrV67Em2++GfPYn//8Z/Tr1w89evTA+PHj0djY6OYuiYgyUvQ8pRkz9NfR7spWVKg3/qzcJQ96AzPZnAz5sjJUUlu3slJ/+2zsBU8Qa1HFYwDhPr/nA1PqcDUge+ihh/DZZ5+1/n/9+vW48cYbUVZWhnvvvRdvvPEGpk6d6uYuiYgyjtE8JT1WJ+Kr3iXfsyf4DcxkczrkK9Hk+vjgFwAeeED2oMX3lrGxFyxW5xX6iQGE+5zOS9XwBlh6c7UOWa9evfDGG29g4MCBAID7778fy5cvxzvvvAMAmD9/PqZMmYINGza4tcvAYB0yIkoGs9o2RqqqZENfhdaABPTTv991F/Dkk6xVFM+rWmZm8wNZIyy4UqEWlR5eU8Hi1hxhSi4rsYGrPWRff/01iouLW/+/fPly/PCHP2z9/znnnIMtW7a4uUsiooxiNk/JiJWJ+Inukr/6qrxDa5S4ArA2RDKduDnky8r8QKatDq5UTSXPayo4UqmHlexzNSArLi7G5s2bAQBHjhzBmjVrcO6557Y+f+DAARxzzDFu7pKIKKNYTTltdyK+0TCboqLUbGC6zWj4kBtDvryaH0jJx1Ty5IRZ5laA3wHpwtW09z/60Y9w77334rHHHsPrr7+Ozp07Y0hUK+CTTz7BCSec4OYuiYgyipWeLqcT8fXSv7OBaT58qLxcpra3M+RLuxuuMpkgOvi1k6afvMdU8uSElR5WfgekNlcDsl//+tcoLy/HhRdeiNzcXLz88svIzs5uff6FF17ARRdd5OYuiYgyilltm2iRiAzG3JxjkOkNTKOASRs+pPWC2allluhueCLpHPymOtaiIid4AyxzuBqQde/eHW+//Tbq6+uRm5uLcNztwPnz5yM3N9fNXRIRZZREhYS1/2vFh72YiJ/JDUw7hZ+tSMb8QEous88rwFTyZCzTb4BlEk8KQ+fn57cLxgCgoKAgpsfMC48++ihCoRAqKipaHzt8+DAmTJiAwsJC5ObmYtSoUdi5c2fM73311Ve45JJL0LlzZ/To0QOTJk1CU1OTp8dKRGRHonlK1dXA9OneTcTP5FpFXidoSNb8QEouppInu1isO3N4EpD55cMPP8Rzzz2H7373uzGP33HHHXjjjTcwf/58LF++HNu2bUN51Ddgc3MzLrnkEhw5cgTvvfceXn75Zbz00kt44IEHkv0SiIiUuFXbxu6+M7GB6fXwoWTOD6Tk8vPzSqkrk2+AZRpX65D56eDBg/je976HWbNm4eGHH8aZZ56JGTNmoL6+HkVFRaiqqsLo/xbW+ec//4lTTz0VK1euxLnnnotFixbh0ksvxbZt21rT9j/77LO45557sHv3bqVePdYhI6JMk2m1ipYtk5kPzdTW2ptgb1bHLFppqfvzA4komPQSCfE7IPh8q0PmpwkTJuCSSy5BWVlZzOOrV6/G0aNHYx4/5ZRT0KdPH6xcuRIAsHLlSnznO9+JqaE2YsQINDQ04LPPPtPdX2NjIxoaGmIWIrLPKI04BVem1SryeviQyt3wigr2rhBlGvawpj9Xk3r4Ze7cuVizZg0+/PDDds/t2LED2dnZ6Nq1a8zjxcXF2LFjR+s60cGY9rz2nJ6pU6eisrLShaMnIrM04kRBkIwEDdpwUL3PA++GE2UuO5lbKXWkfA/Zli1bcPvtt+OVV15Bx44dk7bf++67D/X19a3Lli1bkrZvonSipRGPT5agpRGvqfHnuIj0JGP+HO+GExFllpTvIVu9ejV27dqF733ve62PNTc34+2338Zvf/tb/O1vf8ORI0ewf//+mF6ynTt3omfPngCAnj174oMPPojZrpaFUVsnXk5ODnJyclx+NUSZxes04kRecFL4WRXvhhMRZY6U7yEbPnw41q9fj48//rh1GThwIMaOHdv672OOOQZLly5t/Z2NGzfiq6++wuDBgwEAgwcPxvr167Fr167WdRYvXoy8vDwMGDAg6a+JKFN4nUacyCuZNn+OiIi8k/I9ZF26dMHpp58e89ixxx6LwsLC1sdvvPFGTJw4EQUFBcjLy8Ott96KwYMH49xzzwUAXHTRRRgwYACuvfZaPP7449ixYwcmT56MCRMmsBeMyENepxEnIiIiCrqUD8hUTJ8+HVlZWRg1ahQaGxsxYsQIzJo1q/X5cDiMN998E7/4xS8wePBgHHvssbjuuuvw0EMP+XjUROlPte6SlfpMRERERKkkbeqQ+Y11yIisM6u7FArJZAmbN3NIGBEREaWOjKxDRkSpR6XuktM04kRERERBxoCMiHw1ciTw4INAt26xj7uZRpyIiIgoqDJiDhkRBZNeQeiCAvnY/fezZ4yIiIjSHwMyIvKFVhA6fu7Y11/LHrPTT3end6y52dt6UUREREROcMgiESWdWUFoQBaEbm52tp+aGpk0ZNgw4Jpr5M++feXjREREREHAgIyIki4ZBaG1Hrj4/dTVyccZlBEREVEQMCAjoqTzuiB0snrgiIiIiJxiQEZESed1Qehk9MARERERuYEBGREl3ZAhMq19fO0xTSgElJbK9ezwugeOiIiIyC0MyIgo6bwuCO11DxwRERGRWxiQEZEvystl4eeSktjH3SgI7XUPHBEREZFbWIeMiHxTXg6MHOl+nTCtB270aBl8RSf3cKMHjoiIiMgtDMiIyFfhMDB0qPvb1Xrgbr89NsFHJCKDMTeKThMRERE5xYCMiNKWVz1wRERERG5hQEZEac2rHjgiIiIiNzCpBxERERERkU8YkBEREREREfmEARkREREREZFPGJARERERERH5hAEZERERERGRT5hlkYgoIJqbmaKfiIgo0zAgIyIKgJoa/SLWM2eyiDUREVE645BFIiKf1dQAo0fHBmMAUFcnH6+p8ee4iIiIyHsMyIgokJqbgWXLgDlz5M/mZr+PyBvNzbJnTIj2z2mPVVSk7+snIiLKdAzIiChwamqAvn2BYcOAa66RP/v2Tc+eohUr2veMRRMC2LJFrkdERETphwEZEQVKpg3f277d3fWIiIgotTAgI6LAyMThe716ubseERERpRYGZEQ+yZQ5UlZk4vC9IUNkNsVQSP/5UAgoLZXrERERUfphQEbkg0yaI2VFJg7fC4dlanugfVCm/X/GjMT1yBjcExERpS4GZERJlmlzpKzI1OF75eXAa68BJSWxj0ci8vFEdcgY3BMREaW2kBB6szXIqoaGBuTn56O+vh55eXl+Hw4FVHOzbCwbDcsLhWQjfPPmxD0i6Uo7P3V1+vPI0v38NDfL4Zjbt8ugc8iQxK9TC+7jz5XWs2YWzBEREZE3rMQG7CEjSqJMnCNlhRvD91JZOAwMHQqMGSN/mg1TzLQEKEREROmIARlREmXiHCmrnAzfyyQM7omIiNJDygdkU6dOxTnnnIMuXbqgR48euPzyy7Fx48aYdQ4fPowJEyagsLAQubm5GDVqFHbu3BmzzldffYVLLrkEnTt3Ro8ePTBp0iQ0NTUl86VQBsjUOVJWlZcDX3wB1NYCVVXy5+bNDMaiMbgnIiJKDykfkC1fvhwTJkzA+++/j8WLF+Po0aO46KKL8M0337Suc8cdd+CNN97A/PnzsXz5cmzbtg3lUS275uZmXHLJJThy5Ajee+89vPzyy3jppZfwwAMP+PGSKI0xxbk6K8P3MhGDeyIiovSQdkk9du/ejR49emD58uW44IILUF9fj6KiIlRVVWH06NEAgH/+85849dRTsXLlSpx77rlYtGgRLr30Umzbtg3FxcUAgGeffRb33HMPdu/ejezsbNP9MqkHqdISMQCx83+YiIGsyPQEKEREREGW0Uk96uvrAQAFBQUAgNWrV+Po0aMoKytrXeeUU05Bnz59sHLlSgDAypUr8Z3vfKc1GAOAESNGoKGhAZ999pnufhobG9HQ0BCzEKngHClyQ6YnQCEiIkoXaRWQtbS0oKKiAueffz5OP/10AMCOHTuQnZ2Nrl27xqxbXFyMHTt2tK4THYxpz2vP6Zk6dSry8/Nbl9LSUpdfDaUzzpEiNzC4JyIiSn0d/D4AN02YMAGffvop3nnnHc/3dd9992HixImt/29oaGBQRpZoc6SInCgvB0aOtFa/jIiIiIIjbQKyW265BW+++SbefvttRCKR1sd79uyJI0eOYP/+/TG9ZDt37kTPnj1b1/nggw9itqdlYdTWiZeTk4OcnByXXwURkXUM7omIiFJXyg9ZFELglltuwYIFC/DWW2+hX79+Mc+fffbZOOaYY7B06dLWxzZu3IivvvoKgwcPBgAMHjwY69evx65du1rXWbx4MfLy8jBgwIDkvBAiIiIiIso4Kd9DNmHCBFRVVWHhwoXo0qVL65yv/Px8dOrUCfn5+bjxxhsxceJEFBQUIC8vD7feeisGDx6Mc889FwBw0UUXYcCAAbj22mvx+OOPY8eOHZg8eTImTJjAXjAiIiIiIvJMyqe9DxkUdHrxxRdx/fXXA5CFoe+8807MmTMHjY2NGDFiBGbNmhUzHPHLL7/EL37xCyxbtgzHHnssrrvuOjz66KPo0EEtZmXaeyIiIiIiAqzFBikfkAUFAzIiIiIiIgIyvA4ZERERERFRqmBARkRERERE5BMGZERERERERD5hQEZEREREROSTlE97T0TmmpuBFSuA7duBXr2AIUNkMWEiIiIi8hcDMqI0V1MD3H47sHVr22ORCDBzJlBe7t9xqWAgSUREROmOQxaJ0lhNDTB6dGwwBgB1dfLxmhp/jktFTQ3Qty8wbBhwzTXyZ9++wT5mIiIiIqsYkBGlqeZm2TOmV2lQe6yiQq4XNKkcSBIRERFZwYCMdDU3A8uWAXPmyJ9BbLRTYitWtA9oogkBbNki1wuSVA4kiYiIiKxiQEbtcKhYeti+3d31kiVVA0kiIiIiOxiQUQwOFUsfvXq5u16ypGogSURERGQHAzJqxaFi6WXIEJlNMRTSfz4UAkpL5XpBkqqBJBEREZEdDMioFYeKpZdwWKa2B9oHZdr/Z8wIXhr5VA0kiYiIiOxgQEatOFQs/ZSXA6+9BpSUxD4eicjHg1iHLFUDSSIiIiI7GJBRKw4VS0/l5cAXXwC1tUBVlfy5eXMwgzFNKgaSRERERHaEhNCbMURWNTQ0ID8/H/X19cjLy/P7cGxpbpbZFOvq9OeRhUKyQbx5M3snKDmam+UQ2e3b5Y2AIUN47REREVHwWYkNOiTpmCgFaEPFRo+WwVd0UMahYuSHcBgYOtTvoyAiIiLyDocsUgwOFSMiIiIiSh72kFE75eXAyJEcKkZERERE5DUGZKSLQ8WIiIiIiLzHIYtEREREREQ+YUBGRERERETkEw5ZzEBMJU5EREREFAwMyDJMTQ1w++3A1q1tj0UiMt09MygSERERESUXhyxmkJoaWWMsOhgDZCHo0aPl80RERERElDwMyDJEc7PsGYsu9qzRHquokOsREREREVFyMCDLECtWtO8ZiyYEsGWLXI+IiIiIiJKDAVmG2L7d3fWIiIiIiMg5BmQZolcvd9cjIiIiIiLnGJBliCFDZDbFUEj/+VAIKC2V6xERERERUXIwIMsQ4TAwZox+Ug/NjBmsR0ZERERElEwMyDJETQ3w5JPGz991F+uQERERERElGwOyDJAo5b1m7lzvUt43NwPLlgFz5sifbuzHi20SERERESUbA7I4v/vd79C3b1907NgRgwYNwgcffOD3ITlmlvIe8C7lfU0N0LcvMGwYcM018mffvs6KUHuxTSIiIiIiPzAgi/Lqq69i4sSJmDJlCtasWYMzzjgDI0aMwK5du/w+NEf8SnlfUwOMHt0+GKyrk4/bCaC82CYRERERkV8YkEWZNm0abrrpJowbNw4DBgzAs88+i86dO+OFF17w+9Ac8SPlfaJhktpjFRXWhhp6sU0iIiIiIj8xIPuvI0eOYPXq1SgrK2t9LCsrC2VlZVi5cmW79RsbG9HQ0BCzBJUfKe/NhkkKYX2YpBfbJCIiIiLyEwOy/9qzZw+am5tRXFwc83hxcTF27NjRbv2pU6ciPz+/dSktLU3WoVoWDgMzZ8p/xwdl2v/dTnnvxTBJv4ZeEhERERF5hQGZTffddx/q6+tbly1btvh9SAmVlwOvvQaUlMQ+HonIx91Oee/FMEk/hl4SEREREXmpg98HEBTdu3dHOBzGzp07Yx7fuXMnevbs2W79nJwc5OTkJOvwXFFeDowcKYf0bd8uA5chQ7wpBq0Nk6yr05/zFQrJ560Mk/Rim0REREREfmIP2X9lZ2fj7LPPxtKlS1sfa2lpwdKlSzF48GAfj8xd4TAwdCgwZoz86UUwpu3H7WGSfgy9JCIiIiLyEgOyKBMnTsQf/vAHvPzyy/jHP/6BX/ziF/jmm28wbtw4vw8tJXkxTDLZQy+JiIiIiLwUEkJv8Ffm+u1vf4snnngCO3bswJlnnomnn34agwYNMv29hoYG5Ofno76+Hnl5eUk40tTR3Oz+MEkvtklERERE5AYrsQEDMpcwICMiIiIiIsBabMAhi0RERERERD5hQEZEREREROQTBmREREREREQ+YUBGRERERETkEwZkREREREREPmFARkRERERE5BMGZERERERERD5hQEZEREREROSTDn4fQLrQ6ms3NDT4fCREREREROQnLSbQYoREGJC55MCBAwCA0tJSn4+EiIiIiIiC4MCBA8jPz0+4TkiohG1kqqWlBdu2bUOXLl0QCoV8PZaGhgaUlpZiy5YtyMvL8/VYKPXw+iEneP2QE7x+yAleP2SXF9eOEAIHDhxA7969kZWVeJYYe8hckpWVhUgk4vdhxMjLy+MXEtnG64ec4PVDTvD6ISd4/ZBdbl87Zj1jGib1ICIiIiIi8gkDMiIiIiIiIp8wIEtDOTk5mDJlCnJycvw+FEpBvH7ICV4/5ASvH3KC1w/Z5fe1w6QeREREREREPmEPGRERERERkU8YkBEREREREfmEARkREREREZFPGJARERERERH5hAFZGvrd736Hvn37omPHjhg0aBA++OADvw+Jkuztt9/Gj3/8Y/Tu3RuhUAivv/56zPNCCDzwwAPo1asXOnXqhLKyMmzatClmnX379mHs2LHIy8tD165dceONN+LgwYMx63zyyScYMmQIOnbsiNLSUjz++ONevzTy2NSpU3HOOeegS5cu6NGjBy6//HJs3LgxZp3Dhw9jwoQJKCwsRG5uLkaNGoWdO3fGrPPVV1/hkksuQefOndGjRw9MmjQJTU1NMessW7YM3/ve95CTk4MTTzwRL730ktcvjzz2+9//Ht/97ndbi6sOHjwYixYtan2e1w5Z8eijjyIUCqGioqL1MV5DZOTBBx9EKBSKWU455ZTW5wN97QhKK3PnzhXZ2dnihRdeEJ999pm46aabRNeuXcXOnTv9PjRKov/7v/8T999/v6ipqREAxIIFC2Kef/TRR0V+fr54/fXXxbp168Rll10m+vXrJw4dOtS6zsUXXyzOOOMM8f7774sVK1aIE088UYwZM6b1+fr6elFcXCzGjh0rPv30UzFnzhzRqVMn8dxzzyXrZZIHRowYIV588UXx6aefio8//lj86Ec/En369BEHDx5sXefnP/+5KC0tFUuXLhUfffSROPfcc8V5553X+nxTU5M4/fTTRVlZmVi7dq34v//7P9G9e3dx3333ta7zn//8R3Tu3FlMnDhRbNiwQTzzzDMiHA6Lv/71r0l9veSu//3f/xX/7//9P/Gvf/1LbNy4Ufzyl78UxxxzjPj000+FELx2SN0HH3wg+vbtK7773e+K22+/vfVxXkNkZMqUKeK0004T27dvb112797d+nyQrx0GZGnm+9//vpgwYULr/5ubm0Xv3r3F1KlTfTwq8lN8QNbS0iJ69uwpnnjiidbH9u/fL3JycsScOXOEEEJs2LBBABAffvhh6zqLFi0SoVBI1NXVCSGEmDVrlujWrZtobGxsXeeee+4RJ598sseviJJp165dAoBYvny5EEJeK8ccc4yYP39+6zr/+Mc/BACxcuVKIYS8IZCVlSV27NjRus7vf/97kZeX13q93H333eK0006L2ddVV10lRowY4fVLoiTr1q2b+OMf/8hrh5QdOHBA9O/fXyxevFhceOGFrQEZryFKZMqUKeKMM87QfS7o1w6HLKaRI0eOYPXq1SgrK2t9LCsrC2VlZVi5cqWPR0ZBsnnzZuzYsSPmOsnPz8egQYNar5OVK1eia9euGDhwYOs6ZWVlyMrKwqpVq1rXueCCC5Cdnd26zogRI7Bx40Z8/fXXSXo15LX6+noAQEFBAQBg9erVOHr0aMz1c8opp6BPnz4x1893vvMdFBcXt64zYsQINDQ04LPPPmtdJ3ob2jr8rkofzc3NmDt3Lr755hsMHjyY1w4pmzBhAi655JJ27zOvITKzadMm9O7dG8cffzzGjh2Lr776CkDwrx0GZGlkz549aG5ujrmQAKC4uBg7duzw6agoaLRrIdF1smPHDvTo0SPm+Q4dOqCgoCBmHb1tRO+DUltLSwsqKipw/vnn4/TTTwcg39vs7Gx07do1Zt3468fs2jBap6GhAYcOHfLi5VCSrF+/Hrm5ucjJycHPf/5zLFiwAAMGDOC1Q0rmzp2LNWvWYOrUqe2e4zVEiQwaNAgvvfQS/vrXv+L3v/89Nm/ejCFDhuDAgQOBv3Y62P5NIiJKaxMmTMCnn36Kd955x+9DoRRy8skn4+OPP0Z9fT1ee+01XHfddVi+fLnfh0UpYMuWLbj99tuxePFidOzY0e/DoRTzwx/+sPXf3/3udzFo0CAcd9xxmDdvHjp16uTjkZljD1ka6d69O8LhcLuMMTt37kTPnj19OioKGu1aSHSd9OzZE7t27Yp5vqmpCfv27YtZR28b0fug1HXLLbfgzTffRG1tLSKRSOvjPXv2xJEjR7B///6Y9eOvH7Nrw2idvLy8wP/hpMSys7Nx4okn4uyzz8bUqVNxxhlnYObMmbx2yNTq1auxa9cufO9730OHDh3QoUMHLF++HE8//TQ6dOiA4uJiXkOkrGvXrjjppJPw73//O/DfPwzI0kh2djbOPvtsLF26tPWxlpYWLF26FIMHD/bxyChI+vXrh549e8ZcJw0NDVi1alXrdTJ48GDs378fq1evbl3nrbfeQktLCwYNGtS6zttvv42jR4+2rrN48WKcfPLJ6NatW5JeDblNCIFbbrkFCxYswFtvvYV+/frFPH/22WfjmGOOibl+Nm7ciK+++irm+lm/fn1MUL948WLk5eVhwIABretEb0Nbh99V6aelpQWNjY28dsjU8OHDsX79enz88cety8CBAzF27NjWf/MaIlUHDx7E559/jl69egX/+8dRShAKnLlz54qcnBzx0ksviQ0bNojx48eLrl27xmSMofR34MABsXbtWrF27VoBQEybNk2sXbtWfPnll0IImfa+a9euYuHCheKTTz4RI0eO1E17f9ZZZ4lVq1aJd955R/Tv3z8m7f3+/ftFcXGxuPbaa8Wnn34q5s6dKzp37sy09ynuF7/4hcjPzxfLli2LSR387bfftq7z85//XPTp00e89dZb4qOPPhKDBw8WgwcPbn1eSx180UUXiY8//lj89a9/FUVFRbqpgydNmiT+8Y9/iN/97ndMO50G7r33XrF8+XKxefNm8cknn4h7771XhEIh8fe//10IwWuHrIvOsigEryEyduedd4ply5aJzZs3i3fffVeUlZWJ7t27i127dgkhgn3tMCBLQ88884zo06ePyM7OFt///vfF+++/7/chUZLV1tYKAO2W6667TgghU9//6le/EsXFxSInJ0cMHz5cbNy4MWYbe/fuFWPGjBG5ubkiLy9PjBs3Thw4cCBmnXXr1okf/OAHIicnR5SUlIhHH300WS+RPKJ33QAQL774Yus6hw4dEjfffLPo1q2b6Ny5s/j//r//T2zfvj1mO1988YX44Q9/KDp16iS6d+8u7rzzTnH06NGYdWpra8WZZ54psrOzxfHHHx+zD0pNN9xwgzjuuONEdna2KCoqEsOHD28NxoTgtUPWxQdkvIbIyFVXXSV69eolsrOzRUlJibjqqqvEv//979bng3zthIQQwlkfGxEREREREdnBOWREREREREQ+YUBGRERERETkEwZkREREREREPmFARkRERERE5BMGZERERERERD5hQEZEREREROQTBmREREREREQ+YUBGRERERETkEwZkREREREREPmFARkRERERE5BMGZERERERERD5hQEZEREREROST/x9KLidhAPk40gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax0, ax1) = plt.subplots(nrows=2,\n", + " ncols=1,\n", + " figsize=(10, 10),\n", + " sharex=True)\n", + "\n", + "# Scatter plot for Calories vs. Total Steps\n", + "scatter = ax0.scatter(x=daily_activity[\"Calories\"],\n", + " y=daily_activity[\"TotalSteps\"],\n", + " color=\"r\")\n", + "ax0.set(title=\"Calories Burnt By Total Steps\",\n", + " ylabel=\"Total Steps\")\n", + "\n", + "ax0.legend(*scatter.legend_elements(), title=None)\n", + "\n", + "\n", + "# Scatter plot for Calories vs. Sedentary Minutes\n", + "scatter = ax1.scatter(x=daily_activity[\"Calories\"],\n", + " y=daily_activity[\"SedentaryMinutes\"],\n", + " color=\"b\")\n", + "ax1.set(title=\"Sedentary Minutes and Calories\",\n", + " ylabel=\"Sedentary Minutes\")\n", + "\n", + "ax1.legend(*scatter.legend_elements(), title=None);\n", + "\n", + "save_path = '../Images/total_steps_and_sedentary_mins_vs_calories.png'\n", + "plt.savefig(save_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "e4fcb83a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAHDCAYAAADhiEgiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFaklEQVR4nO3de3yP9eP/8ed7Ywc7Om2zjK05zjEWjUKMFenjlNOUM58iocQ+5fRB5PMpRUmU8ckhySEUJTkUyynkFCqi2Ci2GRm21+8Pv11fbxtGY1c87rfbdbt5v67Xdb1e1/Xe+/Lc631drzmMMUYAAACATbnkdwcAAACAayGwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwArdQgwYN1KBBg/zuxt/OjBkz5HA4dOjQofzuCvLAiBEj5HA48rsbTkJDQ9WlS5f87kau2fEcArcTgRV3pZ07d6pNmzYqXbq0PDw8dM8996hx48aaNGlSfnfthm3YsEEjRoxQcnJyfnclmwYNGsjhcKhs2bI5rl+5cqUcDoccDoc+/vjj29w7afLkyZoxY8ZtbXPhwoVyOBx67733rlon67xMnDjxptpYs2aNdV6vt1zP0aNHNWLECG3fvv2m+nKz2rZtK4fDocGDB9/0Puz42QgNDZXD4VB0dHSO66dNm2a9N1u2bLnNvZNeeeUVLV68+La3C1wPgRV3nQ0bNigyMlI7duxQz5499dZbb6lHjx5ycXHRm2++md/du2EbNmzQyJEjbfWf8uU8PDz0448/atOmTdnWzZ49Wx4eHtnKn3zySf35558qXbr0Le1bfgTWZs2ayc/PT3PmzLlqnTlz5sjV1VXt27e/qTYqVqyoDz74wGkpWbKkKlSokK38eo4ePaqRI0fe1sCampqqpUuXKjQ0VHPnzpUx5qb2c63Pxr59+zRt2rS/2NOb4+HhodWrVysxMTHbuqt9Jl5++WX9+eeft7xvBFbYVYH87gBwu40ZM0Z+fn7avHmz/P39ndYdP348fzplM8YYnTt3Tp6enn95X+Hh4bp48aLmzp2rWrVqWeXnzp3TokWL1KxZMy1YsMBpG1dXV7m6uv7ltu3I3d1dbdq0UXx8vI4eParg4GCn9VnnpXHjxgoICLipNgIDA9WpUyensnHjxqlYsWLZyu1owYIFysjI0PTp09WwYUOtW7dO9evXz9M23N3d83R/N6Ju3bravHmz5s2bp+eee84q//XXX/X111+rZcuW2T4TBQoUUIEC/JeNuxcjrLjr/PTTT6pUqVK2sCopx4Awa9Ys1axZU56enipSpIjat2+vI0eOZKs3depUhYeHy9PTU7Vq1dLXX3+dY/vp6ekaPny4ypQpI3d3d4WEhOjFF19Uenq6Uz2Hw6G+fftq8eLFqly5stzd3VWpUiWtWLHCqjNixAgNGjRIkhQWFmZ9lZh172d8fLwaNmyogIAAubu7KyIiQu+88062PoWGhuqxxx7T559/rsjISHl6eurdd99V/fr1Va1atRyPo3z58oqJiclx3ZU6dOigefPmKTMz0ypbunSpzp49q7Zt22arn9M9rFl9/Oabb1SrVi15eHjo3nvv1f/+9z+nba92r9+V+wwNDdXu3bu1du1a67xdfr9xcnKy+vfvr5CQELm7u6tMmTJ69dVXnY5Bkj788EPVrFlTPj4+8vX1VZUqVa47Ut+pUydlZmbqww8/zLbu008/VUpKimJjY62yAwcOqHXr1goKCpKHh4dKliyp9u3bKyUl5ZrtXM/PP/+sJ554QkWKFFGhQoX0wAMP6NNPP7XWr1mzRvfff78kqWvXrtZ5yhqV/vrrr/XEE0+oVKlS1s/ygAED/vJI4OzZs9W4cWM9/PDDqlixombPnp1jvR9++EFt27ZV8eLF5enpqfLly+ull16SdP3PxuX3sG7ZskUOh0MzZ87M1sbnn38uh8OhZcuWWWW//fabunXrpsDAQOtzOX369Fwfn4eHh1q1apVtlH3u3LkqXLhwjp+rnH6uc3ONkKQuXbooNDT0uvt0OBw6c+aMZs6caZ2vy+/zze1xT5o0SZUqVVKhQoVUuHBhRUZGXvMbBSA3+HUNd53SpUsrISFBu3btUuXKla9Zd8yYMRo6dKjatm2rHj166MSJE5o0aZLq1aunbdu2WaH3/fffV+/evVWnTh31799fP//8sx5//HEVKVJEISEh1v4yMzP1+OOP65tvvlGvXr1UsWJF7dy5UxMmTND+/fuzfRX3zTffaOHChXrmmWfk4+OjiRMnqnXr1jp8+LCKFi2qVq1aaf/+/Zo7d64mTJigYsWKSZKKFy8uSXrnnXdUqVIlPf744ypQoICWLl2qZ555RpmZmerTp49TW/v27VOHDh3Uu3dv9ezZU+XLl5e3t7d69uyZ7Vxt3rxZ+/fv18svv5yrc96xY0eNGDFCa9asUcOGDSVd+tq7UaNGNzSK+OOPP6pNmzbq3r27OnfurOnTp6tLly6qWbOmKlWqlOv9SNIbb7yhZ599Vt7e3lbICQwMlCSdPXtW9evX12+//abevXurVKlS2rBhg+Li4nTs2DG98cYbki7da9qhQwc1atRIr776qiRp7969Wr9+vdPI2ZXq1aunkiVLas6cORo4cKDTujlz5qhQoUJq0aKFJOn8+fOKiYlRenq6nn32WQUFBem3337TsmXLlJycLD8/vxs67ixJSUmqU6eOzp49q379+qlo0aKaOXOmHn/8cX388cdq2bKlKlasqH//+98aNmyYevXqpYceekiSVKdOHUnS/PnzdfbsWT399NMqWrSoNm3apEmTJunXX3/V/Pnzb6pfR48e1erVq63w2KFDB02YMEFvvfWW3NzcrHrff/+9HnroIRUsWFC9evVSaGiofvrpJy1dulRjxoy57mfjcpGRkbr33nv10UcfqXPnzk7r5s2b5xQik5KS9MADD1hhsXjx4lq+fLm6d++u1NRU9e/fP1fH2bFjRzVp0kQ//fSTwsPDJV1679u0aaOCBQvm+nxd7xpxIz744AP16NFDtWrVUq9evSTJ6ltuj3vatGnq16+f2rRpo+eee07nzp3T999/r40bN6pjx4431B/AiQHuMl988YVxdXU1rq6uJioqyrz44ovm888/N+fPn3eqd+jQIePq6mrGjBnjVL5z505ToEABq/z8+fMmICDAVK9e3aSnp1v1pk6daiSZ+vXrW2UffPCBcXFxMV9//bXTPqdMmWIkmfXr11tlkoybm5v58ccfrbIdO3YYSWbSpElW2X/+8x8jyRw8eDDbsZ49ezZbWUxMjLn33nudykqXLm0kmRUrVjiVJycnGw8PDzN48GCn8n79+hkvLy+TlpaWbf+Xq1+/vqlUqZIxxpjIyEjTvXt3Y4wxp06dMm5ubmbmzJlm9erVRpKZP3++tV18fHy2Y8rq47p166yy48ePG3d3d/P8889bZcOHDzc5Xdpy2melSpWc3p8so0aNMl5eXmb//v1O5UOGDDGurq7m8OHDxhhjnnvuOePr62suXrx4zfOQk0GDBhlJZt++fVZZSkqK8fDwMB06dLDKtm3blu383Iwrj7V///5GktPP4unTp01YWJgJDQ01GRkZxhhjNm/ebCSZ+Pj4bPvM6edr7NixxuFwmF9++cUqu9p7kpP//ve/xtPT06SmphpjjNm/f7+RZBYtWuRUr169esbHx8epHWOMyczMtP59rc9G6dKlTefOna3XcXFxpmDBgubkyZNWWXp6uvH39zfdunWzyrp3725KlChhfv/9d6f9tW/f3vj5+eV4Tq5st1mzZubixYsmKCjIjBo1yhhjzJ49e4wks3btWutndfPmzdZ2OZ3D3F4jOnfubEqXLp2tLznt08vLy+m83Ohx/+Mf/7A+80Be4pYA3HUaN26shIQEPf7449qxY4fGjx+vmJgY3XPPPVqyZIlVb+HChcrMzFTbtm31+++/W0tQUJDKli2r1atXS7r0deLx48f1z3/+02kEqEuXLtlGv+bPn6+KFSuqQoUKTvvMGnXM2meW6Ohoa4RDkqpWrSpfX1/9/PPPuTrWy+9BTUlJ0e+//6769evr559/zvZ1clhYWLavIv38/PSPf/zD6cGXjIwMzZs3Ty1atJCXl1eu+iFdGlFauHChzp8/r48//liurq5q2bJlrreXpIiICGuUT7o0Wla+fPlcn4/cmj9/vh566CEVLlzY6X2Kjo5WRkaG1q1bJ0ny9/fXmTNntHLlyhtuI+te0su/Kl2wYIHOnTvndDtA1s/Q559/rrNnz/6Vw3Ly2WefqVatWnrwwQetMm9vb/Xq1UuHDh3Snj17rruPy3++zpw5o99//1116tSRMUbbtm27qX7Nnj1bzZo1k4+PjySpbNmyqlmzptNtASdOnNC6devUrVs3lSpVymn7m536qV27drpw4YIWLlxolX3xxRdKTk5Wu3btJF26t3vBggVq3ry5jDFOPxsxMTFKSUnRd999l6v2XF1d1bZtW82dO9c67pCQEKef79z4q9eI3LiR4/b399evv/6qzZs351n7gMQ9rLhL3X///Vq4cKFOnTqlTZs2KS4uTqdPn1abNm2s/6gPHDggY4zKli2r4sWLOy179+61HtD65ZdfJCnb1E0FCxbUvffe61R24MAB7d69O9v+ypUrJyn7Q19X/mcsSYULF9apU6dydZzr169XdHS0vLy85O/vr+LFi+tf//qXJOUYWHPy1FNP6fDhw9Y9uV9++aWSkpL05JNP5qoPWbLuuVy+fLlmz56txx57zAolufVXz0duHThwQCtWrMj2PmVNRZT1Pj3zzDMqV66cHn30UZUsWVLdunXLdv/g1VStWlWVK1e2Aot0KbwWK1bM6ReHsLAwDRw4UO+995617u233/7L96/+8ssvKl++fLbyihUrWuuv5/Dhw+rSpYuKFCkib29vFS9e3Ho46mb6t3fvXm3btk1169bVjz/+aC0NGjTQsmXLlJqaKklWGLveLT03olq1aqpQoYLmzZtnlc2bN0/FihWzfqE8ceKEkpOTNXXq1Gw/G127dpV0Yw9uduzYUXv27NGOHTs0Z84ctW/f/oYD9+34TNzIcQ8ePFje3t6qVauWypYtqz59+mj9+vV51hfcvbiHFXc1Nzc33X///br//vtVrlw5de3aVfPnz9fw4cOVmZkph8Oh5cuX5/jEure39w23l5mZqSpVquj111/Pcf3l97tKuuqT8iYX0/z89NNPatSokSpUqKDXX39dISEhcnNz02effaYJEyZke3joajMCxMTEKDAwULNmzVK9evU0a9YsBQUFXXUeyaspUaKEGjRooNdee03r16/P9hR0buTmfFztP/yMjIxct5OZmanGjRvrxRdfzHF91i8YAQEB2r59uz7//HMtX75cy5cvV3x8vJ566qkcH+C5UqdOnTRkyBBt2bJFJUuW1OrVq9W7d+9sT4O/9tpr6tKliz755BN98cUX6tevn8aOHatvv/1WJUuWzPVx5aWMjAw1btxYJ0+e1ODBg1WhQgV5eXnpt99+U5cuXbL9fOXGrFmzJEkDBgzQgAEDsq1fsGCBFZBuhXbt2mnMmDH6/fff5ePjoyVLlqhDhw7W+5F1TJ06dcp2r2uWqlWr5rq92rVrKzw8XP3799fBgwdv6h7P2/GZuJHjrlixovbt26dly5ZpxYoVWrBggSZPnqxhw4Zp5MiRuWoPyAmBFfj/IiMjJUnHjh2TdOlhA2OMwsLCrICSk6y5Qg8cOGCNxEjShQsXdPDgQaen7MPDw7Vjxw41atQoz/5qzdX2s3TpUqWnp2vJkiVOozBX3nZwPa6ururYsaNmzJihV199VYsXL1bPnj1vatqpjh07qkePHvL391fTpk1vePvcKFy4sKRLT/lfPhNETiOGVzt34eHhSktLy1Uod3NzU/PmzdW8eXNlZmbqmWee0bvvvquhQ4eqTJky19y2Q4cOiouL05w5c1S6dGllZGQ43Q5wuSpVqqhKlSp6+eWXtWHDBtWtW1dTpkzR6NGjr9vHnJQuXVr79u3LVv7DDz9Y66Wrn6OdO3dq//79mjlzpp566imr/GZuj5AuBaw5c+bo4Ycf1jPPPJNt/ahRozR79mx17drV+uZi165d19znjX7G2rVrp5EjR2rBggUKDAxUamqq01y4xYsXl4+PjzIyMm74F7ar6dChg0aPHq2KFSuqevXqebLPKxUuXDjHuWhz+5m40eP28vJSu3bt1K5dO50/f16tWrXSmDFjFBcXl+Mcs0BucEsA7jqrV6/OcYTys88+kyTra9JWrVrJ1dVVI0eOzFbfGKM//vhD0qWgW7x4cU2ZMkXnz5+36syYMSPbfxJt27bVb7/9luOE5X/++afOnDlzw8eTdR/plW1lBcrL+56SkqL4+PgbbuPJJ5/UqVOn1Lt3b6Wlpd30XJ5t2rTR8OHDNXnyZKf7ffNS1v18WfeZSrKm6rmSl5dXjv+Rt23bVgkJCfr888+zrUtOTtbFixclyfoZyOLi4mKNNF05TVlOSpUqpYceekjz5s3TrFmzFBYWZj2BnyU1NdVqL0uVKlXk4uKSqzaupmnTptq0aZMSEhKssjNnzmjq1KkKDQ1VRESEpBv7+TLG3PQf31i/fr0OHTqkrl27qk2bNtmWdu3aafXq1Tp69KiKFy+uevXqafr06Tp8+LDTfi7vz9X6fjUVK1ZUlSpVNG/ePM2bN08lSpRQvXr1nI65devWWrBgQY5h+cSJEzd83D169NDw4cP12muv3fC2uRUeHq6UlBR9//33VtmxY8e0aNGibHVz+kzcyHFf+Zlwc3NTRESEjDG6cOHCXzwS3M0YYcVd59lnn9XZs2fVsmVLVahQQefPn9eGDRs0b948hYaGWl85hoeHa/To0YqLi9OhQ4fUokUL+fj46ODBg1q0aJF69eqlF154QQULFtTo0aPVu3dvNWzYUO3atdPBgwcVHx+f7R7WJ598Uh999JH++c9/avXq1apbt64yMjL0ww8/6KOPPrLmQb0RNWvWlCS99NJLat++vQoWLKjmzZurSZMm1uhfVtCcNm2aAgICrFHk3LrvvvtUuXJl66GxGjVq3ND2Wfz8/DRixIib2ja3mjRpolKlSql79+4aNGiQXF1dNX36dBUvXjxbuKlZs6beeecdjR49WmXKlFFAQIAaNmyoQYMGacmSJXrsscesabPOnDmjnTt36uOPP9ahQ4dUrFgx9ejRQydPnlTDhg1VsmRJ/fLLL5o0aZKqV69u3Qt6PZ06dVKvXr109OhRa3qty3311Vfq27evnnjiCZUrV04XL17UBx98YIWImzVkyBDNnTtXjz76qPr166ciRYpo5syZOnjwoBYsWCAXl0vjGeHh4fL399eUKVPk4+MjLy8v1a5dWxUqVFB4eLheeOEF/fbbb/L19dWCBQtu+t7J2bNny9XVVc2aNctx/eOPP66XXnpJH374oQYOHKiJEyfqwQcfVI0aNdSrVy+FhYXp0KFD+vTTT62/ynW1z8a1HhZs166dhg0bJg8PD3Xv3t06D1nGjRun1atXq3bt2urZs6ciIiJ08uRJfffdd/ryyy918uTJGzru0qVL3/LPRPv27TV48GC1bNlS/fr109mzZ/XOO++oXLly2R4Sq1mzpr788ku9/vrrCg4OVlhYmGrXrp3r427SpImCgoJUt25dBQYGau/evXrrrbecHqQDbsrtnZQAyH/Lly833bp1MxUqVDDe3t7Gzc3NlClTxjz77LMmKSkpW/0FCxaYBx980Hh5eRkvLy9ToUIF06dPH6fpiIwxZvLkySYsLMy4u7ubyMhIs27dOlO/fv1s0yadP3/evPrqq6ZSpUrG3d3dFC5c2NSsWdOMHDnSpKSkWPUkmT59+mTrz5XT8RhzaRqme+65x7i4uDhN47NkyRJTtWpV4+HhYUJDQ82rr75qpk+fnuOUUc2aNbvmeRs/fryRZF555ZVr1rvc5dNaXc2NTGuVUx9zOsdbt241tWvXNm5ubqZUqVLm9ddfz3GfiYmJplmzZsbHxyfbFGSnT582cXFxpkyZMsbNzc0UK1bM1KlTx/z3v/+1pkD7+OOPTZMmTUxAQIDVVu/evc2xY8dyfY5Onjxp3N3djSSzZ8+ebOt//vln061bNxMeHm48PDxMkSJFzMMPP2y+/PLLXLdhTM5TeP3000+mTZs2xt/f33h4eJhatWqZZcuWZdv2k08+MREREaZAgQJOU1zt2bPHREdHG29vb1OsWDHTs2dPa1qly6fBut60VufPnzdFixY1Dz300DWPISwszNx3333W6127dpmWLVta/S9fvrwZOnSo0zZX+2zk9DkyxpgDBw4YSUaS+eabb3LsR1JSkunTp48JCQkxBQsWNEFBQaZRo0Zm6tSp1+x/VrvX+6zdyLRWub1GfPHFF6Zy5crGzc3NlC9f3syaNSvHff7www+mXr16xtPT00hy2k9ujvvdd9819erVM0WLFjXu7u4mPDzcDBo0yOnaBtwMhzE3+UeaAdxV3nzzTQ0YMECHDh3K8clkAABuFQIrgOsyxqhatWoqWrToDT+0BQDAX8U9rACu6syZM1qyZIlWr16tnTt36pNPPsnvLgEA7kKMsAK4qkOHDiksLEz+/v565plnNGbMmPzuEgDgLkRgBQAAgK0xDysAAABsjcAKAAAAW7tjH7rKzMzU0aNH5ePjk2d/AhMAAAB5xxij06dPKzg4ONsf6rjcHRtYjx49qpCQkPzuBgAAAK7jyJEjKlmy5FXX37GBNetPwB05ckS+vr753BsAAABcKTU1VSEhIdf90713bGDNug3A19eXwAoAAGBj17t9k4euAAAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArd1wYF23bp2aN2+u4OBgORwOLV682Gm9MUbDhg1TiRIl5OnpqejoaB04cMCpzsmTJxUbGytfX1/5+/ure/fuSktLc6rz/fff66GHHpKHh4dCQkI0fvz4Gz86AAAA/O3dcGA9c+aMqlWrprfffjvH9ePHj9fEiRM1ZcoUbdy4UV5eXoqJidG5c+esOrGxsdq9e7dWrlypZcuWad26derVq5e1PjU1VU2aNFHp0qW1detW/ec//9GIESM0derUmzhEAAAA/J05jDHmpjd2OLRo0SK1aNFC0qXR1eDgYD3//PN64YUXJEkpKSkKDAzUjBkz1L59e+3du1cRERHavHmzIiMjJUkrVqxQ06ZN9euvvyo4OFjvvPOOXnrpJSUmJsrNzU2SNGTIEC1evFg//PBDrvqWmpoqPz8/paSk8KdZAQAAbCi3eS1P72E9ePCgEhMTFR0dbZX5+fmpdu3aSkhIkCQlJCTI39/fCquSFB0dLRcXF23cuNGqU69ePSusSlJMTIz27dunU6dO5dh2enq6UlNTnRYAAAD8/eVpYE1MTJQkBQYGOpUHBgZa6xITExUQEOC0vkCBAipSpIhTnZz2cXkbVxo7dqz8/PysJSQk5K8fEAAAAPLdHTNLQFxcnFJSUqzlyJEj+d0lAAAA5IE8DaxBQUGSpKSkJKfypKQka11QUJCOHz/utP7ixYs6efKkU52c9nF5G1dyd3eXr6+v0wIAAIC/vzwNrGFhYQoKCtKqVausstTUVG3cuFFRUVGSpKioKCUnJ2vr1q1Wna+++kqZmZmqXbu2VWfdunW6cOGCVWflypUqX768ChcunJddBgAAgM0VuNEN0tLS9OOPP1qvDx48qO3bt6tIkSIqVaqU+vfvr9GjR6ts2bIKCwvT0KFDFRwcbM0kULFiRT3yyCPq2bOnpkyZogsXLqhv375q3769goODJUkdO3bUyJEj1b17dw0ePFi7du3Sm2++qQkTJuTNUd8iDkd+9wDA7XDzc6sAAG6KuUGrV682krItnTt3NsYYk5mZaYYOHWoCAwONu7u7adSokdm3b5/TPv744w/ToUMH4+3tbXx9fU3Xrl3N6dOnners2LHDPPjgg8bd3d3cc889Zty4cTfUz5SUFCPJpKSk3Ogh3rRL/42xsLDc6QsAIG/kNq/9pXlY7Sw/5mFlhBW4O9yZV00AuP3yZR5WAAAAIK8RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYWp4H1oyMDA0dOlRhYWHy9PRUeHi4Ro0aJWOMVccYo2HDhqlEiRLy9PRUdHS0Dhw44LSfkydPKjY2Vr6+vvL391f37t2VlpaW190FAACAzeV5YH311Vf1zjvv6K233tLevXv16quvavz48Zo0aZJVZ/z48Zo4caKmTJmijRs3ysvLSzExMTp37pxVJzY2Vrt379bKlSu1bNkyrVu3Tr169crr7gIAAMDmHObyoc888NhjjykwMFDvv/++Vda6dWt5enpq1qxZMsYoODhYzz//vF544QVJUkpKigIDAzVjxgy1b99ee/fuVUREhDZv3qzIyEhJ0ooVK9S0aVP9+uuvCg4Ovm4/UlNT5efnp5SUFPn6+ublIV6Vw3FbmgGQz/L2qgkAd6/c5rU8H2GtU6eOVq1apf3790uSduzYoW+++UaPPvqoJOngwYNKTExUdHS0tY2fn59q166thIQESVJCQoL8/f2tsCpJ0dHRcnFx0caNG3NsNz09XampqU4LAAAA/v4K5PUOhwwZotTUVFWoUEGurq7KyMjQmDFjFBsbK0lKTEyUJAUGBjptFxgYaK1LTExUQECAc0cLFFCRIkWsOlcaO3asRo4cmdeHAwAAgHyW5yOsH330kWbPnq05c+bou+++08yZM/Xf//5XM2fOzOumnMTFxSklJcVajhw5ckvbAwAAwO2R5yOsgwYN0pAhQ9S+fXtJUpUqVfTLL79o7Nix6ty5s4KCgiRJSUlJKlGihLVdUlKSqlevLkkKCgrS8ePHnfZ78eJFnTx50tr+Su7u7nJ3d8/rwwEAAEA+y/MR1rNnz8rFxXm3rq6uyszMlCSFhYUpKChIq1atstanpqZq48aNioqKkiRFRUUpOTlZW7dutep89dVXyszMVO3atfO6ywAAALCxPB9hbd68ucaMGaNSpUqpUqVK2rZtm15//XV169ZNkuRwONS/f3+NHj1aZcuWVVhYmIYOHarg4GC1aNFCklSxYkU98sgj6tmzp6ZMmaILFy6ob9++at++fa5mCAAAAMCdI88D66RJkzR06FA988wzOn78uIKDg9W7d28NGzbMqvPiiy/qzJkz6tWrl5KTk/Xggw9qxYoV8vDwsOrMnj1bffv2VaNGjeTi4qLWrVtr4sSJed1dAAAA2Fyez8NqF8zDCuBWuTOvmgBw++XbPKwAAABAXiKwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALC1WxJYf/vtN3Xq1ElFixaVp6enqlSpoi1btljrjTEaNmyYSpQoIU9PT0VHR+vAgQNO+zh58qRiY2Pl6+srf39/de/eXWlpabeiuwAAALCxPA+sp06dUt26dVWwYEEtX75ce/bs0WuvvabChQtbdcaPH6+JEydqypQp2rhxo7y8vBQTE6Nz585ZdWJjY7V7926tXLlSy5Yt07p169SrV6+87i4AAABszmGMMXm5wyFDhmj9+vX6+uuvc1xvjFFwcLCef/55vfDCC5KklJQUBQYGasaMGWrfvr327t2riIgIbd68WZGRkZKkFStWqGnTpvr1118VHBx83X6kpqbKz89PKSkp8vX1zbsDvAaH47Y0AyCf5e1VEwDuXrnNa3k+wrpkyRJFRkbqiSeeUEBAgO677z5NmzbNWn/w4EElJiYqOjraKvPz81Pt2rWVkJAgSUpISJC/v78VViUpOjpaLi4u2rhxY47tpqenKzU11WkBAADA31+eB9aff/5Z77zzjsqWLavPP/9cTz/9tPr166eZM2dKkhITEyVJgYGBTtsFBgZa6xITExUQEOC0vkCBAipSpIhV50pjx46Vn5+ftYSEhOT1oQEAACAf5HlgzczMVI0aNfTKK6/ovvvuU69evdSzZ09NmTIlr5tyEhcXp5SUFGs5cuTILW0PAAAAt0eeB9YSJUooIiLCqaxixYo6fPiwJCkoKEiSlJSU5FQnKSnJWhcUFKTjx487rb948aJOnjxp1bmSu7u7fH19nRYAAAD8/eV5YK1bt6727dvnVLZ//36VLl1akhQWFqagoCCtWrXKWp+amqqNGzcqKipKkhQVFaXk5GRt3brVqvPVV18pMzNTtWvXzusuAwAAwMYK5PUOBwwYoDp16uiVV15R27ZttWnTJk2dOlVTp06VJDkcDvXv31+jR49W2bJlFRYWpqFDhyo4OFgtWrSQdGlE9pFHHrFuJbhw4YL69u2r9u3b52qGAAAAANw58nxaK0latmyZ4uLidODAAYWFhWngwIHq2bOntd4Yo+HDh2vq1KlKTk7Wgw8+qMmTJ6tcuXJWnZMnT6pv375aunSpXFxc1Lp1a02cOFHe3t656gPTWgG4VZjWCgDyRm7z2i0JrHZAYAVwq9yZV00AuP3ybR5WAAAAIC8RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADYGoEVAAAAtkZgBQAAgK0RWAEAAGBrBFYAAADY2i0PrOPGjZPD4VD//v2tsnPnzqlPnz4qWrSovL291bp1ayUlJTltd/jwYTVr1kyFChVSQECABg0apIsXL97q7gIAAMBmbmlg3bx5s959911VrVrVqXzAgAFaunSp5s+fr7Vr1+ro0aNq1aqVtT4jI0PNmjXT+fPntWHDBs2cOVMzZszQsGHDbmV3AQAAYEO3LLCmpaUpNjZW06ZNU+HCha3ylJQUvf/++3r99dfVsGFD1axZU/Hx8dqwYYO+/fZbSdIXX3yhPXv2aNasWapevboeffRRjRo1Sm+//bbOnz9/q7oMAAAAG7plgbVPnz5q1qyZoqOjncq3bt2qCxcuOJVXqFBBpUqVUkJCgiQpISFBVapUUWBgoFUnJiZGqamp2r17d47tpaenKzU11WkBAADA31+BW7HTDz/8UN999502b96cbV1iYqLc3Nzk7+/vVB4YGKjExESrzuVhNWt91rqcjB07ViNHjsyD3gMAAMBO8nyE9ciRI3ruuec0e/ZseXh45PXuryouLk4pKSnWcuTIkdvWNgAAAG6dPA+sW7du1fHjx1WjRg0VKFBABQoU0Nq1azVx4kQVKFBAgYGBOn/+vJKTk522S0pKUlBQkCQpKCgo26wBWa+z6lzJ3d1dvr6+TgsAAAD+/vI8sDZq1Eg7d+7U9u3brSUyMlKxsbHWvwsWLKhVq1ZZ2+zbt0+HDx9WVFSUJCkqKko7d+7U8ePHrTorV66Ur6+vIiIi8rrLAAAAsLE8v4fVx8dHlStXdirz8vJS0aJFrfLu3btr4MCBKlKkiHx9ffXss88qKipKDzzwgCSpSZMmioiI0JNPPqnx48crMTFRL7/8svr06SN3d/e87jIAAABs7JY8dHU9EyZMkIuLi1q3bq309HTFxMRo8uTJ1npXV1ctW7ZMTz/9tKKiouTl5aXOnTvr3//+d350FwAAAPnIYYwx+d2JWyE1NVV+fn5KSUm5bfezOhy3pRkA+ezOvGoCwO2X27x2y/80KwAAAPBXEFgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtEVgBAABgawRWAAAA2BqBFQAAALZGYAUAAICtFcjvDgAA/h4cjvzuAYDbwZj87kF2jLACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1vI8sI4dO1b333+/fHx8FBAQoBYtWmjfvn1Odc6dO6c+ffqoaNGi8vb2VuvWrZWUlORU5/Dhw2rWrJkKFSqkgIAADRo0SBcvXszr7gIAAMDm8jywrl27Vn369NG3336rlStX6sKFC2rSpInOnDlj1RkwYICWLl2q+fPna+3atTp69KhatWplrc/IyFCzZs10/vx5bdiwQTNnztSMGTM0bNiwvO4uAAAA7M7cYsePHzeSzNq1a40xxiQnJ5uCBQua+fPnW3X27t1rJJmEhARjjDGfffaZcXFxMYmJiVadd955x/j6+pr09PRctZuSkmIkmZSUlDw8mmu7NHMZCwvLnb7crfL7vLOwsNye5XbKbV675fewpqSkSJKKFCkiSdq6dasuXLig6Ohoq06FChVUqlQpJSQkSJISEhJUpUoVBQYGWnViYmKUmpqq3bt359hOenq6UlNTnRYAAAD8/d3SwJqZman+/furbt26qly5siQpMTFRbm5u8vf3d6obGBioxMREq87lYTVrfda6nIwdO1Z+fn7WEhISksdHAwAAgPxwSwNrnz59tGvXLn344Ye3shlJUlxcnFJSUqzlyJEjt7xNAAAA3HoFbtWO+/btq2XLlmndunUqWbKkVR4UFKTz588rOTnZaZQ1KSlJQUFBVp1NmzY57S9rFoGsOldyd3eXu7t7Hh8FAAAA8luej7AaY9S3b18tWrRIX331lcLCwpzW16xZUwULFtSqVaussn379unw4cOKioqSJEVFRWnnzp06fvy4VWflypXy9fVVREREXncZAAAANpbnI6x9+vTRnDlz9Mknn8jHx8e659TPz0+enp7y8/NT9+7dNXDgQBUpUkS+vr569tlnFRUVpQceeECS1KRJE0VEROjJJ5/U+PHjlZiYqJdffll9+vRhFBUAAOAu4zDGmDzdocORY3l8fLy6dOki6dIfDnj++ec1d+5cpaenKyYmRpMnT3b6uv+XX37R008/rTVr1sjLy0udO3fWuHHjVKBA7jJ2amqq/Pz8lJKSIl9f3798XLlxlUMHcIfJ26vm3wfXOODucDuvcbnNa3keWO2CwArgVrkzr5rXxzUOuDvYMbDe8nlYAQAAgL+CwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1mwdWN9++22FhobKw8NDtWvX1qZNm/K7SwAAALjNbBtY582bp4EDB2r48OH67rvvVK1aNcXExOj48eP53TUAAADcRrYNrK+//rp69uyprl27KiIiQlOmTFGhQoU0ffr0/O4aAAAAbqMC+d2BnJw/f15bt25VXFycVebi4qLo6GglJCTkuE16errS09Ot1ykpKZKk1NTUW9tZAHcdLisA7mS38xqXldOMMdesZ8vA+vvvvysjI0OBgYFO5YGBgfrhhx9y3Gbs2LEaOXJktvKQkJBb0kcAdy8/v/zuAQDcOvlxjTt9+rT8rtGwLQPrzYiLi9PAgQOt15mZmTp58qSKFi0qh8ORjz3DnSo1NVUhISE6cuSIfH1987s7AJCnuMbhdjDG6PTp0woODr5mPVsG1mLFisnV1VVJSUlO5UlJSQoKCspxG3d3d7m7uzuV+fv736ouAhZfX18u5gDuWFzjcKtda2Q1iy0funJzc1PNmjW1atUqqywzM1OrVq1SVFRUPvYMAAAAt5stR1glaeDAgercubMiIyNVq1YtvfHGGzpz5oy6du2a310DAADAbWTbwNquXTudOHFCw4YNU2JioqpXr64VK1ZkexALyC/u7u4aPnx4tltRAOBOwDUOduIw15tHAAAAAMhHtryHFQAAAMhCYAUAAICtEVgBAABgawRW2NKIESNUvXr1/O5GvgsNDdUbb7yR390AcBs5HA4tXrz4lrfToEED9e/f/5a3czWHDh2Sw+HQ9u3b860P+PsgsOIvOXHihJ5++mmVKlVK7u7uCgoKUkxMjNavX5/fXctmxowZ+f7HJBo0aCCHw6Fx48ZlW9esWTM5HA6NGDHCKtu8ebN69eqVp33glwEgdxwOxzWXyz+rV7oVYax3795ydXXV/Pnzb2i7NWvWyOFwKDk52al84cKFGjVqVJ71T/q/c/btt986laenp1t/eXLNmjWSLv3p9GPHjqly5cp52of8DuK4NQis+Etat26tbdu2aebMmdq/f7+WLFmiBg0a6I8//sjvrt0yxhhdvHjxprcPCQnRjBkznMp+++03rVq1SiVKlHAqL168uAoVKnTTbQG4eceOHbOWN954Q76+vk5lL7zwwm3ry9mzZ/Xhhx/qxRdf1PTp0/Nkn0WKFJGPj0+e7OtyISEhio+PdypbtGiRvL29ncpcXV0VFBSkAgVsO8Mm7MQAN+nUqVNGklmzZs1163Xv3t0UK1bM+Pj4mIcffths377dqc7YsWNNQECA8fb2Nt26dTODBw821apVc6ozbdo0U6FCBePu7m7Kly9v3n77bWvdwYMHjSSzYMEC06BBA+Pp6WmqVq1qNmzYYIwxZvXq1UaS0zJ8+HBjjDH/+9//TM2aNY23t7cJDAw0HTp0MElJSda+s7b97LPPTI0aNUzBggVNfHy8cTgcZvPmzU59nDBhgilVqpTJyMjI8VzUr1/fPP3006Zo0aLmm2++scrHjBljmjdvbqpVq2b1yxhjSpcubSZMmGC9lmSmTZtmWrRoYTw9PU2ZMmXMJ598Yq2Pj483fn5+Tm0uWrTIZH3U4+Pjs52H+Pj4XL1P27dvNw0aNDDe3t7Gx8fH1KhRI9vxA3eqKz9bGRkZZuTIkeaee+4xbm5uplq1amb58uXW+is/Z/Xr1zfGGLNp0yYTHR1tihYtanx9fU29evXM1q1bndqSZBYtWuRUNmPGDPPAAw+Y5ORkU6hQIXP48GGn9efOnTMvvviiKVmypHFzczPh4eHmvffes66Nly+dO3c2xly6Hj333HPGGGPi4uJMrVq1sh131apVzciRI63X17oOZ/X95ZdfNr6+vubs2bNWeePGjc3QoUONJLN69WpjzP9dt7dt22aM+b9r7Zdffmlq1qxpPD09TVRUlPnhhx+s/XTu3Nn84x//cGrzueees85v586dsx3vwYMHjTHG7Ny50zzyyCPGy8vLBAQEmE6dOpkTJ05Y+5k/f76pXLmy8fDwMEWKFDGNGjUyaWlp2c4J8gcjrLhp3t7e8vb21uLFi5Wenn7Vek888YSOHz+u5cuXa+vWrapRo4YaNWqkkydPSpI++ugjjRgxQq+88oq2bNmiEiVKaPLkyU77mD17toYNG6YxY8Zo7969euWVVzR06FDNnDnTqd5LL72kF154Qdu3b1e5cuXUoUMHXbx4UXXq1Mk2QpI1OnLhwgWNGjVKO3bs0OLFi3Xo0CF16dIl23EMGTJE48aN0969e/X4448rOjo62yhCfHy8unTpIheXq3+03NzcFBsb67TtjBkz1K1bt6tuc7mRI0eqbdu2+v7779W0aVPFxsZa5/J62rVrp+eff16VKlWyzkO7du0kXf99io2NVcmSJbV582Zt3bpVQ4YMUcGCBXPVLnCnefPNN/Xaa6/pv//9r77//nvFxMTo8ccf14EDByRJmzZtkiR9+eWXOnbsmBYuXChJOn36tDp37qxvvvlG3377rcqWLaumTZvq9OnT12zv/fffV6dOneTn56dHH30027c0Tz31lObOnauJEydq7969evfdd+Xt7a2QkBAtWLBAkrRv3z4dO3ZMb775Zrb9x8bGatOmTfrpp5+sst27d+v7779Xx44dJeX+OlyzZk2FhoZa7R4+fFjr1q3Tk08+matz+9JLL+m1117Tli1bVKBAgVxfG6VL70tUVJR69uxpXeNCQkKUnJyshg0b6r777tOWLVu0YsUKJSUlqW3btpIujaZ36NBB3bp10969e7VmzRq1atVKhqnq7SO/EzP+3j7++GNTuHBh4+HhYerUqWPi4uLMjh07rPVff/218fX1NefOnXPaLjw83Lz77rvGGGOioqLMM88847S+du3aTiOs4eHhZs6cOU51Ro0aZaKioowx//eb+nvvvWet3717t5Fk9u7da4zJefQxJ5s3bzaSzOnTp40x//db/+LFi53qzZs3zxQuXNg6tq1btxqHw2H9Np+TrBGN7du3Gx8fH5OWlmbWrl1rAgICzIULF3I1wvryyy9br9PS0owka2TneiOsxhgzfPjwbKPXuXmffHx8zIwZM656bMCd7MrPVnBwsBkzZoxTnfvvv9+6ll05eng1GRkZxsfHxyxdutQq0xUjrPv37zcFCxa0RgMXLVpkwsLCTGZmpjHGmH379hlJZuXKlTm2kXUNO3XqlFP55SOsxhhTrVo18+9//9t6HRcXZ2rXrm29vt51+PK+v/HGG+bhhx82xhgzcuRI07JlS+tbudyMsGb59NNPjSTz559/GmOuP8Ka03Fl9bNJkyZOZUeOHDGSzL59+8zWrVuNJHPo0CEDe2KEFX9J69atdfToUS1ZskSPPPKI1qxZoxo1ali//e/YsUNpaWkqWrSoNSLr7e2tgwcPWr/J7927V7Vr13bab1RUlPXvM2fO6KefflL37t2d9jF69Gin0QBJqlq1qvXvrPtBjx8/fs1j2Lp1q5o3b65SpUrJx8dH9evXl3RpVOBykZGRTq9btGghV1dXLVq0SNKlUdKHH35YoaGh12xPkqpVq6ayZcvq448/1vTp0/Xkk0/m+j6uy4/Ry8tLvr6+1z3G68nN+zRw4ED16NFD0dHRGjduXLZzD9wtUlNTdfToUdWtW9epvG7dutq7d+81t01KSlLPnj1VtmxZ+fn5ydfXV2lpadmuN5ebPn26YmJiVKxYMUlS06ZNlZKSoq+++kqStH37drm6ulrXrpsVGxurOXPmSLp0r/7cuXMVGxsr6cauw5LUqVMnJSQk6Oeff76hb5Ckm7uOX8+OHTu0evVqp75XqFBBkvTTTz+pWrVqatSokapUqaInnnhC06ZN06lTp/5Sm8hb3OmMv8zDw0ONGzdW48aNNXToUPXo0UPDhw9Xly5dlJaWphIlSlhPhV4ut0/sp6WlSZKmTZuWLdi6uro6vb78K2qHwyFJyszMvOq+z5w5o5iYGMXExGj27NkqXry4Dh8+rJiYGJ0/f96prpeXl9NrNzc3PfXUU4qPj1erVq00Z86cHL9qu5pu3brp7bff1p49e6yvD3Pjyq/hHQ6HdYwuLi7ZvsK6cOHCdfeZm/dpxIgR6tixoz799FMtX75cw4cP14cffqiWLVvmuu/A3a5z5876448/9Oabb6p06dJyd3dXVFRUtutNloyMDM2cOVOJiYlOv9RmZGRo+vTpatSokTw9PfOkbx06dNDgwYP13Xff6c8//9SRI0esW4Zu5DosSUWLFtVjjz2m7t2769y5c3r00Ueve9tDlmtdx//KNa558+Z69dVXs60rUaKEXF1dtXLlSm3YsEFffPGFJk2apJdeekkbN25UWFhYrvqNW4vAijwXERFhzSFYo0YN60J7tZHHihUrauPGjXrqqaesssunRAkMDFRwcLB+/vln67f9m+Hm5qaMjAynsh9++EF//PGHxo0bp5CQEEnSli1bcr3PHj16qHLlypo8ebIuXryoVq1a5Xrbjh076oUXXlC1atUUERGR6+2upXjx4jp9+rTOnDljBewrp9XJ6Tzk5n2SpHLlyqlcuXIaMGCAOnTooPj4eAIr7jq+vr4KDg7W+vXrnUY1169fr1q1akm69DmTlO2ztn79ek2ePFlNmzaVJB05ckS///77Vdv67LPPdPr0aW3bts0pGO7atUtdu3ZVcnKyqlSposzMTK1du1bR0dHZ9nG1vlypZMmSql+/vmbPnq0///xTjRs3VkBAgKSbuw5369ZNTZs21eDBg3MMtTejePHi2rVrl1PZ9u3bnULu1a5xCxYsUGho6FW/zXI4HKpbt67q1q2rYcOGqXTp0lq0aJEGDhyYJ33HX0NgxU37448/9MQTT6hbt26qWrWqfHx8tGXLFo0fP17/+Mc/JEnR0dGKiopSixYtNH78eJUrV05Hjx7Vp59+qpYtWyoyMlLPPfecunTposjISNWtW1ezZ8/W7t27de+991ptjRw5Uv369ZOfn58eeeQRpaena8uWLTp16lSuLyahoaFKS0vTqlWrVK1aNRUqVEilSpWSm5ubJk2apH/+85/atWvXDc1LWLFiRT3wwAMaPHiwunXrdkMjHYULF9axY8fy9MGl2rVrq1ChQvrXv/6lfv36aePGjdkezggNDdXBgwe1fft2lSxZUj4+Ptd9nypVqqRBgwapTZs2CgsL06+//qrNmzerdevWedZ34O9k0KBBGj58uMLDw1W9enXFx8dr+/btmj17tiQpICBAnp6eWrFihUqWLCkPDw/5+fmpbNmy+uCDDxQZGanU1FQNGjTomteN999/X82aNVO1atWcyiMiIjRgwADNnj1bffr0UefOndWtWzdNnDhR1apV0y+//KLjx4+rbdu2Kl26tBwOh5YtW6amTZvK09Mz2xRTWWJjYzV8+HCdP39eEyZMcFp3o9fhRx55RCdOnJCvr++Nnt6ratiwof7zn//of//7n6KiojRr1izt2rVL9913n1UnNDRUGzdu1KFDh+Tt7a0iRYqoT58+mjZtmjp06KAXX3xRRYoU0Y8//qgPP/xQ7733nrZs2aJVq1apSZMmCggI0MaNG3XixAlVrFgxz/qOvyif76HF39i5c+fMkCFDTI0aNYyfn58pVKiQKV++vHn55ZedpjNJTU01zz77rAkODjYFCxY0ISEhJjY21mlaljFjxphixYoZb29v07lzZ/Piiy9mezBo9uzZpnr16sbNzc0ULlzY1KtXzyxcuNAYk/MDDlfe4G+MMf/85z9N0aJFnaa1mjNnjgkNDTXu7u4mKirKLFmyJMcHAa58YCHL+++/bySZTZs2Xfec5fQwwOVy89DVldPd+Pn5WVNTGXPpgYwyZcoYT09P89hjj5mpU6c6PXR17tw507p1a+Pv7+80rdW13qf09HTTvn17ExISYtzc3ExwcLDp27ev9SAEcKfLaVqrESNGmHvuuccULFgw27RWxlyaAiokJMS4uLhYDwV99913JjIy0nh4eJiyZcua+fPnX/VznpiYaAoUKGA++uijHPv09NNPm/vuu88YY8yff/5pBgwYYEqUKGHc3NxMmTJlzPTp0626//73v01QUJBxOBw5TmuV5dSpU8bd3d0UKlTIevD0cte6Dl/e95zk9qGry6+127Ztc5qayhhjhg0bZgIDA42fn58ZMGCA6du3r9NDV/v27TMPPPCA8fT0dNp2//79pmXLlsbf3994enqaChUqmP79+5vMzEyzZ88eExMTY4oXL27c3d1NuXLlzKRJk3I8DuQPhzHM2QD8FaNGjdL8+fP1/fff53dXAAC4IzFLAHCT0tLStGvXLr311lt69tln87s7AADcsQiswE3q27evatasqQYNGtzQlC0AAODGcEsAAAAAbI0RVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANja/wN1D8vqnQRwSgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(8,5))\n", + "x = np.array([\"Sedentary Minutes\", \"TotalActiveMinutes\"])\n", + "y = np.array([daily_activity[\"SedentaryMinutes\"].mean(),\n", + " daily_activity[\"TotalActiveMinutes\"].mean()])\n", + "\n", + "plt.title(\"Sedentary Minutes Vs Total Active Minutes\")\n", + "plt.bar(x, y, width = 0.8, color = \"b\") \n", + "\n", + "save_path = '../Images/sedentary_mins_vs_total_active_mins.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "2feab3db", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHWCAYAAAB9mLjgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcO0lEQVR4nO3deZxO9f//8ec1ZjVjZuwzMoaxhCIiDGLseyqSEmOXyPbN9im7EmVJKVF2801IG8lOluwqS5JsfayRmcYMs71/f/jN+boaNEcz5hoe99ttblznvK9zXue8r3PNPK9zzvtyGGOMAAAAAADp5pbVBQAAAABAdkOQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAKAv4mIiFBERESGLvP48eNyOByaM2dOhi73fpXe/Tlnzhw5HA7t2rXr7hSWje3cuVPVq1eXr6+vHA6H9u3bZ3sZRYsWVfPmzTO+OBd3v243cL8jSAHI9o4ePaoePXooLCxM3t7e8vf3V40aNfTOO+8oPj4+q8vLMhs2bJDD4XD6yZMnj6pVq6aFCxdmdXn3lI4dOzrtZz8/P4WFhal169ZaunSpUlJSsrrE20pMTNQzzzyjS5cuafLkyZo/f75CQ0Nv2vbgwYMaOXKkjh8/fneL/P+aNm2q3LlzyxjjNH3v3r1yOBw3rXvdunVyOByaMWPG3SoTwH3APasLAIB/Y/ny5XrmmWfk5eWlDh066OGHH1ZCQoI2b96sgQMH6sCBAy7xx1NoaKji4+Pl4eFx19fdp08fPfbYY5KkixcvatGiRXrhhRd0+fJl9erV667Xc6/y8vLSRx99JEmKj4/XiRMn9NVXX6l169aKiIjQF198IX9//yyu8uaOHj2qEydOaObMmeratett2x48eFCjRo1SRESEihYtencKvEHNmjX1zTffaP/+/SpXrpw1fcuWLXJ3d9fJkyf1+++/q3Dhwk7zUp8LABmFIAUg2zp27Jjatm2r0NBQrVu3TsHBwda8Xr166ddff9Xy5cuzsEIpKSlJKSkp8vT0lLe3d5bU8Pjjj6t169bW4549eyosLExRUVEZFqSuXLkiX1/fDFlWduXu7q4XXnjBadrYsWP15ptvaujQoerWrZsWLVqURdXd3vnz5yVJgYGBWVtIOqSGoc2bN6cJUk2bNtW6deu0efNmtW3b1pq3efNm5c2bV2XKlLnr9QK4d3FpH4Bsa8KECYqNjdXHH3/sFKJSlShRQn379rUez549W3Xr1lWBAgXk5eWlsmXL6oMPPkjXus6fP68uXbqoYMGC8vb21iOPPKK5c+c6tUm9b+ftt9/WlClTVLx4cXl5eengwYO3vKfn559/VuvWrZUnTx55e3urcuXK+vLLL53aJCYmatSoUSpZsqS8vb2VN29e1axZU6tXr07nnnLm6emp3Llzy939/z5Lu909Rw6HQyNHjrQejxw5Ug6HQwcPHtTzzz+v3LlzW3/cpt4rsnnzZlWpUkXe3t4KCwvTvHnz0iz38uXL6tevn0JCQuTl5aUSJUpo/PjxaS6Du3z5sjp27KiAgAAFBgYqMjJSly9ftrXNcXFx6tGjh/LmzSt/f3916NBBf/75pzU/MjJS+fLlU2JiYprnNmzYUA8++KCt9d1oyJAhatiwoRYvXqxffvnFmv7FF1+oWbNmKlSokLy8vFS8eHGNGTNGycnJVpsRI0bIw8NDFy5cSLPc7t27KzAwUFevXr3t+tetW6fHH39cvr6+CgwMVMuWLXXo0CFrfseOHVW7dm1J0jPPPCOHw3HLewTnzJmjZ555RpJUp04d61LGDRs2OLXLyP7/uypVqsjT09M6y5Rqy5YtqlWrlqpUqeI0LyUlRd9//72qV68uh8Nha90pKSmaMmWKHnroIXl7e6tgwYLq0aOH02vnVubOnSt3d3cNHDjwH9sCyJ44IwUg2/rqq68UFham6tWrp6v9Bx98oIceekhPPPGE3N3d9dVXX+mll15SSkrKbc/MxMfHKyIiQr/++qt69+6tYsWKafHixerYsaMuX77sFNak64Ht6tWr6t69u7y8vJQnT56b/nF44MAB1ahRQw888ICGDBkiX19fffrpp3ryySe1dOlSPfXUU5KuB5dx48apa9euqlKlimJiYrRr1y7t2bNHDRo0+Mft/uuvv/THH39Iki5duqSoqCjt379fH3/8cbr2260888wzKlmypN544w2n+1V+/fVXtW7dWl26dFFkZKRmzZqljh07qlKlSnrooYckXQ82tWvX1n//+1/16NFDRYoU0datWzV06FCdOXNGU6ZMkSQZY9SyZUtt3rxZL774osqUKaNly5YpMjLSVq29e/dWYGCgRo4cqcOHD+uDDz7QiRMnrPvI2rdvr3nz5unbb791GjTg7NmzWrdunUaMGPGv9lX79u21atUqrV69WqVKlZJ0PZT4+flpwIAB8vPz07p16zR8+HDFxMTorbfesp43evRoLVq0SL1797aWl5CQoCVLlqhVq1a3PdO5Zs0aNWnSRGFhYRo5cqTi4+P17rvvqkaNGtqzZ4+KFi2qHj166IEHHtAbb7xhXQZasGDBmy6vVq1a6tOnj6ZOnar//Oc/1hmeG8/0ZGT/34y3t7cqVaqkzZs3W9NOnTqlU6dOqXr16rp8+bLTmeiffvpJMTExVti3s+4ePXpozpw56tSpk/r06aNjx47pvffe0969e7Vly5ZbXqo7Y8YMvfjii/rPf/6jsWPH3nJbAGRzBgCyoejoaCPJtGzZMt3PiYuLSzOtUaNGJiwszGla7dq1Te3ata3HU6ZMMZLMggULrGkJCQkmPDzc+Pn5mZiYGGOMMceOHTOSjL+/vzl//rzTMlPnzZ4925pWr149U65cOXP16lVrWkpKiqlevbopWbKkNe2RRx4xzZo1S/d2plq/fr2RlObHzc3NvP766/9YXypJZsSIEdbjESNGGEnmueeeS9M2NDTUSDKbNm2ypp0/f954eXmZ//mf/7GmjRkzxvj6+ppffvnF6flDhgwxOXLkMCdPnjTGGPP5558bSWbChAlWm6SkJPP444/fst4bzZ4920gylSpVMgkJCdb0CRMmGEnmiy++MMYYk5ycbAoXLmyeffZZp+dPmjTJOBwO89tvv912PZGRkcbX1/eW8/fu3Wskmf79+1vTbvZ67NGjh8mZM6fTayI8PNxUrVrVqd1nn31mJJn169fftq4KFSqYAgUKmIsXL1rTfvjhB+Pm5mY6dOhgTUt9rSxevPi2yzPGmMWLF99y3Rnd/7cycOBAI8n8/vvvxhhj/vd//9d4e3uba9eumRUrVpgcOXJYx+V7771nJJktW7bYWvd3331nJJmFCxc6tVu5cmWa6aGhodYx+s477xiHw2HGjBlz220AkP1xaR+AbCkmJkaSlCtXrnQ/x8fHx/p/dHS0/vjjD9WuXVu//faboqOjb/m8FStWKCgoSM8995w1zcPDQ3369FFsbKw2btzo1L5Vq1bKnz//bWu5dOmS1q1bpzZt2lhnjP744w9dvHhRjRo10pEjR/Tf//5X0vX7Vg4cOKAjR46ke1tvNHz4cK1evVqrV6/WokWL9Nxzz+nVV1/VO++8c0fLS/Xiiy/edHrZsmX1+OOPW4/z58+vBx98UL/99ps1bfHixXr88ceVO3dua9v/+OMP1a9fX8nJydq0aZOk6/ve3d1dPXv2tJ6bI0cOvfzyy7Zq7d69u9PZg549e8rd3V0rVqyQJLm5ualdu3b68ssv9ddff1ntFi5cqOrVq6tYsWK21vd3fn5+kuS07Btfj6mvgccff1xxcXH6+eefrXkdOnTQ9u3bdfToUae6QkJCrEvybubMmTPat2+fOnbsqDx58ljTy5cvrwYNGljbntEysv9vJfXs0nfffSfp+mV9lSpVkqenp8LDw63L+VLnpV42a2fdixcvVkBAgBo0aODUrlKlSvLz89P69evT1DVhwgT17dtX48eP12uvvfYv9iKA7IBL+wBkS6mjn934h+k/2bJli0aMGKFt27YpLi7OaV50dLQCAgJu+rwTJ06oZMmScnNz/uwp9XKmEydOOE1Pzx/dv/76q4wxGjZsmIYNG3bTNufPn9cDDzyg0aNHq2XLlipVqpQefvhhNW7cWO3bt1f58uX/cT2SVK5cOdWvX9963KZNG0VHR2vIkCF6/vnn/zH03cqttrNIkSJppuXOndvpvpIjR47oxx9/vOW6Uwc/OHHihIKDg60gksruPUslS5Z0euzn56fg4GCnIbw7dOig8ePHa9myZerQoYMOHz6s3bt3a/r06bbWdTOxsbGSnIP/gQMH9Nprr2ndunXWBwOpbgz2zz77rPr166eFCxdq+PDhio6O1tdff63+/ftb9/zcTOrr8mb7qkyZMvr2228zZZCQjOz/W6lRo4YcDoe2bNmitm3basuWLdZlroGBgSpbtqw1bcuWLXrsscfk6elpa91HjhxRdHS0ChQokK4aN27cqOXLl2vw4MHcFwXcJwhSALIlf39/FSpUSPv3709X+6NHj6pevXoqXbq0Jk2apJCQEHl6emrFihWaPHlyhn7Pz41nGm4ldX2vvPKKGjVqdNM2JUqUkHT9vpSjR4/qiy++0KpVq/TRRx9p8uTJmj59+j8OVX0r9erV09dff60dO3aoWbNmt/yD/MaBD/7uVtuZI0eOm043N9xHlZKSogYNGmjQoEE3bZt6H9HdVLZsWVWqVEkLFixQhw4dtGDBAnl6eqpNmzb/etmpr9PUPr18+bJq164tf39/jR49WsWLF5e3t7f27NmjwYMHO70ec+fOrebNm1tBasmSJbp27VqaEQJdxd3o/7x586p06dLavHmzYmNj9eOPPzrdx1a9enVt3rxZv//+u06ePKl27drZXndKSooKFChwy+9c+3sQe+ihh3T58mXNnz9fPXr0+NdnMQG4PoIUgGyrefPmmjFjhrZt26bw8PDbtv3qq6907do1ffnll06fmN/s8py/Cw0N1Y8//qiUlBSns1Kpl1/d6otLbycsLEzS9UsEbzxbdCt58uRRp06d1KlTJ8XGxqpWrVoaOXLkHQeppKQkSf93piR37tySlGY0vL+fbcsoxYsXV2xs7D9ue2hoqNauXavY2Fins1KHDx+2tb4jR46oTp061uPY2FidOXNGTZs2dWrXoUMHDRgwQGfOnFFUVJSaNWtm7Zt/Y/78+XI4HNZZkw0bNujixYv67LPPVKtWLavdsWPHbvr8Dh06qGXLltq5c6cWLlyoihUrWgM33Erq6/Jm++rnn39Wvnz57uhs1O3OgqVXevv/dmrWrKlZs2Zp1apVSk5Odhp0pnr16vrf//1fazTBG78/Kr3rLl68uNasWaMaNWqk68ORfPnyacmSJapZs6bq1aunzZs3q1ChQne2cQCyBe6RApBtDRo0SL6+vuratavOnTuXZv7Ro0et+4BSPyW/8VPx6OhozZ49+x/X07RpU509e9bpO4CSkpL07rvvys/P77b3qdxKgQIFFBERoQ8//FBnzpxJM//G4a4vXrzoNM/Pz08lSpTQtWvXbK831ddffy1JeuSRRyRdP8OXL1++NPemvP/++3e8jttp06aNtm3bpm+//TbNvMuXL1tBr2nTpkpKSnIapj45OVnvvvuurfXNmDHDaWjzDz74QElJSWrSpIlTu+eee04Oh0N9+/bVb7/9liFnfd58802tWrVKzz77rHWJ4c1ejwkJCbfc302aNFG+fPk0fvx4bdy4MV11BQcHq0KFCpo7d65TQN6/f79WrVqVJkSmV2r4sjsE/Y3S2/+3U7NmTSUnJ+vtt99WyZIlnc4QVa9eXbGxsXr//ffl5ubmFLLSu+42bdooOTlZY8aMSdMuKSnppttfuHBhrVmzRvHx8WrQoEGaYxfAvYUzUgCyreLFiysqKkrPPvusypQpow4dOujhhx9WQkKCtm7dag1RLl3/LiBPT0+1aNFCPXr0UGxsrGbOnKkCBQrcNMjcqHv37vrwww/VsWNH7d69W0WLFtWSJUu0ZcsWTZkyxdaAFzeaNm2aatasqXLlyqlbt24KCwvTuXPntG3bNv3+++/64YcfJF2/5CwiIkKVKlVSnjx5tGvXLi1ZssRpOOzb+e6776zvGrp06ZK+/PJLbdy4UW3btlXp0qWtdl27dtWbb76prl27qnLlytq0aZPT9x5lpIEDB+rLL79U8+bNraGxr1y5op9++klLlizR8ePHlS9fPrVo0UI1atTQkCFDdPz4cZUtW1afffbZbQcHuZmEhATVq1dPbdq00eHDh/X++++rZs2aeuKJJ5za5c+fX40bN9bixYsVGBioZs2apXsdSUlJWrBggSTp6tWrOnHihL788kv9+OOPqlOnjmbMmGG1rV69unLnzq3IyEj16dNHDodD8+fPdwpWN/Lw8FDbtm313nvvKUeOHE4Dn9zOW2+9pSZNmig8PFxdunSxhj8PCAhw+m4wOypUqKAcOXJo/Pjxio6OlpeXl/X9bOmV3v6/ndSzTNu2bbOO81SlSpVSvnz5tG3bNpUrV87pi4bTu+7atWurR48eGjdunPbt26eGDRvKw8NDR44c0eLFi/XOO+84fdF1qhIlSmjVqlWKiIhQo0aNtG7dOuueTgD3mKwcMhAAMsIvv/xiunXrZooWLWo8PT1Nrly5TI0aNcy7777rNIz0l19+acqXL2+8vb1N0aJFzfjx482sWbOMJHPs2DGr3d+HPzfGmHPnzplOnTqZfPnyGU9PT1OuXLk0Q2+nDiH+1ltvpanxVsOLHz161HTo0MEEBQUZDw8P88ADD5jmzZubJUuWWG3Gjh1rqlSpYgIDA42Pj48pXbq0ef31152G876Zmw1/7unpecvnx8XFmS5dupiAgACTK1cu06ZNG3P+/PlbDn9+4cKFNOu8cRjoG91sn/71119m6NChpkSJEsbT09Pky5fPVK9e3bz99ttOtV28eNG0b9/e+Pv7m4CAANO+fXtrOPH0Dn++ceNG0717d5M7d27j5+dn2rVr5zQk+I0+/fRTI8l07979tsu+UWRkpNN+zpkzpylatKhp1aqVWbJkiUlOTk7znC1btphq1aoZHx8fU6hQITNo0CDz7bff3nJo8R07dhhJpmHDhumuyxhj1qxZY2rUqGF8fHyMv7+/adGihTl48KBTGzvDnxtjzMyZM01YWJjJkSOHU72Z0f+3U6hQISPJzJgxI828J554wkgyPXv2TDPPzrpnzJhhKlWqZHx8fEyuXLlMuXLlzKBBg8zp06etNjfb7u3bt5tcuXKZWrVq3XSoewDZn8OYW3z8BQDAfeiLL77Qk08+qU2bNjkN453VfvjhB1WoUEHz5s1T+/bts7ocALjvcY8UAAA3mDlzpsLCwpwGKHAFM2fOlJ+fn55++umsLgUAIO6RAgBAkvTJJ5/oxx9/1PLly/XOO+9kyOh0GeGrr77SwYMHNWPGDPXu3TvDv/cJAHBnuLQPAABdH9bbz89Pzz77rKZPny53d9f4rLFo0aI6d+6cGjVqpPnz59/x4CYAgIxFkAIAAAAAm7hHCgAAAABsIkgBAAAAgE2ucQF4FktJSdHp06eVK1cul7m5GAAAAMDdZ4zRX3/9pUKFCsnN7dbnnQhSkk6fPq2QkJCsLgMAAACAizh16pQKFy58y/kEKckaAenUqVPy9/fP4mpcX2JiolatWqWGDRvKw8Mjq8vB39A/ro3+cV30jWujf1wXfePa6B/7YmJiFBIS8o+jpBKkJOtyPn9/f4JUOiQmJipnzpzy9/fngHRB9I9ro39cF33j2ugf10XfuDb658790y0/DDYBAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAADucw6H6/8EBFyvNSAg62u53Q+A+wdBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIuyOFw7Z+AgOt1BgRkfS3/9AMAAABkBoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQA4K5wOFz7JyDgep0BAVlfyz/9AACyHkEKAAAAAGwiSAEAAACATQQpwIasvpznXro8CQAAIDsjSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAwIVl9ff+3SvfX8h3GCKjZWmQSk5O1rBhw1SsWDH5+PioePHiGjNmjIwxVhtjjIYPH67g4GD5+Piofv36OnLkiNNyLl26pHbt2snf31+BgYHq0qWLYmNj7/bmAAAAALhPZGmQGj9+vD744AO99957OnTokMaPH68JEybo3XfftdpMmDBBU6dO1fTp07V9+3b5+vqqUaNGunr1qtWmXbt2OnDggFavXq2vv/5amzZtUvfu3bNikwAAAADcB9yzcuVbt25Vy5Yt1axZM0lS0aJF9b//+7/asWOHpOtno6ZMmaLXXntNLVu2lCTNmzdPBQsW1Oeff662bdvq0KFDWrlypXbu3KnKlStLkt599101bdpUb7/9tgoVKpQ1GwcAAADgnpWlQap69eqaMWOGfvnlF5UqVUo//PCDNm/erEmTJkmSjh07prNnz6p+/frWcwICAlS1alVt27ZNbdu21bZt2xQYGGiFKEmqX7++3NzctH37dj311FNp1nvt2jVdu3bNehwTEyNJSkxMVGJiYmZtbrr5+GR1Bbfn45Po9K8ry+judPW+kbJP/7jAoZYlUt9jXOG95m5z9eMnuxw7Eu9triwzDm1X75/s0jfS/fm7537+vXOn0ruvHObGG5LuspSUFP3nP//RhAkTlCNHDiUnJ+v111/X0KFDJV0/Y1WjRg2dPn1awcHB1vPatGkjh8OhRYsW6Y033tDcuXN1+PBhp2UXKFBAo0aNUs+ePdOsd+TIkRo1alSa6VFRUcqZM2cGbyUAAACA7CIuLk7PP/+8oqOj5e/vf8t2WXpG6tNPP9XChQsVFRWlhx56SPv27VO/fv1UqFAhRUZGZtp6hw4dqgEDBliPY2JiFBISooYNG952Z90tqaPfuCofn0TNmrVanTs3UHy8R1aXc1vR0Rm7PFfvGyn79E9G9012kZiYqNWrV6tBgwby8HDd/skMrn78ZJdjR+K9zZX7JzPe21y9f7JL30j35++e+/n3zp1KvVrtn2RpkBo4cKCGDBmitm3bSpLKlSunEydOaNy4cYqMjFRQUJAk6dy5c05npM6dO6cKFSpIkoKCgnT+/Hmn5SYlJenSpUvW8//Oy8tLXl5eaaZ7eHi4xAssPj6rK0if+HgPl3/DzOjuzC59I7l+/7jAoZalXOX95m7KLsePqx87Eu9trtw/mXFYZ5f+cfW+ke7v3z334++dO5Xe/ZSlo/bFxcXJzc25hBw5ciglJUWSVKxYMQUFBWnt2rXW/JiYGG3fvl3h4eGSpPDwcF2+fFm7d++22qxbt04pKSmqWrXqXdgKAAAAAPebLD0j1aJFC73++usqUqSIHnroIe3du1eTJk1S586dJUkOh0P9+vXT2LFjVbJkSRUrVkzDhg1ToUKF9OSTT0qSypQpo8aNG6tbt26aPn26EhMT1bt3b7Vt25YR+wAAAABkiiwNUu+++66GDRuml156SefPn1ehQoXUo0cPDR8+3GozaNAgXblyRd27d9fly5dVs2ZNrVy5Ut7e3labhQsXqnfv3qpXr57c3NzUqlUrTZ06NSs2CQAAAMB9IEuDVK5cuTRlyhRNmTLllm0cDodGjx6t0aNH37JNnjx5FBUVlQkVAgAAAEBaWXqPFAAAAABkRwQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAbhnOByu/xMQcL3WgICsr+V2PwAA4PYIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAA4A45HK79ExBwvc6AgKyv5XY/2RFBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2uaenUUxMTLoX6O/vf8fFAAAAAEB2kK4gFRgYKIfDka4FJicn/6uCAAAAAMDVpStIrV+/3vr/8ePHNWTIEHXs2FHh4eGSpG3btmnu3LkaN25c5lQJAAAAAC4kXUGqdu3a1v9Hjx6tSZMm6bnnnrOmPfHEEypXrpxmzJihyMjIjK8SAAAAAFyI7cEmtm3bpsqVK6eZXrlyZe3YsSNDigIAAAAAV2Y7SIWEhGjmzJlppn/00UcKCQnJkKIAAAAAwJWl69K+G02ePFmtWrXSN998o6pVq0qSduzYoSNHjmjp0qUZXiAAAAAAuBrbZ6SaNm2qX375RS1atNClS5d06dIltWjRQr/88ouaNm2aGTUCAAAAgEuxfUZKun553xtvvJHRtQAAAABAtmD7jJQkfffdd3rhhRdUvXp1/fe//5UkzZ8/X5s3b87Q4gAAAADAFdkOUkuXLlWjRo3k4+OjPXv26Nq1a5Kk6OjoOzpL9d///lcvvPCC8ubNKx8fH5UrV067du2y5htjNHz4cAUHB8vHx0f169fXkSNHnJZx6dIltWvXTv7+/goMDFSXLl0UGxtruxYAAAAASA/bQWrs2LGaPn26Zs6cKQ8PD2t6jRo1tGfPHlvL+vPPP1WjRg15eHjom2++0cGDBzVx4kTlzp3bajNhwgRNnTpV06dP1/bt2+Xr66tGjRrp6tWrVpt27drpwIEDWr16tb7++mtt2rRJ3bt3t7tpAAAAAJAutu+ROnz4sGrVqpVmekBAgC5fvmxrWePHj1dISIhmz55tTStWrJj1f2OMpkyZotdee00tW7aUJM2bN08FCxbU559/rrZt2+rQoUNauXKldu7caX2/1bvvvqumTZvq7bffVqFChexuIgAAAADclu0gFRQUpF9//VVFixZ1mr5582aFhYXZWtaXX36pRo0a6ZlnntHGjRv1wAMP6KWXXlK3bt0kSceOHdPZs2dVv3596zkBAQGqWrWqtm3bprZt22rbtm0KDAx0+pLg+vXry83NTdu3b9dTTz2VZr3Xrl2zLkmUpJiYGElSYmKiEhMTbW1DZvDxyeoKbs/HJ9HpX1eW0d3p6n0jZZ/+yYxDjf7JOPdj/2SXvpF4b3NlHDuujf5xXS7wJ7glvXnAYYwxdhY8btw4LViwQLNmzVKDBg20YsUKnThxQv3799ewYcP08ssvp3tZ3t7ekqQBAwbomWee0c6dO9W3b19Nnz5dkZGR2rp1q2rUqKHTp08rODjYel6bNm3kcDi0aNEivfHGG5o7d64OHz7stOwCBQpo1KhR6tmzZ5r1jhw5UqNGjUozPSoqSjlz5kx3/QAAAADuLXFxcXr++ecVHR0tf3//W7azfUZqyJAhSklJUb169RQXF6datWrJy8tLr7zyiq0QJUkpKSmqXLmyNUhFxYoVtX//fitIZZahQ4dqwIAB1uOYmBiFhISoYcOGt91Zd0tAQFZXcHs+PomaNWu1OnduoPh4j39+QhaKjs7Y5bl630jZp38yum8k+icj3Y/9k136RuK9zZX7h2PHdftGon9cuX8yo2/uVOrVav/EdpByOBx69dVXNXDgQP3666+KjY1V2bJl5efnZ7vI4OBglS1b1mlamTJltHTpUknXLyOUpHPnzjmdkTp37pwqVKhgtTl//rzTMpKSknTp0iXr+X/n5eUlLy+vNNM9PDycBtDIKvHxWV1B+sTHe7j0ASlJGd2d2aVvJNfvn8w41OifjHM/94+r943Ee5sr9w/Hjuv2jUT/uHL/uMCf4Jb05oE7+h4pSfL09FTZsmVVpUqVOwpR0vWR/v5+Sd4vv/yi0NBQSdcHnggKCtLatWut+TExMdq+fbvCw8MlSeHh4bp8+bJ2795ttVm3bp1SUlJUtWrVO6oLAAAAAG7H9hmpK1eu6M0339TatWt1/vx5paSkOM3/7bff0r2s/v37q3r16nrjjTfUpk0b7dixQzNmzNCMGTMkXT/71a9fP40dO1YlS5ZUsWLFNGzYMBUqVEhPPvmkpOtnsBo3bqxu3bpp+vTpSkxMVO/evdW2bVtG7AMAAACQKWwHqa5du2rjxo1q3769goOD5XA47njljz32mJYtW6ahQ4dq9OjRKlasmKZMmaJ27dpZbQYNGqQrV66oe/fuunz5smrWrKmVK1daA1VI0sKFC9W7d2/Vq1dPbm5uatWqlaZOnXrHdQEAAADA7dgOUt98842WL1+uGjVqZEgBzZs3V/PmzW853+FwaPTo0Ro9evQt2+TJk0dRUVEZUg8AAAAA/BPb90jlzp1befLkyYxaAAAAACBbsB2kxowZo+HDhysuLi4z6gEAAAAAl2f70r6JEyfq6NGjKliwoIoWLZpmeMA9e/ZkWHEAAAAA4IpsB6nU0fIAAAAA4H5lK0glJSXJ4XCoc+fOKly4cGbVBAAAAAAuzdY9Uu7u7nrrrbeUlJSUWfUAAAAAgMuzPdhE3bp1tXHjxsyoBQAAAACyBdv3SDVp0kRDhgzRTz/9pEqVKsnX19dp/hNPPJFhxQEAAACAK7IdpF566SVJ0qRJk9LMczgcSk5O/vdVAQAAAIALsx2kUlJSMqMOAAAAAMg2bN8jBQAAAAD3O9tnpEaPHn3b+cOHD7/jYgAAAAAgO7AdpJYtW+b0ODExUceOHZO7u7uKFy9OkAIAAABwz7MdpPbu3ZtmWkxMjDp27KinnnoqQ4oCAAAAAFeWIfdI+fv7a9SoURo2bFhGLA4AAAAAXFqGDTYRHR2t6OjojFocAAAAALgs25f2TZ061emxMUZnzpzR/Pnz1aRJkwwrDAAAAABcle0gNXnyZKfHbm5uyp8/vyIjIzV06NAMKwwAAAAAXJXtIHXs2LHMqAMAAAAAsg2+kBcAAAAAbLIVpNavX6+JEydqy5YtkqQPP/xQRYoUUf78+dWtWzfFx8dnSpEAAAAA4ErSfWnfzJkz1bNnTxUrVkyvvvqqRowYoddff13t27eXm5ubFixYoLx58+rNN9/MzHoBAAAAIMul+4zUO++8o8mTJ+vIkSP6/PPPNXz4cE2bNk0ffPCBpk2bpo8++khLlizJzFoBAAAAwCWkO0j99ttveuKJJyRJjRs3lsPhUJUqVaz5VatW1alTpzK+QgAAAABwMekOUlevXpWPj4/12MvLS15eXk6Pk5KSMrY6AAAAAHBB6b5HyuFw6K+//pK3t7eMMXI4HIqNjVVMTIwkWf8CAAAAwL0u3UHKGKNSpUo5Pa5YsaLTY4fDkbHVAQAAAIALSneQWr9+fWbWAQAAAADZRrqDVO3atTOzDgAAAADINmx9IS8AAAAAgCAFAAAAALYRpAAAAADAJoIUAAAAANj0r4NUTEyMPv/8cx06dCgj6gEAAAAAl2c7SLVp00bvvfeeJCk+Pl6VK1dWmzZtVL58eS1dujTDCwQAAAAAV2M7SG3atEmPP/64JGnZsmUyxujy5cuaOnWqxo4dm+EFAgAAAICrsR2koqOjlSdPHknSypUr1apVK+XMmVPNmjXTkSNHMrxAAAAAAHA1toNUSEiItm3bpitXrmjlypVq2LChJOnPP/+Ut7d3hhcIAAAAAK7G3e4T+vXrp3bt2snPz09FihRRRESEpOuX/JUrVy6j6wMAAAAAl2M7SL300kuqUqWKTp06pQYNGsjN7fpJrbCwMO6RAgAAAHBfsB2kJKly5coqX768jh07puLFi8vd3V3NmjXL6NoAAAAAwCXZvkcqLi5OXbp0Uc6cOfXQQw/p5MmTkqSXX35Zb775ZoYXCAAAAACuxnaQGjp0qH744Qdt2LDBaXCJ+vXra9GiRRlaHAAAAAC4ItuX9n3++edatGiRqlWrJofDYU1/6KGHdPTo0QwtDgAAAABcke0zUhcuXFCBAgXSTL9y5YpTsAIAAACAe5XtIFW5cmUtX77cepwanj766COFh4dnXGUAAAAA4KJsX9r3xhtvqEmTJjp48KCSkpL0zjvv6ODBg9q6das2btyYGTUCAAAAgEuxfUaqZs2a2rdvn5KSklSuXDmtWrVKBQoU0LZt21SpUqXMqBEAAAAAXModfY9U8eLFNXPmzIyuBQAAAACyhXQFqZiYGPn7+1v/v53UdgAAAABwr0pXkMqdO7fOnDmjAgUKKDAw8Kaj8xlj5HA4lJycnOFFAgAAAIArSVeQWrdunfLkySNJWr9+faYWBAAAAACuLl1Bqnbt2pKkpKQkbdy4UZ07d1bhwoUztTAAAAAAcFW2Ru1zd3fXW2+9paSkpMyqBwAAAABcnu3hz+vWrcv3RQEAAAC4r9ke/rxJkyYaMmSIfvrpJ1WqVEm+vr5O85944okMKw4AAAAAXJHtIPXSSy9JkiZNmpRmHqP2AQAAALgf2A5SKSkpmVEHAAAAAGQbtu+RAgAAAID73R0FqY0bN6pFixYqUaKESpQooSeeeELfffddRtcGAAAAAC7JdpBasGCB6tevr5w5c6pPnz7q06ePfHx8VK9ePUVFRWVGjQAAAADgUmzfI/X6669rwoQJ6t+/vzWtT58+mjRpksaMGaPnn38+QwsEAAAAAFdj+4zUb7/9phYtWqSZ/sQTT+jYsWMZUhQAAAAAuDLbQSokJERr165NM33NmjUKCQnJkKIAAAAAwJXZvrTvf/7nf9SnTx/t27dP1atXlyRt2bJFc+bM0TvvvJPhBQIAAACAq7EdpHr27KmgoCBNnDhRn376qSSpTJkyWrRokVq2bJnhBQIAAACAq7mj4c+feuopbd68WRcvXtTFixe1efPmfx2i3nzzTTkcDvXr18+advXqVfXq1Ut58+aVn5+fWrVqpXPnzjk97+TJk2rWrJly5sypAgUKaODAgUpKSvpXtQAAAADA7bjEF/Lu3LlTH374ocqXL+80vX///vrqq6+0ePFibdy4UadPn9bTTz9tzU9OTlazZs2UkJCgrVu3au7cuZozZ46GDx9+tzcBAAAAwH0kXZf25c6dWw6HI10LvHTpkq0CYmNj1a5dO82cOVNjx461pkdHR+vjjz9WVFSU6tatK0maPXu2ypQpo++//17VqlXTqlWrdPDgQa1Zs0YFCxZUhQoVNGbMGA0ePFgjR46Up6enrVoAAAAAID3SFaSmTJmSaQX06tVLzZo1U/369Z2C1O7du5WYmKj69etb00qXLq0iRYpo27ZtqlatmrZt26Zy5cqpYMGCVptGjRqpZ8+eOnDggCpWrHjTdV67dk3Xrl2zHsfExEiSEhMTlZiYmNGbaJuPT1ZXcHs+PolO/7qyjO5OV+8bKfv0T2YcavRPxrkf+ye79I3Ee5sr49hxbfSP63KBP8Et6c0DDmOMyeRabumTTz7R66+/rp07d8rb21sRERGqUKGCpkyZoqioKHXq1Mkp8EhSlSpVVKdOHY0fP17du3fXiRMn9O2331rz4+Li5OvrqxUrVqhJkyY3Xe/IkSM1atSoNNOjoqKUM2fOjN1IAAAAANlGXFycnn/+eUVHR8vf3/+W7WyP2nejq1evKiEhwWna7VZ2o1OnTqlv375avXq1vL29/00Ztg0dOlQDBgywHsfExCgkJEQNGzZMd/2ZKSAgqyu4PR+fRM2atVqdOzdQfLxHVpdzW9HRGbs8V+8bKfv0T0b3jUT/ZKT7sX+yS99IvLe5cv9w7Lhu30j0jyv3T2b0zZ1KvVrtn9gOUleuXNHgwYP16aef6uLFi2nmJycnp2s5u3fv1vnz5/Xoo486PXfTpk1677339O233yohIUGXL19WYGCg1ebcuXMKCgqSJAUFBWnHjh1Oy00d1S+1zc14eXnJy8srzXQPDw95eGT9Cyw+PqsrSJ/4eA+XPiAlKaO7M7v0jeT6/ZMZhxr9k3Hu5/5x9b6ReG9z5f7h2HHdvpHoH1fuHxf4E9yS3jxge9S+QYMGad26dfrggw/k5eWljz76SKNGjVKhQoU0b968dC+nXr16+umnn7Rv3z7rp3LlymrXrp31fw8PD61du9Z6zuHDh3Xy5EmFh4dLksLDw/XTTz/p/PnzVpvVq1fL399fZcuWtbtpAAAAAJAuts9IffXVV5o3b54iIiLUqVMnPf744ypRooRCQ0O1cOFCtWvXLl3LyZUrlx5++GGnab6+vsqbN681vUuXLhowYIDy5Mkjf39/vfzyywoPD1e1atUkSQ0bNlTZsmXVvn17TZgwQWfPntVrr72mXr163fSMEwAAAABkBNtnpC5duqSwsDBJ1++HSh3uvGbNmtq0aVOGFjd58mQ1b95crVq1Uq1atRQUFKTPPvvMmp8jRw59/fXXypEjh8LDw/XCCy+oQ4cOGj16dIbWAQAAAAA3sn1GKiwsTMeOHVORIkVUunRpffrpp6pSpYq++uorp3uZ7sSGDRucHnt7e2vatGmaNm3aLZ8TGhqqFStW/Kv1AgAAAIAdts9IderUST/88IMkaciQIZo2bZq8vb3Vv39/DRw4MMMLBAAAAABXY/uMVP/+/a3/169fXz///LN2796tEiVKqHz58hlaHAAAAAC4on/1PVLS9UvrQkNDM6IWAAAAAMgW0n1p37p161S2bNmbfkFVdHS0HnroIX333XcZWhwAAAAAuKJ0B6kpU6aoW7du8vf3TzMvICBAPXr00KRJkzK0OAAAAABwRekOUj/88IMaN258y/kNGzbU7t27M6QoAAAAAHBl6Q5S586dk4eHxy3nu7u768KFCxlSFAAAAAC4snQHqQceeED79++/5fwff/xRwcHBGVIUAAAAALiydAeppk2batiwYbp69WqaefHx8RoxYoSaN2+eocUBAAAAgCtK9/Dnr732mj777DOVKlVKvXv31oMPPihJ+vnnnzVt2jQlJyfr1VdfzbRCAQAAAMBVpDtIFSxYUFu3blXPnj01dOhQGWMkSQ6HQ40aNdK0adNUsGDBTCsUAAAAAFyFrS/kDQ0N1YoVK/Tnn3/q119/lTFGJUuWVO7cuTOrPgAAAABwObaCVKrcuXPrsccey+haAAAAACBbSPdgEwAAAACA6whSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsClLg9S4ceP02GOPKVeuXCpQoICefPJJHT582KnN1atX1atXL+XNm1d+fn5q1aqVzp0759Tm5MmTatasmXLmzKkCBQpo4MCBSkpKupubAgAAAOA+kqVBauPGjerVq5e+//57rV69WomJiWrYsKGuXLlitenfv7+++uorLV68WBs3btTp06f19NNPW/OTk5PVrFkzJSQkaOvWrZo7d67mzJmj4cOHZ8UmAQAAALgPuGflyleuXOn0eM6cOSpQoIB2796tWrVqKTo6Wh9//LGioqJUt25dSdLs2bNVpkwZff/996pWrZpWrVqlgwcPas2aNSpYsKAqVKigMWPGaPDgwRo5cqQ8PT2zYtMAAAAA3MOyNEj9XXR0tCQpT548kqTdu3crMTFR9evXt9qULl1aRYoU0bZt21StWjVt27ZN5cqVU8GCBa02jRo1Us+ePXXgwAFVrFgxzXquXbuma9euWY9jYmIkSYmJiUpMTMyUbbPDxyerK7g9H59Ep39dWUZ3p6v3jZR9+iczDjX6J+Pcj/2TXfpG4r3NlXHsuDb6x3W5wJ/glvTmAYcxxmRyLemSkpKiJ554QpcvX9bmzZslSVFRUerUqZNT6JGkKlWqqE6dOho/fry6d++uEydO6Ntvv7Xmx8XFydfXVytWrFCTJk3SrGvkyJEaNWpUmulRUVHKmTNnBm8ZAAAAgOwiLi5Ozz//vKKjo+Xv73/Ldi5zRqpXr17av3+/FaIy09ChQzVgwADrcUxMjEJCQtSwYcPb7qy7JSAgqyu4PR+fRM2atVqdOzdQfLxHVpdzW///JGeGcfW+kbJP/2R030j0T0a6H/snu/SNxHubK/cPx47r9o1E/7hy/2RG39yp1KvV/olLBKnevXvr66+/1qZNm1S4cGFrelBQkBISEnT58mUFBgZa08+dO6egoCCrzY4dO5yWlzqqX2qbv/Py8pKXl1ea6R4eHvLwyPoXWHx8VleQPvHxHi59QEpSRndndukbyfX7JzMONfon49zP/ePqfSPx3ubK/cOx47p9I9E/rtw/LvAnuCW9eSBLR+0zxqh3795atmyZ1q1bp2LFijnNr1Spkjw8PLR27Vpr2uHDh3Xy5EmFh4dLksLDw/XTTz/p/PnzVpvVq1fL399fZcuWvTsbAgAAAOC+kqVnpHr16qWoqCh98cUXypUrl86ePStJCggIkI+PjwICAtSlSxcNGDBAefLkkb+/v15++WWFh4erWrVqkqSGDRuqbNmyat++vSZMmKCzZ8/qtddeU69evW561gkAAAAA/q0sDVIffPCBJCkiIsJp+uzZs9WxY0dJ0uTJk+Xm5qZWrVrp2rVratSokd5//32rbY4cOfT111+rZ8+eCg8Pl6+vryIjIzV69Oi7tRkAAAAA7jNZGqTSM2Cgt7e3pk2bpmnTpt2yTWhoqFasWJGRpQEAAADALWXpPVIAAAAAkB0RpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACbCFIAAAAAYBNBCgAAAABsIkgBAAAAgE0EKQAAAACwiSAFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAAAAAbCJIAQAAAIBNBCkAAAAAsIkgBQAAAAA2EaQAAAAAwCaCFAAAAADYRJACAAAAAJsIUgAAAABgE0EKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2HTPBKlp06apaNGi8vb2VtWqVbVjx46sLgkAAADAPeqeCFKLFi3SgAEDNGLECO3Zs0ePPPKIGjVqpPPnz2d1aQAAAADuQfdEkJo0aZK6deumTp06qWzZspo+fbpy5sypWbNmZXVpAAAAAO5B7lldwL+VkJCg3bt3a+jQodY0Nzc31a9fX9u2bbvpc65du6Zr165Zj6OjoyVJly5dUmJiYuYWnA7e3lldwe15eycqLi5O3t4XZYxHVpdzWxcvZuzyXL1vpOzTPxndNxL9k5Hux/7JLn0j8d7myv3DseO6fSPRP67cP5nRN3fqr7/+kiQZY27bzmH+qYWLO336tB544AFt3bpV4eHh1vRBgwZp48aN2r59e5rnjBw5UqNGjbqbZQIAAADIRk6dOqXChQvfcn62PyN1J4YOHaoBAwZYj1NSUnTp0iXlzZtXDocjCyvLHmJiYhQSEqJTp07J398/q8vB39A/ro3+cV30jWujf1wXfePa6B/7jDH666+/VKhQodu2y/ZBKl++fMqRI4fOnTvnNP3cuXMKCgq66XO8vLzk5eXlNC0wMDCzSrxn+fv7c0C6MPrHtdE/rou+cW30j+uib1wb/WNPQEDAP7bJ9oNNeHp6qlKlSlq7dq01LSUlRWvXrnW61A8AAAAAMkq2PyMlSQMGDFBkZKQqV66sKlWqaMqUKbpy5Yo6deqU1aUBAAAAuAfdE0Hq2Wef1YULFzR8+HCdPXtWFSpU0MqVK1WwYMGsLu2e5OXlpREjRqS5PBKugf5xbfSP66JvXBv947roG9dG/2SebD9qHwAAAADcbdn+HikAAAAAuNsIUgAAAABgE0EKAAAAAGwiSCHTOBwOff7551ldRra2YcMGORwOXb58OUvruN/60lX2e6qiRYtqypQpWV3GPeGfXsvHjx+Xw+HQvn377lpNyBwdO3bUk08+mdVl3PdGjhypChUqZHUZuA366M4RpO4RDofjtj8jR47M6hLvKdOnT1euXLmUlJRkTYuNjZWHh4ciIiKc2qb+UX706NG7XCVuhmPl3tKxY8eb9uOvv/560/ZnzpxRkyZN7nKV954LFy6oZ8+eKlKkiLy8vBQUFKRGjRppy5Yt6Xr+nDlzFBgYmLlFwsm/7TNkjtT3sBdffDHNvF69esnhcKhjx453vzCkyz0x/Dmu/3GQatGiRRo+fLgOHz5sTfPz88uKsu5ZderUUWxsrHbt2qVq1apJkr777jsFBQVp+/btunr1qry9vSVJ69evV5EiRVS8ePGsLBn/X3qOlV27dmXKuhMSEuTp6Zkpy76fNW7cWLNnz3aalj9/fqfHqfs+KCjobpZ2z2rVqpUSEhI0d+5chYWF6dy5c1q7dq0uXrx412tJTEyUh4fHXV9vduNKfQZnISEh+uSTTzR58mT5+PhIkq5evaqoqCgVKVIki6vD7XBG6h4RFBRk/QQEBMjhcFiPp0+frpo1azq1nzJliooWLeo07aOPPlKZMmXk7e2t0qVL6/3337fmJSQkqHfv3goODpa3t7dCQ0M1btw4a/6RI0dUq1YteXt7q2zZslq9enWaGgcPHqxSpUopZ86cCgsL07Bhw5SYmCjp+uU0bm5uaf6AnTJlikJDQ5WSkvJvd1GGevDBBxUcHKwNGzZY0zZs2KCWLVuqWLFi+v77752m16lTRykpKRo3bpyKFSsmHx8fPfLII1qyZInTclesWKFSpUrJx8dHderU0fHjx53mp36K++2336pMmTLy8/NT48aNncKBRF/ezu2OlaCgIKcPHXbv3q3KlSsrZ86cql69ulPgutllQ/369XM6IxkREaHevXurX79+ypcvnxo1aiRjjEaOHGl9KlyoUCH16dPHes758+fVokUL+fj4qFixYlq4cGGabZg0aZLKlSsnX19fhYSE6KWXXlJsbKwk6cqVK/L390/z2vr888/l6+urv/7669/sPpeU+un6jT/16tVLs++ltJf27dixQxUrVpS3t7cqV66svXv3Oi07OTlZXbp0sY7bBx98UO+88441f9OmTfLw8NDZs2edntevXz89/vjjmbfRWejy5cv67rvvNH78eNWpU0ehoaGqUqWKhg4dqieeeELS7V+jGzZsUKdOnRQdHZ3mTPDNLr0MDAzUnDlzJP3fpZeLFi1S7dq15e3trYULFyo5OVkDBgxQYGCg8ubNq0GDBunv3+6ycuVK1axZ02rTvHlzpysF6tatq969ezs958KFC/L09NTatWszcA/eff/UZze7pPXy5ctyOBzW77nUqyvWrl17y/dFSXrzzTdVsGBB5cqVS126dNHVq1ed5u/cuVMNGjRQvnz5FBAQoNq1a2vPnj3W/M6dO6t58+ZOz0lMTFSBAgX08ccfZ+yOcRGPPvqoQkJC9Nlnn1nTPvvsMxUpUkQVK1a0pl27dk19+vRRgQIF5O3trZo1a2rnzp3WfPro7iNIQZK0cOFCDR8+XK+//roOHTqkN954Q8OGDdPcuXMlSVOnTtWXX36pTz/9VIcPH9bChQutIJaSkqKnn35anp6e2r59u6ZPn67BgwenWUeuXLk0Z84cHTx4UO+8845mzpypyZMnS7p+D0j9+vXTfKo8e/ZsdezYUW5urvdSrVOnjtavX289Xr9+vSIiIlS7dm1renx8vLZv3646depo3LhxmjdvnqZPn64DBw6of//+euGFF7Rx40ZJ0qlTp/T000+rRYsW2rdvn7p27aohQ4akWW9cXJzefvttzZ8/X5s2bdLJkyf1yiuvWPPpy4zz6quvauLEidq1a5fc3d3VuXNn28uYO3euPD09tWXLFk2fPl1Lly7V5MmT9eGHH+rIkSP6/PPPVa5cOat9x44dderUKa1fv15LlizR+++/r/Pnzzst083NTVOnTtWBAwc0d+5crVu3ToMGDZIk+fr6qm3btjfd/61bt1auXLnuYE9kT3/f938XGxur5s2bq2zZstq9e7dGjhzpdCxJ14+JwoULa/HixTp48KCGDx+u//znP/r0008lSbVq1VJYWJjmz59vPScxMVELFy68o9dLduDn5yc/Pz99/vnnunbt2k3b3O41Wr16dU2ZMkX+/v46c+aMzpw5k2a//5MhQ4aob9++OnTokBo1aqSJEydqzpw5mjVrljZv3qxLly5p2bJlTs+5cuWKBgwYoF27dmnt2rVyc3PTU089ZX2407VrV0VFRTlt04IFC/TAAw+obt26tupzNenps/S63fvip59+qpEjR+qNN97Qrl27FBwc7PRBniT99ddfioyM1ObNm/X999+rZMmSatq0qfUhT9euXbVy5UqnDwi//vprxcXF6dlnn/1Xtbuyzp07O71vz5o1S506dXJqM2jQIC1dulRz587Vnj17VKJECTVq1EiXLl1yakcf3UUG95zZs2ebgIAA6/GIESPMI4884tRm8uTJJjQ01HpcvHhxExUV5dRmzJgxJjw83BhjzMsvv2zq1q1rUlJS0qzv22+/Ne7u7ua///2vNe2bb74xksyyZctuWedbb71lKlWqZD1etGiRyZ07t7l69aoxxpjdu3cbh8Nhjh079g9bnDVmzpxpfH19TWJioomJiTHu7u7m/PnzJioqytSqVcsYY8zatWuNJHP8+HGTM2dOs3XrVqdldOnSxTz33HPGGGOGDh1qypYt6zR/8ODBRpL5888/jTHX+1aS+fXXX60206ZNMwULFrQe05fp9/djJdX69euNJLNmzRpr2vLly40kEx8fb4wxJjIy0rRs2dLpeX379jW1a9e2HteuXdtUrFjRqc3EiRNNqVKlTEJCQpr1Hj582EgyO3bssKYdOnTISDKTJ0++5XYsXrzY5M2b13q8fft2kyNHDnP69GljjDHnzp0z7u7uZsOGDbdcRnYVGRlpcuTIYXx9fa2f1q1b33TfG2OcXssffvihyZs3r9WnxhjzwQcfGElm7969t1xnr169TKtWrazH48ePN2XKlLEeL1261Pj5+ZnY2Nh/v4EuasmSJSZ37tzG29vbVK9e3QwdOtT88MMPt2z/99forY69m73XBAQEmNmzZxtjjDl27JiRZKZMmeLUJjg42EyYMMF6nJiYaAoXLpzmGL3RhQsXjCTz008/GWOMiY+PN7lz5zaLFi2y2pQvX96MHDnylsvITm7XZ6n79cbX/Z9//mkkmfXr1xtj0ve+GB4ebl566SWn9VatWjXN3yA3Sk5ONrly5TJfffWVNa1s2bJm/Pjx1uMWLVqYjh073ummu7TU3yXnz583Xl5e5vjx4+b48ePG29vbXLhwwbRs2dJERkaa2NhY4+HhYRYuXGg9NyEhwRQqVMh67dNHd1/2+WgYmebKlSs6evSounTpYn1q5efnp7Fjx1qXPXTs2FH79u3Tgw8+qD59+mjVqlXW8w8dOqSQkBAVKlTImhYeHp5mPYsWLVKNGjWsy6dee+01nTx50pr/5JNPKkeOHNaniHPmzFGdOnXSXILoKiIiInTlyhXt3LlT3333nUqVKqX8+fOrdu3a1n1SGzZsUFhYmGJjYxUXF6cGDRo47eN58+ZZ+/jQoUOqWrWq0zputh9z5szpdL9VcHCwdcaCvsxY5cuXt/4fHBwsSWnODv2TSpUqOT1+5plnFB8fr7CwMHXr1k3Lli2zBi05dOiQ3N3dnZ5TunTpNDflr1mzRvXq1dMDDzygXLlyqX379rp48aLi4uIkSVWqVNFDDz1knYVcsGCBQkNDVatWLVu1Zxd16tTRvn37rJ+pU6dKSrvv/+7QoUMqX768dT+jdPPX+7Rp01SpUiXlz59ffn5+mjFjhtPrvWPHjvr111+tS3rnzJmjNm3ayNfXNyM2zyW1atVKp0+f1pdffqnGjRtrw4YNevTRR61L8P7pNfpvVa5c2fp/dHS0zpw54/T+6e7u7tRGun7Z8nPPPaewsDD5+/tb70epfent7a327dtr1qxZkqQ9e/Zo//7998yN/v/UZ+l1u/fF9PweO3funLp166aSJUsqICBA/v7+io2NdTqmunbtap2dOXfunL755pt79gxvqvz586tZs2aaM2eOZs+erWbNmilfvnzW/KNHjyoxMVE1atSwpnl4eKhKlSo6dOiQ07Loo7uHIHUfcHNzS3OteOr9LJKs69Znzpzp9MfI/v37rT8MHn30UR07dkxjxoxRfHy82rRpo9atW6e7hm3btqldu3Zq2rSpvv76a+3du1evvvqqEhISrDaenp7q0KGDZs+erYSEBEVFRbn0QVmiRAkVLlxY69ev1/r161W7dm1JUqFChRQSEqKtW7dq/fr1qlu3rrWPly9f7rSPDx48mOZeln/y95uqHQ6H1b/0Zca6cV87HA5Jsi4D+qfjKtXf/5gOCQnR4cOH9f7778vHx0cvvfSSatWqddPn3szx48fVvHlzlS9fXkuXLtXu3bs1bdo0SXLqg65du1p/IM2ePVudOnWytuFe4+vrqxIlSlg/qX84ZESQ+eSTT/TKK6+oS5cuWrVqlfbt26dOnTo57esCBQqoRYsWmj179n31B4W3t7caNGigYcOGaevWrerYsaNGjBiR7tfozdz4fpYqPcdVerRo0UKXLl3SzJkztX37dm3fvj1NTV27dtXq1av1+++/a/bs2apbt65CQ0Ntr8tV3arPUi+5vnHf3+o96Xbvi+kRGRmpffv26Z133tHWrVu1b98+5c2b16kfOnTooN9++03btm3TggULVKxYsXv2nsMbde7cWXPmzNHcuXP/1XsIfXT3MGrffSB//vw6e/asjDHWAXXjDaUFCxZUoUKF9Ntvv6ldu3a3XI6/v7+effZZPfvss2rdurUaN26sS5cuqUyZMjp16pTOnDlj/QFz42ALkrR161aFhobq1VdftaadOHEizTq6du2qhx9+WO+//76SkpL09NNP/5tNz3R16tTRhg0b9Oeff2rgwIHW9Fq1aumbb77Rjh071LNnT5UtW1ZeXl46efKkFbj+rkyZMvryyy+dpv19P/4T+vLuyZ8/v/bv3+80bd++fekaPczHx0ctWrRQixYt1KtXL5UuXVo//fSTSpcuraSkJO3evVuPPfaYJOnw4cNO32e1e/dupaSkaOLEidYfP6n369zohRde0KBBgzR16lQdPHhQkZGR/2Jr701lypTR/PnznUbZ/PvrfcuWLapevbpeeukla9rNvsqga9eueu6551S4cGEVL17c6VPj+0XZsmX1+eefp+s16unpqeTk5DTLyJ8/v9N9F0eOHPnHs1gBAQEKDg7W9u3brbOuqcfRo48+Kkm6ePGiDh8+rJkzZ1p/7G3evDnNssqVK6fKlStr5syZioqK0nvvvWdjD2Q/qX2WOsrlmTNnrMEN7uS71MqUKaPt27erQ4cO1rSbHVPvv/++mjZtKun6/cF//PGHU5u8efPqySef1OzZs7Vt27Y09wrdqxo3bqyEhAQ5HA5rgJxUxYsXt+75TA33iYmJ2rlzp/r165fuddBHGYsgdR+IiIjQhQsXNGHCBLVu3VorV67UN998I39/f6vNqFGj1KdPHwUEBKhx48a6du2adu3apT///FMDBgzQpEmTFBwcrIoVK8rNzU2LFy9WUFCQAgMDVb9+fZUqVUqRkZF66623FBMT4/RHtiSVLFlSJ0+e1CeffKLHHntMy5cvT3MjsHT9AK9WrZoGDx6szp07W8OAuqo6deqoV69eSkxMdApItWvXVu/evZWQkKA6deooV65ceuWVV9S/f3+lpKSoZs2aio6O1pYtW+Tv76/IyEi9+OKLmjhxogYOHKiuXbtq9+7dti+5kOjLu6Vu3bp66623NG/ePIWHh2vBggXav3+/0whLNzNnzhwlJyeratWqypkzpxYsWCAfHx+FhoYqb968aty4sXr06KEPPvhA7u7u6tevn9O+K1GihBITE/Xuu++qRYsWtxxIIXfu3Hr66ac1cOBANWzYUIULF87wfZDdPf/883r11VfVrVs3DR06VMePH9fbb7/t1KZkyZKaN2+evv32WxUrVkzz58/Xzp07VaxYMad2jRo1kr+/v8aOHavRo0ffzc246y5evKhnnnlGnTt3Vvny5ZUrVy7t2rVLEyZMUMuWLdP1Gi1atKhiY2O1du1aPfLII8qZM6dy5sypunXr6r333lN4eLiSk5M1ePDgdH040bdvX7355psqWbKkSpcurUmTJjl9AJE7d27lzZtXM2bMUHBwsE6ePHnTwXyk66G4d+/e8vX11VNPPfWv9pWr+Kc+8/HxUbVq1fTmm2+qWLFiOn/+vF577TXb6+nbt686duyoypUrq0aNGlq4cKEOHDigsLAwq03JkiU1f/58Va5cWTExMRo4cOBNfz907dpVzZs3V3Jy8n3zQVCOHDmsy/Ry5MjhNM/X11c9e/bUwIEDlSdPHhUpUkQTJkxQXFycunTpku510EcZLCtv0ELmuNlNvB988IEJCQkxvr6+pkOHDub11193GmzCGGMWLlxoKlSoYDw9PU3u3LlNrVq1zGeffWaMMWbGjBmmQoUKxtfX1/j7+5t69eqZPXv2WM89fPiwqVmzpvH09DSlSpUyK1euTHPT8MCBA03evHmNn5+fefbZZ83kyZNverPxxx9/nOaGe1eVeoNu6dKlnaYfP37cSDIPPvigNS0lJcVMmTLFPPjgg8bDw8Pkz5/fNGrUyGzcuNFq89VXX5kSJUoYLy8v8/jjj5tZs2alGWzi7/ts2bJl5u+HMn2ZPv802ETqfjfGmL179xpJTgNmDB8+3BQsWNAEBASY/v37m969e6cZbKJv375Oy162bJmpWrWq8ff3N76+vqZatWpONwafOXPGNGvWzHh5eZkiRYqYefPmmdDQUKfBJiZNmmSCg4ONj4+PadSokZk3b16aeo35v8FOPv300zvYO9nDzQb9MObm+96YtIMZbNu2zTzyyCPG09PTVKhQwSxdutTppvurV6+ajh07moCAABMYGGh69uxphgwZctMbs4cNG+Y0yMe96urVq2bIkCHm0UcfNQEBASZnzpzmwQcfNK+99pqJi4szxqTvNfriiy+avHnzGklmxIgRxhhj/vvf/5qGDRsaX19fU7JkSbNixYqbDjbx98FAEhMTTd++fY2/v78JDAw0AwYMMB06dHB6baxevdqUKVPGeHl5mfLly5sNGzbcdHCLv/76y+TMmTPNDfnZWXr67ODBgyY8PNz4+PiYChUqmFWrVt10sIl/el98/fXXTb58+Yyfn5+JjIw0gwYNcjpe9uzZYypXrmy8vb1NyZIlzeLFi9O8xxlz/XdmaGioadq0aSbtFddwq/ewVKmDTRhzfUCUl19+2eTLl894eXmZGjVqOP1+pY/uPocxf7sYGchiY8aM0eLFi/Xjjz9mdSn4l+jLrDV//nz1799fp0+f5ouA74IuXbrowoULaS7RRfZy/PhxFS9eXDt37rQuDcTdFxsbqwceeECzZ8++5y4Nv1fQR1zaBxcSGxur48eP67333tPYsWOzuhz8C/Rl1oqLi9OZM2f05ptvqkePHoSoTBYdHa2ffvpJUVFRhKhsLDExURcvXtRrr72matWqEaKySEpKiv744w9NnDhRgYGB1pc8w3XQR/+HUfvgMnr37q1KlSopIiLivhjx6l5GX2atCRMmqHTp0goKCtLQoUOzupx7XsuWLdWwYUO9+OKLatCgQVaXgzu0ZcsWBQcHa+fOnTe97xB3x8mTJ1WwYEFFRUVp1qxZcnfnM39XQx/9Hy7tAwAAAACbOCMFAAAAADYRpAAAAADAJoIUAAAAANhEkAIAAAAAmwhSAAAAAGATQQoAcN+KiIhQv379sroMAEA2RJACAGSp6dOnK1euXEpKSrKmxcbGysPDQxEREU5tN2zYIIfDoaNHj97lKq87fvy4HA6H9ZMrVy499NBD6tWrl44cOZIlNQEAsgZBCgCQperUqaPY2Fjt2rXLmvbdd98pKChI27dv19WrV63p69evV5EiRVS8ePGsKNWyZs0anTlzRj/88IPeeOMNHTp0SI888ojWrl2bpXUBAO4eghQAIEs9+OCDCg4O1oYNG6xpGzZsUMuWLVWsWDF9//33TtPr1KkjSUpJSdG4ceNUrFgx+fj46JFHHtGSJUuclr1//341adJEfn5+KliwoNq3b68//vjjlrUsX75cAQEBWrhw4W1rzps3r4KCghQWFqaWLVtqzZo1qlq1qrp06aLk5GRJ0tGjR9WyZUsVLFhQfn5+euyxx7RmzRprGaNHj9bDDz+cZtkVKlTQsGHDbrt+AEDWI0gBALJcnTp1tH79euvx+vXrFRERodq1a1vT4+PjtX37ditIjRs3TvPmzdP06dN14MAB9e/fXy+88II2btwoSbp8+bLq1q2rihUrateuXVq5cqXOnTunNm3a3LSGqKgoPffcc1q4cKHatWtnq343Nzf17dtXJ06c0O7duyVdvzyxadOmWrt2rfbu3avGjRurRYsWOnnypCSpc+fOOnTokHbu3GktZ+/evfrxxx/VqVMnW+sHANx9DmOMyeoiAAD3t48++kj9+vXT5cuXFR8frzx58uj06dNas2aNpk+fro0bN2rdunWqV6+eTpw4oYIFCypPnjxas2aNwsPDreV07dpVcXFxioqK0tixY/Xdd9/p22+/teb//vvvCgkJ0eHDh1WqVClFRESoQoUKKlmypF599VV98cUXql279i3rPH78uIoVK6a9e/eqQoUKTvN+/vlnlSlTRosWLbplWHv44Yf14osvqnfv3pKkpk2bqmjRonr//fclSX369NFPP/3kFCoBAK7JPasLAAAgIiJCV65c0c6dO/Xnn3+qVKlSyp8/v2rXrq1OnTrp6tWr2rBhg8LCwlSkSBEdOHBAcXFxatCggdNyEhISVLFiRUnSDz/8oPXr18vPzy/N+o4ePapSpUpJkpYsWaLz589ry5Yteuyxx+54G1I/l3Q4HJKun5EaOXKkli9frjNnzigpKUnx8fHWGSlJ6tatmzp37qxJkybJzc1NUVFRmjx58h3XAAC4ewhSAIAsV6JECRUuXFjr16/Xn3/+aZ0VKlSokEJCQrR161atX79edevWlXQ9pEjX72l64IEHnJbl5eVltWnRooXGjx+fZn3BwcHW/ytWrKg9e/Zo1qxZqly5shWE7Dp06JAkqVixYpKkV155RatXr9bbb7+tEiVKyMfHR61bt1ZCQoL1nBYtWsjLy0vLli2Tp6enEhMT1bp16ztaPwDg7iJIAQBcQp06dbRhwwb9+eefGjhwoDW9Vq1a+uabb7Rjxw717NlTklS2bFl5eXnp5MmTt7wU79FHH9XSpUtVtGhRubvf+tdd8eLFNXHiREVERChHjhx67733bNeekpKiqVOnqlixYtYZsS1btqhjx4566qmnJF0PdsePH3d6nru7uyIjIzV79mx5enqqbdu28vHxsb1+AMDdR5ACALiEOnXqqFevXkpMTHQKR7Vr11bv3r2VkJBgDTSRK1cuvfLKK+rfv79SUlJUs2ZNRUdHa8uWLfL391dkZKR69eqlmTNn6rnnntOgQYOUJ08e/frrr/rkk0/00UcfKUeOHNY6SpUqZQ1w4e7urilTpty21osXL+rs2bOKi4vT/v37NWXKFO3YsUPLly+3lluyZEl99tlnatGihRwOh4YNG6aUlJQ0y+ratavKlCkj6Xr4AgBkDwQpAIBLqFOnjuLj41W6dGkVLFjQml67dm399ddf1jDpqcaMGaP8+fNr3Lhx+u233xQYGKhHH31U//nPfyRdvyxwy5YtGjx4sBo2bKhr164pNDRUjRs3lptb2kFrH3zwQa1bt846MzVx4sRb1lq/fn1JUs6cORUaGqo6depoxowZKlGihNVm0qRJ6ty5s6pXr658+fJp8ODBiomJSbOskiVLqnr16rp06ZKqVq1qf8cBALIEo/YBAJCFjDEqWbKkXnrpJQ0YMCCrywEApBNnpAAAyCIXLlzQJ598orNnz/LdUQCQzRCkAADIIgUKFFC+fPk0Y8YM5c6dO6vLAQDYQJACACCLcHU9AGRfae+2BQAAAADcFkEKAAAAAGwiSAEAAACATQQpAAAAALCJIAUAAAAANhGkAAAAAMAmghQAAAAA2ESQAgAAAACb/h9rYVlHpGsrsAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10,5))\n", + "plt.bar(merge_df.WeekDay, merge_df.Calories, color = \"b\")\n", + "plt.xlabel(\"Week Day\")\n", + "plt.ylabel(\"Calories Burned\")\n", + "plt.title(\"Calories Burned by Day of the Week\")\n", + "plt.grid()\n", + "\n", + "save_path = '../Images/calories_burned_by_day_of_the_week.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "1137415c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHWCAYAAAAYdUqfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxnklEQVR4nO3deVwVZf//8fcBWUVwB1FE3MXcLcVKxVRcsiyttO7Eta8mpfJNzTKXrCzLrdJsc03LJe0ud1xLRXOj3PIu0/Qut9xQQUC4fn/4ZX4ecQFD5yiv5+NxHjLXXGfmM/OZOfJhZq7jMMYYAQAAAABuOze7AwAAAACAvIqCDAAAAABsQkEGAAAAADahIAMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAAAA2ISCDABuszVr1sjhcGjNmjV2h3LHOXDggBwOh9577z27Q5EkORwOxcTE2B2Gyzt37py6d++uoKAgORwO9e3bN8fLGDZsmBwOh/7+++/cD9CF5dXtBvISCjIAeYLD4cjWKztF0ltvvaVvvvnmlscsSTt27FD79u0VGhoqb29vlSxZUs2aNdMHH3xgW0w5lVmAZueFrK7cf15eXgoMDFTjxo311ltv6fjx43aHeENvvfWWpk6dql69emnGjBl69tlnr9vXrmN5zpw5cjgcWrBgQZZ5NWrUkMPh0OrVq7PMK126tBo0aHA7QgRwF8pndwAAcDvMmDHDaXr69OmKi4vL0l6lSpUbLuutt95S+/bt1bZt29wMMYsNGzYoMjJSpUuXVo8ePRQUFKRDhw5p48aNGj9+vF544YXbHtPNqFKlSpb9PGjQIPn5+enVV1+1Kao7z4svvqh7771X6enpOn78uDZs2KChQ4dqzJgxmjNnjpo0aWJ3iNe0atUq1a9fX0OHDr1hXzuP5QceeECStG7dOj322GNWe2Jionbu3Kl8+fJp/fr1ioyMtOYdOnRIhw4dUocOHW57vADuDhRkAPKEf/3rX07TGzduVFxcXJZ2V/Lmm28qICBAmzdvVsGCBZ3mHTt2zJ6gbkJgYGCW/fz222+raNGiLr3/Xc2DDz6o9u3bO7X99NNPat68udq1a6fdu3erRIkSNkV3fceOHVN4eLjdYdxQcHCwwsLCtG7dOqf2+Ph4GWP0xBNPZJmXOZ1ZzAFATnHLIgD8n/Pnz+t///d/FRISIi8vL1WqVEnvvfeejDFWH4fDofPnz2vatGnWLWSdO3eWJP3xxx96/vnnValSJfn4+KhIkSJ64okndODAgZuKZ9++fapatWqWYkySihcvnq2YJOnPP/9U165dFRgYKC8vL1WtWlWTJ092Wl7mbXGzZ8/WK6+8oqCgIOXPn1+PPPKIDh065NT3119/Vbt27RQUFCRvb2+VKlVKHTp00JkzZ25qOyUpNTVVQ4YMUZ06dRQQEKD8+fPrwQcfvOrtYVcyxui5556Tp6en5s+fb7V/8cUXqlOnjnx8fFS4cGF16NAhy7Y0btxY99xzj3bv3q3IyEj5+vqqZMmSGjVqVI7inzlzpipVqiRvb2/VqVNH33//vTVv9erV17wNbtasWXI4HIqPj8/R+jLVqFFD48aN0+nTp/Xhhx9a7dk5Fn///Xc5HA6NHTs2y3I3bNggh8OhL7/88rrrP3bsmLp166bAwEB5e3urRo0amjZtmjU/87jav3+/Fi1aZB2f1zonbnQsS9Lp06fVuXNnFSxYUAEBAerSpYuSkpKyLCs7+b+aBx54QNu3b1dycrLVtn79elWtWlUtW7bUxo0blZGR4TTP4XDo/vvvz/G6N23apBYtWiggIEC+vr5q1KiR1q9ff8MY//jjD5UvX1733HOPjh49esP+AFycAYA8qHfv3ubyj8CMjAzTpEkT43A4TPfu3c2HH35o2rRpYySZvn37Wv1mzJhhvLy8zIMPPmhmzJhhZsyYYTZs2GCMMWbu3LmmRo0aZsiQIeaTTz4xr7zyiilUqJAJDQ0158+ft5axevVqI8msXr36ujE2b97cFChQwOzYseO6/a4X05EjR0ypUqVMSEiIef31181HH31kHnnkESPJjB07NktM1apVM9WrVzdjxowxL7/8svH29jYVK1Y0SUlJxhhjUlJSTFhYmAkODjZvvPGG+eyzz8zw4cPNvffeaw4cOJCtfW+MMVWrVjWNGjWypo8fP25KlChhYmNjzUcffWRGjRplKlWqZDw8PMz27dutfvv37zeSzLvvvmuMMebixYumU6dOxsvLyyxcuNDq98YbbxiHw2GeeuopM3HiRDN8+HBTtGhRU6ZMGXPq1CmrX6NGjUxwcLAJCQkxffr0MRMnTjRNmjQxkszixYtvuB2SzD333GOKFi1qXn/9dfPOO++Y0NBQ4+PjY+UtIyPDhISEmHbt2mV5f6tWrUy5cuWuu47M3MydO/eq81NTU42Pj4+pW7eu1ZbdY/H+++83derUybLM559/3hQoUMCp75WSkpJMlSpVjIeHh+nXr595//33zYMPPmgkmXHjxhljLh1/M2bMMEWLFjU1a9a0js9z585ddZnXO5aHDh1qJJlatWqZxx9/3EycONF0797dSDIDBgxwWk528381H3/8cZbzs0mTJua5554zv/32m5FkfvrpJ2tezZo1TZUqVXK87pUrVxpPT08TERFhRo8ebcaOHWuqV69uPD09zaZNm6x+mdt9/PhxY4wxv/32myldurSpWbOm1QbgzkZBBiBPurIg++abb4wk88Ybbzj1a9++vXE4HOa3336z2vLnz2+io6OzLDOzaLlcfHy8kWSmT59utWW3IFu+fLlxd3c37u7uJiIiwgwYMMAsW7bMpKamZul7rZi6detmSpQoYf7++2+n9g4dOpiAgAAr5syYSpYsaRITE61+c+bMMZLM+PHjjTHGbN++/brFQXZdWZBdvHjRpKSkOPU5deqUCQwMNF27drXaLi/I0tLSzFNPPWV8fHzMsmXLrD4HDhww7u7u5s0333Ra3o4dO0y+fPmc2hs1apQlPykpKSYoKOiqBdSVJBlJZsuWLVbbH3/8Yby9vc1jjz1mtQ0aNMh4eXmZ06dPW23Hjh0z+fLlM0OHDr3uOm5UkBljTI0aNUyhQoWs6ewei5nFx549e6y21NRUU7Ro0aseT5cbN26ckWS++OILp/dGREQYPz8/p+MoNDTUtG7d+rrLy3StYzmzMLn8eDDGmMcee8wUKVLEms5J/q9m165dRpIZMWKEMcaYtLQ0kz9/fjNt2jRjjDGBgYFmwoQJxhhjEhMTjbu7u+nRo0eO1p2RkWEqVKhgoqKiTEZGhtUvKSnJhIWFmWbNmmXZ7uPHj5s9e/aY4OBgc++995qTJ09edzsA3Dm4ZREAJC1evFju7u568cUXndr/93//V8YYLVmy5IbL8PHxsX5OS0vTiRMnVL58eRUsWFDbtm3LcUzNmjVTfHy8HnnkEf30008aNWqUoqKiVLJkSX377bc3fL8xRl9//bXatGkjY4z+/vtv6xUVFaUzZ85kiatTp04qUKCANd2+fXuVKFFCixcvliQFBARIkpYtW3bV28Rulru7uzw9PSVJGRkZOnnypC5evKi6detedd+lpqbqiSee0MKFC7V48WI1b97cmjd//nxlZGToySefdNrmoKAgVahQIcttkH5+fk7Psnl6euq+++7T77//nq3YIyIiVKdOHWu6dOnSevTRR7Vs2TKlp6dLurRfU1JSNG/ePKvf7NmzdfHixVx5js7Pz09nz561prN7LD755JPy9vbWzJkzrbZly5bp77//vmFcixcvVlBQkDp27Gi1eXh46MUXX9S5c+e0du3af7xdV9OzZ0+n6QcffFAnTpxQYmKipJzn/0pVqlRRkSJFrGfDfvrpJ50/f94aRbFBgwbWbYXx8fFKT0+3nh/L7roTEhL066+/6umnn9aJEyesfufPn9dDDz2k77//3um2SEnauXOnGjVqpDJlymjFihUqVKjQP9yTAFwFg3oAgC49kxEcHOxUjEj/f9TFP/7444bLSE5O1siRIzVlyhT9+eefTs+e3ezzVffee6/mz5+v1NRU/fTTT1qwYIHGjh2r9u3bKyEh4boDJRw/flynT5/WJ598ok8++eSqfa4cHKRChQpO0w6HQ+XLl7ee+QkLC1NsbKzGjBmjmTNn6sEHH9Qjjzyif/3rX1axdrOmTZum0aNH65dfflFaWprVHhYWlqXvyJEjde7cOS1ZskSNGzd2mvfrr7/KGJNlWzJ5eHg4TZcqVSrLkPuFChXSzz//nK24r7aeihUrKikpScePH1dQUJAqV66se++9VzNnzlS3bt0kXXrurH79+ipfvny21nM9586dczp2s3ssFixYUG3atNGsWbM0YsQIK66SJUvecNTGP/74QxUqVJCbm/PfdnNyztyM0qVLO01nFianTp2Sv79/jvN/JYfDoQYNGlhF0fr161W8eHErTw0aNLCe18sszDILsuyu+9dff5UkRUdHXzOOM2fOOBVdbdq0UWBgoJYtWyY/P7/rbgOAOwsFGQDkkhdeeEFTpkxR3759FRERoYCAADkcDnXo0CHLX7tzytPTU/fee6/uvfdeVaxYUV26dNHcuXOvO4x45jr/9a9/XfMXv+rVq+c4ltGjR6tz587697//reXLl+vFF1/UyJEjtXHjRpUqVSrHy5MuDYLQuXNntW3bVv3791fx4sXl7u6ukSNHat++fVn6R0VFaenSpRo1apQaN24sb29va15GRoYcDoeWLFkid3f3LO+98pfZq/WR5FTE5IZOnTqpT58++u9//6uUlBRt3LjRaSCOm5WWlqb//Oc/uueee6y2nByLnTp10ty5c7VhwwZVq1ZN3377rZ5//vkshZaruFG+cpr/q3nggQf03XffaceOHVq/fr3Td4w1aNBA/fv3159//ql169YpODhYZcuWzdG6M3Pw7rvvqmbNmleN4co427Vrp2nTpmnmzJn6n//5nxtuA4A7BwUZAEgKDQ3VihUrdPbsWacrDb/88os1P9O1vsB43rx5io6O1ujRo622Cxcu6PTp07kaa926dSVJhw8fvm5MxYoVU4ECBZSenq6mTZtma9mZf7nPZIzRb7/9lqVwq1atmqpVq6bBgwdrw4YNuv/++zVp0iS98cYbOd0cSZf2XdmyZTV//nynbblWwVm/fn317NlTDz/8sJ544gktWLBA+fJd+i+tXLlyMsYoLCxMFStWvKl4cuLKfSZJ//nPf+Tr66tixYpZbR06dFBsbKy+/PJLJScny8PDQ0899dQ/Xv+8efOUnJysqKgop7bsHostWrRQsWLFNHPmTNWrV09JSUnX/eLmTKGhofr555+VkZHhVLxd7ZzJiX/6BeG5kf/Lv49s/fr16tu3rzWvTp068vLy0po1a7Rp0ya1atUqx+suV66cJMnf3z/b5+a7776rfPny6fnnn1eBAgX09NNP38SWAXBFrvnnLwC4zVq1aqX09PQsVyzGjh0rh8Ohli1bWm358+e/6i+27u7uWa6qfPDBB9ZzRDm1evXqq16lyXyeq1KlSteNyd3dXe3atdPXX3+tnTt3ZlnO8ePHs7RNnz7d6VmkefPm6fDhw9b2JyYm6uLFi07vqVatmtzc3JSSkpL9jbtC5tWEy7d306ZN1x0OvmnTpvrqq6+0dOlSPfvss9ZVh8cff1zu7u4aPnx4lv1njNGJEyduOs6riY+Pd3ou69ChQ/r3v/+t5s2bO10lKVq0qFq2bKkvvvhCM2fOVIsWLVS0aNF/tO6ffvpJffv2VaFChdS7d2+rPSfHYr58+dSxY0fNmTNHU6dOVbVq1bJ15bRVq1Y6cuSIZs+ebbVdvHhRH3zwgfz8/NSoUaOb2qZrnV/ZlRv5r1u3rvVs3Z9//ul0hczLy0u1a9fWhAkTdP78eafvH8vuuuvUqaNy5crpvffe07lz57Ks/2rnpsPh0CeffKL27dsrOjo6W8+RArgzcIUMAHTp+YzIyEi9+uqrOnDggGrUqKHly5fr3//+t/r27Wv9RVu69MvUihUrNGbMGOuLZOvVq6eHH35YM2bMUEBAgMLDwxUfH68VK1aoSJEiNxXTCy+8oKSkJD322GOqXLmyUlNTtWHDBs2ePVtlypRRly5dbhjT22+/rdWrV6tevXrq0aOHwsPDdfLkSW3btk0rVqzQyZMnndZZuHBhPfDAA+rSpYuOHj2qcePGqXz58urRo4ckadWqVYqJidETTzyhihUr6uLFi5oxY4ZV/N2shx9+WPPnz9djjz2m1q1ba//+/Zo0aZLCw8Ov+gtrprZt22rKlCnq1KmT/P399fHHH6tcuXJ64403NGjQIB04cEBt27ZVgQIFtH//fi1YsEDPPfecXnrppZuO9Ur33HOPoqKi9OKLL8rLy0sTJ06UJA0fPjxL306dOllf7pz5zFZ2/fDDD7pw4YLS09N14sQJrV+/Xt9++60CAgK0YMECBQUFWX1zeix26tRJ77//vlavXq133nknW/E899xz+vjjj9W5c2dt3bpVZcqU0bx587R+/XqNGzcuy/OY2XWtYzm7ciP/mbcI//DDD/Ly8nIatEW6dNti5tXHywuy7K7bzc1Nn332mVq2bKmqVauqS5cuKlmypP7880+tXr1a/v7++u6777LE5ebmpi+++EJt27bVk08+qcWLF9/wWT8Ad4DbN6AjALiOK4e9N8aYs2fPmn79+png4GDj4eFhKlSoYN59912nYamNMeaXX34xDRs2ND4+PkaSNUT3qVOnTJcuXUzRokWNn5+fiYqKMr/88osJDQ11GsY7u8PeL1myxHTt2tVUrlzZ+Pn5GU9PT1O+fHnzwgsvmKNHj2YrJmOMOXr0qOndu7cJCQkxHh4eJigoyDz00EPmk08+yRLTl19+aQYNGmSKFy9ufHx8TOvWrc0ff/xh9fv9999N165dTbly5Yy3t7cpXLiwiYyMNCtWrMjGXv//rhz2PiMjw7z11lsmNDTUeHl5mVq1apmFCxea6OhoExoaavW78nvIMk2cONFIMi+99JLV9vXXX5sHHnjA5M+f3+TPn99UrlzZ9O7d2+zdu9fq06hRI1O1atUs8V253muRZHr37m2++OILU6FCBSv2a+U2JSXFFCpUyAQEBJjk5OQbLt+Y/5+bzJeHh4cpVqyYadiwoXnzzTfNsWPHsrwnu8fi5apWrWrc3NzMf//732zFZcylYytzPZ6enqZatWpmypQpWfrlZNj7ax3LV34fV6YpU6YYSWb//v1O7dnJ//UMGjTISDINGjTIMm/+/PlGkilQoIC5ePFilvnZXff27dvN448/booUKWK8vLxMaGioefLJJ83KlSutPlfb7qSkJNOoUSPj5+dnNm7cmK3tAeC6HMbk8lPLAIA7zpo1axQZGam5c+daV3CQ+y5evKjg4GC1adNGn3/+ud3hOKlVq5YKFy6slStX2h0KAOQpPEMGAMBt8s033+j48ePq1KmT3aE42bJlixISElwuLgDIC3iGDACAW2zTpk36+eefNWLECNWqVeumB7zIbTt37tTWrVs1evRolShRIldGfQQA5AxXyAAAuMU++ugj9erVS8WLF9f06dPtDscyb948denSRWlpafryyy+dvs8NAHB78AwZAAAAANiEK2QAAAAAYBMKMgAAAACwCYN65JKMjAz99ddfKlCggBwOh93hAAAAALCJMUZnz55VcHCw3Nyufw2MgiyX/PXXXwoJCbE7DAAAAAAu4tChQypVqtR1+1CQ5ZICBQpIurTT/f39bY7mzpCWlqbly5erefPm8vDwsDscXIbcuDby49rIj+siN66N/LgucpNziYmJCgkJsWqE66EgyyWZtyn6+/tTkGVTWlqafH195e/vz8ntYsiNayM/ro38uC5y49rIj+siNzcvO48yMagHAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAgLucw+H6r4CAS7EGBNgfy/VeQG6jIAMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAAAA2MTWguyjjz5S9erV5e/vL39/f0VERGjJkiXW/MaNG8vhcDi9evbs6bSMgwcPqnXr1vL19VXx4sXVv39/Xbx40anPmjVrVLt2bXl5eal8+fKaOnVqllgmTJigMmXKyNvbW/Xq1dOPP/54S7YZAAAAADLZWpCVKlVKb7/9trZu3aotW7aoSZMmevTRR7Vr1y6rT48ePXT48GHrNWrUKGteenq6WrdurdTUVG3YsEHTpk3T1KlTNWTIEKvP/v371bp1a0VGRiohIUF9+/ZV9+7dtWzZMqvP7NmzFRsbq6FDh2rbtm2qUaOGoqKidOzYsduzIwAAAADkSfnsXHmbNm2cpt9880199NFH2rhxo6pWrSpJ8vX1VVBQ0FXfv3z5cu3evVsrVqxQYGCgatasqREjRmjgwIEaNmyYPD09NWnSJIWFhWn06NGSpCpVqmjdunUaO3asoqKiJEljxoxRjx491KVLF0nSpEmTtGjRIk2ePFkvv/zyVdedkpKilJQUazoxMVGSlJaWprS0tH+wV/KOzP3E/nI95Ma1kR/XRn5cV17OjY+P3RHcmI9PmtO/rioPHj55+ty5WTnZVw5jjLmFsWRbenq65s6dq+joaG3fvl3h4eFq3Lixdu3aJWOMgoKC1KZNG7322mvy9fWVJA0ZMkTffvutEhISrOXs379fZcuW1bZt21SrVi01bNhQtWvX1rhx46w+U6ZMUd++fXXmzBmlpqbK19dX8+bNU9u2ba0+0dHROn36tP79739fNd5hw4Zp+PDhWdpnzZplxQcAAAAg70lKStLTTz+tM2fOyN/f/7p9bb1CJkk7duxQRESELly4ID8/Py1YsEDh4eGSpKefflqhoaEKDg7Wzz//rIEDB2rv3r2aP3++JOnIkSMKDAx0Wl7m9JEjR67bJzExUcnJyTp16pTS09Ov2ueXX365ZtyDBg1SbGysNZ2YmKiQkBA1b978hjsdl6SlpSkuLk7NmjWTh4eH3eHgMuTGtZEf10Z+XFdezk1AgN0R3JiPT5omT45T167NlJzsuvk5c8buCG6/vHzu3KzMu+eyw/aCrFKlSkpISNCZM2c0b948RUdHa+3atQoPD9dzzz1n9atWrZpKlCihhx56SPv27VO5cuVsjFry8vKSl5dXlnYPDw8O1Bxin7kucuPayI9rIz+uKy/mJjnZ7giyLznZw6ULsjx26DjJi+fOzcrJfrJ92HtPT0+VL19ederU0ciRI1WjRg2NHz/+qn3r1asnSfrtt98kSUFBQTp69KhTn8zpzOfOrtXH399fPj4+Klq0qNzd3a/a51rPrgEAAABAbrC9ILtSRkaG02AZl8t8VqxEiRKSpIiICO3YscNpNMS4uDj5+/tbtz1GRERo5cqVTsuJi4tTRESEpEsFYZ06dZz6ZGRkaOXKlVYfAAAAALgVbL1lcdCgQWrZsqVKly6ts2fPatasWVqzZo2WLVumffv2adasWWrVqpWKFCmin3/+Wf369VPDhg1VvXp1SVLz5s0VHh6uZ599VqNGjdKRI0c0ePBg9e7d27qdsGfPnvrwww81YMAAde3aVatWrdKcOXO0aNEiK47Y2FhFR0erbt26uu+++zRu3DidP3/eGnURAAAAAG4FWwuyY8eOqVOnTjp8+LACAgJUvXp1LVu2TM2aNdOhQ4e0YsUKqzgKCQlRu3btNHjwYOv97u7uWrhwoXr16qWIiAjlz59f0dHRev31160+YWFhWrRokfr166fx48erVKlS+uyzz6wh7yXpqaee0vHjxzVkyBAdOXJENWvW1NKlS7MM9AEAAAAAucnWguzzzz+/5ryQkBCtXbv2hssIDQ3V4sWLr9uncePG2r59+3X7xMTEKCYm5obrAwAAAIDc4nLPkAEAAABAXkFBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwia0F2UcffaTq1avL399f/v7+ioiI0JIlS6z5Fy5cUO/evVWkSBH5+fmpXbt2Onr0qNMyDh48qNatW8vX11fFixdX//79dfHiRac+a9asUe3ateXl5aXy5ctr6tSpWWKZMGGCypQpI29vb9WrV08//vjjLdlmAAAAAMhka0FWqlQpvf3229q6dau2bNmiJk2a6NFHH9WuXbskSf369dN3332nuXPnau3atfrrr7/0+OOPW+9PT09X69atlZqaqg0bNmjatGmaOnWqhgwZYvXZv3+/WrdurcjISCUkJKhv377q3r27li1bZvWZPXu2YmNjNXToUG3btk01atRQVFSUjh07dvt2BgAAAIA8x9aCrE2bNmrVqpUqVKigihUr6s0335Sfn582btyoM2fO6PPPP9eYMWPUpEkT1alTR1OmTNGGDRu0ceNGSdLy5cu1e/duffHFF6pZs6ZatmypESNGaMKECUpNTZUkTZo0SWFhYRo9erSqVKmimJgYtW/fXmPHjrXiGDNmjHr06KEuXbooPDxckyZNkq+vryZPnmzLfgEAAACQN+SzO4BM6enpmjt3rs6fP6+IiAht3bpVaWlpatq0qdWncuXKKl26tOLj41W/fn3Fx8erWrVqCgwMtPpERUWpV69e2rVrl2rVqqX4+HinZWT26du3ryQpNTVVW7du1aBBg6z5bm5uatq0qeLj468Zb0pKilJSUqzpxMRESVJaWprS0tL+0b7IKzL3E/vL9ZAb10Z+XBv5cV15OTc+PnZHcGM+PmlO/7qqPHj45Olz52blZF/ZXpDt2LFDERERunDhgvz8/LRgwQKFh4crISFBnp6eKliwoFP/wMBAHTlyRJJ05MgRp2Isc37mvOv1SUxMVHJysk6dOqX09PSr9vnll1+uGffIkSM1fPjwLO3Lly+Xr69v9jYekqS4uDi7Q8A1kBvXRn5cG/lxXXkxN19+aXcE2Td5smvnZ/FiuyOwT148d25WUlJStvvaXpBVqlRJCQkJOnPmjObNm6fo6GitXbvW7rBuaNCgQYqNjbWmExMTFRISoubNm8vf39/GyO4caWlpiouLU7NmzeTh4WF3OLgMuXFt5Me1kR/XlZdzExBgdwQ35uOTpsmT49S1azMlJ7tufs6csTuC2y8vnzs3K/PuueywvSDz9PRU+fLlJUl16tTR5s2bNX78eD311FNKTU3V6dOnna6SHT16VEFBQZKkoKCgLKMhZo7CeHmfK0dmPHr0qPz9/eXj4yN3d3e5u7tftU/mMq7Gy8tLXl5eWdo9PDw4UHOIfea6yI1rIz+ujfy4rryYm+RkuyPIvuRkD5cuyPLYoeMkL547Nysn+8nlvocsIyNDKSkpqlOnjjw8PLRy5Upr3t69e3Xw4EFFRERIkiIiIrRjxw6n0RDj4uLk7++v8PBwq8/ly8jsk7kMT09P1alTx6lPRkaGVq5cafUBAAAAgFvB1itkgwYNUsuWLVW6dGmdPXtWs2bN0po1a7Rs2TIFBASoW7duio2NVeHCheXv768XXnhBERERql+/viSpefPmCg8P17PPPqtRo0bpyJEjGjx4sHr37m1dverZs6c+/PBDDRgwQF27dtWqVas0Z84cLVq0yIojNjZW0dHRqlu3ru677z6NGzdO58+fV5cuXWzZLwAAAADyBlsLsmPHjqlTp046fPiwAgICVL16dS1btkzNmjWTJI0dO1Zubm5q166dUlJSFBUVpYkTJ1rvd3d318KFC9WrVy9FREQof/78io6O1uuvv271CQsL06JFi9SvXz+NHz9epUqV0meffaaoqCirz1NPPaXjx49ryJAhOnLkiGrWrKmlS5dmGegDAAAAAHKTrQXZ559/ft353t7emjBhgiZMmHDNPqGhoVp8g+FuGjdurO3bt1+3T0xMjGJiYq7bBwAAAAByk8s9QwYAAO5MDodrvzJHGgwIsD+WG70A5B0UZAAAAABgEwoyAAAAALAJBRkAAAAA2ISCDAAAAABsQkEGAAAAADahIAMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAAAA2ISCDAAAAABsQkEGAAAAADahIAMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAAAA2ISCDAAAAABsQkEGAAAAADahIAMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAAAA2ISCDAAAAABsQkEGAAAAADahIAMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAAAA2ISCDAAAAABsQkEGAAAAADahIAMAAAAAm1CQAQAAAIBNbC3IRo4cqXvvvVcFChRQ8eLF1bZtW+3du9epT+PGjeVwOJxePXv2dOpz8OBBtW7dWr6+vipevLj69++vixcvOvVZs2aNateuLS8vL5UvX15Tp07NEs+ECRNUpkwZeXt7q169evrxxx9zfZsBAAAAIJOtBdnatWvVu3dvbdy4UXFxcUpLS1Pz5s11/vx5p349evTQ4cOHrdeoUaOseenp6WrdurVSU1O1YcMGTZs2TVOnTtWQIUOsPvv371fr1q0VGRmphIQE9e3bV927d9eyZcusPrNnz1ZsbKyGDh2qbdu2qUaNGoqKitKxY8du/Y4AAAAAkCfls3PlS5cudZqeOnWqihcvrq1bt6phw4ZWu6+vr4KCgq66jOXLl2v37t1asWKFAgMDVbNmTY0YMUIDBw7UsGHD5OnpqUmTJiksLEyjR4+WJFWpUkXr1q3T2LFjFRUVJUkaM2aMevTooS5dukiSJk2apEWLFmny5Ml6+eWXb8XmAwAAAMjjbC3IrnTmzBlJUuHChZ3aZ86cqS+++EJBQUFq06aNXnvtNfn6+kqS4uPjVa1aNQUGBlr9o6Ki1KtXL+3atUu1atVSfHy8mjZt6rTMqKgo9e3bV5KUmpqqrVu3atCgQdZ8Nzc3NW3aVPHx8VeNNSUlRSkpKdZ0YmKiJCktLU1paWk3uQfylsz9xP5yPeTGtZEf15aX8+PjY3cE1+fjk+b0ryvL7cPH1XMj3Tn5yYOndp7+XLtZOdlXLlOQZWRkqG/fvrr//vt1zz33WO1PP/20QkNDFRwcrJ9//lkDBw7U3r17NX/+fEnSkSNHnIoxSdb0kSNHrtsnMTFRycnJOnXqlNLT06/a55dffrlqvCNHjtTw4cOztC9fvtwqFpE9cXFxdoeAayA3ro38uLa8mJ8vv7Q7guyZPNn1c7N4ce4u707JjeT6+cnt3NxJ8uLn2s1KSkrKdl+XKch69+6tnTt3at26dU7tzz33nPVztWrVVKJECT300EPat2+fypUrd7vDtAwaNEixsbHWdGJiokJCQtS8eXP5+/vbFtedJC0tTXFxcWrWrJk8PDzsDgeXITeujfy4trycn4AAuyO4Ph+fNE2eHKeuXZspOdm1c/N/Nw3lGlfPjXTn5Ce3c3MnyMufazcr8+657HCJgiwmJkYLFy7U999/r1KlSl23b7169SRJv/32m8qVK6egoKAsoyEePXpUkqznzoKCgqy2y/v4+/vLx8dH7u7ucnd3v2qfaz275uXlJS8vryztHh4eHKg5xD5zXeTGtZEf15YX85OcbHcE2ZOc7OHSv/BLUm4fOndKbiTXz08eO62d5MXPtZuVk/1k6yiLxhjFxMRowYIFWrVqlcLCwm74noSEBElSiRIlJEkRERHasWOH02iIcXFx8vf3V3h4uNVn5cqVTsuJi4tTRESEJMnT01N16tRx6pORkaGVK1dafQAAAAAgt9l6hax3796aNWuW/v3vf6tAgQLWM18BAQHy8fHRvn37NGvWLLVq1UpFihTRzz//rH79+qlhw4aqXr26JKl58+YKDw/Xs88+q1GjRunIkSMaPHiwevfubV3B6tmzpz788EMNGDBAXbt21apVqzRnzhwtWrTIiiU2NlbR0dGqW7eu7rvvPo0bN07nz5+3Rl0EAAAAgNyW44IsPT1dU6dO1cqVK3Xs2DFlZGQ4zV+1alW2l/XRRx9JuvTlz5ebMmWKOnfuLE9PT61YscIqjkJCQtSuXTsNHjzY6uvu7q6FCxeqV69eioiIUP78+RUdHa3XX3/d6hMWFqZFixapX79+Gj9+vEqVKqXPPvvMGvJekp566ikdP35cQ4YM0ZEjR1SzZk0tXbo0y0AfAAAAAJBbclyQ9enTR1OnTlXr1q11zz33yOFw3PTKjTHXnR8SEqK1a9fecDmhoaFafIMhbxo3bqzt27dft09MTIxiYmJuuD4AAAAAyA05Lsi++uorzZkzR61atboV8QAAAABAnpHjQT08PT1Vvnz5WxELAAAAAOQpOS7I/vd//1fjx4+/4e2GAAAAAIDry/Eti+vWrdPq1au1ZMkSVa1aNcsY+/Pnz8+14AAAAADgbpbjgqxgwYJ67LHHbkUsAAAAAJCn5LggmzJlyq2IAwAAAADynBw/QyZJFy9e1IoVK/Txxx/r7NmzkqS//vpL586dy9XgAAAAAOBuluMrZH/88YdatGihgwcPKiUlRc2aNVOBAgX0zjvvKCUlRZMmTboVcQJ3lX/w9X23hY+P9OWXUkCAlJxsdzTXx/hCAADgTpbjK2R9+vRR3bp1derUKfn4+Fjtjz32mFauXJmrwQEAAADA3SzHV8h++OEHbdiwQZ6enk7tZcqU0Z9//plrgQEAAADA3S7HV8gyMjKUnp6epf2///2vChQokCtBAQAAAEBekOOCrHnz5ho3bpw17XA4dO7cOQ0dOlStWrXKzdgAAAAA4K6W41sWR48eraioKIWHh+vChQt6+umn9euvv6po0aL68ssvb0WMuAmuPmiEdOcMHMGgEQAAALhVclyQlSpVSj/99JNmz56tn376SefOnVO3bt30zDPPOA3yAQAAAAC4vhwXZF9++aU6duyoZ555Rs8884zTvP79++vdd9/NteAAAAAA4G6W42fIevXqpSVLlmRp79evn7744otcCQoAAAAA8oIcF2QzZ85Ux44dtW7dOqvthRde0Jw5c7R69epcDQ4AAAAA7mY5Lshat26tiRMn6pFHHtHWrVv1/PPPa/78+Vq9erUqV658K2IEAAAAgLtSjp8hk6Snn35ap0+f1v33369ixYpp7dq1Kl++fG7HBgAAAAB3tWwVZLGxsVdtL1asmGrXrq2JEydabWPGjMmdyAAAAADgLpetgmz79u1XbS9fvrwSExOt+Y474cuvAAAAAMBFZKsgY7AOAAAAAMh9OR7UAwAAAACQO25qUI8tW7Zozpw5OnjwoFJTU53mzZ8/P1cCAwAAAIC7XY6vkH311Vdq0KCB9uzZowULFigtLU27du3SqlWrFBAQcCtiBAAAAIC7Uo4Lsrfeektjx47Vd999J09PT40fP16//PKLnnzySZUuXfpWxAgAAAAAd6UcF2T79u1T69atJUmenp46f/68HA6H+vXrp08++STXAwQAAACAu1WOC7JChQrp7NmzkqSSJUtq586dkqTTp08rKSkpd6MDAOAyDofrvzLv3g8IsD+W670AAK4h2wVZ165ddfbsWTVs2FBxcXGSpCeeeEJ9+vRRjx491LFjRz300EO3LFAAAAAAuNtke5TFadOm6e2339aHH36oCxcuSJJeffVVeXh4aMOGDWrXrp0GDx58ywIFAAAAgLtNtgsyY4wkqXDhwlabm5ubXn755dyPCgAAAADygBx9D9nZs2fl7e193T7+/v7/KCAAAAAAyCtyVJBVrFjxmvOMMXI4HEpPT//HQQEAAABAXpCjgmzevHlOtywCwN3I1Ueg8/GRvvzy0ih+ycl2R3Nt/3enOwAAuI4cFWT333+/ihcvfqtiAQAAAIA8JcffQwYAAAAAyB3ZLshCQ0Pl7u5+K2MBAAAAgDwl27cs7t+//1bGAQAAAAB5DrcsAgAAAIBNKMgAAAAAGzkcrv0KCLgUZ0CA/bHc6HUnsrUgGzlypO69914VKFBAxYsXV9u2bbV3716nPhcuXFDv3r1VpEgR+fn5qV27djp69KhTn4MHD6p169by9fVV8eLF1b9/f128eNGpz5o1a1S7dm15eXmpfPnymjp1apZ4JkyYoDJlysjb21v16tXTjz/+mOvbDAAAAACZcqUgO3369E29b+3aterdu7c2btyouLg4paWlqXnz5jp//rzVp1+/fvruu+80d+5crV27Vn/99Zcef/xxa356erpat26t1NRUbdiwQdOmTdPUqVM1ZMgQq8/+/fvVunVrRUZGKiEhQX379lX37t21bNkyq8/s2bMVGxuroUOHatu2bapRo4aioqJ07Nixm9o2AAAAALghk0Nvv/22+eqrr6zpJ554wri5uZng4GCTkJCQ08U5OXbsmJFk1q5da4wx5vTp08bDw8PMnTvX6rNnzx4jycTHxxtjjFm8eLFxc3MzR44csfp89NFHxt/f36SkpBhjjBkwYICpWrWq07qeeuopExUVZU3fd999pnfv3tZ0enq6CQ4ONiNHjsxW7GfOnDGSzJkzZ3K41bfGpa9kde2Xj0+q+eabb4yPT6rtsVzvlRfzc6fkhvy4dn7yYm7Ij2u/7pTc3Ir82L09d1N+bgW7t+luyc2tys/NyEltkKMvhpakSZMmaebMmZKkuLg4xcXFacmSJZozZ4769++v5cuX33RxeObMGUlS4cKFJUlbt25VWlqamjZtavWpXLmySpcurfj4eNWvX1/x8fGqVq2aAgMDrT5RUVHq1auXdu3apVq1aik+Pt5pGZl9+vbtK0lKTU3V1q1bNWjQIGu+m5ubmjZtqvj4+KvGmpKSopSUFGs6MTFRkpSWlqa0tLSb3ge5xcfH7ghuzMcnzelfV3Ur0unq+blTciORH1eWF3MjkR9XdqfkRsr9/Lh6bqQ7Jz+cO67NBX4Nl6Qc1QMOY4zJycJ9fHz0n//8RyEhIerTp48uXLigjz/+WP/5z39Ur149nTp1KscBS1JGRoYeeeQRnT59WuvWrZMkzZo1S126dHEqfCTpvvvuU2RkpN555x0999xz+uOPP5xuP0xKSlL+/Pm1ePFitWzZUhUrVlSXLl2cCq7FixerdevWSkpK0qlTp1SyZElt2LBBERERVp8BAwZo7dq12rRpU5Z4hw0bpuHDh2dpnzVrlnx9fW9qHwAAAAC48yUlJenpp5/WmTNn5O/vf92+Ob5CVqhQIR06dEghISFaunSp3njjDUmSMUbp6ek3F7Gk3r17a+fOnVYx5uoGDRqk2NhYazoxMVEhISFq3rz5DXf67ZA5Go4r8/FJ0+TJceratZmSkz3sDuea/u/Cba5y9fzcKbmRyI8r5ycv5kYiP67sTsmNlPv5cfXcSHdOfjh3XDc30q3Jz83IvHsuO3JckD3++ON6+umnVaFCBZ04cUItW7aUJG3fvl3ly5fP6eIkSTExMVq4cKG+//57lSpVymoPCgpSamqqTp8+rYIFC1rtR48eVVBQkNXnytEQM0dhvLzPlSMzHj16VP7+/vLx8ZG7u7vc3d2v2idzGVfy8vKSl5dXlnYPDw95eNh/oCYn2x1B9iUne7j0yX0r0nmn5MfVcyORH1fOT17OjUR+XJmr50bK/fzcKbmRXD8/nDuumxvp1uTnZuSkHsjxKItjx45VTEyMwsPDFRcXJz8/P0nS4cOH9fzzz+doWcYYxcTEaMGCBVq1apXCwsKc5tepU0ceHh5auXKl1bZ3714dPHjQurUwIiJCO3bscBoNMS4uTv7+/goPD7f6XL6MzD6Zy/D09FSdOnWc+mRkZGjlypVOtzACAAAAQG7K8RUyDw8PvfTSS1na+/Xrl+OV9+7dW7NmzdK///1vFShQQEeOHJEkBQQEyMfHRwEBAerWrZtiY2NVuHBh+fv764UXXlBERITq168vSWrevLnCw8P17LPPatSoUTpy5IgGDx6s3r17W1ewevbsqQ8//FADBgxQ165dtWrVKs2ZM0eLFi2yYomNjVV0dLTq1q2r++67T+PGjdP58+fVpUuXHG8XAAAAAGRHjgsy6dJVqg8++EB79uyRJFWpUkUvvPCCKlWqlKPlfPTRR5Kkxo0bO7VPmTJFnTt3lnTpipybm5vatWunlJQURUVFaeLEiVZfd3d3LVy4UL169VJERITy58+v6Ohovf7661afsLAwLVq0SP369dP48eNVqlQpffbZZ4qKirL6PPXUUzp+/LiGDBmiI0eOqGbNmlq6dKnT6I0AAAAAkJtyXJB9/fXX6tChg+rWrWvdzrdx40bdc889+uqrr9SuXbtsLys7Azx6e3trwoQJmjBhwjX7hIaGavHixdddTuPGjbV9+/br9omJiVFMTMwNYwIAAACA3JDjgmzAgAEaNGiQ0xUoSRo6dKgGDBiQo4IMAAAAAPKyHA/qcfjwYXXq1ClL+7/+9S8dPnw4V4ICAAAAgLwgxwVZ48aN9cMPP2RpX7dunR588MFcCQoAAAAA8oIc37L4yCOPaODAgdq6das10uHGjRs1d+5cDR8+XN9++61TXwAAAADA1eW4IMv8rrGJEyc6jXZ4+TxJcjgcSk9P/4fhAQAAAMDdK8cFWUZGxq2IAwAAAADynBw/Q3a5Cxcu5FYcAAAAAJDn5LggS09P14gRI1SyZEn5+fnp999/lyS99tpr+vzzz3M9QAAAAAC4W+W4IHvzzTc1depUjRo1Sp6enlb7Pffco88++yxXgwMAAACAu1mOC7Lp06frk08+0TPPPCN3d3ervUaNGvrll19yNTgAAAAAuJvluCD7888/Vb58+SztGRkZSktLy5WgAAAAACAvyHFBFh4eftUvhp43b55q1aqVK0EBAAAAQF6Q42HvhwwZoujoaP3555/KyMjQ/PnztXfvXk2fPl0LFy68FTECAAAAwF0px1fIHn30UX333XdasWKF8ufPryFDhmjPnj367rvv1KxZs1sRIwAAAADclXJ8hUySHnzwQcXFxeV2LAAAAACQp+T4ClnZsmV14sSJLO2nT59W2bJlcyUoAAAAAMgLclyQHThwQOnp6VnaU1JS9Oeff+ZKUAAAAACQF2T7lsVvv/3W+nnZsmUKCAiwptPT07Vy5UqVKVMmV4MDAAAAgLtZtguytm3bSpIcDoeio6Od5nl4eKhMmTIaPXp0rgYHAAAAAHezbBdkGRkZkqSwsDBt3rxZRYsWvWVBAQAAAEBekONRFvfv338r4gAAAACAPCfbg3rEx8dn+eLn6dOnKywsTMWLF9dzzz2nlJSUXA8QAAAAAO5W2S7IXn/9de3atcua3rFjh7p166amTZvq5Zdf1nfffaeRI0fekiABAAAA4G6U7YIsISFBDz30kDX91VdfqV69evr0008VGxur999/X3PmzLklQQIAAADA3SjbBdmpU6cUGBhoTa9du1YtW7a0pu+9914dOnQod6MDAAAAgLtYtguywMBAa0CP1NRUbdu2TfXr17fmnz17Vh4eHrkfIQAAAADcpbJdkLVq1Uovv/yyfvjhBw0aNEi+vr568MEHrfk///yzypUrd0uCBAAAAIC7UbaHvR8xYoQef/xxNWrUSH5+fpo2bZo8PT2t+ZMnT1bz5s1vSZAAAAAAcDfKdkFWtGhRff/99zpz5oz8/Pzk7u7uNH/u3Lny8/PL9QABAAAA4G6V4y+GDggIuGp74cKF/3EwAAAAAJCXZPsZMgAAAABA7qIgAwAAAACbUJABAAAAgE0oyAAAAADAJtka1OPbb7/N9gIfeeSRmw4GAAAAAPKSbBVkbdu2zdbCHA6H0tPT/0k8AAAAAJBnZKsgy8jIuNVxAAAAAECewzNkAAAAAGCTHH8xtCSdP39ea9eu1cGDB5Wamuo078UXX8yVwAAAAADgbpfjgmz79u1q1aqVkpKSdP78eRUuXFh///23fH19Vbx4cQoyAAAAAMimHN+y2K9fP7Vp00anTp2Sj4+PNm7cqD/++EN16tTRe++9l6Nlff/992rTpo2Cg4PlcDj0zTffOM3v3LmzHA6H06tFixZOfU6ePKlnnnlG/v7+KliwoLp166Zz58459fn555/14IMPytvbWyEhIRo1alSWWObOnavKlSvL29tb1apV0+LFi3O0LQAAAACQUzkuyBISEvS///u/cnNzk7u7u1JSUqwi55VXXsnRss6fP68aNWpowoQJ1+zTokULHT582Hp9+eWXTvOfeeYZ7dq1S3FxcVq4cKG+//57Pffcc9b8xMRENW/eXKGhodq6daveffddDRs2TJ988onVZ8OGDerYsaO6deum7du3q23btmrbtq127tyZo+0BAAAAgJzI8S2LHh4ecnO7VMcVL15cBw8eVJUqVRQQEKBDhw7laFktW7ZUy5Ytr9vHy8tLQUFBV523Z88eLV26VJs3b1bdunUlSR988IFatWql9957T8HBwZo5c6ZSU1M1efJkeXp6qmrVqkpISNCYMWOswm38+PFq0aKF+vfvL0kaMWKE4uLi9OGHH2rSpEk52iYAAAAAyK4cF2S1atXS5s2bVaFCBTVq1EhDhgzR33//rRkzZuiee+7J9QDXrFmj4sWLq1ChQmrSpIneeOMNFSlSRJIUHx+vggULWsWYJDVt2lRubm7atGmTHnvsMcXHx6thw4by9PS0+kRFRemdd97RqVOnVKhQIcXHxys2NtZpvVFRUVluobxcSkqKUlJSrOnExERJUlpamtLS0nJj0/8RHx+7I7gxH580p39d1a1Ip6vn507JjUR+XFlezI1EflzZnZIbKffz4+q5ke6c/HDuuDYX+DVcknJUDziMMSYnC9+yZYvOnj2ryMhIHTt2TJ06ddKGDRtUoUIFff7556pZs2ZO470UiMOhBQsWOH0J9VdffSVfX1+FhYVp3759euWVV+Tn56f4+Hi5u7vrrbfe0rRp07R3716nZRUvXlzDhw9Xr1691Lx5c4WFhenjjz+25u/evVtVq1bV7t27VaVKFXl6emratGnq2LGj1WfixIkaPny4jh49etV4hw0bpuHDh2dpnzVrlnx9fW9qHwAAAAC48yUlJenpp5/WmTNn5O/vf92+Ob5CdvnVqOLFi2vp0qU5jzCbOnToYP1crVo1Va9eXeXKldOaNWv00EMP3bL1ZsegQYOcrqolJiYqJCREzZs3v+FOvx0CAuyO4MZ8fNI0eXKcunZtpuRkD7vDuaYzZ3J/ma6enzslNxL5ceX85MXcSOTHld0puZFyPz+unhvpzskP547r5ka6Nfm5GZl3z2VHjguyJk2aaP78+SpYsGCWlbZt21arVq3K6SKzrWzZsipatKh+++03PfTQQwoKCtKxY8ec+ly8eFEnT560njsLCgrKcpUrc/pGfa717Jp06dk2Ly+vLO0eHh7y8LD/QE1OtjuC7EtO9nDpk/tWpPNOyY+r50YiP66cn7ycG4n8uDJXz42U+/m5U3IjuX5+OHdcNzfSrcnPzchJPZDjURbXrFmT5cugJenChQv64Ycfcrq4HPnvf/+rEydOqESJEpKkiIgInT59Wlu3brX6rFq1ShkZGapXr57V5/vvv3e6jzMuLk6VKlVSoUKFrD4rV650WldcXJwiIiJu6fYAAAAAyNuyfYXs559/tn7evXu3jhw5Yk2np6dr6dKlKlmyZI5Wfu7cOf3222/W9P79+5WQkKDChQurcOHCGj58uNq1a6egoCDt27dPAwYMUPny5RUVFSVJqlKlilq0aKEePXpo0qRJSktLU0xMjDp06KDg4GBJ0tNPP63hw4erW7duGjhwoHbu3Knx48dr7Nix1nr79OmjRo0aafTo0WrdurW++uorbdmyxWlofAAAAADIbdkuyGrWrGl9OXOTJk2yzPfx8dEHH3yQo5Vv2bJFkZGR1nTmM1nR0dH66KOP9PPPP2vatGk6ffq0goOD1bx5c40YMcLpVsGZM2cqJiZGDz30kNzc3NSuXTu9//771vyAgAAtX75cvXv3Vp06dVS0aFENGTLE6bvKGjRooFmzZmnw4MF65ZVXVKFCBX3zzTe3ZNRIAAAAAMiU7YJs//79MsaobNmy+vHHH1WsWDFrnqenp4oXLy53d/ccrbxx48a63iCPy5Ytu+EyChcurFmzZl23T/Xq1W94O+UTTzyhJ5544obrAwAAAIDcku2CLDQ0VJKUkZFxy4IBAAAAgLwkx6MsStK+ffs0btw47dmzR5IUHh6uPn36qFy5crkaHAAAAADczXI8yuKyZcsUHh6uH3/8UdWrV1f16tW1adMmVa1aVXFxcbciRgAAAAC4K+X4CtnLL7+sfv366e23387SPnDgQDVr1izXggMAAACAu1mOr5Dt2bNH3bp1y9LetWtX7d69O1eCAgAAAIC8IMcFWbFixZSQkJClPSEhQcWLF8+NmAAAAAAgT8j2LYuvv/66XnrpJfXo0UPPPfecfv/9dzVo0ECStH79er3zzjvW94gBAAAAAG4s2wXZ8OHD1bNnT7322msqUKCARo8erUGDBkmSgoODNWzYML344ou3LFAAAAAAuNtkuyDL/AJnh8Ohfv36qV+/fjp79qwkqUCBArcmOgAAAAC4i+VolEWHw+E0TSEGAAAAADcvRwVZxYoVsxRlVzp58uQ/CggAAAAA8oocFWTDhw9XQEDArYoFAAAAAPKUHBVkHTp0YGh7AAAAAMgl2f4eshvdqggAAAAAyJlsF2SZoywCAAAAAHJHtm9ZzMjIuJVxAAAAAECek+0rZAAAAACA3EVBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANjE1oLs+++/V5s2bRQcHCyHw6FvvvnGab4xRkOGDFGJEiXk4+Ojpk2b6tdff3Xqc/LkST3zzDPy9/dXwYIF1a1bN507d86pz88//6wHH3xQ3t7eCgkJ0ahRo7LEMnfuXFWuXFne3t6qVq2aFi9enOvbCwAAAACXs7UgO3/+vGrUqKEJEyZcdf6oUaP0/vvva9KkSdq0aZPy58+vqKgoXbhwwerzzDPPaNeuXYqLi9PChQv1/fff67nnnrPmJyYmqnnz5goNDdXWrVv17rvvatiwYfrkk0+sPhs2bFDHjh3VrVs3bd++XW3btlXbtm21c+fOW7fxAAAAAPK8fHauvGXLlmrZsuVV5xljNG7cOA0ePFiPPvqoJGn69OkKDAzUN998ow4dOmjPnj1aunSpNm/erLp160qSPvjgA7Vq1UrvvfeegoODNXPmTKWmpmry5Mny9PRU1apVlZCQoDFjxliF2/jx49WiRQv1799fkjRixAjFxcXpww8/1KRJk27DngAAAACQF9lakF3P/v37deTIETVt2tRqCwgIUL169RQfH68OHTooPj5eBQsWtIoxSWratKnc3Ny0adMmPfbYY4qPj1fDhg3l6elp9YmKitI777yjU6dOqVChQoqPj1dsbKzT+qOiorLcQnm5lJQUpaSkWNOJiYmSpLS0NKWlpf3Tzf/HfHzsjuDGfHzSnP51Vbcina6enzslNxL5cWV5MTcS+XFld0pupNzPj6vnRrpz8sO549pc4NdwScpRPeCyBdmRI0ckSYGBgU7tgYGB1rwjR46oePHiTvPz5cunwoULO/UJCwvLsozMeYUKFdKRI0euu56rGTlypIYPH56lffny5fL19c3OJt5SX35pdwTZN3lynN0hXNeteJzwTsmPq+dGIj+uLC/nRiI/rszVcyPlfn7ulNxIrp8fzh3X5irDQCQlJWW7r8sWZK5u0KBBTlfVEhMTFRISoubNm8vf39/GyC4JCLA7ghvz8UnT5Mlx6tq1mZKTPewO55rOnMn9Zbp6fu6U3Ejkx5XzkxdzI5EfV3an5EbK/fy4em6kOyc/nDuumxvp1uTnZmTePZcdLluQBQUFSZKOHj2qEiVKWO1Hjx5VzZo1rT7Hjh1zet/Fixd18uRJ6/1BQUE6evSoU5/M6Rv1yZx/NV5eXvLy8srS7uHhIQ8P+w/U5GS7I8i+5GQPlz65b0U675T8uHpuJPLjyvnJy7mRyI8rc/XcSLmfnzslN5Lr54dzx3VzI92a/NyMnNQDLvs9ZGFhYQoKCtLKlSuttsTERG3atEkRERGSpIiICJ0+fVpbt261+qxatUoZGRmqV6+e1ef77793uo8zLi5OlSpVUqFChaw+l68ns0/megAAAADgVrC1IDt37pwSEhKUkJAg6dJAHgkJCTp48KAcDof69u2rN954Q99++6127NihTp06KTg4WG3btpUkValSRS1atFCPHj30448/av369YqJiVGHDh0UHBwsSXr66afl6empbt26adeuXZo9e7bGjx/vdLthnz59tHTpUo0ePVq//PKLhg0bpi1btigmJuZ27xIAAAAAeYittyxu2bJFkZGR1nRmkRQdHa2pU6dqwIABOn/+vJ577jmdPn1aDzzwgJYuXSpvb2/rPTNnzlRMTIweeughubm5qV27dnr//fet+QEBAVq+fLl69+6tOnXqqGjRohoyZIjTd5U1aNBAs2bN0uDBg/XKK6+oQoUK+uabb3TPPffchr0AAAAAIK+ytSBr3LixjDHXnO9wOPT666/r9ddfv2afwoULa9asWdddT/Xq1fXDDz9ct88TTzyhJ5544voBAwAAAEAuctlnyAAAAADgbkdBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANjEpQuyYcOGyeFwOL0qV65szb9w4YJ69+6tIkWKyM/PT+3atdPRo0edlnHw4EG1bt1avr6+Kl68uPr376+LFy869VmzZo1q164tLy8vlS9fXlOnTr0dmwcAAAAgj3PpgkySqlatqsOHD1uvdevWWfP69eun7777TnPnztXatWv1119/6fHHH7fmp6enq3Xr1kpNTdWGDRs0bdo0TZ06VUOGDLH67N+/X61bt1ZkZKQSEhLUt29fde/eXcuWLbut2wkAAAAg78lndwA3ki9fPgUFBWVpP3PmjD7//HPNmjVLTZo0kSRNmTJFVapU0caNG1W/fn0tX75cu3fv1ooVKxQYGKiaNWtqxIgRGjhwoIYNGyZPT09NmjRJYWFhGj16tCSpSpUqWrduncaOHauoqKjbuq0AAAAA8haXL8h+/fVXBQcHy9vbWxERERo5cqRKly6trVu3Ki0tTU2bNrX6Vq5cWaVLl1Z8fLzq16+v+Ph4VatWTYGBgVafqKgo9erVS7t27VKtWrUUHx/vtIzMPn379r1uXCkpKUpJSbGmExMTJUlpaWlKS0vLhS3/Z3x87I7gxnx80pz+dVW3Ip2unp87JTcS+XFleTE3EvlxZXdKbqTcz4+r50a6c/LDuePaXODXcEnKUT3gMMaYWxjLP7JkyRKdO3dOlSpV0uHDhzV8+HD9+eef2rlzp7777jt16dLFqSiSpPvuu0+RkZF655139Nxzz+mPP/5wuv0wKSlJ+fPn1+LFi9WyZUtVrFhRXbp00aBBg6w+ixcvVuvWrZWUlCSfa5whw4YN0/Dhw7O0z5o1S76+vrm0BwAAAADcaZKSkvT000/rzJkz8vf3v25fl75C1rJlS+vn6tWrq169egoNDdWcOXOuWSjdLoMGDVJsbKw1nZiYqJCQEDVv3vyGO/12CAiwO4Ib8/FJ0+TJceratZmSkz3sDueazpzJ/WW6en7ulNxI5MeV85MXcyORH1d2p+RGyv38uHpupDsnP5w7rpsb6dbk52Zk3j2XHS5dkF2pYMGCqlixon777Tc1a9ZMqampOn36tAoWLGj1OXr0qPXMWVBQkH788UenZWSOwnh5nytHZjx69Kj8/f2vW/R5eXnJy8srS7uHh4c8POw/UJOT7Y4g+5KTPVz65L4V6bxT8uPquZHIjyvnJy/nRiI/rszVcyPlfn7ulNxIrp8fzh3XzY10a/JzM3JSD7j8KIuXO3funPbt26cSJUqoTp068vDw0MqVK635e/fu1cGDBxURESFJioiI0I4dO3Ts2DGrT1xcnPz9/RUeHm71uXwZmX0ylwEAAAAAt4pLF2QvvfSS1q5dqwMHDmjDhg167LHH5O7uro4dOyogIEDdunVTbGysVq9era1bt6pLly6KiIhQ/fr1JUnNmzdXeHi4nn32Wf30009atmyZBg8erN69e1tXt3r27Knff/9dAwYM0C+//KKJEydqzpw56tevn52bDgAAACAPcOlbFv/73/+qY8eOOnHihIoVK6YHHnhAGzduVLFixSRJY8eOlZubm9q1a6eUlBRFRUVp4sSJ1vvd3d21cOFC9erVSxEREcqfP7+io6P1+uuvW33CwsK0aNEi9evXT+PHj1epUqX02WefMeQ9AAAAgFvOpQuyr7766rrzvb29NWHCBE2YMOGafUJDQ7V48eLrLqdx48bavn37TcUIAAAAADfLpW9ZBAAAAIC7GQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANiEggwAAAAAbEJBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKsitMmDBBZcqUkbe3t+rVq6cff/zR7pAAAAAA3KUoyC4ze/ZsxcbGaujQodq2bZtq1KihqKgoHTt2zO7QAAAAANyFKMguM2bMGPXo0UNdunRReHi4Jk2aJF9fX02ePNnu0AAAAADchfLZHYCrSE1N1datWzVo0CCrzc3NTU2bNlV8fHyW/ikpKUpJSbGmz5w5I0k6efKk0tLSbn3AN+DtbXcEN+btnaakpCR5e5+QMR52h3NNJ07k/jJdPT93Sm4k8uPK+cmLuZHIjyu7U3Ij5X5+XD030p2TH84d182NdGvyczPOnj0rSTLG3LCvw2SnVx7w119/qWTJktqwYYMiIiKs9gEDBmjt2rXatGmTU/9hw4Zp+PDhtztMAAAAAHeIQ4cOqVSpUtftwxWymzRo0CDFxsZa0xkZGTp58qSKFCkih8NhY2R3jsTERIWEhOjQoUPy9/e3Oxxchty4NvLj2siP6yI3ro38uC5yk3PGGJ09e1bBwcE37EtB9n+KFi0qd3d3HT161Kn96NGjCgoKytLfy8tLXl5eTm0FCxa8lSHetfz9/Tm5XRS5cW3kx7WRH9dFblwb+XFd5CZnAgICstWPQT3+j6enp+rUqaOVK1dabRkZGVq5cqXTLYwAAAAAkFu4QnaZ2NhYRUdHq27durrvvvs0btw4nT9/Xl26dLE7NAAAAAB3IQqyyzz11FM6fvy4hgwZoiNHjqhmzZpaunSpAgMD7Q7truTl5aWhQ4dmufUT9iM3ro38uDby47rIjWsjP66L3NxajLIIAAAAADbhGTIAAAAAsAkFGQAAAADYhIIMAAAAAGxCQQaX53A49M0339gdxh1tzZo1cjgcOn36tK1x5LVcusp+z1SmTBmNGzfO7jDuCjc6lg8cOCCHw6GEhITbFhNujc6dO6tt27Z2h5HnDRs2TDVr1rQ7DFwD+flnKMjgxOFwXPc1bNgwu0O8q0yaNEkFChTQxYsXrbZz587Jw8NDjRs3duqb+cv9vn37bnOUuBrOlbtL586dr5rH33777ar9Dx8+rJYtW97mKO8+x48fV69evVS6dGl5eXkpKChIUVFRWr9+fbbeP3XqVBUsWPDWBgkn/zRnyH2Zn189e/bMMq93795yOBzq3Lnz7Q8M2caw93By+PBh6+fZs2dryJAh2rt3r9Xm5+dnR1h3rcjISJ07d05btmxR/fr1JUk//PCDgoKCtGnTJl24cEHe3t6SpNWrV6t06dIqV66cnSHj/2TnXNmyZcstWXdqaqo8PT1vybLzshYtWmjKlClObcWKFXOaztz3QUFBtzO0u1a7du2UmpqqadOmqWzZsjp69KhWrlypEydO3PZY0tLS5OHhcdvXe6dxpZzh/wsJCdFXX32lsWPHysfHR5J04cIFzZo1S6VLl7Y5OtwIV8jgJCgoyHoFBATI4XBY05MmTdIDDzzg1H/cuHEqU6aMU9tnn32mKlWqyNvbW5UrV9bEiROteampqYqJiVGJEiXk7e2t0NBQjRw50pr/66+/qmHDhvL29lZ4eLji4uKyxDhw4EBVrFhRvr6+Klu2rF577TWlpaVJunSbkJubW5ZfhMeNG6fQ0FBlZGT8012UqypVqqQSJUpozZo1VtuaNWv06KOPKiwsTBs3bnRqj4yMVEZGhkaOHKmwsDD5+PioRo0amjdvntNyFy9erIoVK8rHx0eRkZE6cOCA0/zMvyovW7ZMVapUkZ+fn1q0aOFUZEjk8nqud64EBQU5/fFi69atqlu3rnx9fdWgQQOnwu1qt0P17dvX6Qpp48aNFRMTo759+6po0aKKioqSMUbDhg2z/kodHBysF1980XrPsWPH1KZNG/n4+CgsLEwzZ87Msg1jxoxRtWrVlD9/foWEhOj555/XuXPnJEnnz5+Xv79/lmPrm2++Uf78+XX27Nl/svtcUuZf+y9/PfTQQ1n2vZT1lsUff/xRtWrVkre3t+rWravt27c7LTs9PV3dunWzzttKlSpp/Pjx1vzvv/9eHh4eOnLkiNP7+vbtqwcffPDWbbSNTp8+rR9++EHvvPOOIiMjFRoaqvvuu0+DBg3SI488Iun6x+iaNWvUpUsXnTlzJsuV6avdUlqwYEFNnTpV0v+/pXT27Nlq1KiRvL29NXPmTKWnpys2NlYFCxZUkSJFNGDAAF357UBLly7VAw88YPV5+OGHne5caNKkiWJiYpzec/z4cXl6emrlypW5uAdvvxvl7Gq36p4+fVoOh8P6fy7zbo+VK1de83NRkt5++20FBgaqQIEC6tatmy5cuOA0f/PmzWrWrJmKFi2qgIAANWrUSNu2bbPmd+3aVQ8//LDTe9LS0lS8eHF9/vnnubtjXEDt2rUVEhKi+fPnW23z589X6dKlVatWLastJSVFL774oooXLy5vb2898MAD2rx5szWf/NiDggy5aubMmRoyZIjefPNN7dmzR2+99ZZee+01TZs2TZL0/vvv69tvv9WcOXO0d+9ezZw50yroMjIy9Pjjj8vT01ObNm3SpEmTNHDgwCzrKFCggKZOnardu3dr/Pjx+vTTTzV27FhJl56Radq0aZa/ck+ZMkWdO3eWm5vrHfKRkZFavXq1Nb169Wo1btxYjRo1stqTk5O1adMmRUZGauTIkZo+fbomTZqkXbt2qV+/fvrXv/6ltWvXSpIOHTqkxx9/XG3atFFCQoK6d++ul19+Oct6k5KS9N5772nGjBn6/vvvdfDgQb300kvWfHKZe1599VWNHj1aW7ZsUb58+dS1a9ccL2PatGny9PTU+vXrNWnSJH399dcaO3asPv74Y/3666/65ptvVK1aNat/586ddejQIa1evVrz5s3TxIkTdezYMadlurm56f3339euXbs0bdo0rVq1SgMGDJAk5c+fXx06dLjq/m/fvr0KFChwE3viznTlvr/SuXPn9PDDDys8PFxbt27VsGHDnM4l6dI5UapUKc2dO1e7d+/WkCFD9Morr2jOnDmSpIYNG6ps2bKaMWOG9Z60tDTNnDnzpo6XO4Gfn5/8/Pz0zTffKCUl5ap9rneMNmjQQOPGjZO/v78OHz6sw4cPZ9nvN/Lyyy+rT58+2rNnj6KiojR69GhNnTpVkydP1rp163Ty5EktWLDA6T3nz59XbGystmzZopUrV8rNzU2PPfaY9Uei7t27a9asWU7b9MUXX6hkyZJq0qRJjuJzNdnJWXZd73Nxzpw5GjZsmN566y1t2bJFJUqUcPqDoCSdPXtW0dHRWrdunTZu3KgKFSqoVatW1h+LunfvrqVLlzr9oXHhwoVKSkrSU0899Y9id1Vdu3Z1+syePHmyunTp4tRnwIAB+vrrrzVt2jRt27ZN5cuXV1RUlE6ePOnUj/zcZga4hilTppiAgABreujQoaZGjRpOfcaOHWtCQ0Ot6XLlyplZs2Y59RkxYoSJiIgwxhjzwgsvmCZNmpiMjIws61u2bJnJly+f+fPPP622JUuWGElmwYIF14zz3XffNXXq1LGmZ8+ebQoVKmQuXLhgjDFm69atxuFwmP37999gi+3x6aefmvz585u0tDSTmJho8uXLZ44dO2ZmzZplGjZsaIwxZuXKlUaSOXDggPH19TUbNmxwWka3bt1Mx44djTHGDBo0yISHhzvNHzhwoJFkTp06ZYy5lFtJ5rfffrP6TJgwwQQGBlrT5DL7rjxXMq1evdpIMitWrLDaFi1aZCSZ5ORkY4wx0dHR5tFHH3V6X58+fUyjRo2s6UaNGplatWo59Rk9erSpWLGiSU1NzbLevXv3Gknmxx9/tNr27NljJJmxY8deczvmzp1rihQpYk1v2rTJuLu7m7/++ssYY8zRo0dNvnz5zJo1a665jDtVdHS0cXd3N/nz57de7du3v+q+N8Y4Hcsff/yxKVKkiJVTY4z56KOPjCSzffv2a66zd+/epl27dtb0O++8Y6pUqWJNf/3118bPz8+cO3fun2+gi5o3b54pVKiQ8fb2Ng0aNDCDBg0yP/300zX7X3mMXuvcu9pnTUBAgJkyZYoxxpj9+/cbSWbcuHFOfUqUKGFGjRplTaelpZlSpUplOUcvd/z4cSPJ7NixwxhjTHJysilUqJCZPXu21ad69epm2LBh11zGneR6Ocvcr5cf96dOnTKSzOrVq40x2ftcjIiIMM8//7zTeuvVq5fld5DLpaenmwIFCpjvvvvOagsPDzfvvPOONd2mTRvTuXPnm910l5X5/8ixY8eMl5eXOXDggDlw4IDx9vY2x48fN48++qiJjo42586dMx4eHmbmzJnWe1NTU01wcLB13JMfe9w5f2KGyzt//rz27dunbt26WX9F8/Pz0xtvvGHdztG5c2clJCSoUqVKevHFF7V8+XLr/Xv27FFISIiCg4OttoiIiCzrmT17tu6//37rtrDBgwfr4MGD1vy2bdvK3d3d+qvm1KlTFRkZmeXWSlfRuHFjnT9/Xps3b9YPP/ygihUrqlixYmrUqJH1HNmaNWtUtmxZnTt3TklJSWrWrJnTPp4+fbq1j/fs2aN69eo5reNq+9HX19fpebQSJUpYV1DIZe6qXr269XOJEiUkKcvVqhupU6eO0/QTTzyh5ORklS1bVj169NCCBQuswWH27NmjfPnyOb2ncuXKWQY/WLFihR566CGVLFlSBQoU0LPPPqsTJ04oKSlJknTfffepatWq1lXRL774QqGhoWrYsGGOYr9TREZGKiEhwXq9//77krLu+yvt2bNH1atXt573lK5+vE+YMEF16tRRsWLF5Ofnp08++cTpeO/cubN+++0361blqVOn6sknn1T+/PlzY/NcUrt27fTXX3/p22+/VYsWLbRmzRrVrl3burXwRsfoP1W3bl3r5zNnzujw4cNOn5/58uVz6iNduh27Y8eOKlu2rPz9/a3Po8xcent769lnn9XkyZMlSdu2bdPOnTvvmkEVbpSz7Lre52J2/h87evSoevTooQoVKiggIED+/v46d+6c0znVvXt364rR0aNHtWTJkrv2irN06ZnX1q1ba+rUqZoyZYpat26tokWLWvP37duntLQ03X///Vabh4eH7rvvPu3Zs8dpWeTn9qIgQ7a5ublluZc+83kfSdZ9/Z9++qnTLzU7d+60fsGoXbu29u/frxEjRig5OVlPPvmk2rdvn+0Y4uPj9cwzz6hVq1ZauHChtm/frldffVWpqalWH09PT3Xq1ElTpkxRamqqZs2a5dInePny5VWqVCmtXr1aq1evVqNGjSRJwcHBCgkJ0YYNG7R69Wo1adLE2seLFi1y2se7d+/O8qzPjVz58LrD4bDySy5z1+X72uFwSJJ1e9ONzqtMV/5SHhISor1792rixIny8fHR888/r4YNG171vVdz4MABPfzww6pevbq+/vprbd26VRMmTJAkpxx0797d+kVrypQp6tKli7UNd5v8+fOrfPny1ivzl5DcKIi++uorvfTSS+rWrZuWL1+uhIQEdenSxWlfFy9eXG3atNGUKVPy1C8n3t7eatasmV577TVt2LBBnTt31tChQ7N9jF7N5Z9nmbJzXmVHmzZtdPLkSX366afatGmTNm3alCWm7t27Ky4uTv/97381ZcoUNWnSRKGhoTlel6u6Vs4ybyW/fN9f6zPpep+L2REdHa2EhASNHz9eGzZsUEJCgooUKeKUh06dOun3339XfHy8vvjiC4WFhd21z2Rm6tq1q6ZOnapp06b9o88P8nN7Mcoisq1YsWI6cuSIjDHWyXn5g7uBgYEKDg7W77//rmeeeeaay/H399dTTz2lp556Su3bt1eLFi108uRJValSRYcOHdLhw4etX4QuH9RCkjZs2KDQ0FC9+uqrVtsff/yRZR3du3fXPffco4kTJ+rixYt6/PHH/8mm33KRkZFas2aNTp06pf79+1vtDRs21JIlS/Tjjz+qV69eCg8Pl5eXlw4ePGgVbleqUqWKvv32W6e2K/fjjZDL26dYsWLauXOnU1tCQkK2Rnvz8fFRmzZt1KZNG/Xu3VuVK1fWjh07VLlyZV28eFFbt27VvffeK0nau3ev0/ehbd26VRkZGRo9erT1S1Tm80yX+9e//qUBAwbo/fff1+7duxUdHf0PtvbuVKVKFc2YMcNpVNQrj/f169erQYMGev755622q32FRffu3dWxY0eVKlVK5cqVc/pLdl4RHh6ub775JlvHqKenp9LT07Mso1ixYk7Ppvz66683vKoWEBCgEiVKaNOmTdZV4MzzqHbt2pKkEydOaO/evfr000+tXxzXrVuXZVnVqlVT3bp19emnn2rWrFn68MMPc7AH7jyZOcsclfTw4cPWQBI38118VapU0aZNm9SpUyer7Wrn1MSJE9WqVStJl56f/vvvv536FClSRG3bttWUKVMUHx+f5Xmqu1GLFi2Umpoqh8NhDUKUqVy5ctbzsJl/IEhLS9PmzZvVt2/fbK+D/OQ+CjJkW+PGjXX8+HGNGjVK7du319KlS7VkyRL5+/tbfYYPH64XX3xRAQEBatGihVJSUrRlyxadOnVKsbGxGjNmjEqUKKFatWrJzc1Nc+fOVVBQkAoWLKimTZuqYsWKio6O1rvvvqvExESnX9YlqUKFCjp48KC++uor3XvvvVq0aFGWB66lSx8W9evX18CBA9W1a1drCFhXFRkZqd69eystLc2p0GrUqJFiYmKUmpqqyMhIFShQQC+99JL69eunjIwMPfDAAzpz5ozWr18vf39/RUdHq2fPnho9erT69++v7t27a+vWrTm+lUQil7dLkyZN9O6772r69OmKiIjQF198oZ07dzqNinU1U6dOVXp6uurVqydfX1998cUX8vHxUWhoqIoUKaIWLVrof/7nf/TRRx8pX7586tu3r9O+K1++vNLS0vTBBx+oTZs21xywolChQnr88cfVv39/NW/eXKVKlcr1fXCne/rpp/Xqq6+qR48eGjRokA4cOKD33nvPqU+FChU0ffp0LVu2TGFhYZoxY4Y2b96ssLAwp35RUVHy9/fXG2+8oddff/12bsZtd+LECT3xxBPq2rWrqlevrgIFCmjLli0aNWqUHn300Wwdo2XKlNG5c+e0cuVK1ahRQ76+vvL19VWTJk304YcfKiIiQunp6Ro4cGC2/sjRp08fvf3226pQoYIqV66sMWPGOP0ho1ChQipSpIg++eQTlShRQgcPHrzqoEnSpeI6JiZG+fPn12OPPfaP9pWruFHOfHx8VL9+fb399tsKCwvTsWPHNHjw4Byvp0+fPurcubPq1q2r+++/XzNnztSuXbtUtmxZq0+FChU0Y8YM1a1bV4mJierfv/9V/3/o3r27Hn74YaWnp+eJPyi5u7tbtx+6u7s7zcufP7969eql/v37q3DhwipdurRGjRqlpKQkdevWLdvrID+3gJ0PsMG1Xe1h6Y8++siEhISY/Pnzm06dOpk333zTaVAPY4yZOXOmqVmzpvH09DSFChUyDRs2NPPnzzfGGPPJJ5+YmjVrmvz58xt/f3/z0EMPmW3btlnv3bt3r3nggQeMp6enqVixolm6dGmWh7P79+9vihQpYvz8/MxTTz1lxo4de9WHuj///PMsAxu4qswHoStXruzUfuDAASPJVKpUyWrLyMgw48aNM5UqVTIeHh6mWLFiJioqyqxdu9bq891335ny5csbLy8v8+CDD5rJkydnGdTjyn22YMECc+VHArnMnhsN6pG5340xZvv27UaS08AkQ4YMMYGBgSYgIMD069fPxMTEZBnUo0+fPk7LXrBggalXr57x9/c3+fPnN/Xr13d6CPvw4cOmdevWxsvLy5QuXdpMnz7dhIaGOg3qMWbMGFOiRAnj4+NjoqKizPTp07PEa8z/H1Rmzpw5N7F37gxXG1zFmKvve2OyDhoRHx9vatSoYTw9PU3NmjXN119/7TS4wYULF0znzp1NQECAKViwoOnVq5d5+eWXr/oQ/GuvveY0mMrd6sKFC+bll182tWvXNgEBAcbX19dUqlTJDB482CQlJRljsneM9uzZ0xQpUsRIMkOHDjXGGPPnn3+a5s2bm/z585sKFSqYxYsXX3VQjysHXUlLSzN9+vQx/v7+pmDBgiY2NtZ06tTJ6diIi4szVapUMV5eXqZ69epmzZo1Vx1E5OzZs8bX1zfL4Ad3suzkbPfu3SYiIsL4+PiYmjVrmuXLl191UI8bfS6++eabpmjRosbPz89ER0ebAQMGOJ0v27ZtM3Xr1jXe3t6mQoUKZu7cuVk+44y59H9maGioadWq1S3aK/a71udXpsxBPYy5NOjMCy+8YIoWLWq8vLzM/fff7/R/K/mxh8OYK26yBu4SI0aM0Ny5c/Xzzz/bHQr+IXJprxkzZqhfv37666+/+ELq26Bbt246fvx4lluPcWc5cOCAypUrp82bN1u3POL2O3funEqWLKkpU6bcdbe83w3IzyXcsoi7zrlz53TgwAF9+OGHeuONN+wOB/8AubRXUlKSDh8+rLffflv/8z//QzF2i505c0Y7duzQrFmzKMbuYGlpaTpx4oQGDx6s+vXrU4zZJCMjQ3///bdGjx6tggULWl82DtdAfpwxyiLuOjExMapTp44aN26cJ0You5uRS3uNGjVKlStXVlBQkAYNGmR3OHe9Rx99VM2bN1fPnj3VrFkzu8PBTVq/fr1KlCihzZs3X/W5TNweBw8eVGBgoGbNmqXJkycrXz6uQbgS8uOMWxYBAAAAwCZcIQMAAAAAm1CQAQAAAIBNKMgAAAAAwCYUZAAAAABgEwoyAAAAALAJBRkAAP9Q48aN1bdvX7vDAADcgSjIAAB3hUmTJqlAgQK6ePGi1Xbu3Dl5eHiocePGTn3XrFkjh8Ohffv23eYoLzlw4IAcDof1KlCggKpWrarevXvr119/tSUmAIA9KMgAAHeFyMhInTt3Tlu2bLHafvjhBwUFBWnTpk26cOGC1b569WqVLl1a5cqVsyNUy4oVK3T48GH99NNPeuutt7Rnzx7VqFFDK1eutDUuAMDtQ0EGALgrVKpUSSVKlNCaNWustjVr1ujRRx9VWFiYNm7c6NQeGRkpScrIyNDIkSMVFhYmHx8f1ahRQ/PmzXNa9s6dO9WyZUv5+fkpMDBQzz77rP7+++9rxrJo0SIFBARo5syZ1425SJEiCgoKUtmyZfXoo49qxYoVqlevnrp166b09HRJ0r59+/Too48qMDBQfn5+uvfee7VixQprGa+//rruueeeLMuuWbOmXnvtteuuHwBgPwoyAMBdIzIyUqtXr7amV69ercaNG6tRo0ZWe3JysjZt2mQVZCNHjtT06dM1adIk7dq1S/369dO//vUvrV27VpJ0+vRpNWnSRLVq1dKWLVu0dOlSHT16VE8++eRVY5g1a5Y6duyomTNn6plnnslR/G5uburTp4/++OMPbd26VdKl2y5btWqllStXavv27WrRooXatGmjgwcPSpK6du2qPXv2aPPmzdZytm/frp9//lldunTJ0foBALefwxhj7A4CAIDc8Nlnn6lv3746ffq0kpOTVbhwYf31119asWKFJk2apLVr12rVqlV66KGH9McffygwMFCFCxfWihUrFBERYS2ne/fuSkpK0qxZs/TGG2/ohx9+0LJly6z5//3vfxUSEqK9e/eqYsWKaty4sWrWrKkKFSro1Vdf1b///W81atTomnEeOHBAYWFh2r59u2rWrOk075dfflGVKlU0e/bsaxZ999xzj3r27KmYmBhJUqtWrVSmTBlNnDhRkvTiiy9qx44dTsUpAMA15bM7AAAAckvjxo11/vx5bd68WadOnVLFihVVrFgxNWrUSF26dNGFCxe0Zs0alS1bVqVLl9auXbuUlJSkZs2aOS0nNTVVtWrVkiT99NNPWr16tfz8/LKsb9++fapYsaIkad68eTp27JjWr1+ve++996a3IfPvpA6HQ9KlK2TDhg3TokWLdPjwYV28eFHJycnWFTJJ6tGjh7p27aoxY8bIzc1Ns2bN0tixY286BgDA7UNBBgC4a5QvX16lSpXS6tWrderUKesqVXBwsEJCQrRhwwatXr1aTZo0kXSp2JEuPfNVsmRJp2V5eXlZfdq0aaN33nkny/pKlChh/VyrVi1t27ZNkydPVt26da2CKqf27NkjSQoLC5MkvfTSS4qLi9N7772n8uXLy8fHR+3bt1dqaqr1njZt2sjLy0sLFiyQp6en0tLS1L59+5taPwDg9qIgAwDcVSIjI7VmzRqdOnVK/fv3t9obNmyoJUuW6Mcff1SvXr0kSeHh4fLy8tLBgweveYth7dq19fXXX6tMmTLKl+/a/22WK1dOo0ePVuPGjeXu7q4PP/wwx7FnZGTo/fffV1hYmHWFbv369ercubMee+wxSZcKxAMHDji9L1++fIqOjtaUKVPk6empDh06yMfHJ8frBwDcfhRkAIC7SmRkpHr37q20tDSnIqtRo0aKiYlRamqqNaBHgQIF9NJLL6lfv37KyMjQAw88oDNnzmj9+vXy9/dXdHS0evfurU8//VQdO3bUgAEDVLhwYf3222/66quv9Nlnn8nd3d1aR8WKFa2BRPLly6dx48ZdN9YTJ07oyJEjSkpK0s6dOzVu3Dj9+OOPWrRokbXcChUqaP78+WrTpo0cDodee+01ZWRkZFlW9+7dVaVKFUmXijgAwJ2BggwAcFeJjIxUcnKyKleurMDAQKu9UaNGOnv2rDU8fqYRI0aoWLFiGjlypH7//XcVLFhQtWvX1iuvvCLp0u2O69ev18CBA9W8eXOlpKQoNDRULVq0kJtb1sGKK1WqpFWrVllXykaPHn3NWJs2bSpJ8vX1VWhoqCIjI/XJJ5+ofPnyVp8xY8aoa9euatCggYoWLaqBAwcqMTExy7IqVKigBg0a6OTJk6pXr17OdxwAwBaMsggAwF3AGKMKFSro+eefV2xsrN3hAACyiStkAADc4Y4fP66vvvpKR44c4bvHAOAOQ0EGAMAdrnjx4ipatKg++eQTFSpUyO5wAAA5QEEGAMAdjqcPAODOlfVpZAAAAADAbUFBBgAAAAA2oSADAAAAAJtQkAEAAACATSjIAAAAAMAmFGQAAAAAYBMKMgAAAACwCQUZAAAAANjk/wGk6OXAHJHQZgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10,5))\n", + "plt.bar(daily_activity.WeekDay, daily_activity.TotalSteps, \n", + " color = \"b\")\n", + "plt.xlabel(\"Week Day\")\n", + "plt.ylabel(\"Total Steps Taken\")\n", + "plt.title(\"Total Steps Taken by Day of the Week\")\n", + "plt.grid()\n", + "\n", + "save_path = '../Images/total_steps_taken_by_day_of_the_week.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "5e770d90", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHDCAYAAAAKmqQIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT1klEQVR4nO3df3xPdeP/8ed7v2e838uPbZYREdZFRDFEfmQKF18kLjFCV5qESLuKuvrhVyGukitXza/5JBVJUciPYhZKlyRRNMU20TYj22yv7x/ddi5vm2yMvTmP++12bre9z3mdc17nvM557/18n3Neb4cxxggAAAAArnFeZV0BAAAAALgSCD8AAAAAbIHwAwAAAMAWCD8AAAAAbIHwAwAAAMAWCD8AAAAAbIHwAwAAAMAWCD8AAAAAbIHwAwAAAMAWCD8ArikbNmyQw+HQhg0bSmV5AwcO1A033FAqy/JEBw8elMPh0Lx588q6Kiglq1evVqNGjRQQECCHw6H09PRLWl7BOfXOO++UTgWvEnbdbuBaR/gBcMkcDkexhuIEkokTJ2r58uVXTX3L0kcffSSHw6Hw8HDl5+eXdXUum4IPoWcPFStWVPPmzZWQkFCq67rzzjutdXh5ecnpdKpu3brq37+/1qxZU6rruhyOHTum3r17KzAwUK+++qoWLlyooKCgQuU87RxIS0uTw+HQo48+Wmjao48+KofDoaeffrrQtAEDBsjX11enTp26EtUEcA3wKesKALj6LVy40O31ggULtGbNmkLj69evf8FlTZw4Ub169VL37t1Ls4puSlLfuXPnemywSEhI0A033KCDBw/q008/VYcOHcq6SpfViBEjdNttt0n640P+kiVLdP/99ys9PV2xsbGltp5q1app0qRJkqSTJ09q//79eu+997Ro0SL17t1bixYtkq+vb6mtrzRt27ZNJ06c0HPPPfenx0NJzoE9e/ZclrqeLSQkRHXq1NHnn39eaNrmzZvl4+OjzZs3FzmtcePGKleu3GWvI4BrA+EHwCW7//773V5v3bpVa9asKTTeU1xt9S3KyZMn9f7772vSpEmKj49XQkLCNR9+7rjjDvXq1ct6PWzYMNWqVUuLFy8u1fDjcrkKHQuTJ0/WiBEjNHv2bN1www2aMmVKqa2vNKWlpUmSgoOD/7RcSc6BKxF+JKlVq1ZasGCBsrKyVL58eUl/HOdff/21evfurRUrVigvL0/e3t6SpCNHjujHH39Ut27drkj9AFwbuO0NwBVx8uRJPfbYY4qIiJC/v7/q1q2rl156ScYYq4zD4dDJkyc1f/5867abgQMHSpJ++uknPfzww6pbt64CAwNVqVIl3XvvvTp48OBlrfe5z/wUPCPz0ksv6dVXX1WtWrVUrlw5dezYUYcOHZIxRs8995yqVaumwMBAdevWTcePHy+03FWrVumOO+5QUFCQKlSooM6dO2v37t3FrteyZcv0+++/695771WfPn303nvv6fTp04XKrVmzRq1atVJwcLDKly+vunXr6h//+McFl//dd9+pV69eqlixogICAtS0aVOtWLGiULn09HSNHDnSatfatWtrypQpblfLzt5nM2bMUI0aNRQYGKg2bdrom2++KfY2n8vPz0/XXXedfHz+9z1emzZtdMsttxRZvm7duoqOjr6odXl7e2vWrFmKjIzUK6+8ooyMDGtafHy82rVrp5CQEPn7+ysyMlKvvfaa2/wxMTGqXLmycnNzCy27Y8eOqlu37gXrsHTpUjVp0kSBgYGqXLmy7r//fv3yyy/W9DvvvFMxMTGSpNtuu83t/CkN+fn5euGFF1StWjUFBASoffv22r9/f6FySUlJ6tSpk1wul8qVK6c2bdoUedXmXK1atVJeXp62bt3qtqwzZ85ozJgxysrK0s6dO61pBcts1apVidf9yy+/6IEHHlBoaKj8/f118803680337xgHbOzs9WlSxe5XC5t2bLlguUBeB7CD4DLzhijv/71r5oxY4Y6deqk6dOnq27duho7dqxGjx5tlVu4cKH8/f11xx13aOHChVq4cKH+/ve/S/rjdp4tW7aoT58+mjVrlh566CGtW7dOd955Z5nc75+QkKDZs2frkUce0WOPPaaNGzeqd+/eeuqpp7R69WqNGzdODz74oD744AONGTPGbd6FCxeqc+fOKl++vKZMmaLx48fr22+/VatWrYod5hISEtS2bVuFhYWpT58+OnHihD744AO3Mrt371aXLl2UnZ2tZ599VtOmTdNf//rXC34Q3b17t5o3b649e/boiSee0LRp0xQUFKTu3btr2bJlVrlTp06pTZs2WrRokQYMGKBZs2apZcuWiouLc2vXAgsWLNCsWbMUGxuruLg4ffPNN2rXrp1SU1OLtc0nTpzQr7/+ql9//VXff/+9nnnmGX3zzTfWB35J6t+/v/773/8WClXbtm3T999/f0lX97y9vdW3b1+dOnXK7fas1157TTVq1NA//vEPTZs2TREREXr44Yf16quvutXr2LFj+vjjj92WmZKSok8//fSC9Zo3b5569+4tb29vTZo0SUOHDtV7772nVq1aWR0aPPnkk3rwwQclSc8++6zb+VMaJk+erGXLlmnMmDGKi4vT1q1b1a9fP7cyn376qVq3bq3MzEw9/fTTmjhxotLT09WuXTt98cUXf7r8ghBz9r7dvHmzbrrpJjVu3FjVqlVzO3bPDT/FXXdqaqqaN2+utWvXavjw4Zo5c6Zq166twYMH6+WXXz5v/X7//Xd17dpVW7Zs0dq1a9WiRYvi7TgAnsUAQCmLjY01Z7+9LF++3Egyzz//vFu5Xr16GYfDYfbv32+NCwoKMjExMYWWeerUqULjEhMTjSSzYMECa9z69euNJLN+/fqLru/ZYmJiTI0aNazXBw4cMJJMlSpVTHp6ujU+Li7OSDK33HKLyc3Ntcb37dvX+Pn5mdOnTxtjjDlx4oQJDg42Q4cOdVtPSkqKcblchcYXJTU11fj4+Ji5c+da41q0aGG6devmVm7GjBlGkjl69Oh5l1WwPfHx8da49u3bmwYNGlh1NsaY/Px806JFC1OnTh1r3HPPPWeCgoLM999/77bMJ554wnh7e5vk5GS3dQQGBpqff/7ZKpeUlGQkmVGjRv3p9ha06bmDl5eXeeGFF9zKpqenm4CAADNu3Di38SNGjDBBQUEmKyvrT9fVpk0bc/PNN593+rJly4wkM3PmTGtcUcdmdHS0qVWrlvU6Ly/PVKtWzdx3331u5aZPn24cDof58ccfz7vOnJwcExISYv7yl7+Y33//3Rq/cuVKI8lMmDDBGhcfH28kmW3btv3pdp7rz86Bgv1fv359k52dbY2fOXOmkWR27dpljPnjGKlTp46Jjo42+fn5VrlTp06ZmjVrmrvuuuuC9QgJCTHt27e3XkdHR5tBgwYZY4zp3bu3uffee61pTZs2tY7Hkqx78ODBpmrVqubXX391W3efPn2My+Wy2rNgu5cuXWpOnDhh2rRpYypXrmy++uqrC24HAM/FlR8Al91HH30kb29vjRgxwm38Y489JmOMVq1adcFlBAYGWn/n5ubq2LFjql27toKDg/Xll1+Wep0v5N5775XL5bJeN2vWTNIfz1KcfRtWs2bNlJOTY92etGbNGqWnp6tv377WVYxff/1V3t7eatasmdavX3/Bdb/11lvy8vJSz549rXF9+/bVqlWr9Ntvv1njCp77eP/994vdacPx48f16aefqnfv3m5XWo4dO6bo6Gjt27fP2palS5fqjjvu0HXXXee2LR06dFBeXp42bdrktuzu3bvr+uuvt17ffvvtatasmT766KNi1W3ChAlas2aN1qxZoyVLlqhv37568sknNXPmTKuMy+VSt27d9H//93/WLZV5eXlasmSJunfvXmTPZyVR8CzKiRMnrHFnH5sZGRn69ddf1aZNG/3444/W7XFeXl7q16+fVqxY4TZvQkKCWrRooZo1a553ndu3b1daWpoefvhhBQQEWOM7d+6sevXq6cMPP7ykbSquQYMGyc/Pz3p9xx13SJJ+/PFHSdLOnTu1b98+/e1vf9OxY8es4+HkyZNq3769Nm3adMHjsGXLlkpKSlJeXp7y8/O1detW6wpLy5Ytras9p06d0s6dO62rPsVdtzFG7777rrp27SpjjNtxGx0drYyMjELvJxkZGerYsaO+++47bdiwQY0aNSqV/QmgbNDhAYDL7qefflJ4eLgqVKjgNr6g97effvrpgsv4/fffrYf7f/nlF7dnhc5+/uJKqV69utvrgiAUERFR5PiCULJv3z5JUrt27YpcrtPpvOC6Fy1apNtvv13Hjh3TsWPHJEmNGzdWTk6Oli5dat36dN999+k///mPhgwZoieeeELt27dXjx491KtXL3l5Ff3d1/79+2WM0fjx4zV+/Pgiy6Slpen666/Xvn379N///ldVqlQ5b7mz1alTp1CZm266SW+//fYFt1mSGjRo4NapQ+/evZWRkaEnnnhCf/vb36x6DBgwQEuWLNFnn32m1q1ba+3atUpNTVX//v2LtZ4/k5WVJUlux/LmzZv19NNPKzExsdAtmBkZGdYxMGDAAE2ZMkXLli3TgAEDtHfvXu3YsUNz5sz503UWnB9FPRdUr169IntIuxzOPeavu+46SYWP7bNvQzxXRkaGNV9RWrVqpWXLlmnnzp3y9fVVRkaGWrZsKUlq0aKFDh8+rIMHD+rAgQM6c+aMFX6Ku+7c3Fylp6fr9ddf1+uvv15kuXOP25EjR+r06dP66quvdPPNN593+QCuDoQfAFeFRx55RPHx8Ro5cqSioqLkcrnkcDjUp0+fMumKuqDHqeKOLwhrBXVduHChwsLCCpU7+6pRUfbt26dt27ZJKjpMJCQkWOEnMDBQmzZt0vr16/Xhhx9q9erVWrJkidq1a6dPPvmkyLoW1G/MmDHn7Rygdu3aVtm77rpLjz/+eJHlbrrppj/dltLQvn17rVy5Ul988YU6d+4sSYqOjlZoaKgWLVqk1q1ba9GiRQoLCyuV3vAKniUq2Ac//PCD2rdvr3r16mn69OmKiIiQn5+fPvroI82YMcPt2IyMjFSTJk2sZ6QWLVokPz8/9e7d+5LrdSUU99h+8cUXz3t1pODK2fmc/dyPn5+fKlasqHr16kmSGjVqpHLlyunzzz/XgQMH3MoXd90FXxbcf//95w1KDRs2dHvdrVs3vfXWW5o8ebIWLFhw3i8OAFwdCD8ALrsaNWpo7dq1OnHihNs35t999501vYDD4ShyGe+8845iYmI0bdo0a9zp06cv+dfrr7Qbb7xR0h+/a3IxH8YTEhLk6+urhQsXFvow+vnnn2vWrFlKTk62vqX38vJS+/bt1b59e02fPl0TJ07Uk08+qfXr1xe5/lq1akmSfH19L1i/G2+8UVlZWcXejoJv58/2/fffu/WmV1JnzpyR9L8rMtIfH9L/9re/ad68eZoyZYqWL1+uoUOHnvfDe3Hl5eVp8eLFKleunPWh+4MPPlB2drZWrFjhdmXkfLcvDhgwQKNHj9aRI0e0ePFide7c+U+vhEj/Oz/27t1b6Irh3r173c6fslRwbDudzosOmrfeeqsVcPz9/RUVFWW9J/j4+Oi2227T5s2bdeDAAYWEhFgBu7jrrlKliipUqKC8vLxi17F79+7q2LGjBg4cqAoVKhTqyQ/A1YWvLwBcdvfcc4/y8vL0yiuvuI2fMWOGHA6H7r77bmtcUFBQkYHG29vb7VY3SfrXv/6lvLy8y1LnyyU6OlpOp1MTJ04sstvjo0eP/un8CQkJuuOOO3TfffepV69ebsPYsWMlSf/3f/8nSUV2sV3wrXh2dnaRyw8JCdGdd96pf//73zpy5Mif1q93795KTEws1IOZ9EcX2AXBpMDy5cvdumb+4osvlJSU5Nb+JbVy5UpJKtS9df/+/fXbb7/p73//u7Kysi75N5zy8vI0YsQI7dmzRyNGjLBuTywIVOfehhkfH1/kcvr27SuHw6FHH31UP/74Y7Hq1bRpU4WEhGjOnDlu7bZq1Srt2bPHuuJV1po0aaIbb7xRL730klsYLXChY1v6I+A0a9ZMmzdv1ubNmwv1qNaiRQtt2rRJW7dutW6HK8m6vb291bNnT7377rtFdrN+vjoW9GY4Z84cjRs37oLbAcBzceUHwGXXtWtXtW3bVk8++aQOHjyoW265RZ988onef/99jRw50vrWVvrjQ8zatWs1ffp0hYeHq2bNmmrWrJm6dOmihQsXyuVyKTIyUomJiVq7dq0qVapUhltWck6nU6+99pr69++vW2+9VX369FGVKlWUnJysDz/8UC1btiwUEgskJSVp//79Gj58eJHTr7/+et16661KSEjQuHHj9Oyzz2rTpk3q3LmzatSoobS0NM2ePVvVqlVz+22Uc7366qtq1aqVGjRooKFDh6pWrVpKTU1VYmKifv75Z3399deSpLFjx2rFihXq0qWLBg4cqCZNmujkyZPatWuX3nnnHR08eFCVK1e2llu7dm21atVKw4YNU3Z2tl5++WVVqlTpvLfNneuzzz6zfsvo+PHjWrFihTZu3Kg+ffpYt0YVaNy4sf7yl79o6dKlql+/vm699dZirUP6I7wsWrRI0h8P1u/fv1/vvfeefvjhB/Xp00fPPfecVbZjx47y8/NT165draA1d+5chYSEFBkeq1Spok6dOmnp0qUKDg4uVnDx9fXVlClTNGjQILVp00Z9+/ZVamqqZs6cqRtuuEGjRo0q9rZdTl5eXvrPf/6ju+++WzfffLMGDRqk66+/Xr/88ovWr18vp9NZqDv2orRq1cq6cnZ2wJH+CD+TJk2yyl3MuidPnqz169erWbNmGjp0qCIjI3X8+HF9+eWXWrt2bZFfGkjS8OHDlZmZqSeffFIul6tYv5cFwAOVVTdzAK5dRXWbe+LECTNq1CgTHh5ufH19TZ06dcyLL77o1i2tMcZ89913pnXr1iYwMNBIsrq9/u2338ygQYNM5cqVTfny5U10dLT57rvvTI0aNdy6xr5SXV2/+OKLbuXO7hb3bOfrenj9+vUmOjrauFwuExAQYG688UYzcOBAs3379vPW85FHHjGSzA8//HDeMs8884yRZL7++muzbt06061bNxMeHm78/PxMeHi46du3r1vX1EV1dW2MMT/88IMZMGCACQsLM76+vub66683Xbp0Me+8845buRMnTpi4uDhTu3Zt4+fnZypXrmxatGhhXnrpJZOTk1Non02bNs1EREQYf39/c8cdd5ivv/76vNty9r7SOd1c+/n5mXr16pkXXnjBWs+5pk6daiSZiRMnXnAdBdq0aeO2nvLly5s6deqY+++/33zyySdFzrNixQrTsGFDExAQYG644QYzZcoU8+abbxpJ5sCBA4XKv/3220aSefDBB4tdL2OMWbJkiWncuLHx9/c3FStWNP369XPrOtyYy9vV9bnH9vmOna+++sr06NHDVKpUyfj7+5saNWqY3r17m3Xr1hWrLh9//LGRZHx8fMzJkyfdph07dsw4HA4jySQlJRWat7jrTk1NNbGxsSYiIsL4+vqasLAw0759e/P6669fcLsff/xxI8m88sorxdoeAJ7FYcw595EAAFCKDh48qJo1a+rFF18s9IOvl9PMmTM1atQoHTx4sFBPZWXp/fffV/fu3bVp0yaru2gAwJXBMz8AgGuOMUZvvPGG2rRp41HBR5Lmzp2rWrVq/emthwCAy4NnfgAA14yTJ09qxYoVWr9+vXbt2qX333+/rKtkeeutt/Tf//5XH374oWbOnHneng0BAJcP4QcAcM04evSo/va3vyk4OFj/+Mc/9Ne//rWsq2Tp27evypcvr8GDB+vhhx8u6+oAgC3xzA8AAAAAW+CZHwAAAAC2QPgBAAAAYAtX5TM/+fn5Onz4sCpUqMADowAAAICNGWN04sQJhYeHy8vrz6/tXJXh5/Dhw4qIiCjragAAAADwEIcOHVK1atX+tMxVGX4qVKgg6Y8NdDqdZVwbAAAAAGUlMzNTERERVkb4M1dl+Cm41c3pdBJ+AAAAABTrcRg6PAAAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgCyUKP3l5eRo/frxq1qypwMBA3XjjjXruuedkjLHKGGM0YcIEVa1aVYGBgerQoYP27dvntpzjx4+rX79+cjqdCg4O1uDBg5WVlVU6WwQAAAAARShR+JkyZYpee+01vfLKK9qzZ4+mTJmiqVOn6l//+pdVZurUqZo1a5bmzJmjpKQkBQUFKTo6WqdPn7bK9OvXT7t379aaNWu0cuVKbdq0SQ8++GDpbRUAAAAAnMNhzr5scwFdunRRaGio3njjDWtcz549FRgYqEWLFskYo/DwcD322GMaM2aMJCkjI0OhoaGaN2+e+vTpoz179igyMlLbtm1T06ZNJUmrV6/WPffco59//lnh4eEXrEdmZqZcLpcyMjLkdDpLus0AAAAArhElyQYluvLTokULrVu3Tt9//70k6euvv9bnn3+uu+++W5J04MABpaSkqEOHDtY8LpdLzZo1U2JioiQpMTFRwcHBVvCRpA4dOsjLy0tJSUklqQ4AAAAAFJtPSQo/8cQTyszMVL169eTt7a28vDy98MIL6tevnyQpJSVFkhQaGuo2X2hoqDUtJSVFISEh7pXw8VHFihWtMufKzs5Wdna29TozM7Mk1QYAAACAkl35efvtt5WQkKDFixfryy+/1Pz58/XSSy9p/vz5l6t+kqRJkybJ5XJZQ0RExGVdHwAAAIBrT4nCz9ixY/XEE0+oT58+atCggfr3769Ro0Zp0qRJkqSwsDBJUmpqqtt8qamp1rSwsDClpaW5TT9z5oyOHz9ulTlXXFycMjIyrOHQoUMlqTYAAAAAlCz8nDp1Sl5e7rN4e3srPz9fklSzZk2FhYVp3bp11vTMzEwlJSUpKipKkhQVFaX09HTt2LHDKvPpp58qPz9fzZo1K3K9/v7+cjqdbgMAAABQUg4HQ2kNV6MSPfPTtWtXvfDCC6pevbpuvvlmffXVV5o+fboeeOABSZLD4dDIkSP1/PPPq06dOqpZs6bGjx+v8PBwde/eXZJUv359derUSUOHDtWcOXOUm5ur4cOHq0+fPsXq6Q0AAAAALkaJws+//vUvjR8/Xg8//LDS0tIUHh6uv//975owYYJV5vHHH9fJkyf14IMPKj09Xa1atdLq1asVEBBglUlISNDw4cPVvn17eXl5qWfPnpo1a1bpbRUAAAAAnKNEv/PjKfidHwAAAFyMq/V2LU/kKSnisv3ODwAAAABcrQg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFkrU1TUAwD7oEan0eEqPSABgd1z5AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALPmVdgWuBw1HWNbh2GFPWNQAAAMC1iis/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyB8AMAAADAFgg/AAAAAGyhROHnhhtukMPhKDTExsZKkk6fPq3Y2FhVqlRJ5cuXV8+ePZWamuq2jOTkZHXu3FnlypVTSEiIxo4dqzNnzpTeFgEAAABAEUoUfrZt26YjR45Yw5o1ayRJ9957ryRp1KhR+uCDD7R06VJt3LhRhw8fVo8ePaz58/Ly1LlzZ+Xk5GjLli2aP3++5s2bpwkTJpTiJgEAAABAYQ5jjLnYmUeOHKmVK1dq3759yszMVJUqVbR48WL16tVLkvTdd9+pfv36SkxMVPPmzbVq1Sp16dJFhw8fVmhoqCRpzpw5GjdunI4ePSo/P79irTczM1Mul0sZGRlyOp0XW/1S43CUdQ2uHRd/NAIobby3lR7e2wDPwXtb6fGU97aSZIOLfuYnJydHixYt0gMPPCCHw6EdO3YoNzdXHTp0sMrUq1dP1atXV2JioiQpMTFRDRo0sIKPJEVHRyszM1O7d+++2KoAAAAAwAX5XOyMy5cvV3p6ugYOHChJSklJkZ+fn4KDg93KhYaGKiUlxSpzdvApmF4w7Xyys7OVnZ1tvc7MzLzYagMAAACwqYsOP2+88YbuvvtuhYeHl2Z9ijRp0iT985//vOzrAQDgasGtO6XHU27dAXD5XdRtbz/99JPWrl2rIUOGWOPCwsKUk5Oj9PR0t7KpqakKCwuzypzb+1vB64IyRYmLi1NGRoY1HDp06GKqDQAAAMDGLir8xMfHKyQkRJ07d7bGNWnSRL6+vlq3bp01bu/evUpOTlZUVJQkKSoqSrt27VJaWppVZs2aNXI6nYqMjDzv+vz9/eV0Ot0GAAAAACiJEt/2lp+fr/j4eMXExMjH53+zu1wuDR48WKNHj1bFihXldDr1yCOPKCoqSs2bN5ckdezYUZGRkerfv7+mTp2qlJQUPfXUU4qNjZW/v3/pbRUAAAAAnKPE4Wft2rVKTk7WAw88UGjajBkz5OXlpZ49eyo7O1vR0dGaPXu2Nd3b21srV67UsGHDFBUVpaCgIMXExOjZZ5+9tK0AAAAAgAu4pN/5KSv8zs+16+o7GoFrF+9tpedyvLfRPqWH/z32wrlTejzl3Lkiv/MDAAAAAFcTwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFn7KuAHC5ORxlXYNrhzGlv0zap3RcjrYBAOBaw5UfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZQ4vDzyy+/6P7771elSpUUGBioBg0aaPv27dZ0Y4wmTJigqlWrKjAwUB06dNC+ffvclnH8+HH169dPTqdTwcHBGjx4sLKysi59awAAAADgPEoUfn777Te1bNlSvr6+WrVqlb799ltNmzZN1113nVVm6tSpmjVrlubMmaOkpCQFBQUpOjpap0+ftsr069dPu3fv1po1a7Ry5Upt2rRJDz74YOltFQAAAACcw2GMMcUt/MQTT2jz5s367LPPipxujFF4eLgee+wxjRkzRpKUkZGh0NBQzZs3T3369NGePXsUGRmpbdu2qWnTppKk1atX65577tHPP/+s8PDwC9YjMzNTLpdLGRkZcjqdxa3+ZeNwlHUNrh3FPxqLj/YpPbSP56JtPBvt49kuR/vAc3HulB5POXdKkg1KdOVnxYoVatq0qe69916FhISocePGmjt3rjX9wIEDSklJUYcOHaxxLpdLzZo1U2JioiQpMTFRwcHBVvCRpA4dOsjLy0tJSUklqQ4AAAAAFFuJws+PP/6o1157TXXq1NHHH3+sYcOGacSIEZo/f74kKSUlRZIUGhrqNl9oaKg1LSUlRSEhIW7TfXx8VLFiRavMubKzs5WZmek2AAAAAEBJ+JSkcH5+vpo2baqJEydKkho3bqxvvvlGc+bMUUxMzGWpoCRNmjRJ//znPy/b8gEAAABc+0p05adq1aqKjIx0G1e/fn0lJydLksLCwiRJqampbmVSU1OtaWFhYUpLS3ObfubMGR0/ftwqc664uDhlZGRYw6FDh0pSbQAAAAAoWfhp2bKl9u7d6zbu+++/V40aNSRJNWvWVFhYmNatW2dNz8zMVFJSkqKioiRJUVFRSk9P144dO6wyn376qfLz89WsWbMi1+vv7y+n0+k2AAAAAEBJlOi2t1GjRqlFixaaOHGievfurS+++EKvv/66Xn/9dUmSw+HQyJEj9fzzz6tOnTqqWbOmxo8fr/DwcHXv3l3SH1eKOnXqpKFDh2rOnDnKzc3V8OHD1adPn2L19AYAAAAAF6NE4ee2227TsmXLFBcXp2effVY1a9bUyy+/rH79+lllHn/8cZ08eVIPPvig0tPT1apVK61evVoBAQFWmYSEBA0fPlzt27eXl5eXevbsqVmzZpXeVgEAAADAOUr0Oz+egt/5uXbxWxiejfbxXLSNZ6N9PNvV90kIl4Jzp/R4yrlz2X7nBwAAAACuVoQfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgCz5lXQEAAIBricNR1jW4dhhT1jXAtYYrPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBZKFH6eeeYZORwOt6FevXrW9NOnTys2NlaVKlVS+fLl1bNnT6WmprotIzk5WZ07d1a5cuUUEhKisWPH6syZM6WzNQAAAABwHj4lneHmm2/W2rVr/7cAn/8tYtSoUfrwww+1dOlSuVwuDR8+XD169NDmzZslSXl5eercubPCwsK0ZcsWHTlyRAMGDJCvr68mTpxYCpsDAAAAAEUrcfjx8fFRWFhYofEZGRl64403tHjxYrVr106SFB8fr/r162vr1q1q3ry5PvnkE3377bdau3atQkND1ahRIz333HMaN26cnnnmGfn5+V36FgEAAABAEUr8zM++ffsUHh6uWrVqqV+/fkpOTpYk7dixQ7m5uerQoYNVtl69eqpevboSExMlSYmJiWrQoIFCQ0OtMtHR0crMzNTu3bvPu87s7GxlZma6DQAAAABQEiUKP82aNdO8efO0evVqvfbaazpw4IDuuOMOnThxQikpKfLz81NwcLDbPKGhoUpJSZEkpaSkuAWfgukF085n0qRJcrlc1hAREVGSagMAAABAyW57u/vuu62/GzZsqGbNmqlGjRp6++23FRgYWOqVKxAXF6fRo0dbrzMzMwlAAAAAAErkkrq6Dg4O1k033aT9+/crLCxMOTk5Sk9PdyuTmppqPSMUFhZWqPe3gtdFPUdUwN/fX06n020AAAAAgJK4pPCTlZWlH374QVWrVlWTJk3k6+urdevWWdP37t2r5ORkRUVFSZKioqK0a9cupaWlWWXWrFkjp9OpyMjIS6kKAAAAAPypEt32NmbMGHXt2lU1atTQ4cOH9fTTT8vb21t9+/aVy+XS4MGDNXr0aFWsWFFOp1OPPPKIoqKi1Lx5c0lSx44dFRkZqf79+2vq1KlKSUnRU089pdjYWPn7+1+WDQQAAAAAqYTh5+eff1bfvn117NgxValSRa1atdLWrVtVpUoVSdKMGTPk5eWlnj17Kjs7W9HR0Zo9e7Y1v7e3t1auXKlhw4YpKipKQUFBiomJ0bPPPlu6WwUAAAAA53AYY0xZV6KkMjMz5XK5lJGR4RHP/zgcZV2Da8flOBppn9JD+3gu2saz0T6erbTbh7YpPZw7ns1TUkRJssElPfMDAAAAAFcLwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALAFwg8AAAAAWyD8AAAAALCFSwo/kydPlsPh0MiRI61xp0+fVmxsrCpVqqTy5curZ8+eSk1NdZsvOTlZnTt3Vrly5RQSEqKxY8fqzJkzl1IVAAAAAPhTFx1+tm3bpn//+99q2LCh2/hRo0bpgw8+0NKlS7Vx40YdPnxYPXr0sKbn5eWpc+fOysnJ0ZYtWzR//nzNmzdPEyZMuPitAAAAAIALuKjwk5WVpX79+mnu3Lm67rrrrPEZGRl64403NH36dLVr105NmjRRfHy8tmzZoq1bt0qSPvnkE3377bdatGiRGjVqpLvvvlvPPfecXn31VeXk5JTOVgEAAADAOS4q/MTGxqpz587q0KGD2/gdO3YoNzfXbXy9evVUvXp1JSYmSpISExPVoEEDhYaGWmWio6OVmZmp3bt3F7m+7OxsZWZmug0AAAAAUBI+JZ3hrbfe0pdffqlt27YVmpaSkiI/Pz8FBwe7jQ8NDVVKSopV5uzgUzC9YFpRJk2apH/+858lrSoAAAAAWEp05efQoUN69NFHlZCQoICAgMtVp0Li4uKUkZFhDYcOHbpi6wYAAABwbShR+NmxY4fS0tJ06623ysfHRz4+Ptq4caNmzZolHx8fhYaGKicnR+np6W7zpaamKiwsTJIUFhZWqPe3gtcFZc7l7+8vp9PpNgAAAABASZQo/LRv3167du3Szp07raFp06bq16+f9bevr6/WrVtnzbN3714lJycrKipKkhQVFaVdu3YpLS3NKrNmzRo5nU5FRkaW0mYBAAAAgLsSPfNToUIF/eUvf3EbFxQUpEqVKlnjBw8erNGjR6tixYpyOp165JFHFBUVpebNm0uSOnbsqMjISPXv319Tp05VSkqKnnrqKcXGxsrf37+UNgsAAAAA3JW4w4MLmTFjhry8vNSzZ09lZ2crOjpas2fPtqZ7e3tr5cqVGjZsmKKiohQUFKSYmBg9++yzpV0VAAAAALA4jDGmrCtRUpmZmXK5XMrIyPCI538cjrKuwbXjchyNtE/poX08F23j2Wgfz1ba7UPblB7OHc/mKSmiJNngon7nBwAAAACuNoQfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgC4QfAAAAALZA+AEAAABgCyUKP6+99poaNmwop9Mpp9OpqKgorVq1ypp++vRpxcbGqlKlSipfvrx69uyp1NRUt2UkJyerc+fOKleunEJCQjR27FidOXOmdLYGAAAAAM6jROGnWrVqmjx5snbs2KHt27erXbt26tatm3bv3i1JGjVqlD744AMtXbpUGzdu1OHDh9WjRw9r/ry8PHXu3Fk5OTnasmWL5s+fr3nz5mnChAmlu1UAAAAAcA6HMcZcygIqVqyoF198Ub169VKVKlW0ePFi9erVS5L03XffqX79+kpMTFTz5s21atUqdenSRYcPH1ZoaKgkac6cORo3bpyOHj0qPz+/Yq0zMzNTLpdLGRkZcjqdl1L9UuFwlHUNrh2XdjQWjfYpPbSP56JtPBvt49lKu31om9LDuePZLkf7XIySZIOLfuYnLy9Pb731lk6ePKmoqCjt2LFDubm56tChg1WmXr16ql69uhITEyVJiYmJatCggRV8JCk6OlqZmZnW1aOiZGdnKzMz020AAAAAgJIocfjZtWuXypcvL39/fz300ENatmyZIiMjlZKSIj8/PwUHB7uVDw0NVUpKiiQpJSXFLfgUTC+Ydj6TJk2Sy+WyhoiIiJJWGwAAAIDNlTj81K1bVzt37lRSUpKGDRummJgYffvtt5ejbpa4uDhlZGRYw6FDhy7r+gAAAABce3xKOoOfn59q164tSWrSpIm2bdummTNn6r777lNOTo7S09Pdrv6kpqYqLCxMkhQWFqYvvvjCbXkFvcEVlCmKv7+//P39S1pVAAAAALBc8u/85OfnKzs7W02aNJGvr6/WrVtnTdu7d6+Sk5MVFRUlSYqKitKuXbuUlpZmlVmzZo2cTqciIyMvtSoAAAAAcF4luvITFxenu+++W9WrV9eJEye0ePFibdiwQR9//LFcLpcGDx6s0aNHq2LFinI6nXrkkUcUFRWl5s2bS5I6duyoyMhI9e/fX1OnTlVKSoqeeuopxcbGcmUHAAAAwGVVovCTlpamAQMG6MiRI3K5XGrYsKE+/vhj3XXXXZKkGTNmyMvLSz179lR2draio6M1e/Zsa35vb2+tXLlSw4YNU1RUlIKCghQTE6Nnn322dLcKAAAAAM5xyb/zUxb4nZ9rF/35ezbax3PRNp6N9vFs/M6P5+Lc8WyekiKuyO/8AAAAAMDVhPADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsoUThZ9KkSbrttttUoUIFhYSEqHv37tq7d69bmdOnTys2NlaVKlVS+fLl1bNnT6WmprqVSU5OVufOnVWuXDmFhIRo7NixOnPmzKVvDQAAAACcR4nCz8aNGxUbG6utW7dqzZo1ys3NVceOHXXy5EmrzKhRo/TBBx9o6dKl2rhxow4fPqwePXpY0/Py8tS5c2fl5ORoy5Ytmj9/vubNm6cJEyaU3lYBAAAAwDkcxhhzsTMfPXpUISEh2rhxo1q3bq2MjAxVqVJFixcvVq9evSRJ3333nerXr6/ExEQ1b95cq1atUpcuXXT48GGFhoZKkubMmaNx48bp6NGj8vPzu+B6MzMz5XK5lJGRIafTebHVLzUOR1nX4Npx8Ufj+dE+pYf28Vy0jWejfTxbabcPbVN6OHc82+Von4tRkmxwSc/8ZGRkSJIqVqwoSdqxY4dyc3PVoUMHq0y9evVUvXp1JSYmSpISExPVoEEDK/hIUnR0tDIzM7V79+4i15Odna3MzEy3AQAAAABK4qLDT35+vkaOHKmWLVvqL3/5iyQpJSVFfn5+Cg4OdisbGhqqlJQUq8zZwadgesG0okyaNEkul8saIiIiLrbaAAAAAGzqosNPbGysvvnmG7311lulWZ8ixcXFKSMjwxoOHTp02dcJAAAA4NriczEzDR8+XCtXrtSmTZtUrVo1a3xYWJhycnKUnp7udvUnNTVVYWFhVpkvvvjCbXkFvcEVlDmXv7+//P39L6aqAAAAACCphFd+jDEaPny4li1bpk8//VQ1a9Z0m96kSRP5+vpq3bp11ri9e/cqOTlZUVFRkqSoqCjt2rVLaWlpVpk1a9bI6XQqMjLyUrYFAAAAAM6rRFd+YmNjtXjxYr3//vuqUKGC9YyOy+VSYGCgXC6XBg8erNGjR6tixYpyOp165JFHFBUVpebNm0uSOnbsqMjISPXv319Tp05VSkqKnnrqKcXGxnJ1BwAAAMBlU6Kurh3n6RswPj5eAwcOlPTHj5w+9thj+r//+z9lZ2crOjpas2fPdrul7aefftKwYcO0YcMGBQUFKSYmRpMnT5aPT/GyGF1dX7vo0tKz0T6ei7bxbLSPZ6Ora8/FuePZrsauri/pd37KCuHn2sWbnGejfTwXbePZaB/PRvjxXJw7ns1TUsQV+50fAAAAALhaEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtEH4AAAAA2ALhBwAAAIAtlDj8bNq0SV27dlV4eLgcDoeWL1/uNt0YowkTJqhq1aoKDAxUhw4dtG/fPrcyx48fV79+/eR0OhUcHKzBgwcrKyvrkjYEAAAAAP5MicPPyZMndcstt+jVV18tcvrUqVM1a9YszZkzR0lJSQoKClJ0dLROnz5tlenXr592796tNWvWaOXKldq0aZMefPDBi98KAAAAALgAhzHGXPTMDoeWLVum7t27S/rjqk94eLgee+wxjRkzRpKUkZGh0NBQzZs3T3369NGePXsUGRmpbdu2qWnTppKk1atX65577tHPP/+s8PDwC643MzNTLpdLGRkZcjqdF1v9UuNwlHUNrh0XfzSeH+1Temgfz0XbeDbax7OVdvvQNqWHc8ezXY72uRglyQal+szPgQMHlJKSog4dOljjXC6XmjVrpsTERElSYmKigoODreAjSR06dJCXl5eSkpKKXG52drYyMzPdBgAAAAAoiVINPykpKZKk0NBQt/GhoaHWtJSUFIWEhLhN9/HxUcWKFa0y55o0aZJcLpc1RERElGa1AQAAANjAVdHbW1xcnDIyMqzh0KFDZV0lAAAAAFeZUg0/YWFhkqTU1FS38ampqda0sLAwpaWluU0/c+aMjh8/bpU5l7+/v5xOp9sAAAAAACVRquGnZs2aCgsL07p166xxmZmZSkpKUlRUlCQpKipK6enp2rFjh1Xm008/VX5+vpo1a1aa1QEAAAAAi09JZ8jKytL+/fut1wcOHNDOnTtVsWJFVa9eXSNHjtTzzz+vOnXqqGbNmho/frzCw8OtHuHq16+vTp06aejQoZozZ45yc3M1fPhw9enTp1g9vQEAAADAxShx+Nm+fbvatm1rvR49erQkKSYmRvPmzdPjjz+ukydP6sEHH1R6erpatWql1atXKyAgwJonISFBw4cPV/v27eXl5aWePXtq1qxZpbA5AAAAAFC0S/qdn7LC7/xcu+jP37PRPp6LtvFstI9n43d+PBfnjmfzlBRRZr/zAwAAAACeivADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsgfADAAAAwBYIPwAAAABsoUzDz6uvvqobbrhBAQEBatasmb744ouyrA4AAACAa1iZhZ8lS5Zo9OjRevrpp/Xll1/qlltuUXR0tNLS0sqqSgAAAACuYWUWfqZPn66hQ4dq0KBBioyM1Jw5c1SuXDm9+eabZVUlAAAAANcwn7JYaU5Ojnbs2KG4uDhrnJeXlzp06KDExMRC5bOzs5WdnW29zsjIkCRlZmZe/sriiqJJPRvt47loG89G+3g22sdz0TaezVPapyATGGMuWLZMws+vv/6qvLw8hYaGuo0PDQ3Vd999V6j8pEmT9M9//rPQ+IiIiMtWR5QNl6usa4A/Q/t4LtrGs9E+no328Vy0jWfztPY5ceKEXBeoVJmEn5KKi4vT6NGjrdf5+fk6fvy4KlWqJIfDUYY1u3pkZmYqIiJChw4dktPpLOvq4Cy0jWejfTwb7eO5aBvPRvt4Ltqm5IwxOnHihMLDwy9YtkzCT+XKleXt7a3U1FS38ampqQoLCytU3t/fX/7+/m7jgoODL2cVr1lOp5MTyUPRNp6N9vFstI/nom08G+3juWibkrnQFZ8CZdLhgZ+fn5o0aaJ169ZZ4/Lz87Vu3TpFRUWVRZUAAAAAXOPK7La30aNHKyYmRk2bNtXtt9+ul19+WSdPntSgQYPKqkoAAAAArmFlFn7uu+8+HT16VBMmTFBKSooaNWqk1atXF+oEAaXD399fTz/9dKHbB1H2aBvPRvt4NtrHc9E2no328Vy0zeXlMMXpEw4AAAAArnJl9iOnAAAAAHAlEX4AAAAA2ALhBwAAAIAtEH7gxuFwaPny5WVdjavahg0b5HA4lJ6eXqb1oC2L70L76uDBg3I4HNq5c+cVqxMuj4EDB6p79+5lXQ3be+aZZ9SoUaOyrsZVwVP+pxS44YYb9PLLL5d1NWyN8+fSEH7KkMPh+NPhmWeeKesqXlPmzJmjChUq6MyZM9a4rKws+fr66s4773QrW/DP5ocffrjCtURpGDhwYJHn1P79+4ssf+TIEd19991XuJbXnqNHj2rYsGGqXr26/P39FRYWpujoaG3evLlY88+bN48fsL7CLrXNcGn4HHD1Kfj/8tBDDxWaFhsbK4fDoYEDB175iqHYyqyra/zxgavAkiVLNGHCBO3du9caV758+bKo1jWrbdu2ysrK0vbt29W8eXNJ0meffaawsDAlJSXp9OnTCggIkCStX79e1atX14033liWVcYl6NSpk+Lj493GValSxe11Tk6O/Pz8FBYWdiWrds3q2bOncnJyNH/+fNWqVUupqalat26djh07dsXrkpubK19f3yu+3quNJ7WZHRXnc8D27dsvy7oL3v9QchEREXrrrbc0Y8YMBQYGSpJOnz6txYsXq3r16mVcO1wIV37KUFhYmDW4XC45HA7r9Zw5c9SqVSu38i+//LJuuOEGt3H/+c9/VL9+fQUEBKhevXqaPXu2NS0nJ0fDhw9X1apVFRAQoBo1amjSpEnW9H379ql169YKCAhQZGSk1qxZU6iO48aN00033aRy5cqpVq1aGj9+vHJzcyX9cSuQl5dXoTfml19+WTVq1FB+fv6l7qJSVbduXVWtWlUbNmywxm3YsEHdunVTzZo1tXXrVrfxbdu2VX5+viZNmqSaNWsqMDBQt9xyi9555x235X700Ue66aabFBgYqLZt2+rgwYNu0wu+zf74449Vv359lS9fXp06dXL7pyfRlqWt4Fvss4f27dtr+PDhGjlypCpXrqzo6GhJhW97++KLL9S4cWMFBASoadOm+uqrr9yWnZeXp8GDB1vHRd26dTVz5kxr+qZNm+Tr66uUlBS3+UaOHKk77rjj8m10GUpPT9dnn32mKVOmqG3btqpRo4Zuv/12xcXF6a9//askafr06WrQoIGCgoIUERGhhx9+WFlZWZL+OOcGDRqkjIyMQt96F3VbYnBwsObNmyfpf7clLlmyRG3atFFAQIASEhKUl5en0aNHKzg4WJUqVdLjjz+uc3/dYfXq1WrVqpVVpkuXLm5XfNu1a6fhw4e7zXP06FH5+flp3bp1pbgHr7wLtVlRt3ump6fL4XBY76MFV8nXrVunpk2bqly5cmrRooXbB3hJmjx5skJDQ1WhQgUNHjxYp0+fdpu+bds23XXXXapcubJcLpfatGmjL7/80pr+wAMPqEuXLm7z5ObmKiQkRG+88Ubp7pgr6M8+B4SFhbl9Cbpjx47z7uOibuccOXKk210Nd955Z6H3P2OMnnnmGevKX3h4uEaMGGHNk5aWpq5duyowMFA1a9ZUQkJCoW34s/P65MmTcjqdhf5vLl++XEFBQTpx4sSl7L4yc+uttyoiIkLvvfeeNe69995T9erV1bhxY2tcdna2RowYoZCQEAUEBKhVq1batm2bNZ3zp2wQfq5iCQkJmjBhgl544QXt2bNHEydO1Pjx4zV//nxJ0qxZs7RixQq9/fbb2rt3rxISEqzwlJ+frx49esjPz09JSUmaM2eOxo0bV2gdFSpU0Lx58/Ttt99q5syZmjt3rmbMmCHpj/t+O3ToUOjb9fj4eA0cOFBeXp53eLVt21br16+3Xq9fv1533nmn2rRpY43//ffflZSUpLZt22rSpElasGCB5syZo927d2vUqFG6//77tXHjRknSoUOH1KNHD3Xt2lU7d+7UkCFD9MQTTxRa76lTp/TSSy9p4cKF2rRpk5KTkzVmzBhrOm155cyfP19+fn7avHmz5syZU2h6VlaWunTposjISO3YsUPPPPOMW1tJf+zzatWqaenSpfr22281YcIE/eMf/9Dbb78tSWrdurVq1aqlhQsXWvPk5uYqISFBDzzwwOXdwDJSvnx5lS9fXsuXL1d2dnaRZby8vDRr1izt3r1b8+fP16effqrHH39cktSiRQu9/PLLcjqdOnLkiI4cOVJov1/IE088oUcffVR79uxRdHS0pk2bpnnz5unNN9/U559/ruPHj2vZsmVu85w8eVKjR4/W9u3btW7dOnl5een//b//ZwX+IUOGaPHixW7btGjRIl1//fVq165diernaYrTZsX15JNPatq0adq+fbt8fHzcjvO3335bzzzzjCZOnKjt27eratWqbl/uSNKJEycUExOjzz//XFu3blWdOnV0zz33WB+OhwwZotWrV7t9abRy5UqdOnVK99133yXV/WrxZ/u4uM59/3v33Xc1Y8YM/fvf/9a+ffu0fPlyNWjQwCo/cOBAHTp0SOvXr9c777yj2bNnKy0tzW2Zf3ZeBwUFqU+fPkX+b+nVq5cqVKhwEXvCMzzwwANu2/Xmm29q0KBBbmUef/xxvfvuu5o/f76+/PJL1a5dW9HR0Tp+/LhbOc6fK8zAI8THxxuXy2W9fvrpp80tt9ziVmbGjBmmRo0a1usbb7zRLF682K3Mc889Z6KioowxxjzyyCOmXbt2Jj8/v9D6Pv74Y+Pj42N++eUXa9yqVauMJLNs2bLz1vPFF180TZo0sV4vWbLEXHfddeb06dPGGGN27NhhHA6HOXDgwAW2uGzMnTvXBAUFmdzcXJOZmWl8fHxMWlqaWbx4sWndurUxxph169YZSebgwYOmXLlyZsuWLW7LGDx4sOnbt68xxpi4uDgTGRnpNn3cuHFGkvntt9+MMX+0rSSzf/9+q8yrr75qQkNDrde0ZemKiYkx3t7eJigoyBp69epl2rRpYxo3blyo/Nn76t///repVKmS+f33363pr732mpFkvvrqq/OuMzY21vTs2dN6PWXKFFO/fn3r9bvvvmvKly9vsrKyLn0DPdQ777xjrrvuOhMQEGBatGhh4uLizNdff33e8kuXLjWVKlWyXp/7PligqGPZ5XKZ+Ph4Y4wxBw4cMJLMyy+/7FamatWqZurUqdbr3NxcU61aNdOtW7fz1uno0aNGktm1a5cxxpjff//dXHfddWbJkiVWmYYNG5pnnnnmvMu4mvxZmxXs17OP+99++81IMuvXrzfGGLN+/Xojyaxdu9Yq8+GHHxpJ1jkUFRVlHn74Ybf1NmvWrND/uLPl5eWZChUqmA8++MAaFxkZaaZMmWK97tq1qxk4cODFbrrHOd/xX5x9HBMTU+i4fvTRR02bNm2s10W9/02bNs3cdNNNJicnp9B69+7daySZL774whq3Z88eI8nMmDHjvNtx7nmdlJRkvL29zeHDh40xxqSmphofHx+zYcOG8y7DkxXs67S0NOPv728OHjxoDh48aAICAszRo0dNt27dTExMjMnKyjK+vr4mISHBmjcnJ8eEh4db70ucP2Xj2vk612ZOnjypH374QYMHD7a+vStfvryef/5565aNgQMHaufOnapbt65GjBihTz75xJp/z549ioiIUHh4uDUuKiqq0HqWLFmili1bWpffn3rqKSUnJ1vTu3fvLm9vb+vb1Hnz5qlt27aFbs/zFHfeeadOnjypbdu26bPPPtNNN92kKlWqqE2bNtZzPxs2bFCtWrWUlZWlU6dO6a677nLbxwsWLLD28Z49e9SsWTO3dRS1H8uVK+f2/FDVqlWtb89oy8ujbdu22rlzpzXMmjVLktSkSZM/nW/Pnj1q2LCh9fyXVPT+fPXVV9WkSRNVqVJF5cuX1+uvv+62PwcOHKj9+/dbt1POmzdPvXv3VlBQUGlsnkfq2bOnDh8+rBUrVqhTp07asGGDbr31Vuv2tLVr16p9+/a6/vrrVaFCBfXv31/Hjh3TqVOnSmX9TZs2tf7OyMjQkSNH3M5PHx8ftzLSH7eM9u3bV7Vq1ZLT6bSO94K2DAgIUP/+/fXmm29Kkr788kt9880318wDzRdqs+Jq2LCh9XfVqlUlyXqPK877ZGpqqoYOHao6derI5XLJ6XQqKyvL7ZwaMmSI9U17amqqVq1adc1eSS3Kn+3j4jr3/e/ee+/V77//rlq1amno0KFatmyZ1SnQnj175OPj4zZPvXr1CnVKcqHz+vbbb9fNN99s3cmwaNEi1ahRQ61bty5R3T1NlSpV1LlzZ82bN0/x8fHq3LmzKleubE3/4YcflJubq5YtW1rjfH19dfvtt2vPnj1uy+L8ubIIPx7Ky8ur0L3pBc9nSLLup507d67bB7xvvvnG+rB166236sCBA3ruuef0+++/q3fv3urVq1ex65CYmKh+/frpnnvu0cqVK/XVV1/pySefVE5OjlXGz89PAwYMUHx8vHJycrR48WKPPplq166tatWqaf369Vq/fr3atGkjSQoPD1dERIS2bNmi9evXq127dtY+/vDDD9328bffflvo/uULOffBa4fDYbUvbXl5BAUFqXbt2tZQ8A+lNMLHW2+9pTFjxmjw4MH65JNPtHPnTg0aNMhtf4aEhKhr166Kj4+31T+agIAA3XXXXRo/fry2bNmigQMH6umnn9bBgwfVpUsXNWzYUO+++6527NihV199VZLc9ltRzj5fCpz9fljgYtq2a9euOn78uObOnaukpCQlJSUVqtOQIUO0Zs0a/fzzz4qPj1e7du1Uo0aNEq/LU52vzQpudz173xe13yX39ziHwyFJJXpWMCYmRjt37tTMmTO1ZcsW7dy5U5UqVXJrhwEDBujHH39UYmKiFi1apJo1a16zz9AV5c/28YU+MxQ49xyJiIjQ3r17NXv2bAUGBurhhx9W69atz9vO5yrueT1kyBArUMfHx2vQoEHWNlzNHnjgAc2bN0/z58+/pPd3zp8ri97ePFSVKlWUkpIiY4x1Ipz90GloaKjCw8P1448/ql+/fuddjtPp1H333af77rtPvXr1UqdOnXT8+HHVr19fhw4d0pEjR6wPhWc/8C9JW7ZsUY0aNfTkk09a43766adC6xgyZIj+8pe/aPbs2Tpz5ox69OhxKZt+2bVt21YbNmzQb7/9prFjx1rjW7durVWrVumLL77QsGHDFBkZKX9/fyUnJ1sh6Vz169fXihUr3Madux8vhLb0LPXr19fChQvdev87d39u3rxZLVq00MMPP2yNK6pb9CFDhqhv376qVq2abrzxRrdvAO0iMjJSy5cv144dO5Sfn69p06ZZH6oLnpEq4Ofnp7y8vELLqFKlitu96vv27bvg1SKXy6WqVasqKSnJ+ob5zJkz2rFjh2699VZJ0rFjx7R3717NnTvX+hDw+eefF1pWgwYN1LRpU82dO1eLFy/WK6+8UoI9cPUpaLOC3hGPHDliPcR9Mb91Vb9+fSUlJWnAgAHWuKLOqdmzZ+uee+6R9MfzlL/++qtbmUqVKql79+6Kj49XYmJioecr7KxKlSr65ptv3Mbt3LmzWD0eBgYGqmvXruratatiY2NVr1497dq1S/Xq1bPOmdtuu02StHfvXrffGyrOeS1J999/vx5//HHNmjVL3377rWJiYi5haz1Hp06dlJOTI4fDYXWgU+DGG2+0nq8q+LIkNzdX27Zt08iRI4u9Ds6f0kf48VB33nmnjh49qqlTp6pXr15avXq1Vq1aJafTaZX55z//qREjRsjlcqlTp07Kzs7W9u3b9dtvv2n06NGaPn26qlatqsaNG8vLy0tLly5VWFiYgoOD1aFDB910002KiYnRiy++qMzMTLcPxpJUp04dJScn66233tJtt92mDz/8sNDDwtIfJ2bz5s01btw4PfDAA1a3j56qbdu2io2NVW5urluoadOmjYYPH66cnBy1bdtWFSpU0JgxYzRq1Cjl5+erVatWysjI0ObNm+V0OhUTE6OHHnpI06ZN09ixYzVkyBDt2LGjxLeLSLSlJ/nb3/6mJ598UkOHDlVcXJwOHjyol156ya1MnTp1tGDBAn388ceqWbOmFi5cqG3btqlmzZpu5aKjo+V0OvX888/r2WefvZKbccUdO3ZM9957rx544AE1bNhQFSpU0Pbt2zV16lR169ZNtWvXVm5urv71r3+pa9euRXY4ccMNNygrK0vr1q3TLbfconLlyqlcuXJq166dXnnlFUVFRSkvL0/jxo0r1oe6Rx99VJMnT1adOnVUr149TZ8+3e2D23XXXadKlSrp9ddfV9WqVZWcnFxkhyXSH0F2+PDhCgoK0v/7f//vkvaVp7hQmwUGBqp58+aaPHmyatasqbS0ND311FMlXs+jjz6qgQMHqmnTpmrZsqUSEhK0e/du1apVyypTp04dLVy4UE2bNlVmZqbGjh1b5PvPkCFD1KVLF+Xl5V0zH6BLQ7t27fTiiy9qwYIFioqK0qJFi/TNN9+49TxWlHnz5ikvL0/NmjVTuXLltGjRIgUGBqpGjRqqVKmSOnXqpL///e967bXX5OPjo5EjR7q1S3HOa+mPc61Hjx4aO3asOnbsqGrVqpX6PigL3t7e1i1s3t7ebtOCgoI0bNgwjR07VhUrVlT16tU1depUnTp1SoMHDy72Ojh/LoOyfOAI/1PUg46vvfaaiYiIMEFBQWbAgAHmhRdecOvwwBhjEhISTKNGjYyfn5+57rrrTOvWrc17771njDHm9ddfN40aNTJBQUHG6XSa9u3bmy+//NKad+/evaZVq1bGz8/P3HTTTWb16tWFHiweO3asqVSpkilfvry57777zIwZM4p8IPONN94o9GCkpyp4iLdevXpu4w8ePGgkmbp161rj8vPzzcsvv2zq1q1rfH19TZUqVUx0dLTZuHGjVeaDDz4wtWvXNv7+/uaOO+4wb775ZqEOD87dZ8uWLTPnnn60Zekp6uFfY/544PfRRx8tNP7cfZWYmGhuueUW4+fnZxo1amTeffddtwe/T58+bQYOHGhcLpcJDg42w4YNM0888USRD6COHz/e7WHfa9Xp06fNE088YW699VbjcrlMuXLlTN26dc1TTz1lTp06ZYwxZvr06aZq1aomMDDQREdHmwULFridK8YY89BDD5lKlSoZSebpp582xhjzyy+/mI4dO5qgoCBTp04d89FHHxXZ4cG5HVLk5uaaRx991DidThMcHGxGjx5tBgwY4HZsrFmzxtSvX9/4+/ubhg0bmg0bNhTZwcKJEydMuXLlCj14fDUrTpt9++23JioqygQGBppGjRqZTz75pMgOD85uw6+++spIcuss5YUXXjCVK1c25cuXNzExMebxxx93O1++/PJL07RpUxMQEGDq1Kljli5damrUqFHowfr8/HxTo0YNc88991ymvVJ2LtThwYX28YQJE0xoaKhxuVxm1KhRZvjw4YU6PDj3/W/ZsmWmWbNmxul0mqCgINO8eXO3h++PHDliOnfubPz9/U316tXNggULCrVLcc5rY/7XmdDbb799EXvHc5zv/0uBgg4PjPmjw5RHHnnEVK5c2fj7+5uWLVu6/W/l/CkbDmPOuUkUuAjPPfecli5dqv/+979lXRVcItqydA0ePFhHjx4tdHskri4HDx7UjTfeqG3btlm3zeHKy8rK0vXXX6/4+Hhb3pZ7NVu4cKFGjRqlw4cP8+OqZYTz5w/c9oZLkpWVpYMHD+qVV17R888/X9bVwSWgLUtXRkaGdu3apcWLFxN8rmK5ubk6duyYnnrqKTVv3pzgU0by8/P166+/atq0aQoODrZ+OBee79SpUzpy5IgmT56sv//97wSfMsD5447e3nBJhg8friZNmujOO++0RU9W1zLasnR169ZNHTt21EMPPaS77rqrrKuDi7R582ZVrVpV27ZtK/JZBlwZycnJCg0N1eLFi/Xmm2/Kx4fvbq8WU6dOVb169RQWFqa4uLiyro4tcf6447Y3AAAAALbAlR8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtkD4AQAAAGALhB8AAAAAtvD/AQF2eNMFieMYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10,5))\n", + "x = merge_df2[\"WeekDay\"]\n", + "y = merge_df2[\"TotalMinutesAsleep\"]\n", + "\n", + "plt.title(\"Total Time Asleep By Day of The Week\")\n", + "plt.bar(x, y, width = 0.8, color = \"b\")\n", + "\n", + "save_path = '../Images/total_time_asleep_by_day_of_the_week.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "522ae9d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIjCAYAAAAJLyrXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdiUlEQVR4nO3deVhU9f///8ewiiCgxiK5obnhvqVkaiWBRqVpuWSGafl+G5ZLmdk7Na3cyrJNzRZ3yyXNpW8qmloZLmmWW2Rp7ogb4JKAcH5/9GM+jqDOEZgZ5X67rrmu5mzP54HxNA/OOa9jMQzDEAAAAADAbm7ObgAAAAAAbjYEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkARWbdunWyWCxauHChs1sp1nr27KnKlSs7u41bzt9//y2LxaLp06c7u5Vi59y5c3r66acVGhoqi8WiAQMGFHib99xzj+rUqVPw5gAUGwQpAKZYLBa7XuvWrXNYT7lfaC0Wi9544418l+nevbssFov8/PyKrI/Ro0fr66+/LrLtFzVX/SI5d+5cTZw40fR62dnZCgsLk8Vi0bfffuvw+kUl9/P+9ttv5zv/tddek8Vi0cmTJx3cmeOMHj1a06dPV9++fTVr1iz16NEjzzK5P4frve655x6H9t6zZ0+b+n5+fqpSpYoeffRRffXVV8rJyXFoPwBunIezGwBwc5k1a5bN+5kzZyohISHP9Fq1amnPnj2ObE0lSpTQF198oVdffdVm+vnz57VkyRKVKFGiSOuPHj1ajz76qDp06FCkdYqbuXPnaufOnabPOnz33Xc6duyYKleurDlz5qhdu3aFWr9SpUr6559/5OnpeUPbxY377rvv1Lx5c40YMeKqy3Ts2FF33HGH9f25c+fUt29fPfLII+rYsaN1ekhISJH2mh9vb299+umnkqR//vlHBw4c0LJly/Too4/qnnvu0ZIlS+Tv7+/wvgCYQ5ACYMoTTzxh837jxo1KSEjIM12Sw4PUAw88oEWLFunXX39V/fr1rdOXLFmizMxMtW3bVt99951De4LzzJ49W40aNVJcXJxeeeUVnT9/Xr6+voW2fYvFUuTh/GZy6dIl5eTkyMvLq8hrpaSkKCIi4prL1KtXT/Xq1bO+P3nypPr27at69erle7xyJA8Pjzw9vPHGGxo7dqyGDh2qZ555RvPmzXNSdwDsxaV9AIpcTk6O3nzzTZUvX14lSpRQmzZt9Oeff+ZZbtOmTWrbtq0CAgJUsmRJtW7dWhs2bLC7TmRkpMLDwzV37lyb6XPmzFHbtm1VpkyZfNebNGmSateuLW9vb4WFhSk+Pl6pqak2y+zdu1edOnVSaGioSpQoofLly6tr165KS0uT9O+X6vPnz2vGjBnWS3Z69ux51V4zMzM1fPhwNW7cWAEBAfL19VXLli21du1am+Uuv4xr6tSpqlq1qry9vdW0aVNt2bIlz3a//vpr1alTRyVKlFCdOnW0ePFiO35y5nz77bdq2bKlfH19VapUKcXGxmrXrl02y/z222/q2bOnqlSpohIlSig0NFS9evXSqVOnbJY7e/asBgwYoMqVK8vb21vBwcG6//77tW3bNkn/Xm74zTff6MCBA9afqz33e/3zzz9avHixunbtqs6dO+uff/7RkiVLrro/rVu3VqlSpeTv76+mTZtaP0PXqn/lPVJvv/22LBaLDhw4kKfG0KFD5eXlpTNnzlinFfTzbtaCBQvUuHFj+fj46LbbbtMTTzyhI0eO2Cxzzz335Hup25X32V3+uZw4caL1c7l7925J0gcffKDatWurZMmSKl26tJo0aZLn32V+UlJS1Lt3b4WEhKhEiRKqX7++ZsyYYZ2fe9/l/v379c0331h/J3///fcN/Uzys3v3bt17770qWbKkbr/9do0fPz7PMhkZGRoxYoTuuOMOeXt7q0KFCnrppZeUkZFRoNovv/yyoqOjtWDBAv3xxx/W6UuWLFFsbKzCwsLk7e2tqlWr6vXXX1d2drZ1mREjRsjT01MnTpzIs90+ffooMDBQFy9eLFB/AGxxRgpAkRs7dqzc3Nz04osvKi0tTePHj1f37t21adMm6zLfffed2rVrp8aNG2vEiBFyc3PTtGnTdN999+mHH37QnXfeaVetbt26afbs2Ro7dqz1PpFVq1Zp1qxZWrFiRZ7lX3vtNY0cOVJRUVHq27evkpKSNHnyZG3ZskUbNmyQp6enMjMzFRMTo4yMDD333HMKDQ3VkSNHtHz5cqWmpiogIECzZs3S008/rTvvvFN9+vSRJFWtWvWqfaanp+vTTz9Vt27d9Mwzz+js2bP67LPPFBMTo82bN6tBgwY2y8+dO1dnz57Vf/7zH1ksFo0fP14dO3bUvn37rJeWrVq1Sp06dVJERITGjBmjU6dO6amnnlL58uXt+tnZY9asWYqLi1NMTIzGjRunCxcuaPLkybr77rv1yy+/WL9sJyQkaN++fXrqqacUGhqqXbt2aerUqdq1a5c2btwoi8UiSfrvf/+rhQsXql+/foqIiNCpU6f0448/as+ePWrUqJH+97//KS0tTYcPH9a7774rSXbd57Z06VKdO3dOXbt2VWhoqO655x7NmTNHjz/+uM1y06dPV69evVS7dm0NHTpUgYGB+uWXX7RixQo9/vjjpup37txZL730kubPn6/BgwfbzJs/f76io6NVunRpSYXzeb9w4UK+90FduHAhz7Tp06frqaeeUtOmTTVmzBgdP35c7733njZs2KBffvlFgYGB162Xn2nTpunixYvq06ePvL29VaZMGX3yySd6/vnn9eijj6p///66ePGifvvtN23atCnPz/9y//zzj+655x79+eef6tevn8LDw7VgwQL17NlTqamp6t+/v2rVqqVZs2Zp4MCBKl++vF544QVJUlBQ0A31f6UzZ86obdu26tixozp37qyFCxdqyJAhqlu3rvXS0JycHD388MP68ccf1adPH9WqVUs7duzQu+++qz/++KPA90n26NFDq1atUkJCgqpXry7p39+fn5+fBg0aJD8/P3333XcaPny40tPT9dZbb1nXGzVqlObNm6d+/fpZt5eZmamFCxeqU6dOnEEFCpsBAAUQHx9vXO1QsnbtWkOSUatWLSMjI8M6/b333jMkGTt27DAMwzBycnKMatWqGTExMUZOTo51uQsXLhjh4eHG/ffff80e9u/fb0gy3nrrLWPnzp2GJOOHH34wDMMwPvroI8PPz884f/68ERcXZ/j6+lrXS0lJMby8vIzo6GgjOzvbOv3DDz80JBmff/65YRiG8csvvxiSjAULFlyzD19fXyMuLu6ay+S6dOmSzc/EMAzjzJkzRkhIiNGrV688+1a2bFnj9OnT1ulLliwxJBnLli2zTmvQoIFRrlw5IzU11Tpt1apVhiSjUqVK1+2pdevWRu3ata86/+zZs0ZgYKDxzDPP2ExPTk42AgICbKZfuHAhz/pffPGFIcn4/vvvrdMCAgKM+Pj4a/YVGxtrV/+Xe/DBB40WLVpY30+dOtXw8PAwUlJSrNNSU1ONUqVKGc2aNTP++ecfm/Uv/xxerX7u72batGnWaZGRkUbjxo1tltu8ebMhyZg5c6Z124Xxeb/e68SJE4ZhGEZmZqYRHBxs1KlTx2Y/ly9fbkgyhg8fbp3WunVro3Xr1nlqxsXF2fwMcnvw9/e3+ZkahmG0b9/+mp+jq5k4caIhyZg9e7Z1WmZmphEZGWn4+fkZ6enp1umVKlUyYmNjTW3/xIkThiRjxIgR+c5v3bq1ze/JMAwjIyPDCA0NNTp16mSdNmvWLMPNzc16jMk1ZcoUQ5KxYcOGa/Zx5XHoSrnHm4EDB1qn5ffv6T//+Y9RsmRJ4+LFi9ZpkZGRRrNmzWyWW7RokSHJWLt27TX7AmAel/YBKHJPPfWUzX0TLVu2lCTt27dPkrR9+3bt3btXjz/+uE6dOqWTJ0/q5MmTOn/+vNq0aaPvv//e7pGsateurXr16umLL76Q9O+ZnPbt26tkyZJ5ll29erUyMzM1YMAAubn93+HwmWeekb+/v7755htJUkBAgCRp5cqV+f61/0a4u7tbfyY5OTk6ffq0Ll26pCZNmlgva7tcly5drGczpLw/w2PHjmn79u2Ki4uz9itJ999//3XvJbFXQkKCUlNT1a1bN+vv6OTJk3J3d1ezZs1sLkv08fGx/vfFixd18uRJNW/eXJJs9i8wMFCbNm3S0aNHC6VHSTp16pRWrlypbt26Wad16tRJFotF8+fPt9mfs2fP6uWXX87zl/rcM2ZmdenSRVu3btVff/1lnTZv3jx5e3urffv2kgrv896nTx8lJCTkeV05gt3PP/+slJQUPfvsszb7GRsbq5o1a1o/5zeiU6dOec4GBQYG6vDhw/leenot/+///T+Fhoba/N48PT31/PPP69y5c1q/fv0N92kvPz8/m3uXvLy8dOedd1r/nUn/XiJZq1Yt1axZ0+bfwX333SdJeS7PvZEepH8ve811+b+ns2fP6uTJk2rZsqUuXLig33//3TrvySef1KZNm2w+f3PmzFGFChXUunXrAvUFIC+CFIAiV7FiRZv3uYEg936RvXv3SpLi4uIUFBRk8/r000+VkZFhvRfJHo8//rgWLFigP//8Uz/99NNVLyfKvZelRo0aNtO9vLxUpUoV6/zw8HANGjRIn376qW677TbFxMToo48+MtVTfmbMmKF69eqpRIkSKlu2rIKCgvTNN9/ku93r/Qxze61WrVqeda/cvxuV+3u677778vyeVq1apZSUFOuyp0+fVv/+/RUSEiIfHx8FBQUpPDxckmz2b/z48dq5c6cqVKigO++8U6+99prNl9YbMW/ePGVlZalhw4b6888/9eeff+r06dNq1qyZ5syZY10u98tmYQ75/thjj8nNzc06UIBhGFqwYIHatWtnHYWtsD7v1apVU1RUVJ5XlSpVbJa72udckmrWrJnvPV32yv2dXm7IkCHy8/PTnXfeqWrVqik+Pt6ue78OHDigatWq2fxRQ/p3BNDc+UWtfPnyeUJ06dKlbe5t27t3r3bt2pXnd5d7Gd7l/w5uxLlz5yRJpUqVsk7btWuXHnnkEQUEBMjf319BQUHWwHf5Z6VLly7y9va2fs7T0tK0fPly6+MfABQu7pECUOTc3d3znW4YhiRZ//r+1ltv5bk3KJeZ5z9169bNOvJV2bJlFR0dba7hfEyYMEE9e/bUkiVLtGrVKj3//PMaM2aMNm7ceEP3IM2ePVs9e/ZUhw4dNHjwYAUHB8vd3V1jxoyx+Wtyruv9DB0h9/c0a9YshYaG5pnv4fF//0vp3LmzfvrpJw0ePFgNGjSQn5+fcnJy1LZtW5uzLZ07d1bLli21ePFirVq1Sm+99ZbGjRunRYsW3fBw5blfIlu0aJHv/H379uUJG4UlLCxMLVu21Pz58/XKK69o48aNOnjwoMaNG2ddprA/74XJYrHk+5m6fFCDy11+piRXrVq1lJSUpOXLl2vFihX66quvNGnSJA0fPlwjR44s9J4Lkz3/znJyclS3bl298847+S5boUKFAvWwc+dOSbIO3Z6amqrWrVvL399fo0aNUtWqVVWiRAlt27ZNQ4YMsfn3VLp0aT344IOaM2eOhg8froULFyojI8PpoxQCtyqCFACnyx2Uwd/fX1FRUQXeXsWKFdWiRQutW7dOffv2tfmCf7lKlSpJkpKSkmy+WGdmZmr//v15eqlbt67q1q2rV199VT/99JNatGihKVOmWB8CbOYvvgsXLlSVKlW0aNEim/Wu9Vyca8ndl9yzHZdLSkq6oW1eKff3FBwcfM3f05kzZ7RmzRqNHDlSw4cPt07PrzdJKleunJ599lk9++yzSklJUaNGjfTmm29ag5SZn+v+/fv1008/qV+/fnkuZcrJyVGPHj00d+5cvfrqq9b92blzp83zhq5k9i/5Xbp00bPPPqukpCTNmzdPJUuW1EMPPWSdX9if9+u5/HOee/lZrqSkJOt86d8v4vmdETR7NsjX11ddunRRly5dlJmZqY4dO+rNN9/U0KFDrzrgQaVKlfTbb78pJyfH5qxU7qVrl/fpTFWrVtWvv/6qNm3aFMlZnlmzZslisej++++X9O9IhadOndKiRYvUqlUr63L79+/Pd/0nn3xS7du315YtWzRnzhw1bNhQtWvXLvQ+AXBpHwAX0LhxY1WtWlVvv/229bKWy+U3nO/1vPHGGxoxYoSee+65qy4TFRUlLy8vvf/++zZ/cf7ss8+Ulpam2NhYSf+OsHfp0iWbdevWrSs3Nzeb4Y59fX3zDJt+Nbl/+b687qZNm5SYmGjX+lcqV66cGjRooBkzZthc6pOQkGAdkrqgYmJi5O/vr9GjRysrKyvP/NzfU377JkkTJ060eZ+dnZ3nErbg4GCFhYXl+bnaexll7tmol156SY8++qjNq3PnzmrdurV1mejoaJUqVUpjxozJMyz05b2bqS/9e9+Qu7u7vvjiCy1YsEAPPvigzfOriuLzfi1NmjRRcHCwpkyZYvNz/fbbb7Vnzx7r51z6NyT8/vvvNj38+uuvpoZlv3KIey8vL0VERMgwjHw/N7keeOABJScn2zw/6dKlS/rggw/k5+fnMvf4dO7cWUeOHNEnn3ySZ94///yj8+fP3/C2x44dq1WrVqlLly7Wy3Tz+/eUmZmpSZMm5buNdu3a6bbbbtO4ceO0fv16zkYBRYgzUgCczs3NTZ9++qnatWun2rVr66mnntLtt9+uI0eOaO3atfL399eyZctMbbN169bX/eIVFBSkoUOHauTIkWrbtq0efvhhJSUladKkSWratKn1C8h3332nfv366bHHHlP16tV16dIlzZo1S+7u7urUqZN1e40bN9bq1av1zjvvKCwsTOHh4WrWrFm+tR988EEtWrRIjzzyiGJjY7V//35NmTJFERER+X65tseYMWMUGxuru+++W7169dLp06etz/Oxd5snTpywnmG7XHh4uLp3767JkyerR48eatSokbp27aqgoCAdPHhQ33zzjVq0aKEPP/xQ/v7+atWqlcaPH6+srCzdfvvtWrVqVZ6/oJ89e1bly5fXo48+qvr168vPz0+rV6/Wli1bNGHCBOtyjRs31rx58zRo0CA1bdpUfn5+Nmd4Ljdnzhw1aNDgqpdXPfzww3ruuee0bds2NWrUSO+++66efvppNW3aVI8//rhKly6tX3/9VRcuXLA+v8hMfenfMHjvvffqnXfe0dmzZ9WlSxeb+UXxeb8WT09PjRs3Tk899ZRat26tbt26WYc/r1y5sgYOHGhdtlevXnrnnXcUExOj3r17KyUlRVOmTFHt2rWVnp5uV73o6GiFhoaqRYsWCgkJ0Z49e/Thhx8qNjbW5r6fK/Xp00cff/yxevbsqa1bt6py5cpauHChNmzYoIkTJ15zXUfq0aOH5s+fr//+979au3atWrRooezsbP3++++aP3++Vq5cqSZNmlxzG5cuXdLs2bMl/TsYy4EDB7R06VL99ttvuvfeezV16lTrsnfddZdKly6tuLg4Pf/887JYLJo1a9ZVL+v19PRU165d9eGHH8rd3d1m8A4Ahcw5gwUCuFXYM/z5lcOG5zdstGH8O+xvx44djbJlyxre3t5GpUqVjM6dOxtr1qy5Zg+XD39+LVcbdvjDDz80atasaXh6ehohISFG3759jTNnzljn79u3z+jVq5dRtWpVo0SJEkaZMmWMe++911i9erXNdn7//XejVatWho+PjyHpmkOh5+TkGKNHjzYqVapkeHt7Gw0bNjSWL19+1WGm89s35TOU81dffWXUqlXL8Pb2NiIiIoxFixbl2ebV5A7/nN+rTZs21uXWrl1rxMTEGAEBAUaJEiWMqlWrGj179jR+/vln6zKHDx82HnnkESMwMNAICAgwHnvsMePo0aM2PWdkZBiDBw826tevb5QqVcrw9fU16tevb0yaNMmmr3PnzhmPP/64ERgYeM2h3Ldu3WpIMoYNG3bVffz777/zDC29dOlS46677jJ8fHwMf39/48477zS++OKL69a/2ufYMAzjk08+MSQZpUqVyjO0eq6i+ryPGDHCZvjzXPPmzTMaNmxoeHt7G2XKlDG6d+9uHD58OM/6s2fPNqpUqWJ4eXkZDRo0MFauXGnqc/nxxx8brVq1su5X1apVjcGDBxtpaWnX3C/DMIzjx48bTz31lHHbbbcZXl5eRt26dfP9+RbV8Of5Ddue37+fzMxMY9y4cUbt2rUNb29vo3Tp0kbjxo2NkSNHXnc/4+LibP5tlSxZ0qhcubLRqVMnY+HChTaPYsi1YcMGo3nz5oaPj48RFhZmvPTSS8bKlSuvOqx57pD70dHR1+wFQMFYDMOBdyoDAACgSP36669q0KCBZs6cmWc4fACFh3ukAAAAbiGffPKJ/Pz81LFjR2e3AtzSuEcKAADgFrBs2TLt3r1bU6dOVb9+/WwGOQFQ+Li0DwAA4BZQuXJlHT9+XDExMZo1a5bLDNAB3KoIUgAAAABgEvdIAQAAAIBJBCkAAAAAMInBJiTl5OTo6NGjKlWqlCwWi7PbAQAAAOAkhmHo7NmzCgsLk5vb1c87EaQkHT16VBUqVHB2GwAAAABcxKFDh1S+fPmrzidISdZRbQ4dOiR/f38ndwMAAADAWdLT01WhQoXrjnxJkJKsl/P5+/sTpAAAAABc95YfBpsAAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACY5PUgdOXJETzzxhMqWLSsfHx/VrVtXP//8s3W+YRgaPny4ypUrJx8fH0VFRWnv3r022zh9+rS6d+8uf39/BQYGqnfv3jp37pyjdwUAAABAMeHUIHXmzBm1aNFCnp6e+vbbb7V7925NmDBBpUuXti4zfvx4vf/++5oyZYo2bdokX19fxcTE6OLFi9Zlunfvrl27dikhIUHLly/X999/rz59+jhjlwAAAAAUAxbDMAxnFX/55Ze1YcMG/fDDD/nONwxDYWFheuGFF/Tiiy9KktLS0hQSEqLp06era9eu2rNnjyIiIrRlyxY1adJEkrRixQo98MADOnz4sMLCwq7bR3p6ugICApSWliZ/f//C20EAAAAANxV7s4FTz0gtXbpUTZo00WOPPabg4GA1bNhQn3zyiXX+/v37lZycrKioKOu0gIAANWvWTImJiZKkxMREBQYGWkOUJEVFRcnNzU2bNm3Kt25GRobS09NtXgAAAABgL6cGqX379mny5MmqVq2aVq5cqb59++r555/XjBkzJEnJycmSpJCQEJv1QkJCrPOSk5MVHBxsM9/Dw0NlypSxLnOlMWPGKCAgwPqqUKFCYe8aAAAAgFuYU4NUTk6OGjVqpNGjR6thw4bq06ePnnnmGU2ZMqVI6w4dOlRpaWnW16FDh4q0HgAAwK3CYinYC7hVODVIlStXThERETbTatWqpYMHD0qSQkNDJUnHjx+3Web48ePWeaGhoUpJSbGZf+nSJZ0+fdq6zJW8vb3l7+9v8wIAAAAAezk1SLVo0UJJSUk20/744w9VqlRJkhQeHq7Q0FCtWbPGOj89PV2bNm1SZGSkJCkyMlKpqanaunWrdZnvvvtOOTk5atasmQP2AgAAAEBx4+HM4gMHDtRdd92l0aNHq3Pnztq8ebOmTp2qqVOnSpIsFosGDBigN954Q9WqVVN4eLiGDRumsLAwdejQQdK/Z7Datm1rvSQwKytL/fr1U9euXe0asQ8AAAAAzHLq8OeStHz5cg0dOlR79+5VeHi4Bg0apGeeecY63zAMjRgxQlOnTlVqaqruvvtuTZo0SdWrV7cuc/r0afXr10/Lli2Tm5ubOnXqpPfff19+fn529cDw5wAAAPYp6H1Ozv3mCVyfvdnA6UHKFRCkAAAA7EOQwq3upniOFAAAAADcjAhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMMmpz5ECAAAAzGDUQLgKzkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABM8nB2AwAAALCfxVKw9Q2jcPoAijuCFAAAduILLAAgF5f2AQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYxKh9AADAboxcCAD/4owUAAAAAJjEGSkAAG4inBECANfAGSkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATHJqkHrttddksVhsXjVr1rTOv3jxouLj41W2bFn5+fmpU6dOOn78uM02Dh48qNjYWJUsWVLBwcEaPHiwLl265OhdAQAAAFCMeDi7gdq1a2v16tXW9x4e/9fSwIED9c0332jBggUKCAhQv3791LFjR23YsEGSlJ2drdjYWIWGhuqnn37SsWPH9OSTT8rT01OjR492+L4AAAAAKB6cHqQ8PDwUGhqaZ3paWpo+++wzzZ07V/fdd58kadq0aapVq5Y2btyo5s2ba9WqVdq9e7dWr16tkJAQNWjQQK+//rqGDBmi1157TV5eXo7eHQAAAADFgNPvkdq7d6/CwsJUpUoVde/eXQcPHpQkbd26VVlZWYqKirIuW7NmTVWsWFGJiYmSpMTERNWtW1chISHWZWJiYpSenq5du3ZdtWZGRobS09NtXgAAAABgL6cGqWbNmmn69OlasWKFJk+erP3796tly5Y6e/askpOT5eXlpcDAQJt1QkJClJycLElKTk62CVG583PnXc2YMWMUEBBgfVWoUKFwdwwAAADALc2pl/a1a9fO+t/16tVTs2bNVKlSJc2fP18+Pj5FVnfo0KEaNGiQ9X16ejphCgAAAIDdnH5p3+UCAwNVvXp1/fnnnwoNDVVmZqZSU1Ntljl+/Lj1nqrQ0NA8o/jlvs/vvqtc3t7e8vf3t3kBAABcj8VS8BeAW4NLBalz587pr7/+Urly5dS4cWN5enpqzZo11vlJSUk6ePCgIiMjJUmRkZHasWOHUlJSrMskJCTI399fERERDu8fAAAAQPHg1Ev7XnzxRT300EOqVKmSjh49qhEjRsjd3V3dunVTQECAevfurUGDBqlMmTLy9/fXc889p8jISDVv3lySFB0drYiICPXo0UPjx49XcnKyXn31VcXHx8vb29uZuwYAAADgFubUIHX48GF169ZNp06dUlBQkO6++25t3LhRQUFBkqR3331Xbm5u6tSpkzIyMhQTE6NJkyZZ13d3d9fy5cvVt29fRUZGytfXV3FxcRo1apSzdgkAAABAMWAxDMNwdhPOlp6eroCAAKWlpXG/FADgqgp6f0th/B/X2T04u76zFcY9Tjf776C418etz95s4FL3SAEAAADAzYAgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgklOfIwUAuLkw7DAAAP/ijBQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACY5OHsBgAAsJfFUrD1DaNw+gAAgDNSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYJKHsxsAANjHYinY+oZROH0AAADOSAEAAACAaQQpAAAAADCJIAUAAAAAJnGPFADYiXuUAABALs5IAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTPJzdAAAAgL0sloKtbxiF0wcAuMwZqbFjx8pisWjAgAHWaRcvXlR8fLzKli0rPz8/derUScePH7dZ7+DBg4qNjVXJkiUVHByswYMH69KlSw7uHgAAAEBx4hJBasuWLfr4449Vr149m+kDBw7UsmXLtGDBAq1fv15Hjx5Vx44drfOzs7MVGxurzMxM/fTTT5oxY4amT5+u4cOHO3oXAAAAABQjTg9S586dU/fu3fXJJ5+odOnS1ulpaWn67LPP9M477+i+++5T48aNNW3aNP3000/auHGjJGnVqlXavXu3Zs+erQYNGqhdu3Z6/fXX9dFHHykzM9NZuwQAAADgFuf0IBUfH6/Y2FhFRUXZTN+6dauysrJsptesWVMVK1ZUYmKiJCkxMVF169ZVSEiIdZmYmBilp6dr165dV62ZkZGh9PR0mxcAAAAA2Mupg018+eWX2rZtm7Zs2ZJnXnJysry8vBQYGGgzPSQkRMnJydZlLg9RufNz513NmDFjNHLkyAJ2DwAAAKC4ctoZqUOHDql///6aM2eOSpQo4dDaQ4cOVVpamvV16NAhh9YHAAAAcHNzWpDaunWrUlJS1KhRI3l4eMjDw0Pr16/X+++/Lw8PD4WEhCgzM1Opqak26x0/flyhoaGSpNDQ0Dyj+OW+z10mP97e3vL397d5AQAAAIC9nBak2rRpox07dmj79u3WV5MmTdS9e3frf3t6emrNmjXWdZKSknTw4EFFRkZKkiIjI7Vjxw6lpKRYl0lISJC/v78iIiIcvk8AAAAAigen3SNVqlQp1alTx2aar6+vypYta53eu3dvDRo0SGXKlJG/v7+ee+45RUZGqnnz5pKk6OhoRUREqEePHho/frySk5P16quvKj4+Xt7e3g7fJwAAAADFg1MHm7ied999V25uburUqZMyMjIUExOjSZMmWee7u7tr+fLl6tu3ryIjI+Xr66u4uDiNGjXKiV0DAAAAuNVZDMMwnN2Es6WnpysgIEBpaWncLwXgqiyWgq1f0KOts+u7Qg/Fvb4r9ED9gq3vCj1Qv2Dr49ZnbzZw+nOkAAAAAOBmQ5ACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGBSoQSp1NTUwtgMAAAAANwUTAepcePGad68edb3nTt3VtmyZXX77bfr119/LdTmAAAAAMAVmQ5SU6ZMUYUKFSRJCQkJSkhI0Lfffqt27dpp8ODBhd4gAAAAALgaD7MrJCcnW4PU8uXL1blzZ0VHR6ty5cpq1qxZoTcIAAAAAK7G9Bmp0qVL69ChQ5KkFStWKCoqSpJkGIays7MLtzsAAAAAcEGmz0h17NhRjz/+uKpVq6ZTp06pXbt2kqRffvlFd9xxR6E3CAAAAACuxnSQevfdd1W5cmUdOnRI48ePl5+fnyTp2LFjevbZZwu9QQAAAABwNRbDMAxnN+Fs6enpCggIUFpamvz9/Z3dDgAXZbEUbP2CHm2dXd8Veiju9V2hB+oXbH1X6IH6BVsftz57s4HpM1KSlJSUpA8++EB79uyRJNWqVUvPPfecatSocWPdAgAAADcJwhykGxhs4quvvlKdOnW0detW1a9fX/Xr19e2bdtUp04dffXVV0XRIwAAAAC4FNOX9lWtWlXdu3fXqFGjbKaPGDFCs2fP1l9//VWoDToCl/YBsIez/wLp7Pqu0ENxr+8KPVC/YOu7Qg/UL9j6rtIDio692cD0Galjx47pySefzDP9iSee0LFjx8xuDgAAAABuOqaD1D333KMffvghz/Qff/xRLVu2LJSmAAAAAMCVmR5s4uGHH9aQIUO0detWNW/eXJK0ceNGLViwQCNHjtTSpUttlgUAAACAW43pe6Tc3Ow7iWWxWJSdnX1DTTka90gBsIezr4l3dn1X6KG413eFHqhfsPVdoQfqF2x9V+kBRafIhj/PyckpUGMAAAAAcLMzfY/U5S5evFhYfQAAAADATcN0kMrOztbrr7+u22+/XX5+ftq3b58kadiwYfrss88KvUEAAAAAcDWmg9Sbb76p6dOna/z48fLy8rJOr1Onjj799NNCbQ4AAAAAXJHpIDVz5kxNnTpV3bt3l7u7u3V6/fr19fvvvxdqcwAAAADgikwHqSNHjuiOO+7IMz0nJ0dZWVmF0hQAAAAAuDLTQSoiIiLfB/IuXLhQDRs2LJSmAAAAAMCVmR7+fPjw4YqLi9ORI0eUk5OjRYsWKSkpSTNnztTy5cuLokcAAAAAcCmmz0i1b99ey5Yt0+rVq+Xr66vhw4drz549WrZsme6///6i6BEAAAAAXIrpM1KS1LJlSyUkJBR2LwAAAABwUzB9RqpKlSo6depUnumpqamqUqVKoTQFAAAAAK7MdJD6+++/lZ2dnWd6RkaGjhw5UihNAQAAAIArs/vSvqVLl1r/e+XKlQoICLC+z87O1po1a1S5cuVCbQ4AAAAAXJHdQapDhw6SJIvFori4OJt5np6eqly5siZMmFCozQEAAACAK7I7SOXk5EiSwsPDtWXLFt12221F1hQAAAAAuDLTo/bt37+/KPoAAAAAgJuG3YNNJCYm5nng7syZMxUeHq7g4GD16dNHGRkZhd4gAAAAALgau4PUqFGjtGvXLuv7HTt2qHfv3oqKitLLL7+sZcuWacyYMUXSJAAAAAC4EruD1Pbt29WmTRvr+y+//FLNmjXTJ598okGDBun999/X/Pnzi6RJAAAAAHAldgepM2fOKCQkxPp+/fr1ateunfV906ZNdejQocLtDgAAAABckN1BKiQkxDrQRGZmprZt26bmzZtb5589e1aenp6F3yEAAAAAuBi7g9QDDzygl19+WT/88IOGDh2qkiVLqmXLltb5v/32m6pWrVokTQIAAACAK7F7+PPXX39dHTt2VOvWreXn56cZM2bIy8vLOv/zzz9XdHR0kTQJAAAAAK7EYhiGYWaFtLQ0+fn5yd3d3Wb66dOn5efnZxOubhbp6ekKCAhQWlqa/P39nd0OABdlsRRsfXNHW9er7wo9FPf6rtAD9Qu2viv0QP2Cre8qPaDo2JsNTD+QNyAgIN/pZcqUMbspAAAAALgp2X2PFAAAAADgX6bPSAEAAABwHi4tdA2ckQIAAAAAkzgjBeCmwV/gAACAq7ArSC1dutTuDT788MN2Lzt58mRNnjxZf//9tySpdu3aGj58uNq1aydJunjxol544QV9+eWXysjIUExMjCZNmqSQkBDrNg4ePKi+fftq7dq18vPzU1xcnMaMGSMPDzIiAAAAgKJhV9ro0KGDXRuzWCzKzs62u3j58uU1duxYVatWTYZhaMaMGWrfvr1++eUX1a5dWwMHDtQ333yjBQsWKCAgQP369VPHjh21YcMGSVJ2drZiY2MVGhqqn376SceOHdOTTz4pT09PjR492u4+AAAAAMAM08+RKmplypTRW2+9pUcffVRBQUGaO3euHn30UUnS77//rlq1aikxMVHNmzfXt99+qwcffFBHjx61nqWaMmWKhgwZohMnTlz1mVYZGRnKyMiwvk9PT1eFChV4jhTg4px9aV9xr+8KPRT3+q7QA/ULtr4r9ED9gq3vCj04u/6tzt7nSLnMYBPZ2dn68ssvdf78eUVGRmrr1q3KyspSVFSUdZmaNWuqYsWKSkxMlCQlJiaqbt26Npf6xcTEKD09Xbt27bpqrTFjxiggIMD6qlChQtHtGAAAAIBbzg3dSHT+/HmtX79eBw8eVGZmps28559/3tS2duzYocjISF28eFF+fn5avHixIiIitH37dnl5eSkwMNBm+ZCQECUnJ0uSkpOTbUJU7vzceVczdOhQDRo0yPo+94wUAAAAANjDdJD65Zdf9MADD+jChQs6f/68ypQpo5MnT6pkyZIKDg42HaRq1Kih7du3Ky0tTQsXLlRcXJzWr19vti1TvL295e3tXaQ1AAAAANy6TF/aN3DgQD300EM6c+aMfHx8tHHjRh04cECNGzfW22+/bboBLy8v3XHHHWrcuLHGjBmj+vXr67333lNoaKgyMzOVmppqs/zx48cVGhoqSQoNDdXx48fzzM+dBwAAAABFwXSQ2r59u1544QW5ubnJ3d1dGRkZqlChgsaPH69XXnmlwA3l5OQoIyNDjRs3lqenp9asWWOdl5SUpIMHDyoyMlKSFBkZqR07diglJcW6TEJCgvz9/RUREVHgXgAAAAAgP6Yv7fP09JSb27/5Kzg4WAcPHlStWrUUEBCgQ4cOmdrW0KFD1a5dO1WsWFFnz57V3LlztW7dOq1cuVIBAQHq3bu3Bg0apDJlysjf31/PPfecIiMj1bx5c0lSdHS0IiIi1KNHD40fP17Jycl69dVXFR8fz6V7AAAAAIqM6SDVsGFDbdmyRdWqVVPr1q01fPhwnTx5UrNmzVKdOnVMbSslJUVPPvmkjh07poCAANWrV08rV67U/fffL0l699135ebmpk6dOtk8kDeXu7u7li9frr59+yoyMlK+vr6Ki4vTqFGjzO4WAAAAANjN9HOkfv75Z509e1b33nuvNQj99NNPqlatmj777DM1aNCgiFotOvaOFQ/AuZz93IziXt8Veiju9V2hB+oXbH1X6IH6BVvfFXpwdv1bnb3ZwOUeyOsMBCng5uDs/3EU9/qu0ENxr+8KPVC/YOu7Qg/UL9j6rtCDs+vf6orsgbz33XdfnpH0cgved999ZjcHAAAAADcd00Fq3bp1eR7CK0kXL17UDz/8UChNAQAAAIArs3uwid9++83637t371ZycrL1fXZ2tlasWKHbb7+9cLsDAAAAABdkd5Bq0KCBLBaLLBZLvpfw+fj46IMPPijU5gAAAADAFdkdpPbv3y/DMFSlShVt3rxZQUFB1nleXl4KDg6Wu7t7kTQJAAAAAK7E7iBVqVIlSVJOTk6RNQMAAAAANwPTD+SVpL/++ksTJ07Unj17JEkRERHq37+/qlatWqjNAQAAAIArMj1q38qVKxUREaHNmzerXr16qlevnjZt2qTatWsrISGhKHoEAAAAAJdi+oG8DRs2VExMjMaOHWsz/eWXX9aqVau0bdu2Qm3QEXggL3BzcPYDCIt7fVfoobjXd4UeqF+w9V2hB+oXbH1X6MHZ9W91RfZA3j179qh37955pvfq1Uu7d+82uzkAAAAAuOmYDlJBQUHavn17nunbt29XcHBwYfQEAAAAAC7N7sEmRo0apRdffFHPPPOM+vTpo3379umuu+6SJG3YsEHjxo3ToEGDiqxRAAAAAHAVdt8j5e7urmPHjikoKEgTJ07UhAkTdPToUUlSWFiYBg8erOeff16Wwrh42MG4Rwq4OTj7mvDiXt8Veiju9V2hB+oXbH1X6IH6BVvfFXpwdv1bnb3ZwO4g5ebmpuTkZJvL986ePStJKlWqVAHbdS6CFHBzcPb/OIp7fVfoobjXd4UeqF+w9V2hB+oXbH1X6MHZ9W919mYDU8+RuvJs080eoAAAAADgRpgKUtWrV7/upXunT58uUEMAAAAA4OpMBamRI0cqICCgqHoBAAAAgJuCqSDVtWtXhjgHAAAAUOzZ/Rypm3E0PgAAAAAoCnYHKTsH9wMAAACAW57dl/bl5OQUZR8AAAAAcNOw+4wUAAAAAOBfBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABM8nB2AwAAAABuHhZLwdY3jMLpw9k4IwUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASU4NUmPGjFHTpk1VqlQpBQcHq0OHDkpKSrJZ5uLFi4qPj1fZsmXl5+enTp066fjx4zbLHDx4ULGxsSpZsqSCg4M1ePBgXbp0yZG7AgAAAKAYcWqQWr9+veLj47Vx40YlJCQoKytL0dHROn/+vHWZgQMHatmyZVqwYIHWr1+vo0ePqmPHjtb52dnZio2NVWZmpn766SfNmDFD06dP1/Dhw52xSwAAAACKAYthGIazm8h14sQJBQcHa/369WrVqpXS0tIUFBSkuXPn6tFHH5Uk/f7776pVq5YSExPVvHlzffvtt3rwwQd19OhRhYSESJKmTJmiIUOG6MSJE/Ly8rpu3fT0dAUEBCgtLU3+/v5Fuo8AbpzFUrD1C3q0K+71XaGH4l7fFXqgfsHWd4UeqF+w9V2hh+Jev6jZmw1c6h6ptLQ0SVKZMmUkSVu3blVWVpaioqKsy9SsWVMVK1ZUYmKiJCkxMVF169a1hihJiomJUXp6unbt2pVvnYyMDKWnp9u8AAAAAMBeLhOkcnJyNGDAALVo0UJ16tSRJCUnJ8vLy0uBgYE2y4aEhCg5Odm6zOUhKnd+7rz8jBkzRgEBAdZXhQoVCnlvAAAAANzKXCZIxcfHa+fOnfryyy+LvNbQoUOVlpZmfR06dKjIawIAAAC4dXg4uwFJ6tevn5YvX67vv/9e5cuXt04PDQ1VZmamUlNTbc5KHT9+XKGhodZlNm/ebLO93FH9cpe5kre3t7y9vQt5LwAAAAAUF049I2UYhvr166fFixfru+++U3h4uM38xo0by9PTU2vWrLFOS0pK0sGDBxUZGSlJioyM1I4dO5SSkmJdJiEhQf7+/oqIiHDMjgAAAAAoVpx6Rio+Pl5z587VkiVLVKpUKes9TQEBAfLx8VFAQIB69+6tQYMGqUyZMvL399dzzz2nyMhINW/eXJIUHR2tiIgI9ejRQ+PHj1dycrJeffVVxcfHc9YJAAAAQJFw6vDnlquMnTht2jT17NlT0r8P5H3hhRf0xRdfKCMjQzExMZo0aZLNZXsHDhxQ3759tW7dOvn6+iouLk5jx46Vh4d9OZHhz4Gbg7OHWy3u9V2hh+Je3xV6oH7B1neFHqhfsPVdoYfiXr+o2ZsNXOo5Us5CkAJuDs4+cBf3+q7QQ3Gv7wo9UL9g67tCD9Qv2Pqu0ENxr1/UbsrnSAEAAADAzYAgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADDJw9kNALg5FPQp5pLrP8kcAADAXpyRAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACY5OHsBgAAAADAXhZLwbdhGAXfBmekAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAk5wapL7//ns99NBDCgsLk8Vi0ddff20z3zAMDR8+XOXKlZOPj4+ioqK0d+9em2VOnz6t7t27y9/fX4GBgerdu7fOnTvnwL0AAAAAUNw4NUidP39e9evX10cffZTv/PHjx+v999/XlClTtGnTJvn6+iomJkYXL160LtO9e3ft2rVLCQkJWr58ub7//nv16dPHUbsAAAAAoBiyGIZhOLsJSbJYLFq8eLE6dOgg6d+zUWFhYXrhhRf04osvSpLS0tIUEhKi6dOnq2vXrtqzZ48iIiK0ZcsWNWnSRJK0YsUKPfDAAzp8+LDCwsLsqp2enq6AgAClpaXJ39+/SPYPuNlZLAXfRkGPNgXtgfoFW98Veiju9V2hB+oXbH1X6IH6BVvfFXqgfsHWv14P9mYDl71Hav/+/UpOTlZUVJR1WkBAgJo1a6bExERJUmJiogIDA60hSpKioqLk5uamTZs2XXXbGRkZSk9Pt3kBAAAAgL1cNkglJydLkkJCQmymh4SEWOclJycrODjYZr6Hh4fKlCljXSY/Y8aMUUBAgPVVoUKFQu4eAAAAwK3MZYNUURo6dKjS0tKsr0OHDjm7JQAAAAA3EZcNUqGhoZKk48eP20w/fvy4dV5oaKhSUlJs5l+6dEmnT5+2LpMfb29v+fv727wAAAAAwF4uG6TCw8MVGhqqNWvWWKelp6dr06ZNioyMlCRFRkYqNTVVW7dutS7z3XffKScnR82aNXN4zwAAAACKBw9nFj937pz+/PNP6/v9+/dr+/btKlOmjCpWrKgBAwbojTfeULVq1RQeHq5hw4YpLCzMOrJfrVq11LZtWz3zzDOaMmWKsrKy1K9fP3Xt2tXuEfsAAAAAwCynBqmff/5Z9957r/X9oEGDJElxcXGaPn26XnrpJZ0/f159+vRRamqq7r77bq1YsUIlSpSwrjNnzhz169dPbdq0kZubmzp16qT333/f4fsCAAAAoPhwmedIORPPkQKuj2enUN8Veiju9V2hB+oXbH1X6IH6BVvfFXqgfsHWv14PN/1zpAAAAADAVRGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJjk4ewGANjHYinY+oZROH0AAACAIGU3vsQCAAAAyMWlfQAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACZ5OLsB2MdiKdj6hlE4fQAAAADgjBQAAAAAmEaQAgAAAACTCFIAAAAAYBL3SMEu3KMFAAAA/B/OSAEAAACASQQpAAAAADCJS/sAO3F5IwAAAHJxRgoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmMdgEbhoM9gAAAABXccuckfroo49UuXJllShRQs2aNdPmzZud3RIAAACAW9QtEaTmzZunQYMGacSIEdq2bZvq16+vmJgYpaSkOLs1AAAAALegWyJIvfPOO3rmmWf01FNPKSIiQlOmTFHJkiX1+eefO7s1AAAAALegm/4eqczMTG3dulVDhw61TnNzc1NUVJQSExPzXScjI0MZGRnW92lpaZKk9PT0IuuzCDdN/Zukh+Je3xV6oL5z67tCD8W9viv0UNzru0IP1HdufVfoobjXv14PuZnAuM4N9jd9kDp58qSys7MVEhJiMz0kJES///57vuuMGTNGI0eOzDO9QoUKRdKjJAUEFNmmqX+T9FDc67tCD9R3bn1X6KG413eFHop7fVfogfrOre8KPRT3+vb2cPbsWQVcY8GbPkjdiKFDh2rQoEHW9zk5OTp9+rTKli0ryw0MDZeenq4KFSro0KFD8vf3L8xWqX+T9FDc67tCD9TnM1Dc67tCD9TnM1Dc67tCD8W9fmH0YBiGzp49q7CwsGsud9MHqdtuu03u7u46fvy4zfTjx48rNDQ033W8vb3l7e1tMy0wMLDAvfj7+zvtA0N91+ihuNd3hR6oz2eguNd3hR6oz2eguNd3hR6Ke/2C9nCtM1G5bvrBJry8vNS4cWOtWbPGOi0nJ0dr1qxRZGSkEzsDAAAAcKu66c9ISdKgQYMUFxenJk2a6M4779TEiRN1/vx5PfXUU85uDQAAAMAt6JYIUl26dNGJEyc0fPhwJScnq0GDBlqxYkWeASiKire3t0aMGJHnckFHKe71XaGH4l7fFXqgPp+B4l7fFXqgPp+B4l7fFXoo7vUd2YPFuN64fgAAAAAAGzf9PVIAAAAA4GgEKQAAAAAwiSAFAAAAACYRpAAAAADAJIJUAX300UeqXLmySpQooWbNmmnz5s0Oq/3999/roYceUlhYmCwWi77++muH1ZakMWPGqGnTpipVqpSCg4PVoUMHJSUlOaz+5MmTVa9ePevD1iIjI/Xtt986rP6Vxo4dK4vFogEDBjis5muvvSaLxWLzqlmzpsPqS9KRI0f0xBNPqGzZsvLx8VHdunX1888/O6x+5cqV8/wMLBaL4uPjHVI/Oztbw4YNU3h4uHx8fFS1alW9/vrrcuQ4PmfPntWAAQNUqVIl+fj46K677tKWLVuKpNb1jjuGYWj48OEqV66cfHx8FBUVpb179zq0h0WLFik6Olply5aVxWLR9u3bHVY/KytLQ4YMUd26deXr66uwsDA9+eSTOnr0qEPqS/8eF2rWrClfX1+VLl1aUVFR2rRpU6HVt6eHy/33v/+VxWLRxIkTHVa/Z8+eeY4Jbdu2dVh9SdqzZ48efvhhBQQEyNfXV02bNtXBgwcd1kN+x0WLxaK33nrLIfXPnTunfv36qXz58vLx8VFERISmTJlSKLXtqX/8+HH17NlTYWFhKlmypNq2bVuoxyJ7vgNdvHhR8fHxKlu2rPz8/NSpUycdP37cYfWnTp2qe+65R/7+/rJYLEpNTS2U2vbUP336tJ577jnVqFFDPj4+qlixop5//nmlpaU5rAdJ+s9//qOqVavKx8dHQUFBat++vX7//fdC64EgVQDz5s3ToEGDNGLECG3btk3169dXTEyMUlJSHFL//Pnzql+/vj766COH1LvS+vXrFR8fr40bNyohIUFZWVmKjo7W+fPnHVK/fPnyGjt2rLZu3aqff/5Z9913n9q3b69du3Y5pP7ltmzZoo8//lj16tVzeO3atWvr2LFj1tePP/7osNpnzpxRixYt5OnpqW+//Va7d+/WhAkTVLp0aYf1sGXLFpv9T0hIkCQ99thjDqk/btw4TZ48WR9++KH27NmjcePGafz48frggw8cUl+Snn76aSUkJGjWrFnasWOHoqOjFRUVpSNHjhR6resdd8aPH6/3339fU6ZM0aZNm+Tr66uYmBhdvHjRYT2cP39ed999t8aNG1doNe2tf+HCBW3btk3Dhg3Ttm3btGjRIiUlJenhhx92SH1Jql69uj788EPt2LFDP/74oypXrqzo6GidOHHCYT3kWrx4sTZu3KiwsLBCq21v/bZt29ocG7744guH1f/rr7909913q2bNmlq3bp1+++03DRs2TCVKlHBYD5fv+7Fjx/T555/LYrGoU6dODqk/aNAgrVixQrNnz9aePXs0YMAA9evXT0uXLi3y+oZhqEOHDtq3b5+WLFmiX375RZUqVVJUVFShfUex5zvQwIEDtWzZMi1YsEDr16/X0aNH1bFjR4fVv3Dhgtq2batXXnmlUGqaqX/06FEdPXpUb7/9tnbu3Knp06drxYoV6t27t8N6kKTGjRtr2rRp2rNnj1auXCnDMBQdHa3s7OzCacLADbvzzjuN+Ph46/vs7GwjLCzMGDNmjMN7kWQsXrzY4XUvl5KSYkgy1q9f77QeSpcubXz66acOrXn27FmjWrVqRkJCgtG6dWujf//+Dqs9YsQIo379+g6rd6UhQ4YYd999t9Pq56d///5G1apVjZycHIfUi42NNXr16mUzrWPHjkb37t0dUv/ChQuGu7u7sXz5cpvpjRo1Mv73v/8Vae0rjzs5OTlGaGio8dZbb1mnpaamGt7e3sYXX3zhkB4ut3//fkOS8csvvxRJ7evVz7V582ZDknHgwAGn1E9LSzMkGatXry70+tfq4fDhw8btt99u7Ny506hUqZLx7rvvOqx+XFyc0b59+yKpZ0/9Ll26GE888YRD6l+thyu1b9/euO+++xxWv3bt2saoUaNsphXVcenK+klJSYYkY+fOndZp2dnZRlBQkPHJJ58Uen3DyPsdKDU11fD09DQWLFhgXWbPnj2GJCMxMbHI619u7dq1hiTjzJkzhV7Xnvq55s+fb3h5eRlZWVlO6+HXX381JBl//vlnodTkjNQNyszM1NatWxUVFWWd5ubmpqioKCUmJjqxM+fJPV1bpkwZh9fOzs7Wl19+qfPnzysyMtKhtePj4xUbG2vzWXCkvXv3KiwsTFWqVFH37t0L9dKR61m6dKmaNGmixx57TMHBwWrYsKE++eQTh9W/UmZmpmbPnq1evXrJYrE4pOZdd92lNWvW6I8//pAk/frrr/rxxx/Vrl07h9S/dOmSsrOz8/yl28fHx6FnJyVp//79Sk5Otvm3EBAQoGbNmhXb46L077HRYrEoMDDQ4bUzMzM1depUBQQEqH79+g6rm5OTox49emjw4MGqXbu2w+pebt26dQoODlaNGjXUt29fnTp1yiF1c3Jy9M0336h69eqKiYlRcHCwmjVr5vDL7y93/PhxffPNN4V6NuB67rrrLi1dulRHjhyRYRhau3at/vjjD0VHRxd57YyMDEmyOS66ubnJ29u7yI6LV34H2rp1q7KysmyOhzVr1lTFihWL5HjozO9g9tZPS0uTv7+/PDw8nNLD+fPnNW3aNIWHh6tChQqFUpMgdYNOnjyp7OxshYSE2EwPCQlRcnKyk7pynpycHA0YMEAtWrRQnTp1HFZ3x44d8vPzk7e3t/773/9q8eLFioiIcFj9L7/8Utu2bdOYMWMcVvNyzZo1s54unzx5svbv36+WLVvq7NmzDqm/b98+TZ48WdWqVdPKlSvVt29fPf/885oxY4ZD6l/p66+/Vmpqqnr27Omwmi+//LK6du2qmjVrytPTUw0bNtSAAQPUvXt3h9QvVaqUIiMj9frrr+vo0aPKzs7W7NmzlZiYqGPHjjmkh1y5xz6Oi//n4sWLGjJkiLp16yZ/f3+H1V2+fLn8/PxUokQJvfvuu0pISNBtt93msPrjxo2Th4eHnn/+eYfVvFzbtm01c+ZMrVmzRuPGjdP69evVrl27wruc5xpSUlJ07tw5jR07Vm3bttWqVav0yCOPqGPHjlq/fn2R18/PjBkzVKpUqUK7rMweH3zwgSIiIlS+fHl5eXmpbdu2+uijj9SqVasir50bWIYOHaozZ84oMzNT48aN0+HDh4vkuJjfd6Dk5GR5eXnl+QNKURwPnfUdzEz9kydP6vXXX1efPn0c3sOkSZPk5+cnPz8/ffvtt0pISJCXl1eh1C2aSIhiJz4+Xjt37nT4X8Br1Kih7du3Ky0tTQsXLlRcXJzWr1/vkDB16NAh9e/fXwkJCYV63bsZl5/1qFevnpo1a6ZKlSpp/vz5DvnLY05Ojpo0aaLRo0dLkho2bKidO3dqypQpiouLK/L6V/rss8/Url27Qr8f41rmz5+vOXPmaO7cuapdu7a2b9+uAQMGKCwszGE/g1mzZqlXr166/fbb5e7urkaNGqlbt27aunWrQ+ojf1lZWercubMMw9DkyZMdWvvee+/V9u3bdfLkSX3yySfq3LmzNm3apODg4CKvvXXrVr333nvatm2bw84MX6lr167W/65bt67q1aunqlWrat26dWrTpk2R1s7JyZEktW/fXgMHDpQkNWjQQD/99JOmTJmi1q1bF2n9/Hz++efq3r27Q/9f9cEHH2jjxo1aunSpKlWqpO+//17x8fEKCwsr8is4PD09tWjRIvXu3VtlypSRu7u7oqKi1K5duyIZCMhZ34Fulvrp6emKjY1VRESEXnvtNYf30L17d91///06duyY3n77bXXu3FkbNmwolH8PnJG6Qbfddpvc3d3zjL5y/PhxhYaGOqkr5+jXr5+WL1+utWvXqnz58g6t7eXlpTvuuEONGzfWmDFjVL9+fb333nsOqb1161alpKSoUaNG8vDwkIeHh9avX6/3339fHh4eDvnL55UCAwNVvXp1/fnnnw6pV65cuTyhtVatWg69vDDXgQMHtHr1aj399NMOrTt48GDrWam6deuqR48eGjhwoEPPUlatWlXr16/XuXPndOjQIW3evFlZWVmqUqWKw3qQZD32cVz8vxB14MABJSQkOPRslCT5+vrqjjvuUPPmzfXZZ5/Jw8NDn332mUNq//DDD0pJSVHFihWtx8YDBw7ohRdeUOXKlR3Sw5WqVKmi2267zSHHxttuu00eHh4uc2z84YcflJSU5NBj4z///KNXXnlF77zzjh566CHVq1dP/fr1U5cuXfT22287pIfGjRtr+/btSk1N1bFjx7RixQqdOnWq0I+LV/sOFBoaqszMzDwj5RX28dCZ38HsqX/27Fm1bdtWpUqV0uLFi+Xp6enwHgICAlStWjW1atVKCxcu1O+//67FixcXSm2C1A3y8vJS48aNtWbNGuu0nJwcrVmzxuH36DiLYRjq16+fFi9erO+++07h4eHObkk5OTnWa6OLWps2bbRjxw5t377d+mrSpIm6d++u7du3y93d3SF9XO7cuXP666+/VK5cOYfUa9GiRZ6hRv/44w9VqlTJIfUvN23aNAUHBys2NtahdS9cuCA3N9tDqbu7u/Wv0o7k6+urcuXK6cyZM1q5cqXat2/v0Prh4eEKDQ21OS6mp6dr06ZNxea4KP1fiNq7d69Wr16tsmXLOrslhx4be/Tood9++83m2BgWFqbBgwdr5cqVDunhSocPH9apU6cccmz08vJS06ZNXebY+Nlnn6lx48YOvUcuKytLWVlZLnFsDAgIUFBQkPbu3auff/650I6L1/sO1LhxY3l6etocD5OSknTw4MFCOR46+zuYPfXT09MVHR0tLy8vLV26tNDPiN7Iz8AwDBmGUWjHQy7tK4BBgwYpLi5OTZo00Z133qmJEyfq/PnzeuqppxxS/9y5czZ/Xdu/f7+2b9+uMmXKqGLFikVePz4+XnPnztWSJUtUqlQp6zW/AQEB8vHxKfL6Q4cOVbt27VSxYkWdPXtWc+fO1bp16xz2P+pSpUrluQ7X19dXZcuWddg1yi+++KIeeughVapUSUePHtWIESPk7u6ubt26OaT+wIEDddddd2n06NHq3LmzNm/erKlTp2rq1KkOqZ8rJydH06ZNU1xcXJHdxHo1Dz30kN58801VrFhRtWvX1i+//KJ33nlHvXr1clgPuUO61qhRQ3/++acGDx6smjVrFsmx6HrHnQEDBuiNN95QtWrVFB4ermHDhiksLEwdOnRwWA+nT5/WwYMHrc9uyv1CGxoaWih/Cb5W/XLlyunRRx/Vtm3btHz5cmVnZ1uPjWXKlCmU6/KvVb9s2bJ688039fDDD6tcuXI6efKkPvroIx05cqRQHwlwvd/BleHR09NToaGhqlGjRpHXL1OmjEaOHKlOnTopNDRUf/31l1566SXdcccdiomJKfL6FStW1ODBg9WlSxe1atVK9957r1asWKFly5Zp3bp1hVLfnh6kf7/ILliwQBMmTCi0uvbWb926tQYPHiwfHx9VqlRJ69ev18yZM/XOO+84pP6CBQsUFBSkihUraseOHerfv786dOhQaINdXO87UEBAgHr37q1BgwapTJky8vf313PPPafIyEg1b968yOtL/96nlZycbP057dixQ6VKlVLFihULPCjF9ernhqgLFy5o9uzZSk9PV3p6uiQpKCioUP7YfL0e9u3bp3nz5ik6OlpBQUE6fPiwxo4dKx8fHz3wwAMFri+J4c8L6oMPPjAqVqxoeHl5GXfeeaexceNGh9XOHc7yyldcXJxD6udXW5Ixbdo0h9Tv1auXUalSJcPLy8sICgoy2rRpY6xatcohta/G0cOfd+nSxShXrpzh5eVl3H777UaXLl0KbUhPey1btsyoU6eO4e3tbdSsWdOYOnWqQ+sbhmGsXLnSkGQkJSU5vHZ6errRv39/o2LFikaJEiWMKlWqGP/73/+MjIwMh/Uwb948o0qVKoaXl5cRGhpqxMfHG6mpqUVS63rHnZycHGPYsGFGSEiI4e3tbbRp06bQfy/X62HatGn5zh8xYkSR188dcj2/19q1a4u8/j///GM88sgjRlhYmOHl5WWUK1fOePjhh43NmzcXSm17eshPYQ9/fq36Fy5cMKKjo42goCDD09PTqFSpkvHMM88YycnJDqmf67PPPjPuuOMOo0SJEkb9+vWNr7/+utDq29vDxx9/bPj4+BTJ8eB69Y8dO2b07NnTCAsLM0qUKGHUqFHDmDBhQqE9muJ69d977z2jfPnyhqenp1GxYkXj1VdfLdTjsj3fgf755x/j2WefNUqXLm2ULFnSeOSRR4xjx445rP6IESOK7Hva9epf7fcjydi/f3+B69vTw5EjR4x27doZwcHBhqenp1G+fHnj8ccfN37//fdCqW8YhmH5/xsBAAAAANiJe6QAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAADFytSpU1WhQgW5ublp4sSJdq/Xs2dPdejQocj6AgDcXAhSAADTrhYq1q1bJ4vFotTUVIf3ZI/09HT169dPQ4YM0ZEjR9SnT588y/z999+yWCzavn27Q3qqXLmyLBaLLBaLfHx8VLlyZXXu3FnfffedQ+oDAG4MQQoAcNPJysq6ofUOHjyorKwsxcbGqly5cipZsmQhd3ZjRo0apWPHjikpKUkzZ85UYGCgoqKi9Oabbzq7NQDAVRCkAABF6quvvlLt2rXl7e2typUra8KECTbzLRaLvv76a5tpgYGBmj59uqT/O0M0b948tW7dWiVKlNCcOXPyrXXw4EG1b99efn5+8vf3V+fOnXX8+HFJ0vTp01W3bl1JUpUqVWSxWPT333/n2UZ4eLgkqWHDhrJYLLrnnnts5r/99tsqV66cypYtq/j4eJtQl5GRoRdffFG33367fH191axZM61bt+66P6NSpUopNDRUFStWVKtWrTR16lQNGzZMw4cPV1JSkiQpOztbvXv3Vnh4uHx8fFSjRg2999571m18//338vT0VHJyss22BwwYoJYtW163BwCAOQQpAECR2bp1qzp37qyuXbtqx44deu211zRs2DBrSDLj5ZdfVv/+/bVnzx7FxMTkmZ+Tk6P27dvr9OnTWr9+vRISErRv3z516dJFktSlSxetXr1akrR582YdO3ZMFSpUyLOdzZs3S5JWr16tY8eOadGiRdZ5a9eu1V9//aW1a9dqxowZmj59us2+9OvXT4mJifryyy/122+/6bHHHlPbtm21d+9e0/vbv39/GYahJUuWWPevfPnyWrBggXbv3q3hw4frlVde0fz58yVJrVq1UpUqVTRr1izrNrKysjRnzhz16tXLdH0AwLV5OLsBAMDNafny5fLz87OZlp2dbfP+nXfeUZs2bTRs2DBJUvXq1bV792699dZb6tmzp6l6AwYMUMeOHa86f82aNdqxY4f2799vDUgzZ85U7dq1tWXLFjVt2lRly5aVJAUFBSk0NDTf7QQFBUmSypYtm2eZ0qVL68MPP5S7u7tq1qyp2NhYrVmzRs8884wOHjyoadOm6eDBgwoLC5Mkvfjii1qxYoWmTZum0aNHm9rfMmXKKDg42HrWzNPTUyNHjrTODw8PV2JioubPn6/OnTtLknr37q1p06Zp8ODBkqRly5bp4sWL1vkAgMLDGSkAwA259957tX37dpvXp59+arPMnj171KJFC5tpLVq00N69e/OErutp0qTJNefv2bNHFSpUsDnLFBERocDAQO3Zs8dUraupXbu23N3dre/LlSunlJQUSdKOHTuUnZ2t6tWry8/Pz/pav369/vrrrxuqZxiGLBaL9f1HH32kxo0bKygoSH5+fpo6daoOHjxond+zZ0/9+eef2rhxo6R/L2fs3LmzfH19b6g+AODqOCMFALghvr6+uuOOO2ymHT582PR2LBaLDMOwmZbfYBKuEAY8PT1t3lssFuXk5EiSzp07J3d3d23dutUmbEnKc+bOHqdOndKJEyes92x9+eWXevHFFzVhwgRFRkaqVKlSeuutt7Rp0ybrOsHBwXrooYc0bdo0hYeH69tvv7XrHi0AgHkEKQBAkalVq5Y2bNhgM23Dhg2qXr26NWwEBQXp2LFj1vl79+7VhQsXbqjWoUOHdOjQIetZqd27dys1NVURERF2b8fLy0tS3ssUr6dhw4bKzs5WSkpKoQzu8N5778nNzc06zPyGDRt011136dlnn7Uuk9+ZrqefflrdunVT+fLlVbVq1TxnBAEAhYMgBQAoMi+88IKaNm2q119/XV26dFFiYqI+/PBDTZo0ybrMfffdpw8//FCRkZHKzs7WkCFD8pz5sUdUVJTq1q2r7t27a+LEibp06ZKeffZZtW7d+rqXBV4uODhYPj4+WrFihcqXL68SJUooICDguutVr15d3bt315NPPqkJEyaoYcOGOnHihNasWaN69eopNjb2quuePXtWycnJysrK0v79+zV79mx9+umnGjNmjPWsX7Vq1TRz5kytXLlS4eHhmjVrlrZs2WI9Y5UrJiZG/v7+euONNzRq1Ci79xsAYA73SAEAikyjRo00f/58ffnll6pTp46GDx+uUaNG2Qw0MWHCBFWoUEEtW7bU448/rhdffPGGnu9ksVi0ZMkSlS5dWq1atVJUVJSqVKmiefPmmdqOh4eH3n//fX388ccKCwtT+/bt7V532rRpevLJJ/XCCy+oRo0a6tChg7Zs2aKKFStec73hw4erXLlyuuOOO9SjRw+lpaVpzZo1GjJkiHWZ//znP+rYsaO6dOmiZs2a6dSpUzZnp3K5ubmpZ8+eys7O1pNPPmn/jgMATLEYV16YDgAAbmq9e/fWiRMntHTpUme3AgC3LC7tAwDgFpGWlqYdO3Zo7ty5hCgAKGIEKQAAbhHt27fX5s2b9d///lf333+/s9sBgFsal/YBAAAAgEkMNgEAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAw6f8DKGdWpklQGFwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(figsize=(10, 6))\n", + "merge_df.groupby(merge_df['DateHour'])['StepTotal'].mean().plot(kind='bar', rot=0, ax=axs, color='b', title='The Most and Least Active Hours of The Day')\n", + "plt.xlabel(\"Hour of the Day\")\n", + "plt.ylabel(\"Total Steps\")\n", + "\n", + "save_path = '../Images/most_and_least_active_hours_of_the_day.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "411c9a2a", + "metadata": {}, + "source": [ + "### Machine Learning Models" + ] + }, + { + "cell_type": "markdown", + "id": "4a2ea5fb", + "metadata": {}, + "source": [ + "#### TotalSteps vs Calories" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "fbcfbd9c", + "metadata": {}, + "outputs": [], + "source": [ + "step_vs_calories = merge_df[['StepTotal', 'Calories']].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "4e2ed2a1", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTotalCalories
037381
116061
215159
3047
4048
\n", + "
" + ], + "text/plain": [ + " StepTotal Calories\n", + "0 373 81\n", + "1 160 61\n", + "2 151 59\n", + "3 0 47\n", + "4 0 48" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "step_vs_calories.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "94c211d3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTotalCalories
count22099.00000022099.000000
mean320.16634297.386760
std690.38422860.702622
min0.00000042.000000
25%0.00000063.000000
50%40.00000083.000000
75%357.000000108.000000
max10554.000000948.000000
\n", + "
" + ], + "text/plain": [ + " StepTotal Calories\n", + "count 22099.000000 22099.000000\n", + "mean 320.166342 97.386760\n", + "std 690.384228 60.702622\n", + "min 0.000000 42.000000\n", + "25% 0.000000 63.000000\n", + "50% 40.000000 83.000000\n", + "75% 357.000000 108.000000\n", + "max 10554.000000 948.000000" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "step_vs_calories.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "62b12300", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(22099, 2)" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "step_vs_calories.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "791ed595", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new column 'Category' in 'step_vs_calories' DataFrame based on a condition\n", + "step_vs_calories['Category'] = np.where(step_vs_calories['Calories'] > 97, 'High', 'Low')" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "7d83a737", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTotalCaloriesCategory
037381Low
116061Low
215159Low
3047Low
4048Low
\n", + "
" + ], + "text/plain": [ + " StepTotal Calories Category\n", + "0 373 81 Low\n", + "1 160 61 Low\n", + "2 151 59 Low\n", + "3 0 47 Low\n", + "4 0 48 Low" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "step_vs_calories.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "be168d80", + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from sklearn import preprocessing, svm\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "96e8eeb3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHpCAYAAABN+X+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxSUlEQVR4nOydeZwcZZ3/P89TVV19zpU5c5ILSCAgciYCAYmA4oWsLisqi4oslwsqKv7UXRVB8T4QUXcRDwR0RUUURJAAJnIKhByEJJBkkpnM3cd0d3VVPc/vj+rq6Z7pnume6Z7umfm+X69A0lc93dVd3+d7fb5MSilBEARBEERNwqu9AIIgCIIgCkOGmiAIgiBqGDLUBEEQBFHDkKEmCIIgiBqGDDVBEARB1DBkqAmCIAiihiFDTRAEQRA1DBlqAFJKRCIRUEs5QRAEUWuQoQYQjUZRX1+PaDRa7aUQBEEQRA5kqAmCIAiihiFDTRAEQRA1DBlqgiAIgqhhyFATBEEQRA1DhpogCIIgahgy1ARBEARRw5ChJgiCIIgahgw1QRAEQdQwZKgJgiAIooYhQ00QBEEQNQwZaoIgCIKoYchQEwRBEEQNQ4aaIAiCIGoYtdoLIAiCIIhaRwiJrQcjGIin0OT34Kj5deCcTcuxyVATBEEQxDhs2tWHWzfuxu6eGExbQlMYlrcGcfn65Vi3ornix6fQN0EQBEEUYNOuPnzm3i3Y3hVBQFfRGtIR0FVs74riM/duwaZdfRVfAxlqgiAIgsiDEBK3btyNmGGhvc4Lr6aAcwavpqC9TkfMsHHrxt0QQlZ0HWSoCYIgCCIPWw9GsLsnhka/B4zl5qMZY2jwa9jdE8PWg5GKroMMNUEQBEHkYSCegmlLeJT8plJXOEwhMRBPVXQdZKgJgiAIIg9Nfg80hSFli7z3G7aAxhma/J6KroMMNUEQBEHk4aj5dVjeGsRg3ISUuXloKSWG4iaWtwZx1Py6iq6DDDVBEARB5IFzhsvXL0dQV9AdMZAwbQghkTBtdEcMBHUFl69fXvF+ajLUBEEQBFGAdSuaceP5a7CqI4S4YaEnZiBuWFjVEcKN56+Zlj5qJkf783OQSCSC+vp6hMNh1NVVNoRBEARBzDxImYwgCIIgahjOGdYsrK/OsatyVIIgCIIgioIMNUEQBEHUMGSoCYIgCKKGIUNNEARBEDUMGWqCIAiCqGHIUBMEQRBEDUOGmiAIgiBqGDLUBEEQBFHDkKEmCIIgiBqGDDVBEARB1DBkqAmCIAiihiFDTRAEQRA1DBlqgiAIgqhhyFATBEEQRA1DhpogCIIgahiaR00QBEFUFSEkth6MYCCeQpPfg6Pm14FzVu1l1QxkqAmCIIiqsWlXH27duBu7e2IwbQlNYVjeGsTl65dj3Yrmai+vJqDQN0EQBFEVNu3qw2fu3YLtXREEdBWtIR0BXcX2rig+c+8WbNrVV+0l1gRkqAmCIIhpRwiJWzfuRsyw0F7nhVdTwDmDV1PQXqcjZti4deNuCCGrvdSqQ4aaIAiCmHa2Hoxgd08MjX4PGMvNRzPG0ODXsLsnhq0HI1VaYe1AhpogCIKYdgbiKZi2hEfJb4Z0hcMUEgPx1DSvrPYgQ00QBEFMO01+DzSFIWWLvPcbtoDGGZr8nmleWe1BhpogCIKYdo6aX4flrUEMxk1ImZuHllJiKG5ieWsQR82vq9IKawcy1ARBEMS0wznD5euXI6gr6I4YSJg2hJBImDa6IwaCuoLL1y+nfmqQoSYIgiCqxLoVzbjx/DVY1RFC3LDQEzMQNyys6gjhxvPXUB91GiZHxxzmIJFIBPX19QiHw6irozALQRDEdELKZONDymQEQRBEVeGcYc3C+movo2ah0DdBEARB1DBkqAmCIAiihiFDTRAEQRA1DBlqgiAIgqhhyFATBEEQRA1DhpogCIIgahhqzyIIgiBmHHOp95oMNUEQBDGj2LSrD7du3I3dPTGYtoSmMCxvDeLy9ctnpZoZhb4JgiCIGcOmXX34zL1bsL0rgoCuojWkI6Cr2N4VxWfu3YJNu/qqvcSyQ4aaIAiCmBEIIXHrxt2IGRba67zwago4Z/BqCtrrdMQMG7du3A0hZpcyNoW+CYIg5hCWJXDfi104MBTHggY/3nZMB1R1ZvhsWw9GsLsnhka/B4zl5qMZY2jwa9jdE8PWg5FZJUlKhpogCGKO8OPHduOWR3cjmjAh4IRUv/DHrbjyjOW49PTl1V7ehAzEUzBtCY+Sf2OhKxxhITEQT03zyioLGWqCIIg5wI8f242vPvAybCGhKgwqA4QEwnETX33gZQCoeWPd5PdAUxhStoCXK2PuN2wBjTM0+T1VWF3lmBnxDoIgCGLSWJbALY/uhi0kPCqDyjk441A5h0dlsIXELY/uhmWJai91XI6aX4flrUEMxk2MntAspcRQ3MTy1iCOmj+7xhWToSYIgpjl3PdiF6IJE6rCwFnuZZ8zDlVhiCZM3PdiV5VWWBycM1y+fjmCuoLuiIGEaUMIiYRpoztiIKgruHz98lnXT02GmiAIYpZzYCju5KQL2C/OAJl+XK2zbkUzbjx/DVZ1hBA3LPTEDMQNC6s6Qrjx/DWzso+actQEQRCznAUNfnA4Oel8xlpIgKUfNxNYt6IZpyybN2eUycijJgiCmOW87ZgOhHwaLFtCyNw8tJACli0R8ml42zEdVVph6XDOsGZhPdYf3oI1C+tnrZEGyFATBEHMelSV48ozlkPhDClLwhLCMdBCIGVJKJzhyjOWz5h+6rkGhb4JgiDmAG7rldtHbcMJd9f7tbL3Uc+lgRnTAZOja9znIJFIBPX19QiHw6irm11l/QRBENlUWplsrg3MmA7IUIMMNUEQRDlwB2bEDAuNfg88CkfKFhiMmwjqyqytyq40lJAgCIIgpsxcHZgxHZChJgiCIKZMKQMziNIgQ00QBEFMmWIGZpizcGDGdECGmiAIgpgy2QMz8jFbB2ZMB1U11LZt43Of+xyWLl0Kn8+H5cuX40tf+lKO2LqUEp///OfR0dEBn8+HDRs24JVXXsl5nYGBAVx00UWoq6tDQ0MDPvShDyEWi0332yEIgpizzNWBGdNBVQ31V7/6Vdx66634/ve/j+3bt+OrX/0qbr75Znzve9/LPObmm2/Gd7/7Xfzwhz/Ek08+iUAggHPOOQfJZDLzmIsuughbt27FQw89hD/+8Y947LHH8JGPfKQab4kgCGJOMlcHZkwHVW3Peutb34q2tjb8z//8T+a2Cy64AD6fD7/4xS8gpcT8+fPx8Y9/HJ/4xCcAAOFwGG1tbfjpT3+KCy+8ENu3b8fq1avx9NNP44QTTgAAPPDAA3jLW96Czs5OzJ8/f8J1UHsWQRBEecjpoxYSGqc+6qlSVWWydevW4Uc/+hF27tyJww8/HC+88AKeeOIJfPOb3wQAvPrqq+ju7saGDRsyz6mvr8fJJ5+MzZs348ILL8TmzZvR0NCQMdIAsGHDBnDO8eSTT+L8888fc1zDMGAYRubfkQhVIRIEQRSiFKWxuTYwYzqoqqH+9Kc/jUgkgiOPPBKKosC2bXz5y1/GRRddBADo7u4GALS1teU8r62tLXNfd3c3Wltbc+5XVRVNTU2Zx4zmpptuwhe+8IVyvx2CIIhZx2SUxtyBGUR5qGqO+p577sEvf/lL3HnnnXjuuedwxx134Otf/zruuOOOih73+uuvRzgczvzZv39/RY9HEAQxE3GVxrZ3RRDQVbSGdAR0Fdu7ovjMvVuwaVdftZc4J6iqR33dddfh05/+NC688EIAwJo1a7B3717cdNNNuPjii9He3g4AOHToEDo6RsavHTp0CK973esAAO3t7ejp6cl5XcuyMDAwkHn+aHRdh67rFXhHBEEQs4PRSmOuiImXK2iv4+iOGLh1426csmwehbUrTFU96ng8Ds5zl6AoCoRw+vCWLl2K9vZ2PPzww5n7I5EInnzySaxduxYAsHbtWgwNDeHZZ5/NPOaRRx6BEAInn3zyNLwLgiCI2QcpjdUOVfWo3/a2t+HLX/4yFi9ejKOOOgr//Oc/8c1vfhMf/OAHAThfhmuuuQY33HADVq5ciaVLl+Jzn/sc5s+fj3e+850AgFWrVuHcc8/FpZdeih/+8IcwTRNXXXUVLrzwwqIqvgmCIIixFKM0FialsWmhqob6e9/7Hj73uc/hiiuuQE9PD+bPn4/LLrsMn//85zOP+eQnP4nh4WF85CMfwdDQEE499VQ88MAD8Hq9mcf88pe/xFVXXYWzzjoLnHNccMEF+O53v1uNt0QQBDEryFYa83JlzP2kNDZ90JhLUB81QRDEaISQuPj2p7C9K4r2Oj0n/C2lRHfEwKqOEO645CTKUVcY0vomCIIgxkBKY7UDGWqCIAgiL+tWNOPG89dgVUcIccNCT8xA3LCwqiOEG89fQ0pj0wSFvkGhb4IgiPEoRZmMKD9VLSYjCIIgah9SGqsuFPomCIIgiBqGDDVBEARB1DBkqAmCIAiihiFDTRAEQRA1DBlqgiAIgqhhyFATBEEQRA1DhpogCIIgahgy1ARBEARRw5ChJgiCIIgahpTJCIIg5gAkAzpzIUNNEAQxy9m0qw+3btyN3T0xmLaEpjAsbw3i8vXLabDGDIBC3wRBELOYTbv68Jl7t2B7VwQBXUVrSEdAV7G9K4rP3LsFm3b1VXuJxASQoSYIgpilCCFx68bdiBkW2uu88GoKOGfwagra63TEDBu3btwNIeb8EMWahgw1QRDELGXrwQh298TQ6PeAsdx8NGMMDX4Nu3ti2HowUqUVEsVAOWqCIIgZTqFCsYF4CqYt4VHy+2S6whEWEgPx1DSvmCgFMtQEQRAzmPEKxZr8HmgKQ8oW8HJlzHMNW0DjDE1+T+Y2qg6vPchQEwRBzFDcQrGYYaHR74FH4UjZIlModsM7j8by1iC2d0XRXsdzwt9SSgzFTazqCOGo+XWZ16Pq8NqDctQEQRAzkGIKxW57bA8uO30ZgrqC7oiBhGlDCImEaaM7YiCoK7h8/XJwzqg6vIYhQ00QBDEDKbZQrN7nwY3nr8GqjhDihoWemIG4YWFVRwg3nr8G61Y0U3V4jUOhb4IgiBlIKYVi6w9vwSnL5hXMPZdSHb5mYX3F3xuRCxlqgiCIGUiphWKcs4JGlqrDaxsKfRMEQcxAjppfh+WtQQzGTUiZG5J2C8WWtwYzhWLjkW3085GvOpyYPshQEwRBzEA4Z7h8/fKiCsUmopxGnyg/ZKgJgiBmKOtWNE9YKFYM5TT6RPlhcvT2aQ4SiURQX1+PcDiMurqZuWMkkQKCmFtk/+YbfBoAYChhTun3n9NHLSQ0Tn3UtQAZasx8Q00iBQQxt6jkb542/bUHGWrMbENdSJloMG4iqCslhb8Igqh96Dc/96Ac9QyGRAoIYm5Bv/m5CRnqGQyNsCOIuQX95ucmJHgyg5ltIgWUGyOI8Zltv3miOMhQz2AmM8KuVqGCOIKYmNn0myeKh0LfM5jZIlJAU3sIojhmy2+eKA0y1DOY2SBSQMUxBFE8s+E3T5QOGeoZTrmUiaoFFccQRGnM9N88UTqUo54FrFvRPO4Iu1qGimMIonRm8m+eKB0y1LOE8UbY1TJUHEMQk2Om/uaJ0qHQN1FVqDiGIAhifMhQE1WFimMIgiDGhww1UXWoOIYgCKIwNJQDM3sox2yClMkIgiDGQsVkZWJfXxgbvvV3pGwJj8Lw12vfgMXNVOhRClQcQ8wWaNNJlBPyqDF1j3rpp+9Hvg+RAXj1K+dNeX0EQcwcSA6XKDeUo54ihYw0AMj0/QRBzA1IDpeoBGSop8C+vnBBI+0i048jCGJ2Q3K4cwMh5LSfQzLUU2DDt/5e1scRBDFzITnc2U3nYBzf+esrWP/1v+HRnT3TemwqJpsCKbu4XVWxjyMIYuZCcrizj6Rp48Gt3fj1M534++4+uBVd9zzdiTce2TZt6yBDPQU8CivKCHsUqvYkiNkOyeHOHl46EMY9z+zH7/55AJGkNeb+v73cg5hhIahPjwklQz0F/nrtG3D6158o6nEEQcxuXDnc7V1RtNfxnPC3K4e7qiNEcrg1SiRp4vf/PIC7nt5fMD1x2Dw/3n3CIlzw+oXTZqQBMtRTYnFzPRgwbkEZSz+OIIjZjSuH+5l7t6A7YqDBr0FXOAxbYChujiuHK4TElgNhPL9vCJIBxy1qwJoF9dR7XWGklHhm7yDuemo/7t9yEElTjHmM36PgvDUdeM+Ji3DCksYx9QfTAfVRY+b3UZO4AkHUDjl91EJC4+P3UW/a1Yeb/rwdOw/FYNqOoVA5xxHtQVz/5lXUe10BhuIp/Pa5A/jVU/vwSk8s72OOW9yAfz1hEd567Pxp9Z7zQYYa5ZEQrZYyGYkrEETtUezmedOuPlx7z/PojRpgABTOAAbYtoQE0BLS8a33vI5+y2VASoln9w7il0/uw/1bupCyxnrPjX4N73r9QvzriYtweFuoCqvMDxlqzFytb1dcIWZYaPR74FE4UrbAYDrMRgMtCKJ2EULiA//7FJ58tR9CSGgqB4NjzKWUMIUAZwwnL23Czz54MkXJJkkkaeLe5w7gl0/uxc5D+b3ndcvn4cKTFuOco9qgq2MLAasN5ahnKKPFFdy8iZcraK/j6I4YuHXjbpyybB79wAmiBtl6MIKXu6OQUkJVRow04PRdq5zDFhI7uqPYejBCOvgl8tKBMH7xj734/fMHkTDtMfc3Bz34l+MX4cITF+Gw5kAVVlg8ZKhnKKWIK9APnCBqj4F4CilbQEogX32Se5NpU+91sSRNG/e/2IWf/2Mvnt8/lPcx65bPw3tPXoyzV7fDo84MzS8y1DMUElcgiJnF6Lx1g0+DR+FgDHmNtZuT1BTqvZ6I/QNx/OLJvbjn6f0YjJtj7m/wa3j38QvxbyctxrKWYBVWODXIUM9QSFyBIPJTi10Q+Yo+l7UE0VanYyiRgmWLMTlqK52jPrKdeq/zIYTEE7v6cMem1/DIyz3IV2113OIGvP+UJXjLmg54tdrLPRcLGeoZCokrEMRYarELolDR547uKBQOBHUV4YQJ0xJjqr6bgh5cccaKqm80aolo0sRvnu3EzzfvxZ6+4TH3+zQF7zxuPt53yhIcNX92pP2o6huzoerbziuuQFXfxFyiFrsghJC4+PansL0rklP0CTgb6u6IgY56HVJKvNIzTH3U47C7N4afbXoNv3m2E8OpscVhy5oDeN8pS3DB8QtR79OqsMLKQR71DGbdimbceP6ajAcRTosrrOoIUR81MacoRxdEJULmxRR99sdSuPV9xwMAKZONQgiJx17pxe1/fw0bd/aOuZ8x4KwjW/GBtYfh1BXNs/bzIkM9w1m3ohmnLJtXczk5gphOptoFUamQebFFn0MJE+sPb8GxixomfazZRDxl4f+eO4Cf/v1V7O4dG96u86r41xMX4f2nHIbF8/xVWOH0QoZ6FsA5oxYsYk4zlS6IQiHz7V1RfObeLVMKmVPRZ2kcHErgjs2v4VdP7ss7terwtiAuXncYzj9uAfyeuWO+5s47JQhi1jJZg1hp4SAq+iyOF/YP4SdPvIo/bemCLXLLptzw9iVvWIp1y+dVZShGtSFDTRDEjGeyBrHSwkFTmag127GFxEPbDuF/ntiDp18bHHN/wKPg3Scswr+vO6zmlcMqDRnqMlGLvZsEMVeYrEGcDuEgKvrMJZ6y8JtnO/E/T7yKvf3xMfcvbPTh39cdhvecuAh13tlVvT1ZyFCXgVrs3SQcqr2Bqvbx5xKTMYjTlUPOV/S5qj2E7d1RbNzZOye+G71RAz/b/Bp+/o+9GMqjHnb8kkZ8+NSleNPqNqgFNk5zFeqjxtT6qGuxd5NwqPYGqtrHn6uUsjka6XOOor1Oz9vnvKojhDsuOamsRnQufTd298bwk8f34P+eOzBmtCRnwJuP7sCHTluK1y9urNIKax8y1Ji8oS5GzKASP3JiYqq9gar28YnimW7hoLny3Xh27yBu27gbD20/NEbe0+9R8K8nLsIH37AUi5pmf3vVVKHQ9xSgCVa1SbVHgFb7+ERpTGcOebZ/N4SQ+NvLPfjhxt15C8RaQzouecNSvPekxaj3U/65WMhQTwGaYFWbVHsDVe3jE6UzXcJBs/W7YdoC971wED/cuBs7D8XG3L+yNYhLT1+Gd7xuPnR15g7HqBZkqKfATBQzmAvFTdXeQFX7+MTkmA7hoNn23UikbNzzzH786LE9ODCUGHP/iYc14j/WL8eZR7TOuuvMdEKGegrMNDGDuVLAUu0NVLWPT9Qus+W7EU6Y+Pnm13D7319D//DYTcWbVrfhP9Yvx/FLqECsHFS9Bv7AgQN43/veh3nz5sHn82HNmjV45plnMvdLKfH5z38eHR0d8Pl82LBhA1555ZWc1xgYGMBFF12Euro6NDQ04EMf+hBisbHhl3Lj9m4GdQXdEQMJ04YQEgnTRnfEqCkxA7eAZXtXBAFdRWtIR0BXMzKJm3b1VXuJZcPdQA3GTYyulXQ3UMtbgxXbQFX7+LMBISS2dIaxcWcvtnSGIUR5al4r9brFMtO/G30xAzc/sAOnfuURfP0vO3OMtMoZ/uX4hXjo2tPx4w+cQEa6jFTVox4cHMQb3vAGnHnmmfjzn/+MlpYWvPLKK2hsHDnBN998M7773e/ijjvuwNKlS/G5z30O55xzDrZt2wav1wsAuOiii9DV1YWHHnoIpmnikksuwUc+8hHceeedFX8PM0HMYLYXsIym2mpQ1T7+TKdSkZ9aiCjN1O/GwaEEfvTYHvzqqX0wRrVY+TQFF560CJeetgzzG3xVWuHspqrtWZ/+9Kfx97//HY8//nje+6WUmD9/Pj7+8Y/jE5/4BAAgHA6jra0NP/3pT3HhhRdi+/btWL16NZ5++mmccMIJAIAHHngAb3nLW9DZ2Yn58+ePeV3DMGAYRubfkUgEixYtmtI86lrO/W7pDOOynz+DgK7Cq40NtyVMG3HDwm3vP2FGFbBMRM6FOb2BqlofdRWOXykq+V2vVOvSpl19uP7eLQjHTfg9CryaAs6BobhVlZaomfLd2Ns/jFsf3Y3/e64Tpp1rKuq8Kv593WH49zcsRVOgtkP1M52qetR/+MMfcM455+Dd7343Nm7ciAULFuCKK67ApZdeCgB49dVX0d3djQ0bNmSeU19fj5NPPhmbN2/GhRdeiM2bN6OhoSFjpAFgw4YN4JzjySefxPnnnz/muDfddBO+8IUvlPW91PIEq9lWwFIs1R4BWu3jV4JKeqXFRH5+8OguBHQVQwmz6M9TCImb/rwdB4cSkFIiZlhgDNBVBc1BD2KGPe0RpVr/buzqieGWv+3C758/gNHZgeagjg+fthQXnbwYIZL4nBaqaqj37NmDW2+9FR/72Mfwmc98Bk8//TQ++tGPwuPx4OKLL0Z3dzcAoK2tLed5bW1tmfu6u7vR2tqac7+qqmhqaso8ZjTXX389Pvaxj2X+7XrUtc5kPZmZUsBSCU+t2huoah+/nFRyHCQwceuSR2V46tVBfPgOp4al2E3CnU/tw7auKCAlVIWDMUBKIGnaODiUREtIr0pLVC1+N17ujuJ7j7yC+7d0jREpmV/vxX+csRzvOWFR3sgcUTmqaqiFEDjhhBNw4403AgCOO+44vPTSS/jhD3+Iiy++uGLH1XUduq5X7PUrwVQ8mZlQnV4L+UOiMNNR5zBe5CdmWOiLGpnvRqPfU9QmQQiJu57aByElPAoDT6+bMYApgGVLDMVT8HvUWRdRKoVtByP47sOv4IGtY52bJfP8uOKM5Tj/uIXwqFWvP56TVPVT7+jowOrVq3NuW7VqFfbt2wcAaG9vBwAcOnQo5zGHDh3K3Nfe3o6enp6c+y3LwsDAQOYxM52pVmzXenX6XKpIn6mUItQxWbIjP9lIKdEbTcIWEgoH/B4VnDN4NQXtdXomdJ2vgnvrwQi6I0kojAEYtW4wKJzBsOzM8ecaLx0I4yM/ewZv+e7jY4z08pYAvvWvx+Lhj63Hv564mIx0FanqJ/+GN7wBL7/8cs5tO3fuxJIlSwAAS5cuRXt7Ox5++OHM/ZFIBE8++STWrl0LAFi7di2Ghobw7LPPZh7zyCOPQAiBk08+eRreRWUZ7ck4RTDFXaSycavTV3WEEDcs9MQMxA0LqzpCVdUWLtf7IypLMXUO5hTrHAq1LiVNkak09moqvJ6RNUy0SRiIpwAJ6CqHJeSYlihAwhZAa51esy1RleClA2Fc+rNn8NbvPYG/bMt1hI5oC+H77z0Of7l2Pc4/biFNsqoBqhr6vvbaa7Fu3TrceOONeM973oOnnnoKP/rRj/CjH/0IgPMjvOaaa3DDDTdg5cqVmfas+fPn453vfCcAxwM/99xzcemll+KHP/whTNPEVVddhQsvvDBvxfdMo5ySg7VYwDJbJRVnG9NR51CodWk4ZcESEipjaAnpYKM84/GKIZv8HnhUDl3j6I2mYAoJlTu+tYQT+uac4d9OWlwzhVyVZOvBML7z11fGGGcAWNVRh/88awXOXt0+Jz6LmURVDfWJJ56Ie++9F9dffz2++MUvYunSpfj2t7+Niy66KPOYT37ykxgeHsZHPvIRDA0N4dRTT8UDDzyQ6aEGgF/+8pe46qqrcNZZZ4FzjgsuuADf/e53q/GWyk65K7ZrrYBlrlakzzSmq84hny6BlM73ozmoI6iPvWQlLRtSSrzWOzxm85m97vkNXvTFDBiWgJROnppzhiPbQ3jvSYuntO5aZ0d3BN9+KH8OenVHHf5zw0q8aVUbGegahcZcYmrzqCtNtXugK90fXu33RxTPdI6DzP7eNfg0fO3Bl7Gje+zM6GjSxIGhBDhjqPNqeYsQs9dd71MhpfO9SqScf9/0rmNmbcHiK4ei+PbDr+D+F7vG3Le6ow7XbFiJN61uGxPNImoLMtSobUNdrcH2wPRUYlfj/dWyOE2tUy2hjnybhMFECt3hJACgo96HBp9WUBxlpgiMlItX+4bxnb/uxO9fODimzWpVRx2uJQM9oyBDjdo21MD0D7bPPWblh9tP5/ujNrCpU62NTva5S9kCkYQFCYkFDb4c4Y1CG7y5sEHbPxDHdx9+Bb/95wHYowowj2gL4do3raQc9AyEDDVq31AD0+sRjHi5kZyeWaByXu50vL/p3HzUMtU2WJM5vvucvmEDQ8MmwvEUbnl0N+r9Knza2Lz1ZFMm1f5sJsuhSBLff2QX7np63xipzxWtQVyzYSXecnTHjHgvxFhozOUMYTortqtRiV3p9zfXBpMUotoRhckcP99zmgKO4Imu5FfImkwRYo7HbgmAAe11Xlx40mK8t0arwgeGU/jhxt24Y9NrY4ZlHDbPj//csBJvP3YBlBpcO1E8ZKhnENNVsV2pSuyJvJVKvj9qA6uMBGgpHuhkjl/oOZ2DCcQMy9H8zjMQotR2sezj6CpHwrRhWAL9wyn81x+24u6n9+H6N6+qmYhLzLDwk8f34CePv4qYYeXct6DBh4+etQIXvJ56oGcLZKiJMVSiZ7bantxcbwOrREShlHM6meOP95wFDV7s7ImhJ5pEg18FZyPntdR2sezjBHUVB4eSsKWEyhkUOL3WO7qjuP7eLbipyumRpGnjF//Yix88uhsDw7nf1eagjqvfuAIXnrQIukpa3LMJ2m4RYyj3cPtakAgtJE/pUiuDSSpFuSVASz2nkzn+eM/hnKMlpENI4MBQckqyuO5xGnwa+mIGbOnUSHDGwBmHqnBIKRFOmFVTybNsgXue3o83fv1R3HD/9hwjXe/T8Klzj8RjnzwDF687jIz0LIQMNTGGcmqD14pEaLk3HzONckqATuacTub4Ez2n0edBUFexoME3JVlc9zhCAoYloHKWszFw/srg15Qp65mXipQSD7zUhXO+/Rg++X8v4mC6HQ0A/B4FV79xBR775Jm4/Izl8HsoQDpboTNL5CWfQpTGGVZ1hEoKV9dKbriQPGV2G1g1B5NUmnKmMyZzTidz/GKeE/A41fqcsUkXIbrHSZp2RrEsG/c2r6YgaljTlh7ZvLsfX31gB57fP5Rzu0fhuOiUxbjyzBVoDs6sKYDE5CBDTRSkHJXYtZQbLtfmYyZSTgnQyZzTyRy/2OesWVA/pQ2We5wtnWFnVjVG5mxJSNhCpqMGmJb0yPauCL76wA48+nJvzu2MAe86biGu2bASi5r8FV0DUVuQoSbGZaqV2NMxzKEUanEwyXRQzojCZM7pZI4/XVEQ9zjX//ZFZwCILaAqzlhMW0hwxtAc9GAoblV0bvuBoQS+8ZeXce8/D4xRE9uwqg3XnXMEjmgPVeTYRG1DgieYGYInM5VKSITOVFGKWqAcwjJTOaeTOf50if1s2tWHm/68Hdu6ohDp2de6qqDB74FhiYqJ4oTjJm55dBd+uuk1p387ixOWNOLTbz4SJxzWVNZjEjOLshjqSCSCRx55BEcccQRWrVpVjnVNK2SoK0s5JUKr3eY1GyjHRmcq53QqymSV3pwJIXHnU/vwq6f2oSdiAEDFvmOGZeNnm/bi+3/bhXDCzLlvZWsQnzz3SGxY1Up63MTkDPV73vMenH766bjqqquQSCRw7LHH4rXXXoOUEnfddRcuuOCCSqy1YpChrjzl8IpIArS2mM2DLiq5MRBC4r4XD+JrD76MzsFEzn1tdTo+9qbDSayEyGFShrq9vR0PPvggjj32WNx55534r//6L7zwwgu444478KMf/Qj//Oc/K7HWikGGenqYysWvGvrjxMRQGqI0/rGnHzf+aTte7Azn3B7UVVx+xnJ88A1L4fNQHzSRy6SKycLhMJqanJzJAw88gAsuuAB+vx/nnXcerrvuurIukJg9TKUwrVbavKpJLRrF6ZK1nens7o3hK3/egYe2Hcq5XeUM7ztlCa5+4wrMo1YrogCTMtSLFi3C5s2b0dTUhAceeAB33XUXAGBwcBBer7esCyQIoLbavKoB5eZnJgPDKXznrzvxyyf3wRol6vPmo9vxyXOPxNLmQJVWR8wUJmWor7nmGlx00UUIBoNYvHgxzjjjDADAY489hjVr1pRzfcQkqEXPa6rUWpvXdFKJYRpEZXELxb77yCuIJnOHZhy3uAGfPW8Vjl9CldxEcUzKUF9xxRU46aSTsH//frzpTW8C546Xs2zZMtxwww1lXSBRGrPV8yqnYMdMgsZzziyklHhwazdu/NMO7BuI59y3qMmHT5+7Cm9Z006V3ERJTKk9K5VK4dVXX8Xy5cuhqjNXO2W2FJPN9qrocrZ5zRS2dIZx2c+fQUBX4dXGRhISpo24YeG2959AueIqs6UzjC/dvw1PvTqQc3vIq+Kjb1yJD6xbQgMziEkxKesaj8dx9dVX44477gAA7Ny5E8uWLcPVV1+NBQsW4NOf/nRZFzkTqHa4eaZ6XqV8brUgATrd53mu5+ZnAj2RJG5+8GX833OdOYpiCmd438mL8Z8bDs87M5sgimVShvr666/HCy+8gEcffRTnnntu5vYNGzbgv//7v+ecoa6FcPNMrIqezOdWTQnQapznuZybr3WSpo3/eeJV3PK3XYin7Jz73nhkKz7zllVY0Rqs0uqI2cSkDPXvfvc73H333TjllFNyjMJRRx2F3bt3l21xM4FaKfSZaZ5XqZ9btSMW1TrPtZCbr/ZnX2s4oye78eU/bR8jWHJ4WxCfPW81Tj+8pUqrI2YjkzLUvb29aG1tHXP78PDwnCqSqKVw80zyvEr93Kodsajmea72eM5qf/a1xvauCL5w31b8Y09uHrrRr+FjZx+BfztxESmKEWVnUt+oE044Affff3/m3+6F6yc/+QnWrl1bnpXNAEoJN1ca1/MajJsYXR/oel7LW4M1URVdyufmerLbuyII6CpaQzoCuprxZDft6qup9VYCNze/qiOEuGGhJ2YgbjiTnCoZsamFz75WGBhO4f/duwXnfffxHCOtcoYPnboUj153Jt5/yhIy0kRFmJRHfeONN+LNb34ztm3bBsuy8J3vfAfbtm3Dpk2bsHHjxnKvsWappXBztT2vUij2c+uPGfifv79a9YhFOc/zZMPI052br6VoUTWxbIFfPrkP3/jLy4iM6oc+84gWfPatq7G8hfLQRGWZlKE+9dRT8fzzz+MrX/kK1qxZg7/85S94/etfj82bN88pwZNaCzfXQlV0IbIN1EAsVdTnNhg3a6JArlzneaph5OmU65yJxYnlZtOuPnzhvm14+VA05/ZlLQF87q2rceYRY9N/BFEJJt38vHz5cvz4xz8u51pmHLVQ6DOaalZFF2K0gVI5kLAEhlMWFjX6C35uDQGtJiIW5TjPtVJ0WCy1FC2abg4MJfDl+7fhT1u6c24P6Sr+c8NKfGDtYfCoFOImpo+iDXUkEsmIgUQi4+fiZrJoSCnUari5lgYlFDJQwxED8ZSN/YNxtIS8eT+3kFeriYjFVM/zdIaRy1WhXa1oUTUrzJOmjZ88vgff/9suJE2Rc997TliI6845Ei0hGpxBTD9FG+rGxkZ0dXWhtbUVDQ0Neau7pZRgjMG27TyvMDup5XBztRnPQC1u8mHfQAKMAXHDyvu5CSFrJmIxlfM8XWHkclZoVyNaVM0K80d2HMIX7tuGvf25sp/HLmrAF99+FI5d1FDR4xPEeBRtqB955JHMaMu//e1vFVvQTKQWw821wEQGqrVOx3DSxHXnHImmoGfM51ZrEYvJnufpCCOXO7Q+3Z99tVIDe/uH8cX7tuHhHT05tzcHPfjkuUfiX16/cM7/jonqU7ShXr9+PQDAsixs3LgRH/zgB7Fw4cKKLWymUUvh5lqhKAMlgaagB+sLCETUWsRiMue50mHkSoXWp+uzr0aFedK08YNHd+OHG3cjZY2EuRXOcPHaw3DNm1aizquV5VgEMVVKLiZTVRVf+9rX8IEPfKAS6yFmAMXmEctloPJ5sqvaQ9jeHcXGnb01H8GodBi5kqH16YgWTXeF+cPbD+G/79uK/QO5qmInL23CF99xNI5oD035GARRTiZV9f3GN74RGzduxGGHHVbm5RC1Til5xHIaqGxPdtOuPlxyx9MzRi2r0mHkUkLrkynWqnS0aKL1exSGftPGxp1OeHqyG4X9A3F84b6t+Ov23DB3W52Oz7xlFd5+7Pw5paxIzBwmZajf/OY349Of/jS2bNmC448/HoFAIOf+t7/97WVZHFFblJpHrISBmmltTi6VDCMXG7nYPxDHxbc/VXMbnPHWHzMsdIeTSFk2fvL4q7jzyX0lr9mwbPz4sT343iO7YGSFuVXO8MFTl+KjZ61EUJ+5Y3qJ2c+k5lFzXriHcCZWfc+WedSVRAiJi29/Ctu7Ijl5RMDxjrsjBlZ1hHDHJSeNMbw5XnjaQE3GQExlDbVCJdqPRj6XKNrr9LyfS0e9jkjCxHDKLnlWeaXW7L5mg0/D1x7cgR3dsZz1xwwLnQNxWELCpyk4bJ4fppAlzVd/4pU+fP73L2FP33DO7ScvbcKX3nk0Dm+jMDdR+0xqGymEmPhBxKxiKnnEcuU5Z4NaViXCyMVELgBgOGWXXKxVSqqjWIOe7zXnBT1QODLr9ygM3eEkLOHc31bvhaJwKAqKKjDriSTxpfu3474XDubc3hzU8dnzVuEdr6MwNzFzoHjPLKNSghFTbTEqh4Gay2pZEzFeaP2co9rxg7/tKnmDM16a4fp7t+DS05ZhUZMfTX4PwokUbntsz4QGvdBrdoUNKBzoqNfRH0uh37SRsmz4NAVt9d6c0PR4a7aFxC/+sRdff/BlRI0RbW7OgA+sPQzXvulw1PuompuYWUzaUG/cuBFf//rXsX37dgDA6tWrcd111+G0004r2+KI0qikYEQt6JrXwhpqmUKRi8d39ZW8wRmvZSqoCxwYSuCL921DnVeFBDCcsuBRONrqvAXrBoppw6r3eXDDO9fg8Vd68ZPHX8X8tCddzJq3dIbxmXu3YMuBcM5jj13UgC+/82gcvaA2oywEMRGTEqz9xS9+gQ0bNsDv9+OjH/0oPvrRj8Ln8+Gss87CnXfeWe41EkVQ6ZGEtTBGsxbWUOu4kYv1h7dgzcJ68PTGxd3g5CPfBqdQmiFmWDg4lIQQEkJKhHwq4ikbhimQNG1YQoJzBq+moL1OR8ywcevG3ZlIz0Spiz29MXDGsP7wVvg9CkyRv4Qme83RpIn//sNWvOOWJ3KMdJ1XxQ3vPBq/vXwdGWliRjMpQ/3lL38ZN998M+6+++6Mob777rvxla98BV/60pfKvcYZgRASWzrD2LizF1s6wxAFLjCVOna2p+LVlIIXy8ni5kGDuoLuiIGEaUMIiYRpoztiTItKWC2sYSYymQ1OvjSDhERv1ICQEqrifMZJU8ASAprCYEugN5rMHGN0iLqY1IWZ9pKLWfOylgD2DQxjwzc34qebXkP21/tdxy3Awx8/A+87ZQkU+j4QM5xJGeo9e/bgbW9725jb3/72t+PVV1+d8qJmGpt29eHi25/CZT9/Bp+45wVc9vNncPHtT03Ziy2WUoqspoKbB13VEULcsNATMxA3LKzqCE1bW1QtrGGmMZkNTj4vPJkSMCw7bfgY3K+alM4xVM5gWCJnoEW28S3Fs59ozV6VYdiwceWd/8ShiJF5jWXNAdx56cn45r++jgZoELOGSeWoFy1ahIcffhgrVqzIuf2vf/0rFi1aVJaFzRRqoa93OousakHXvBbWMNMotY87n1iNJQSkBMAkLAH4NA6/poAxx1gzOP+3hADg1BBkG99SBXDyrVllQMir4uBQAp1DyczzPQrHlWeuwH+csQy6OrZ+gSBmMpMy1B//+Mfx0Y9+FM8//zzWrVsHAPj73/+On/70p/jOd75T1gXWMtXQKM7HdBdZ1YKueS2sYaZRygYnX8sXZwyAhGUDCudoCXnh0xXoqoKkaYNzgDFATessjDa+kxHAyV7zs/sG8fPNr2F3b25P9Lrl83DDO4/GspZgRT8/gqgWkzLUl19+Odrb2/GNb3wD99xzDwBg1apVuPvuu/GOd7yjrAusZWqlr7caIwmnSjXnDs9lStngjPZoTVtC4RxCSsxvGGmZagnp6ByIw7QkvJoCj8KQMO28xncyCm0J08bvnz+A//37qzl56Ea/hs+etxrvev0C6okmZjWTbs86//zzcf7555dzLTOOWunrrbVxkBNRzbnDRGmM9sL3D8Tx48d2I2bYUBUOXeFQOINfV2BYAn4PR+9walzjW4pn/7eXe/DZe1/CgaHcARr/cvxCfOYtq9AUmJuteMTcggRPpkClQs6T8TZrbRxkIfLl9A3bxpYDYVx79/O44PULceKyJjQHdPKya4TRXviy5sCY79kxCxtw2enLUO/zFPW9nciz74sZ+OJ92/CHUcpih83z12zRIEWJiEpRtNZ3Y2Nj0eGlgYGBKS1qupms1ncxGsulak9P1dus5YtFPq3umGGhN2ognrIyYU2VA/U+Davn19fUJqPWqOa5rtSxpZT4v+cO4Ib7t2EobmZuVznDf6xfjqveuAJerfaKxShKRFSSog31HXfcUfSLXnzxxZNeUDWYylCOEQ/RzhtyLmX3X6iCvJQhBLXMls4wLvv5MwjoKryagphh4cBgArYQsLO+hZwBCmfwaSqaAtqMf9+VYDYahv0DcXzm3i14/JXctsbjFjfgK+86pmbnRM/23y1RfSY1PWu2MdXpWeWYDjUbJkNNxMadvfjEPS8g5FUhpMShiAHTFhBS5hQJaRwQYPCqHF5Nwer5dTP6fZebUg1DLUdZAEef+/a/v4pv/GUnEubI5L2AR8Enzz2ypkVL5sLvlqg+U85RJ5NJpFK5xVJzbVRkOfp6a6WCvJLsH4gjkjQxGDcgJYMtpdN7O+pxlgAUBUjZAo0Bz4x/3+Wk1JbAWve8X+6O4lP/9yKe3z+Uc/uZR7TghvPXYEGDrzoLK5K58Lslqs+kDPXw8DA+9alP4Z577kF/f/+Y+2faPOpyMNW+3lqpIK8Um3b14ceP7YaQ0lGyYoAtxxppwLnNsiUUxqAwBkOIGfu+y00phiGaNKsuxlOIlCXwg0d34Za/7YKZlfdoCnjwX29bjbcfOzPGUM723y1RG0xKQvSTn/wkHnnkEdx6663QdR0/+clP8IUvfAHz58/Hz372s3KvcU4wmcEJMwXLErj5wZcxGDfRHNChcAYxTsbFvTwLKWGLmfu+y8mIlnwP4ikbWoFojSvZ2R8zKq7/Plle2D+Et3//CXz7r6/kGOl3vm4+/vqx9XjH62ZOX/Rs/t0StcOkPOr77rsPP/vZz3DGGWfgkksuwWmnnYYVK1ZgyZIl+OUvf4mLLrqo3Ouc9UyXaMl05ys37erDzQ++jC2dQwAc8Qo332jbY42EK0fpEk1aOGZRQ02JtUw32eHrhGkjmjTxmiXGzGkGRgzDYNysuZBs0rTxrb/uxI8f25NTk9BR78WN56/BmUe2Tss6yslMFBsiZh6TMtQDAwNYtmwZACcf7bZjnXrqqbj88svLt7o5xHSIlkx3vtItehoYTgGMQeUAwGDZErJAfjrbSEsAXq22xFqmm9GFYw1+DUlTIGHaODAYx4JGf8ZYZxuGhoBWUyHZZ14bwCd/8yL29OXKf77vlMX41LlHIuTVpmUd5WamiQ0RM5NJhb6XLVuWmZJ15JFHZmRE77vvPjQ0NJRtcXONSk6GqvS86tFkFz21BHU41ykGzlhmRCLg9Eznu4RxBugqx9VnrayJoqdq4KYMBoZTqPdq0FUOzhkaAxo4A0xbojucgG2LMZOwmgN6TYRk4ykL//2HrXj3bZtzjPSSeX7c9ZFTcMM718xYI+1CE92ISjMpj/qSSy7BCy+8gPXr1+PTn/403va2t+H73/8+UqkUvvWtb5V7jXOKqVaQ5wttA5j24SHZRU+6yqGrHAlTQONO6FXhDMKWmalLXk1Ba0iHLSQ4k4gYNo6eX4/3nrS4LOuZaeSkDBhDYjA+kjIQEgCDhETCFNg3mECdV81RoRNCVj0k+489/fjkb17EvoF45jbGgA+9YSk+fvYR8HlqT7hkstBEN6KSTMpQX3vttZm/b9iwATt27MCzzz6LlStXYs2aNWVb3FxlshXkhULb5xzVPu35yuxqWMYYWkJeHBhMwBTS8aIZRkLfzKn2DepqJmTY4NNwxRlzM2SYkzKAE3WwJTJznjXOoKkMinC8apUzXHHmCrz3pMWZz6uaIdlhw8LND+zAHZv35ty+ojWIm//lGLx+cWPZj1kL0EQ3olKUFPp+5JFHsHr1akQikZzblyxZgrPOOgsXXnghHn/88bIukCiO8ULb33vkFQwb9rj5SrPM+crR1bBBXcWCRh98mjN9yRKOsV7aHMBR8+sgpaSQIXJTBs1BZ2MlpOtFO9jS6WtjWWmEB7d2j3mtaoRkN+/ux7nfeSzHSCuc4YozluOPV586a400QVSSkjzqb3/727j00kvzCprU19fjsssuwze/+U2cdtppZVsgMTETiWB0DiWQMG0Ylg2fZ+wpr0S+Ml81bFBXEfAEkEjZ6I2lsKwlgN9cthacMwoZpnFTBrqqoCdqwBYyb8GdkBK2BHwax7xgYVGY6QrJxlMWvvrnsV70EW0hfO3dx+CYhQ1lPR5BzCVKMtQvvPACvvrVrxa8/+yzz8bXv/71KS+KKI2JRDCagx7sTyXQF0thYaMyLfnK8UKv4aSFpoCGT5x9OLZ3RzMG5LQVzXPSQGfXFbzWO4zhlI24YUECUBWW02sMpAVhhITKOVpCXnhVBZGkVTAiUumQ7JN7+nHdqFy060Vf9cYV0NXZk4smiGpQkqE+dOgQNK1whaaqqujt7Z3yoojSmFgdSYFXU6CrfFrzleON3jx9ZTNue2xPzUpbThej6wokJCJJE5CArnEwMABijLH2KBwdDT4EdRUJ066KqEYiZePmB3fgp5tey2mrO6IthK+/+9gZla+tFT30WlkHUVuUZKgXLFiAl156CStWrMh7/4svvoiOjo6yLIwonmLmYgc8Cq44cwUe3Npd0XnVoy80pyybNyb0Gk6k8NnfvVST0pbTSb7hGuFEKmP0bOEUiimcwRa5g0vm13sR0NWqiWo8u3cQn/j1C3g1q+VKSUdRrj5rrBc9kQGqpoGqFT30WlkHUXuUND3r6quvxqOPPoqnn34aXq83575EIoGTTjoJZ555Jr773e+WfaGVZKrTs6pNKXOxAVTsgljMhYamDTkU+hyiSRP7+uNwu589KgPSxWSuU80ZsKjRD03lJY9TnapBNCwb33roFfzosd05G4cVrUF8493H4thFDWOeM9H3opoGqlZGVNbKOojapCRDfejQIbz+9a+Hoii46qqrcMQRRwAAduzYgVtuuQW2beO5555DW1tbxRZcCWa6oQbGzsX2KAzRpIVIwkRAV3HzvxyDU1e2VMxzKfZCM3om9WgSppOfve39J8yo0GmpFPocEikbeweG0zrnGKPextJ/6vwa/JpSkkGbqkF86UAYH7vneew8FMvcxhlw6enLcO2Gw/Oez4m+FxedvBi/fHJfVQxUrWwaa2UdRO1SUui7ra0NmzZtwuWXX47rr78ero1njOGcc87BLbfcMuOM9GwhOx+87WAEkaQJISQ4d1p4bntsD7Z3RfDYK31l91xKGb1I04YcxbH7XjyIobgJxgCPwsC583l4PRy6qmDYsDKP1zhzNNAhYdmAqnJcetoynL6ypeiNViGDWUy6wbQFfvC33fjeI6/AynKjlzYH8PV3H4vjl+RvuZroe9EVTuKWR3dD5WzahHiyqZURlbWyDqJ2KVnwZMmSJfjTn/6EwcFB7Nq1C1JKrFy5Eo2N1B9ZbdataIaQEtf95kX4NAX1Pg0hXYUpJF7sHMLm3f3wexS01XnLmhcu5UJTTD59OgujpjM3KoTEDfdvw93P7EfcsCEBxIdsdIeTaAl50RLSwcDQEvIgljbUCgcUhTktWcIRP/FpHP/Y0190AWCpM6yz2dUTw8fveR4vdIZzbv/3dYfhU+ceOa662ETfC59HQddQAvMbfFUxULWyaayVdRC1y6SUyQCgsbERJ554YjnXQkwRISRue2wPTFtgcZM/c/HjioRlSyfPKSR01elrLnShLmS8Ct0++kIjpUTSFLCEgMo5PArLXGhOW9E8obTlke0hCCmxcWdvRY3ndOZGN+3qw//73Ra82hcfc58tge5IEgDQHPIgZTkZavcdW7YEY47MakvI0U3f3hXBzzfvxesWNwAAhhJmwc9qy4EwdnRF4VE4kqaA1+NWk481iEfNr8PWgxH0DRvYtKsfP9v8GgxrRC98QYMPX/uXY3JqDgptdCYyQApjEHCEb/JRaQNVK5vGWlkHUbtM2lATudRCW0UhDyaZEkjZAmr6YpA0RcYTGn2hjibNvMbr9JXNBcPmDT4NEhKD6QtqOGEiZQtHx5sBKufwezia/J4JpS1VDoQTKVz+i2crajynEgqezLGu/+2WnD7jfPREkxgcNpBKV40xAJqioN6nIqhr8Ho4hg3HA0+YTmuUJRy9dJ+mIKA7OevLTl+Gep8HA/EU9g/E8asn96J/2ACD01Otq47Bd6duuQbxiV19uPnBHXi5O4rBtJHN5t3HL8Tn37Y6M0Rjoo3ORAbIlhIcuRPTsqm0gaqVEZW1sg6idimpmGy2MtVislppq9i4sxefuOcFtIb0nE1CNGmiczABhQO2ABY2+nImFgnhyHd+8A2H4e6n948xXociBuIpCwFdQWvIm1Pwo3CgJajjlZ5YjuelMKddBwwwLQld4/jJB07AqStbxn5m6VaxeUFPRo2rkoVF01m84x7r+X1DiBoW0kPE0sfK/xxd5bBsAc6dkDdnDAsafQCAA4MJ2EJAwinkcl9D4QwtIR0xw0LCFPCqHEI6xXkMjjFXFAYGlh584rym24c9OGxAUzhihoV4ys6p6OYMuHbD4bj6rJWZ24opHjxl2bxxuxG6wknYUo7JUVfiPBRidBHmaH2B6a/6ru46iNpkUmMuiRGme3zkeIzW13ZROQdjgMjycLNxPZcHtx7K5DG9mpL2vjhsIWALCcsWEFJiOGVBSiCoc/RGDbx8KIomf64Qji2BlC1hWjIzsvK2x/ZApC3AuhXNuOOSk3Db+0/A1999LG593/Go92mwhcw5vldT0F6nI2bYuHXj7szzp0IpOfWpIITE758/iG0HI2B5fmn5Qr6NPhUrWgLweRQI6eSohZToiSTRE03Clo6RdtbNoKkcmsJhS6A3mkI4YSFlCUSSFmKGlU53OOfetp0Z4KrCIKREb9SAkAKDwylH6304hZiRa6TrvCoa/B489dpA5rMfnfMudK4A4PL1yxHUFXRHDCRMG0LInJGc7zpuARTG0DmYQDxljbm/0rOca2VEZa2sg6hNKPQ9BaZSpFMJCoXQvB4Oj8IRT9nwahymbQMpwKs51mMobmJhow+HwomxYXPTCZsrHIinBPb2O+FbBufi7+hOO55bIRyd77GFQdnSlls6w9jTOzwtla+VLt4RQuLOp/bhrqf2Yd9A3PGk08bPGVCZ/nuePUfcFBhO2ajzaUiaBkzb2egkTTvzTM4cT5vxrNeQEqkCmxgJZ0cuJGCm6wac17RwYCgJDiCatHLWwxkwv8GHBp+GpCVyPvtSNjqF1Ok66nUAwAMvdSNpCSRNG/sHEvB5FAQ8StmFeMajVkZU1so6iNqDDPUUqLW2ivHyvy5JU6AzfXFWOIPCOYK6gmMXNuD+gfgY42UJASGQEdtg6ZC2ZUtnihMcMY6hxEg7UcYQAdBUDiEkhuIp+D1qQeNXbuM5Xs1AJYt3Nu3qw01/3o5tXVGIdA4W0jF8GTsqMWbQhotpO5shzgFIxyDb0jXwTpgYzNH6tu30i42D24ctAXAOeBQFlnDqB2zhrGtg2Mx5TsCjYGGjHx7VORejP/tSz9VoA7R/II4fP74Hw+mweaPfA8O20RdLQVf5mJGd00GtjKislXUQtQUZ6ilQi20V+TwYIRyj6vdwCMlg2jZsAZhCAhAAk/jTli5EkhZ0LYWmgJ55PYU5YVIXnh67aE0Ugs6yEApnMCwbfo9a0PiV03hOVDNQqeKdTbv6cP29W3BwKAFICU+6rcq2JawsYz3eJ+d+rEIAHgWQjMG0nBsl3HNWGiOiKQytIQ80RcFQIoXB4VSOkWYA2uq8mfGaLqM/+8mcK9cAuTn74VFRKB9XsbDBCZE/uLUb7z1pccnvsxYKOgmiEpChngK12laR7cH0xwx8++FXsH9gGB31PoABA7EUeqIGmGuAJVDvUzGUSKErnITKGbS052XZIsewyHT4dDwkACbTKlrMucUWQGudXtD4lct4FlvNPV7l+WRyo24aJBw3IaWEqnBw5ni/mhQw01rdOZ71BJ+hTBeLTSUrnx1qB5z6hGjSRF8sd/PoTee65wW0CT/7qZyrSkWhaqWgkyAqQc0Uk33lK18BYwzXXHNN5rZkMokrr7wS8+bNQzAYxAUXXIBDhw7lPG/fvn0477zz4Pf70draiuuuuw6WZWE6cC9Yg+mLczbuBWt5a7AqbRWuBzMvqKMnkkRTIF11K4FI0nTC0gqHmjZkAMOCBh+kBPYOJLC7N4b9AwkcDCdzXtdtu5qIkSiv08PNOcO/jRPOdMP24xUeTWQ8iy1yEkKWrXhHCIktnWH87B97saMrCr9HAcByCsVUhUNLrzufkS70jlKWHNMiVQqqwnIkSFUOHAgncChq5Dwu4FHgUTnipo2dPTH0DxvjfvZTOVfFRKHMEqNQtVTQSRCVoCY86qeffhq33XYbjjnmmJzbr732Wtx///349a9/jfr6elx11VV417vehb///e8AANu2cd5556G9vR2bNm1CV1cXPvCBD0DTNNx4440VX/dEPcHTUbU6EaMvjElTwLAEVM7SHo2EFE4uOmmKLAOLTA66GEZrUgMjRU+cMxzZHpownDneWMxiPKNSvbVSi3dGh1bDiVRmVOewYSNqmPAo3PGG0xX2Mt0aJcb5LIv5lPN9vhMhpXTqCdK7A8Nys9UOCmcIZCnVDSVM9ESTOBQxMGzY4xZ1TfZclTsKVWsFnQRRCapuqGOxGC666CL8+Mc/xg033JC5PRwO43/+539w55134o1vfCMA4Pbbb8eqVavwj3/8A6eccgr+8pe/YNu2bfjrX/+KtrY2vO51r8OXvvQlfOpTn8J///d/w+PJ/2M3DAOGMeJVRCKTb8OZqnGpNKMvjG4hEZiE5Y5OlIBhCRyKjnjPKne8seycKIPTLmSNinxzOBXI2V1h84IaPIqCRMpGvU/F9W9eVdSFciqVr/m8NQmJZMpRSeOMwbQl+mMGtnSGS3r90aFVt01N4wwNfg98HgUxw3IiDgBM2/FgLSGKCnVPxGRewhnqIfOG21uCOmwpML9+RL6zKeBBg1/FgaEkFjT4cOP5a7BmQX3Bz2Yy56rc9QG1VtBJEJWg6ob6yiuvxHnnnYcNGzbkGOpnn30Wpmliw4YNmduOPPJILF68GJs3b8Ypp5yCzZs3Y82aNTmDQM455xxcfvnl2Lp1K4477ri8x7zpppvwhS98oWzvoZbbKkZfGFXOIaTE6OxAV1aI2zHIaYlJIXO8bMYYOMudjdxW70XAoyKSNDEwnILCGTg4GIA1C+tL3rDkq3wtplBo9KYkZljojRowLDsdrpdgjOGG+7chnrKLzmWOzntrCsOrfXEnOgEgbiYBKTOFYuk4RUZhrJpwNlKxDwB+j4Jzj27H4zv70BQYa9w442gO6hgcToEzNuF3uNQq5VKjUBOd91os6CSIclNVQ33XXXfhueeew9NPPz3mvu7ubng8HjQ0NOTc3tbWhu7u7sxjRk/rcv/tPiYf119/PT72sY9l/h2JRLBo0aLJvg0AtdNWke/Cln1hlEV4eOkaqFGGJ/36UiI788kZnItk2mtb0ODFpacvx6Imf8mh5EKPLbZQKHtTEtQFDg4lIdLhXzAJ03aOubt3GPMbfGgNeSaUDc0XWk2kbKSc3ignRSAkNOcjgDXF4q9yM9pIB3UFD2/rQdQwEU9ZaK3zZqREXSpt3IqNQhVz3mu1oJMgyknVDPX+/fvxn//5n3jooYfg9Xqn9di6rkPX9YkfOIPIFtnoDidg2o6BWjwvgE+cfThuPH8NbvnbLmza3T/haynM8ZwZZE6hk8IZOuq8Gc3wweEUUpZAOGnCr5UmUlGs8S1Fk9v11q6/dwsODCUghISqOO/A1cROtyEjnDDRGNAmzGXmC6267W3ZmGJkVrRrGyeTV64kiZSNRr+GoK5gOGUhado4MJjISIm6aYJ4ygIk0ODTJn7RCSi0GZsoClXseSedbGIuUDVD/eyzz6Knpwevf/3rM7fZto3HHnsM3//+9/Hggw8ilUphaGgox6s+dOgQ2tvbAQDt7e146qmncl7XrQp3HzNdVLOHM0dkIzunzIChziF8+GfP4ONvOhzvev1CbN7T7xhiMNhS5m3/kVnPd6VHASdvrXCnxSegK0hZAke0+/GfG1aiOaCXfTbyZAqF1q1oxqWnLcMX79sGxtJ5WibhURSkYGfkUw3LRjLlDCcZL5eZL7Q62kiP/txcgrqCeMpOb2xkUdXylYQxZ4OypEmDV+NImDZsIdAbNQBI9EZTSJoWbOF0BHztwR244owVk66zmGgzVigKVep5r/WCToKYKlVrzzrrrLOwZcsWPP/885k/J5xwAi666KLM3zVNw8MPP5x5zssvv4x9+/Zh7dq1AIC1a9diy5Yt6OnpyTzmoYceQl1dHVavXj1t72XTrj5cfPtTuOznz+AT97yAy37+DC6+/alpaQtxRTZ2dDtG2q3rdSuPOQMMU+AbD+3EP/b0Q8LxjFXFkRX1qByaknsRswVgSwEhcj1q0xLoHEzgtf4Ydh6KQeUMnzznCJx5RCvWLCxcdJRNKS1Uk9XkXtTkR51XxeImPxY2+rCkKYDWkAcsHbRn6f5kK6sfvFBbUD79dF7kr4bBaUtzpVarjZSOFKlhSbSEvFDSAuTxlIX9A3Ek0hrumuLMxN7RHZt0e9NUWqZKPe+kk03MdqrmUYdCIRx99NE5twUCAcybNy9z+4c+9CF87GMfQ1NTE+rq6nD11Vdj7dq1OOWUUwAAZ599NlavXo33v//9uPnmm9Hd3Y3PfvazuPLKK6cttD2d4xJHkyOyIWTGAGXLRgrpVB+nLIEnXx3I5J55OrwtpDOjOhsJp4d3NIzl9gdPxvaUchGebKFQk98Dj8qd9iMt/RVPue1SzsJHDycplMvMF1qdQO8lQ9QQ0FWemSpW7VC4u3mzhEDIq2FBow89kSSGU06xnao4Q1haQk7e2p1gVai9aby55VNpmZrMea/lgk6CmCpVr/oej29961vgnOOCCy6AYRg455xz8IMf/CBzv6Io+OMf/4jLL78ca9euRSAQwMUXX4wvfvGL07K+avdwukbP71HSQxVkZowiQ1rVSgJMYWC2RDRpIuBRETMscCYgwWBaYkLj4eZeGQPmBT0I6Rp0leFQNFX0+3Mv6ht39iCesgvmP7MvwpMtFMpnXL0ah6464V5IwOdR4fU4hiBfLlMIiS0Hwnh+3xCWNQfxyqEouiNJNPg9SFmFB5CMxrRze9OrTtYGJairSPk1JFI2moIeNPg88Gojed7xUgLjhbVDXm1KLVOTPe+1UtA5VyEJ18pRU4b60Ucfzfm31+vFLbfcgltuuaXgc5YsWYI//elPFV5ZfqrRw5n9Y3itdximLRHyqkCWN52NW5Us4RRUvX5xA57Y3Y+UJSGLNB0KBxTOYdoSkYSFlqBe0vvLvqgnTBvRpInXLIG2+rEVx9kX4ckWChXKW9b5NMRTjpGt92mQAkja9phcppvz33koBjMd8lYYg0fjSEWSiBkTK98pnKEpoGEobsKugTYtF4/CM1PTpJSIJm0oCkNrSIeSJ6afz3udKIr0rycumlLLFBWIzTxIwrWy1JShnmlMdw/n6B+DhEQ0acGjMngUjoTI8vSybIObXo0mLTz12iD8miMXObooirPcXKr7V0uM5HMTpo3dvcNor/fCrykTvr/RF/UGv4akKZAwbRwYjGNBoz9jrEdfhKdSKOTmLX/w6C7s6I5mLh6rO+rAGNAfS6EnZoxpC9q0qw/X3vM8eqOGM7s5XSZu2xJxw4aSzqcLIZGy87e6cQA+TUFLUHemjKVVZSLJ4j3xStHg15xcteVsUAK6Ak1h6S6BsY8f7b1mR5HqdDWzafF7FLSFPDgUTeHBrYem1DJFBWLVYbIecTXTf3MFMtRTYDp7OPP9GAzLRjhhoiucREvQg6Qr7DGOA5cwbegqh4czJIVEQHfUwzgHGJwfGCuQTHVvTllOW09LSB/3/RVKDbTXe9E5EIdpS3SHk1g6z4+UkHkvwlNXfnNLyJz+7wa/B/+xfhlCXg3/3D8EJoHXLW7AmgXOZKcfPLobA8MpMDgjOpk7A1pxDLMlJDQp0dHgRedgAiLtLWd/ZJwztIR0pGwJn6agNaRjy6iCt0rgXlLznX6VAYvm+WGYIrNBObI9iLOPasfdT+/HgaEEFjR4wVmWqlse73XrwQi2HYwgmrTQH0vltKLpGkdTwIND4QTa6n3oHExM2iOudcW/2cZkPeJqp//mCmSop8B0hegK/Rh8HhULGnzYNxDHQNxEk9+D/uGJvXdX6xtwisYYY1AYG5m0NI6hZ3CGTFi2QE80iZOXziv4/gqlBoK6ioVNfnSHk0hZNg5GkuP2YWcXCvUNGxgaNtHo1xDyahBCFhRJGbOxsW28dDCMq3/1TzQFPEiMUic756h2vNwdzUy/YlmJBPczElIiZQmYtkRTwIPeqJEzupLByeMHPM7AilUdIbxpdRte6Nw64XmZDByAGxhhABSFwRa5ynE+jeO29x+PU1e05MyEfuClbvzw0d0YNmzEUhZ2HoqhNeRFg08r6L0+sasXg8MpjK6nk3B05HsiBgK6inOOasfdT++bkkdMBWLTw1Q8YpJwnR7IUE+B6QrRjfdjCHk1tNd70Rd1JB+DWeHIbNwiM0i3+tepEk/ZjtF25EFz+6ZHky2PCTiPO/fo9oLvb7zUQFBXsbTZj65wEh86dSnWH9467kWYc4Zo0sT/PvHqhLv+fBsbV040nrIgJDAYN+HTOFrTAym2d0Wx81AU8XSLEsuzDPc2WzqSq06BHQNLf5Y8/SFrCs+ZImXYApyzMdX15YAxwMM5zLSWuVtQqKQrABt8Hnznwtfh1JUtABxJ1027+vCTx/dkLsyNfg+GEs7o0+50Dj7fQA7LEvjtc505RjqnC0A6dRCJlI11y+fh2IX1U/aIqUCsslSjQp8oHTLUU2Q6QnQT/RgafR6kLIEr37gCsaSJnzy2B35dRXckCSGzjLT7f4kRgy9lZhSlqjAonGXCuch9CoCRiVheTYGqcCxq8hdct1vZPRhPwZ+uss72Ut3Q8PrDWye8GJey699yIIwdXVF4FI6kKWBLgQODSdgid0RnypLoGkpiQaMP7XU6OocSmX7pfMY6e5oYg+N1SwmY0pFWdVqcANsWOef/3ucOAFKmh3SM+zZLggFoq/Oiwa/hwFASCxt96IkYSNkCHoXjiPYQrjhj4k0MADQFdDT4Rl7ny6MGcmza1YebH3wZu3qGcxcxWmMW6c8iPUqUPOLaZqoeMUm4Tg9kqMtApS9IxfwYPArH8YsbAQB3PrkPAMBGX0Hh/JNhZFhDSFfQWufFa/1xpCynoMirMtgSmVnInANeVUG9X4NHcQZ7SDieU6Ef4KZdffjBo7sQTpgwbeG8rqaiJaRnenSLTQ2Usuv/x55+3Pin7egfdorBRgRHnI2IyOoPV7gTyu6NGgg0+9EcdMLhkklYtsjJUQspMsV3mT516aYCANNyctrXnLUSp61sybynLZ1hdA7GnUiFcKqus1u2JovCnPfm96hI2RIBj4Ibz18Dzti438FCF2YpJZKmgKow7BuIY1dPDGsWOBdmd5Pk5u6z1y6BMV8xW0h89vcv4TNvWYV1K5rJI65hpuoRU4X+9ECGukxUMkRX6o9heWsQWzrDmfGGoy+mbvhaSmB5awi/uWwt7npmP3711D70RJzxn6rCEEtaEEKgvd4Hn65kjJYrhFHoB5jt/baEnDyuLSQSKQudAzZa67wwLFF0amAi46IpDNu7IvjFk3vxv0+8iqG4O/nJMaZ2WmFNiNxcMmNO25UrJ6qrCryaAsYURBImTEukB3oAVnrTonCgJehFzDBhWCLjeXs1BX4Px2krWzLh5eyWNCGdXLIlHGNoTqFly9Vi11UFQgr0R1NY2hLEUR11UNXxZdPyXZhjhoWucAJG1jzyT//fi/jpplfxqXOPxG2POWHylqDupA4miAowAJ2DCar4nQFM1SOmCv3pgQz1DKDUH8Pl65fj+t++iOFU/n5fCWdesqYwfOLsw6GqHO87ZQnee9LiTFSgwafhhc4h3PK3XeiPp9DMPdAVZcIfYD7v16Mq6I0mYVhO1XRfzMCJhzWNCcsWopBxcV9TpkPPX/3zDiicYVGjD3sH4kiYIqOR6/aTu7j5eACQbvuZDQQ8Cq44cwXufnrfmD5qxiQWNvhR59My3nfctNNSrRIxw8az+wYRTqTw2d+9NKYlLZl+7FSMtPteICVM28Zr/XEAwP6BYVxyx9MTpltGX5ijSRP7BxNj8ue2dFp1PnrXP8HghMZ1jUNXFVipCdrMGFDvUzNysFTxW7uUwyOmCv3Kw6SsBRXi6hKJRFBfX49wOIy6utoN0eS0UKR/DIVaKDbt6sP/+90WvNoXL/h6IV3Fbe8/Pu9z3eMMGzYSpp3xGgMeZdy2jS2dYVz282cQ0FV4tZEduuv9DqcsmLbA/1x8Io5d1JB3XaP7OYWUuPwXz2ZeM2ZYODCYgC2lUwiXlkEVaRnMhY1O3vzAYAK2EMhnFxXmVK8DjpFf3OhHOOnoQ99xyUnOe0krk0nmfFZff3AHgl4ts4beaBIJU2Q01p3PVAHghNTb67yZSETMsJyWtCkWlDmh9pHCNK+qoCWkw6NyDKY3UON5sUJIXHz7U9jeFUXAw7F/MDGmeJAxwKMwWGKk9ezw1hAUhSNmOLrg1jjvQ2GOQE5zyANI4Lb3n0Dh7xpmJAJm53UCio2KkDJZ5SCPugaZ7GjAbE5ZNg/z673Y2x/PeyFGWvTiB4/mejyji7Ya/R4Ylo2+WAq6ynHFmSvw3pMWl1zpzRiDz6NAVzl6YgaGEmbe5+fr51zWEsC8oAddYQNtIYbeaBK2dDYqYI6gi6ZymJZI55yTOGxewNGyjiYRN+wxoydtCdjpyi5dZQgnTQR1NSdKcOyihsxmQgiJ3z1/IGfWtZVntnfUGPE2XxuIO8In6bx8S52Og0PJvO97IhgcNbVr37QS9z53AHv6htES1DPTvwAUVaXrRmeuved57BtI5M2VOxPVGFTOYNkSQkpEDQsNfg+CuopFTX4cHIrDGKUHz5gzdYsDMIVEOG7C51FKrvilC/70Ui6PmCr0KwcZ6hpjsqMBR7P1YAQvH4qBMwZVcQrLRDp4wtMXdlsIvNwdzVR0jtevvbDR6Qt+cGs33nvS4oLHzQ6t6sypuraEgMod6crxcl6FKrt3dMfSMqbAgaEkkqZTnCbhKIZxxjI9zYDTz9s/nELAo+KweX4Mxk10DSUzLWhK2ri7Zsa0JTrqvbj+zasKXpQys65/+2Jm1vVEsSgpZVqBzZn5XOwwjzHHThvAT5xzBI5d2IDbNu5BW3ryWDbF9q2esmweWkM6+mLGGHU6dyNj2U7un6XbvMIJC/U+DSzdAriw0Y/X+oZhpwvqNJWnZ3073xmVO/36Po9SUsUvSVFWB6rQr22qNuaSGMtURgOOZiCegpn2eJy8qIBlS5i2hGEJpCynitmw7IzHM9mxktmsag+htc6LA4MJ7O6NYe/AMDoHE9g7MIxX+4bREzGwvDU4Juc10fhLWwCtIR0LGnzOxK+0p+fVFCxo9KEp4IHKnSItSziKZ3v6YtjVMwzTtNNGxP3CO3O1fZqCtpCOOq+Gep+GU5bNy6xlS2cYG3f2YktnODPje92KZlx6+vLMRmekZS1/37UzuczZIHWHE+gfNoo+f4CTL1/S5EOdT8OJhzXhvSctLqpKN9+4zmy2HoygP5ZCR70XijuAA8gYZQak8/7O44MeFQHd2aglTBtCSMRT9ojQCmM5RtpBwk6H/4ut+C3n958oHdcJWH94S9Fja4npgTzqGmGqwgOjw4UNPg2ayiAN5M0nurcMp2zsH3Dy2FNt1XC9oT29McTNkRCwll5vPGVD4QKnr2wuum0IGNkk9MdS+PjZR+Arf94BTWE5vdnRpIlUVpOy2z5lWAK96ds9KkNzUM+0mLnPTZg29vQOY+vBCKJJc1yPbmGDD36PAkBBOGFC5RyMITPKcjS2kFA4Q9Is3Z3WFIbhlECDT8MVZzgh+XL0rbrnucXnwaDHxHA6NZBrZkfWvmZhPf5j/XLc9tieTGhUSud7EtRVRJMWrLRWeGbWdzrSceE4aZJsSIqSIApDhrpGmIrwQP68bhBtIR39sfHzg0JI/PixPVjWHJiSEXC9oWjSTF+kRzwyM33B93sUqArDY6/04UOnLsu54Ba7SWgKenBkRwjbu6Jo0tJG2jCxfyCet2gsG8uS6IumsKDRB6+HI5lywvKcOZ74E7t6cffT+wuKqlx08mLcv6UbkYSZmfVtutrohY4pHM9/MiVkChubJyxHla57nk0h0RryYr/pFIflC+U3BTy44owVWLeiGeuWN+d0BXztwZexozuK+Q1e9MVSMCwbUgCAI+t6ZHto3DRJNiRFSRCFodB3jTDZkGahcOGO7ii6IhOHWhkDwmkvclV7CMtbgxiMmxjdDOAagYnC1g0+D0whoKXHKeoqh8IcoY/D5vkR8mrYeiCM3z9/MBNSBnJz2/lwNwnNAR2Xr1+OYDoU2z9soHMgMaGRBpw+ZjcM/Vrf8EhYvn8YQ4kUfrb5NQzFU2gL6dBVDsMSMG2Beq+KgeEUvvHQTuwfGIauZlWzo7Dkaua4k7DSjX4N/3vJSbjjkpNycrNurjw4KhSdMO0c2dLxvE7X2A/GU+BwtMk9Ks/xqBmA1R11+NZ7Xpc5fnZo9NhFDbjiDGcdMcNGe72ORY1+tIZ0BL0aFjT4cP2bVxXt/ZYjpD+TKZRuIQiAPOqaYTLe7EThwv0DcXDOwCExOvLKGKBxDiEl/JqC3T0xbO+OZgqmOgcT8HkUeFWOlGVjKGFBVznetLptzNq2HAhje1cEHsUZnymEhKI4U6tYug0qZdvY0xeHZQtYUuKG+7fht//szHiLE3mKg8MpLGryoz9mYF5Qxw3vPBo/3LgbT706OG6r0GicAi+ZUfaSUjoV4LZEV9iAwoDdfY5Mpp3xMmVa3QxYUO+DptiIRyY/stLvUWBa9phzks3CRl+OhGc2U63S5Zzh9JXNePq1gYzaGOCkBhhzIh/XbDgc7zt5ybiG9pRl8/Dh05blCOVoCsOaBfUlF3/NZSlKKqAjJoIMdY0wmZDmROHCkE9D1LDg0xXYhp2R1OSMZXKJDE5/dNSwMBBPQeMMdT4N3RED4aSZEw6NmzZu+ON2/PqZ/ZkK6U27+vDlP23HwHAqU2Ql0mpgquL+WzqFa9KZ56zAMVajdboLibo4+tVOLv2637yYM+1qR3cUQwkzoxw2Ee7DXOOc7347bUE17rQo2RIZDydmWBhOWc4ADokxU6QmojnoGKSucGFD3xzwoD+WGhPmHV2HcPvFJ2J7d3RS84N/+eQ+eBQODgbTFhBwqt89quOxf2DtYRO+hmtcUpYAGNBe58WFJy0et32vEHNVipJmORPFQIa6RpiMFN944cKYYWFg2BnBGEk6RoHByXtyxiDhiIQ41dWOUdo/EM9MVWoOetAVTubkVp22JoGtByO49p7n8eFTl+KXT+7DUNwEZ+npUcwZPGEKCSltcD4il6mkNwdeTUW9X0O9RE6RUD5PUQiBlO3M0G4K5F7Idh6KImnaQHpiVLmDhbaUULLmWQNAfzwFpIVVOBhsKYtWGgt4FFi2RCQ5todc5Y7kqW3LtMAMywnzjud1rT+8pej3lB2FWZweqOK20CmMYShh5q0hyGbTrj5c/9sXEU6Y8HtU1Pk0cOacy5887tQ7lGpc5qIUJRXQEcVCymSoLWWyUtTHCqmATaQepXAGSKcveX6DDzHDxpHtIQASO7qjaKvTsbc/gWHDyjF+nDkG3ZISHAx+XYGm8Mzjk6adUc0qZLxUzrCoyY+g7uwRE6aNuGHlqFe5nmPfsIHv/PUVdA7Gcy5kgONldQ4lMJy0Mt57qgRpTgXARMFrBsCjcthCjvkss3uHXY3s8TYLDE4UIWWLnM+GM0Dl3DkncKIPli0Q1FVceOJizG/wgXPgJ0+8iuFRXlcxSmSjKfSdccl3PrIRQuIdtzyBHd1RACNTxnSVozmoI2bYGXW3yRiXUr7/M52pngti7kAedY1RivBAvnChhFMslS3/qHKWI13pyk+qjGEwnkKj34NjFtTj7mf2w+9RRnSpMTIiU6ZztGAMKnMUq6IJCwsafeCMoyWk48BgApYtUcrlOV/Ll1u0tKUzjJ5IsmBof15AQyxppoddlLjf5Jgwbi3haIDnq2+TQGZoh5tGGG8FPk3BkiY/BuOpTJGfE+Fw7hfSHRziSJ5GkhZ+/MSeTOqBc2BRoz9zQZ+s1zXVFrw7n9qHbV1RZ2yn4rSmSQAJ01Fraw55plSdPZeEN2iWM1EsZKhrkGLVxzJqWfduQedQAn5NAZhz0QTSXp/iSnzIMd6xaTvh6aYAcNfT+zCYMBFOOMVfropZttV1e5Mdh1xCYEToI6irjmRnJIl41tAGLe1hK9wRxbAE0BtNIuAJgDE2bpFQ9oVMQmbaqVTOYUmB3oiRme9cqp0uUFxe8HH5Zkk7hry4A9f5NCgKR0DXoHIjo4zmnKr8i1EVBiEkLOGso3MwgUVNLBONmEzb0lSKtoSQ+NVT+yCEk8t2axIYAI1PTTY0m7kiRTmXC+iI0qD2rFlAnVdF3LDRHUmiK0tLWlN42jiOnX/c4NPQVueFaUt0Dibg9yhwLxUpM0vDOuuJrnqV42kzcCCn2Cyoq2iv90LhDCp3PPnFTX74PeqIZ8ickN5Q3IQQomDLFzByIRtKmHitL55pp3q1P4a9ffHMhmA6fC1bOD+WYh07lvV/zoCY4bS8eT0cqsInzKd7VAaFcXA28hO1hTM7O3vLVWrb0khrVuEWvGUtAQgpx7QKbT0YQU/EgLP3GxvhUDnLCL+QcZmYYs5Fod8GMbcgj3oGk10xurjJB1tK9ESSGE45F0spJSRjGSPpDuOQAHRNQTRpZQyPLV01qtxjyMx/3OdLJ0fNGHy6MyaRM5bpm3bD6lICPo8Cn8cZSrF/IHeIw8FwAoeijkZ3oSKho+bXYV7Qg60HI+mpURxgEikrN8yscFZ66LtEZPqPlvUh5vODOQOWNPkRT9noixnpynfHgCVNAa+Wuzd2isgYhBA5Hrsb6mdsJPctASRNZ3a2z+Nsq0r1uiYq2lI4EE6YuPwXz44pWnPTJ7qqwLAEmDJ12VBg7g7hmIsFdMTkIEM9QxldMTqcstEbTeUYQ1NIKNmqWNL1hh3jZlhOu5QtkPbUJsZKj3QM+lQ0+DXsG0ggnIxDYQy6yuHzKBBpQ94S0gEARnoOczbZlx4hHbGHcS/UWbnc0escTxmsXLiHsISEqgBCMIx+U+5jTCER9KppL5dltLMtIZA0061rPD0YRErY9tj8tluklYliyJHbLSGQSAGmbSOctHD0/PqSDGOhPuyOeh09UQNd4WTeVqEPn7YMmsLQ4HcGoExFNtQ1zk/s6sWDWw/hUDgBS2DO9RDTLGeiGKjqG7VV9V0s2RWjlpDp2csSnDsXzPELmzja6rzoHExkctUsrR5m5alwzkbjDAubfIinbNhCQlcVDMUd+UhbOB6l16NA5QyN6Qt6PGXnrMejcCxq8sGrcXQOJiCEkwOWYPBpHCvanItUQFfx4TuegZAC8ZRAyhYZj326UTkACVh5Dp8tlwo4myBfOrpg2s45kRJoC3lh2gJ9sVRmM8OYs/nIN4pUUzgU5uT4XcU2DqcS3S1y45xhdUdo3Mlfhcj2ZEckQSN5K+y7I0ZWZ0AMQV0ZkQ1Nh10Yc2RDf3/lqeMaareye9vBCIbiKUiUPld7tjFXowpEcZBHPUNxC600haFzMA7TFumxj+M/T+UM7fW+9NQkmQm3qunxUmLUvs01oI0+FQlTYnlLWgb0YAT1PhWaoqCxOYCkKTIe3sIGZw70voF4xovPxjVM/TET4YQFwDF2CmNIWRwv7A/j2nueh09T0D9sZEK/1VRVLDBzAx6FQwiREwbnWQV9UkpYlnNbdziRljF1HifhGGuZr6pcOlXlUHlO+FvACXcrjMHv4Wjwa+gKG5MSx8gu2trSGcae3vG1tvf0xnDFmSvQObgnIxsqhBOOj5s2GnzahLKh2ekat8ZAVZyiwq5wEgsafWiv09EdSeLmB1/Gf9oCzQF91huuuVJAR0wOMtQzFLfQqjdm5FR5u1f0MeFhOBfE1pAXfk2BYTuiGlI63jRP57JdtTKJtPFMh8aDXg0NAY7X+p0iLiElooaT49bT3lCdzwNNVTAwnEKdV8Ng3HQMvxhZg5KW7Tw4FM/pe1aYk6s1bMdzjiZlZjQl46wmtY8ZACGdDZJT9ezcni+iIdxQtsy9TYzT+y2BnIlg7jHrvRqCuop6nwrOecbjnYo4RrGtQoua/DmhWrfXuRjZ0Ox0Tb1Xc6aPKRycMXAuYQqJ3mgSMqhj2LCxpXMI1971PPweZU6FwwliNGSoa4hSwl9Hza/DspYgNu9xZvRmjDTyG2m/pkBTOZKmjZ50AdKR7SEcGEpgKG7CHqXulSneAsCYhMo5wvEUIklr5IWlhGCASFk4MCiwoNEHv6ag37SRNG0safIjaQocDCcyfcZuWN3OiiEzjEibqlxm8uwZG1aCkMl04rwf5++2HGnNzrdahTnyoRIMfTGj5OiAmi6YkwCGEiaihoWhBEdLyIugrk55ulQprUJrFtZPqtc5W/LWtIWzKUzvC5yqcScS0TmYcKqgGUO9T4NH5SSpScxpyFDXCPlHVQZw7tEdWNTkH3Mx5Jzh3KPbsWm3Y6izq7NHwzlDU9CDeMqGR+X4wNolOHVFC46aX4dNu/tw1a/+iUhiRNaSM8dIcziFUT6NI5JMoTfPyMyMwywEeqMG2ut18HReVVeVzPjE8eySE2l1wuGjQ8z5+perTSEFMgE3aoBMn7SLLYHeWAqMsQmNNAegKIBlpz1ov4pIwsp5jDsx68BgIrNBmoo4Rqla25MJ1eb0xcuRIjSW7suX0pG1dd8/gHQ3AUlqEnMb6qOuAfKNqmQMePLVAfzXH7bio7/6Jy77+TO4+PansGlXX+Z5rhTnRNcsTXE8k456p2960+7+jNE/dWULvv9vx6GtzouQrkJX3a+EE4pUGENAV9ETLWwA3Nxp0rTQF3OmXPk0DsNyWpSyU575lsrgFLQZ1thisVq6HLtrGW1nHWnVkX9booAhl4AsYKVzquABp8BOYVAUhkRK5EQ63McqzNEa740mkbTsKYljlGN85kTkeO0eDl1VYAvHOKcskUmFOANCnDSJ2842WtyFIOYSZKirzOg2K6+mIG46rVYinTS2bGe4xYv7h/DxX7+AJ17pBeBc+IK6ioBn/NPYlC4QKnSxO3VlC77x7mNxzKIGBHUVDE6e1aNwdNTpGMjjSY9GSseL1FWOT5x9OFa0hdJVwc5sak9aFzsftkzncPPcVyvetMJZwaiAyIoYTBTRHu/tZG9opEzLijKGpCWyCtBG/gAjIiP9sdSUxTHcVqFVHSHEDQs9MQNxw8KqjlBZQs7ZAh+QyLTvpWyRN8pg2RLDWSp3s30mNUEUgkLfVWb0qEqZ9pBsKaFxDltKxFMChpWETBdwXfWrf+L7/3Yc1i1vhkfliBqFL/9qOuztUkg/OFtjObu3dShp5uiEj4fKGa5+40qcurIFnDFce/fzCCclNO54bJrC0+MoHfnR0Y2B+Y5S7ux0vrC1W2gnpcy7MeDAhMVsU91QZKcuuBsSBoOVpUAzeu3uRs7dIJVDHKOSWttjBT7UvKkNt4hRyOLlZgliNkOGusqMrrZNmgKGJaBy5gybSFcQs3Te2BYSkYSJ637zIi5euwT7B+Ljvr5wE8TpPGAkaUIIiYFYKkcaMvuivGZhPS47fTm2Hozg7mf24Zf/2FeUwVw9vw7vPWkxAOeCf/VZK/GlP26DLQSE7bwHj8pg2gDLI1wyHeQ7ppZWDxu9IclUaY/VNikKV6yk2MIxlvXHr6tImNaYB7As7z273z3kLd9PeXT+WYgiBGmKJFvgY0dXFClbQk1v4up8Ti4+ZTvDTrhEjqLbbJ1JTRATQYa6yoyutrWESE+pknnbfBTGIBkQTqTwjYd2TlgQLSQwGE/BoyroiSSRMB01spsf2I7//fseAEB/LDVGLnLdimasWViP5/aGcpSxCqFy4Lpzjsi5gL/3pMV44KVuvHQwjHqvClXhOBQxYNo2FMbG9GxXkkIFYIBj8PKtRU1bWgFMylLLEp6mqxwLGrzoj6WwtCWIdx43H1/64/acWdv5Xstpj3NEQipRFT3eHOzJHsf12n/2j7341l92Yl7QA79HAWMMfo+VmcLmRhaGUxaGEpIkNYk5C+Woy4TrdYweZDDR41a1h3KE+VXuCFzYIletyrKdghsr3fdsC6TDyA6uKEY+DkWS2Ns/jHjKMdLz633gnGPrwYijo82A1pCOgK5m2mDcorXXLW5whntg/MKu95+yBKeubMm5jXOGK85YjgafhuGUQMoSSJoW3EK16STf0dz3U2gpZrqMezrU0GwhMBA30Rjw4JPnHIGlzUEEdRU+jwI+zq+UM0fApqPei5hh49aNu8vWc56vyDHfd2QycM5w/OJGBHQlPSrUORvuFDavpqSFcSRMW5QtT04QMxHyqMtAsV5HocedvrIZ+wfi6I4YqPMqYKPCsNkGRdjSkZC0xRhPt7DH6Pzfq3J0NPgQ0BW81hfP9F6HEyYa/Z68bTBrFtTj8LagY9ALhIEPm+fH5956VN5jZ4c6tx2MwB6phILGRwrJKkEhL3o871pJ50ctW2ZSD9OBLYEFDT5c/+YjEfJqeHbfIDwKR0vQA4AhapgYipuZ6VSA8z5aQ3pm7OVUe6ldhJDYciCML/9pO4biJhY0ejNTvCY7BzsfhVrCgroKv4fjwFASCxp8uPH8NVizoJ48aWLOQh71FCnW6xjvcb98ch8uOnkxOup1dA4mMrrOLlm2zfl32lJyxjInsFCI1VEdGynQCXgUJFMChmVDVThU7oigDMVNRJMmkqZAvU/NXPA5Z7j+zavQEtKhKAxK1uupnKGtTseHT1uGx3f1FYwkrFvRjDsuOQmfPW81Qul2Mo/CwDifVO63WPK1UWUb6TH3w2kDknByxEuavPColf+JMDif5XtOWIjbHtuDy37+DL7/8CsIJ0zsHYjDEgKtIS/a63Qo6VYwhQF+jzKmULBQVXSxEZ9Nu/pw8e1P4UN3PI3tXRHEDBN7+xOIGSP58nK1So3XEnYo4uiP/7+3rMKxixrISBNzGvKop8Do1irXIxjtdZx0WNOEj/vDCwcRTphpkRAr7xhFVw/bTnt7usLQ5NfQM077VINPc8ZZcqcNJmmKTB6cccC2nUrnrkgyU/zkUZyZye4Ff92KZnzrPa/DDx7djR3dESRNAc4ZWoIe+DQFP/jbroKRBCEkXtw/hD9v7cawYSGoO+M1mZTT5q26FPLcGYD2eh0BjwZLCKicw5YCvdFUTtV1pXAnZ9766G5YQqLR70Gjn0PXUugKO5rpHfU+6CpPC6ZIKJyjtc6bM2ayUFV0KREfV4fb40p7MkfL2xVWcb33Qt0DpULTowhiYshQT4HRrVXZZHsd973YNcHjVOw8FINP42gKaEiYNlTVMcjZIXCOkTGTgKMDPZyy0ejXEI6bYwx7o19DwKMimjQByTIjEjN58KzXdzcBEs6FGZbIqShft6IZQkp8/S87sa9/GClL4tW+YSjc0Q9vDXlyRiLeeP4aAMD/+90WvNYfH+M510p/dJPf0SSPJCzMC+hgTEHMsHBgMJk2iM55qCScMQhIxFM2Fjf5M9+RpoAOTeE4MJRAX8xIRyOcYsL5Dd6M0QTyq4cBucY33+hKN+87etOZNAUYMzLSnpYt0Rs1ENCd1Ew5W6Uq2RJGELMBMtRToNhBBgeG4uM+TgjAtAXmBTzQFCWTe1YVDsZkZjJW9ojFxoCGaMKZQJSyBVpDHvTEUhmvUeEM0aSFmGGlDbSEojConMPr4fAoPCMm4Q7LYFmBYc6AB17qxnvTs4U37erDZ3/3EmKGhaaAB11hxwMXwrmAe1SOoK6irY7hwFASn7l3C/pjBqLGBOO8qgRnQEe9D16VI5I0R9qAPBy9UQNCynRvtSsJWhljzZmTWx4cTqHep43ZyIW8GhY3MYQTJq4+cyUUheHHjzvTq1SFQ1c4DFtgKD0aMrsqutiIj2skszeTXo1DVzkSpmOQ3fnlyVRlWqVoehRBFIYM9RQodpDBggb/uI9Lmo4x82pKRloxadpgimNAASBlj/TY+jwKFjT4MOyzMy1XfcOpzFxkN3/sml07LTDi9C5LSAH4PWrGULtiH7artcwYWoI69vQ6Ocij5teN8bZStkhvJEa8LUCiN5pCMmVhKD6iHT5e8Va1ENKphtdVJ09vWAKRRApJS4FhOdXxSG9wfBpHwKPiUNTIPN/JKxeWCy2WRY1eDMUtcM4Q0vP/HL2qggizcFhLAOsPb8Gy5kBRoeJiIz6uJ5u9mWSMoSXkxYHBhCMlyx3DH6dWKYKYdshQT4FiBxm87ZgO/PafnQUfFzdtqJyni50YWkJ6ppdU4YBImzpHQWskNxnUVQRaAgjHTcQMC5rC0wYzTdpCMjhhc5+mIG5YiCQt2MIRVVG5M3jDtLOfJjMjCAfiKWw5EMb2LqdoaGA4lR6g4LaEMSgcSJh2euoRxljmWjPSLpaQsLIkKntiI5sdZw63U7RV53UmOM2v92Jg2JFF9esKdIUhkrQmHcav96kYTkkEdBWq4lT6K2P3cWPCzMWGiouN+LivMXoz6bZK9UaTSJpOVMe0JeWPCWKaIUM9BcZKImp5Q5FqWt6x0OMafBoWNfrQFTbg1ZSsC6SBpGnBrWfyahxt9SMFPVLKjJJZJGFmpjdJ6eSvnTm/gM+jot6nQUqJ6845Ek1BDwZiKXztwR0AAw5FHG/YxZbAcMoGZzYefbkHf9vRg75RBWtua5fGWCYELhngUTlMq1ZNc2EYAK/K4NhtCUs4Bo5zoDdmZDYmKueo82m4ZsNK/P75g9jTE0XMsMfV8C6EwjlWdYRw2enLcNtje4qeXAUUFyouZXTluK1Smh8HhpJY2OjDl6lViiCmHWrPmiLFDjKY6HHXv3lVTpuKX1PQXq8j6NXQGPCg3qthflbVbcyw8Fr/MF7tH0ZP1IDtyD5D4Sw9AIOBMWfwwWHNfjT4NJhCoinowfrDW/CO183HspYAusPJgvlXIYGfb34Nr/WPFJW5l2cJJ+RtCQE7LQeqcGe8ZY2Ojx4XCaCjwYfD5vkzE8RStiPSAglHdERKJE07ExrfPxBH3JzYRLth8tH4NY7LTl+GU1e2VGRyVfYQDDmqms/dACxrCUJIicd39eGco9oRyNcqFU2hwa/hM9QqRRBVgcnRv+A5SCQSQX19PcLhMOrqJlccI4Qsqmo1+3ENPg0AMJQw0eT3IJxI4bbH9jhtNOnc4/LW4CiPS8dwymmXsaWAyJMj1RSWEe3wagoOa/YjaQrEDQu3vf+EjCf2hT+8hNs37S3q/XEUnvzkRro9CsuMKpyJdNR70RzUETVMvNaXX0Nd5YBPU9ES0rF3YDjv5z8aTWEjmu0YebzGGeY3eHHTu47BuhXNuW1U6fM/3kzyYhip+rbHRHJU7mzk+qIGEqYAZ0BjwGm5GxhO5XwHKdRNENWDDDXKY6hLpVBv62WnL0O9z5Nj8AHgzqf24XsPv4Kk6VR5p2wnc10oP+oKnADA4kY/wknHe7/jkpPAOYMQEhu+uRF7+oYnXKvCAYXxMUIsLm4YnMOZjzxTaQpoWNDgR3/MwMFwMu9jOHPqBExbFC3W4lbxu0aaAVAUJ2UQ8KhYs7A+57y4G7n9A3E88FI39vSOfEda67w456h2nLqiuWijnW8DMC/oQU/UQCJlw7KdzgJnoplznItOXoL1R7SWvDkodsNKEETxUI56mhh9Af7x43swnKe39bO/ewk3nr8G6w93dLOzL7JJSyBu2jBt6eQseOF6aldulAPojiYR1FWcc1R75v6tByPoi+VWMef8I2tKk/P3wlbJq3EEPArCCXNGhr1d4oYFIUSOiIeaNjIsnfw3hZP/L2R68g0wyf63a+jdnnifR8mR/XRzz5t29eEnj+/J9D+nbIGeiIHuSBIvdg7hJ49rWD2/vihPd3TxWYNPw9ce3IG9/XEkTRu2dN6nAidqkrIk7nxqH954ZGtJLVOVGOBBEAQZ6mkh+wKWsgQiSQsSEgsanOEDQP7e1n/s6c8Rq2j0ezAQN9AdNgDmjDYMx83MGExgrJEQAFKmjZgEvvmXl/GbZzvxibMPhy1H2r1cidJMDZPMNf+2xLiecsIUSBSRq611TNupds9WTLNF/i0KZwwScoza2eiPyVV7c0Vm3Ep5kR6u4tMURA0rZ3Mwuv95OGWja8gRYFG5E7VIpAS2HYxkREsmqgLPLj7b0hnG7p4YLNupJ9CyhmIoYIDi5Oa//pedWLe8uWivvRhhFYIgSocMdYUZfQHzahJDCae45+BQEgsaWaZALLu39YXOIdz84MsYGE6hJahDVx2BkqG4lRl56BppAGMca4Uh490yxpzJVZbAi51D+PDPnsG/nbQYfo/iVI2nQ9ozOGpdFmwJdEeMMcV1+eIWmsrAwJEwxwq6cIxsfNyQt6O57hg8KWWmP5sxjFH4yu5/BkOOAAsDA5MSphDo8HkRTlq46c/bUe/TsKd3uChPdiCeQsIUMG2nRW90jzXnDExI7B+IFzXgoxRhFQqDE0TpUNV3BRl9AXNH9wGOyIiQjlBIts+mpxXDPv7rF7ClcwjDKRv7BuPY1RvD/oE4UpadU3mNrL+7/2ZATgjaEhKcM2icQVUYDFPgV0/tw7ygDl1T8lYkz1WsUR706IEoLk1+D9rrdYyycVDS80A1hUFXOTSFAwwwLQEhhTO2UUgojKE5qCOcsLC8NZipRRBC4rm9gxhO2bCFRCI1UmXu6nq7LXi2lNBVjm1dUbx0IFz0KMomv8fpF0f+0aVuK5qQxWl5lyKsQhBE6ZBHXUHyXcDcECjSQiGuLKPP44TABxMpxAwrMzhD4Y64SNJ0zIXCnd3VeLngfFOj4BwSCngmtJkwbTT6na9AynKK1LKdSVd5a7ahKYBlT16IxVWH83tUtIW8OBRNZqIRTAIeVXF6yyHh1TiGUxICEoYloTCnEr/eryFm2DmtV26KZHtXBNGkiWHDEZ0RAlCyfqmut65wlvG2632ecdMo2Z7sUfPrsHheAC92DkEgHe7OvLajTqcpCnyaUpSWdynCKgRBlA75UmUi3xjBfBcwV0PZEo6v5g7KcF5DoDdqgDOgTlfTSlC5xtIW4xvpfFjpAqiU5fQ8u9OaeiIG3nLMfByzsA6Nfg1+j5oW/uBo8muz0kgDhY20xp0xnsXghsdbQjqWNPnSKm8MAa8Kn8Yh4Hi7bXVeHNEaREtQh+KqnaXlSbN77bPHoDb4NPg0JSNc40q7AiNhcz0tnWZYNhTGHM89i/E8Wc4ZPnH24RlxGluIdL7dmWjGAHhUluPpj0e2sEo+yjnAgyDmIuRRl4FC1a7nHNU+RhkqW0PZskUmd5kwbfRFDQgJNPo09A+nivL4XMnLiXDz2m7FsoQjmnLP0/uxqqMOV75xJSwhccsju1DvU7FvIDGFT6S2yfdxKcwRNbGsPHfmef5wykLAo8KwBWKGwMJGHz582jIsaPThO399BZ2D8Zx8bXu9F611HhwYSmJBgw83Zil85cvxttZ5M73ykE6hG2MCtnCmnLWEvI7YjAD8Hg6vNnbPPZ4ne+rKFnz8TYfjGw/tdL4TwtnAaYoCj8rQ6PcULbJSrJRuuQZ4EMRcgzzqKZLtCSmcwefhUDjD9q4Ifvz4HswLesYoQwV1FfMbvOCcQeEc0aSFuGFhYaMPAY+ChGmnPe7iKNYLdMnkspmTK9/RHcFPHt+DFS0BtNfreK0/XtA7qmU8pX4QWXDOkLLyV3i71fHZRBIWeqK56nLvO2UJmgM6eiLJ/PnatD5711ACe3pH+tfzpUhcGVmfpkBJ3+ZGZzrqvVA4QzjpDPNo8I+dugVM7Mleevpy/OQDJ+CYhQ1o8HsQ8mpo9Gs4ZmFDSVXarpRuuZXVCIJwII96Crie0GA8BSvd2uMW4njSohh1XhUBDx+j8R0zbMyv9+LS05dnVKeElPjQHU9jcNgsyksG0tOyMLkJVUICA7GUEwK1Bb76wA4ciiRnrGjJVFTRXOWwfLgiJS5Nfg2cM1x15gq8fkljTitUoXxtzLDQG03CMAUsKXHD/dvw23924vL1y9NDUcY+J6irCHgCiKdsdEeS6KjzIp6yEDdtaLbA0fPrEU6k0BU2IKWclCe7bnkzvvB2Dc/vG4JkwHGLGial5e1K5BYz1YsgiNIgQz0Fth6MYNvBCIbTM5cVzsC4E2I2LAHDAg4OJXHNhpX4v+cOYF//MAQAn8rzXsCEkGgLeccMwJgQNlIJXDIMSJoCMCW2d0UR8ChoC+rozp7CNQco5qNjQNqD9SBqOGMnR7cuuflaw7IBMFjCUZHrjRgQSCvGAfB7lExl9odPW1ZweAZjzDmmT8M3//V14Izl9Eq7vfbjDYUpZHTLLVBS7FQvgiBKgwz1FOiPGYgknbC2pvKR9hkGMMVpyQknTNz11H4MxlPpsYkMbfU+XHb6sjEXQ84ZlrUGsLWrtDaWxoAHQ8OTq6g108VDEgCkRNSwEDOKSNTOMVxb41Xz9z67rGoPwedR8Gp/POOFu6IpGgekZPBqKur9GurTfdt/3tKFlpCO1/qG0RzU4dOVzHcp2zPO5+mW6sm6CnlP7OrFzzbvRcqy0RTQxwiU3PDOo8dI2RZjcIuZ6kUQRGmQoZ4Cg3ETIt2jzDA2H8mY05e7dyCOjnpvRgqyczCRkQod7VHv7omVtAYGR3mMs/LobJeQGp/xKJyhzqtgMG6lZ32zjEzoaNyoui0keqMpHLuoPiekLIQju/njx/dg/0A87+doCmQGYbB0GERXOZ7ZOwivyhE1LEQNC7qqoLVOh6bwojzjYj3ZbA+6N+YIu/g0BZaQ8Gos09a1fzCOq371T/hUDkuApEAJospQMdkUaAg4uUoh5ZgxgkKKTHtTk1+FV1PAOYNXU9BepyNm2Lh1426IrCv61oMR9EZTBXWk8yHhtGy9fknDpN/HHLLNOXgUDr9HBYczRxsAZLq/ffQ5YEC6710gnrJw+soRac1Nu/rwjluewOd//xL29o8Y6XznUVUYAume+ZhhoSeSRMoWCOgqFjU6IzaTlo39A3H0Rg0c2R4qqrDL9WTXH96S0QzPZnTRo5QSCmdIWgIHBhOZKMpwysawYSOScHq4ixFQIQiispChngLNAR11XhWcMZhCZgy2248KOCFTj5obuMjucd1yIIwtnWE8uqMHf3zhIJLF9AeNIm7aePq1wbK8p7kCA9Aa8iBpCtT5NQR1BYsb/VjY6MNhTQFH3nPU41l6eIXKGf74YhcsS2DTrj5c/9sXsaM7mnfHkxnqAcdIm7YTypZSojuchJVWKfN5nI0cZ8wZKSqBYcOClFOvvh/d/uVMVXNGoWpp7fDeaBJCOn38Ukpw5tw/0eaSIIjKQ2MuMfkxl0JIXHz7U3hhfxh2umjIrfpWmOOtBDwKlrYExoTGhZDoHEpgYaMP3eEkIkkTthg75IGYOvkq4psCGjjjCOoKLjp5MX755L7MzGYhJPYNxNNeJ0fIqyCatJ3RllmvEdI56v06YgkTw6ajomKmT6Cr883T/89+nuvsZnveusoyERiFpwd+CKfyu8GvTWmoxZbOMC77+TMI6E5kJ5GysXdg2NkUMCciJKTMqKy5LGkKZBTzACBh2mNmmhMEUXnIo54Cbv9oU0CDV1PQVufFggYf2uq80FWnn7rB7xljpIERqdDX+ocRTji5bqWIYh2idEYbabcv2u1/vvT05bjx/DVY1RFC3LDQP5yCkI7UZ1PAg3DCcjZho14najj1BkNJC3ZaMGS0Fy7k2OMLiVFSrQyG5SiOucbT9efrfdqUPdnRLWNeD4euKukiN5npGDBtAZGODOnqWBEVXeEwSQqUIKYdKiabIqOrbg3hiEysWViPcMLM2+OaLRXq9lS5VeNC2DN6pnOtojDnMw56FMdoqUqm8l4IiZBXwwdPXYqhYRPheArff3QXdJWjfzhVlPiMkE4vtutJu5GVYgoAGBt5mCUEOOcZPW9N4Wjwc+w6FMXvnz+IpqCn5LanbIlPL3cqyltCelodL3eD4XYmtIS8Y0RUSAqUIKoDGeoyUKjqtlCPqysV2hTQMBQ3M5ORCs0+JqZGc0BDg1+HV3PkLaWU6I4YuO2xPQCA2x7bk9NL3BTQkDRt9MeKk3F1EQC0rFD36KSSmi48VJjTb5+ynAdke8qOwXe8d5+mwKs5ynV9wynccP82cMZKrsLOJ/HpKp/1RJJImM50Ls6AOp8GIZApeHMhKVCCqB6Uo8bkc9TFkCMqke5xbQp4sH8wgXqfioNDSWfkpcCYHChRHg6b50PIm+sFJkwbg8MjqmyNfg88CsdgPIWucHLS54Gn6xNGj8v0ahz1Pg39sVRmrrQlRG4fexYMQFudFz6Pgs7BOGwhsaDBhzqvhpQtMJhu2yo2dz0yF90eJYySgkfheP/aw3DqimaEEyl89ncv5XlcaccjCKJ8kKFGZQ01AFiWwH0vduHAUBwLGvxYOs+PK+58Dgpn6I4kweD0W1MhWS4NXhWxlDXlKV4ehWNBow9BfSSAZAuBV3pi8GkKFjf5AQD9wykciiSndB5UPpKDZnAMd1PAg7Y6L5KmyBRxuWuwRYEcetrgK+n54f5RRYluVGBVRwh3XHJSUWHwfJvGfJ55sY8jCGJ6oNB3hckn07isJYB5QQ+6wkl4FI6kaedUAJO9dggnrZJ6yvPB4BjE3qiBQJbiVzRpQQiJep+G4ZSNrnDCkVKdIpZwjqlxhsVNfvg8HN0Rp/jK6+FQOUNiguNoiiOWY1oSppBQOdBa580pShw9xrKYKuxihVFICpQgagsy1BVkJNxoocGnQUggadp46UAEHtXpUx1dAUxGeoSpfBbZxVG2dELdyZSAz6NASolIwkwrygGdA/FMW9VUaQ56HPEUCfTHU9BTHAp3pEJ1lcOYIDzgUbnTiy+Q2bU1h/ScaIDLeGMsC1GsxCdJgRJE7UCGukJki0wEdRXdkSQMa6TPOpKUY/priVymEl1go3LFtpCIJFIwLGeMaEBXoXCGvliqrNPC+tMDVThjYEximDEsbPRhfr0Pz+wdnDCsrnGG9nofbCFh2gJd4SR4gbgCVWETxNyA+qgrhDtjWFc5Dg4lkTAFOHNUrUQ6H01Genym8vlIifS87xEj1xtL4eBQApaQuHjdYVjU5EfctMtyHtzebJn+I6QzHNOyJfb2x3H0gjr4NAWcOaFtXXWqt93nuhiWI5yicg473VsfT9ljJGrdKuzlrUGqwiaIWQ551GXGnU60cWcPhg0LlpCwpVOQ47YGUZ905XG9aDvLhW0OeuDVFMRTNv73768ilQ5Dl8Ohdl/C7Z2WQKb/Wkrgp5v3QmUsrRnO0kNb5Bg1OlsAB8IJ2MIRQFEZc7S/B+NoCXlLGmNJEMTsgAx1GckuHEuYNqJJyxGQUBwjbUsJs0COkorIyk92X7rCGep9Hng1DsuW6I6U3oKlsJEpWhoHhHAMs5VdY1DgRQ1TwGQjj3ENOucMImvnJgGkLOFogzOG1jovokkLhuW0k/G0PnehMZYEQcw+yFCXiezCsUa/Bw1+DcOGjZQtnAEdUowraEJGuvw4wWenQtqnKbCkwKt9cQynSq/uduVAXdz9lsoYmBxfqMbV+2YMmX55hacFbvI8kTPAq6loSReRNfo1dIWTWNToxzuOmw/GGI5b1IA1C6jYiyDmAmSoy8Do6USu9GJzyIODQ86Qg2JkKInyoaeFTABHESyoqzg4mMzcVgr5oh2cO2FqS8jM3wuhMAZwoMGnoX84ldbVzv99YABagjrmuTOr4Ww0vJqC7d0RdP4tDobS1ckIgpi5VLWY7KabbsKJJ56IUCiE1tZWvPOd78TLL7+c85hkMokrr7wS8+bNQzAYxAUXXIBDhw7lPGbfvn0477zz4Pf70draiuuuuw7WJMZFTha3cKzR78nRR9Z4vnEcxHSiqwrmN3gRM0zYsjTlNwbAk+5pHo0ruelKhRY6z5rCINPrcD1kXSv8s5MAeqIGYsmR72/23GoPzYgmiDlHVQ31xo0bceWVV+If//gHHnroIZimibPPPhvDw8OZx1x77bW477778Otf/xobN27EwYMH8a53vStzv23bOO+885BKpbBp0ybccccd+OlPf4rPf/7z0/Y+Rk8nAoDeqIF9AwkKaVcJn8rg9yhQuNO7njRFyZsmTXELAMcaYiYBNX2+hZtzHoXCkClmmxfQEElasGyB1ASCJ7YEDgwmEDMsSEj0Rg0IKaFyBr9HpRnRBDHHqCkJ0d7eXrS2tmLjxo04/fTTEQ6H0dLSgjvvvBP/8i//AgDYsWMHVq1ahc2bN+OUU07Bn//8Z7z1rW/FwYMH0dbWBgD44Q9/iE996lPo7e2FxzNxj+lUJUSz5/26E5e6p6AXTUyN1pAOTXHkWScR6QaQlv/kACTyVumrDOCcT6jP7sqBAihJmpQzwO9R0BbyYu/AMKQEfB4Fh80L5ERtaEY0Qcx+aqqPOhwOAwCampoAAM8++yxM08SGDRsyjznyyCOxePFibN68GQCwefNmrFmzJmOkAeCcc85BJBLB1q1b8x7HMAxEIpGcP1PBnU50KGJgT29sSkMdiBE0PtJrXMpz/B4FvdHUuCHpiaj3qdAUXrCVzpLImVHt6nqrWb8ohY0UoZXq8HLmVIqHkyZs4YTa842epBnRBDH7qRlDLYTANddcgze84Q04+uijAQDd3d3weDxoaGjIeWxbWxu6u7szj8k20u797n35uOmmm1BfX5/5s2jRoimtnXOG01c2I56yEC+DXjSRZhJWVgA4FEnCEiLTzzwZwgkLti0yxnYi3NHi2d13tnTWUyo8Xb3mtPNJaArP5LdHQ+pkBDH7qRlDfeWVV+Kll17CXXfdVfFjXX/99QiHw5k/+/fvn9LrCSHx2Ct9COgKdLVmPtIZj2nLgtXRhZBSImkKx4udxDFdwywBmOk+aU3NFfHM93eB8rXYNfo96GjwodHvweffthonLW2EYUlSJyOIOUpNWJWrrroKf/zjH/G3v/0NCxcuzNze3t6OVCqFoaGhnMcfOnQI7e3tmceMrgJ3/+0+ZjS6rqOuri7nz1Rwq75bQ14sbPRBJaWoqjEVaVbXKGtZmy1nGpaEUiAEX4kUh0dxJmytnl+H849bgCvOWIGgrqA7YiBh2hBCImHa6I4YpE5GEHOAqhpqKSWuuuoq3HvvvXjkkUewdOnSnPuPP/54aJqGhx9+OHPbyy+/jH379mHt2rUAgLVr12LLli3o6enJPOahhx5CXV0dVq9ePS3vI7vq26cp8GocJaZWiQLoKkdHnT4tbW5qWtpTYSwn1+yOrgx4FDQHNIS8Y0PQ5VxfwhQ5BnjdimbceP4arOoIIW5Y6IkZiBsWVnWEcOP5a6iPmiBmOVUVPLnyyitx55134ve//z1CoVAmp1xfXw+fz4f6+np86EMfwsc+9jE0NTWhrq4OV199NdauXYtTTjkFAHD22Wdj9erVeP/734+bb74Z3d3d+OxnP4srr7wSuq5Py/to8nugKQwpW8CrKWgJebF/IF4eEek5ilN1zdBR70XQq2IoYU44x3nqxxwxt5wzsLSSXJNPhWQMQ/EUhlN23ueW60xrCsPRC+pxxRm5QiY0I5og5i5Vbc8aXcHqcvvtt+Pf//3fATiCJx//+Mfxq1/9CoZh4JxzzsEPfvCDnLD23r17cfnll+PRRx9FIBDAxRdfjK985StQ1eL2IVNtzxJC4uLbn8L2rija63RISLzSE0PKIkM9WZzhFcBh84LweRTEDAv7B+JlU3jjyM1hMzizoB2ZT2cghsKd6VeMlV61PZn11Ps1fPzsI/DekxaTASYIIkNN9VFXi6kaamBE63tg2IRh2TAKDN8gisenKVjeGgAkMJQwMWxYiCZNlOuj5VkGmAFQFccwZ/8gKj0sRUnLm67J40UTBEEApPVdNtataMZFJy/GNx7amRmfSEyNOq+KvmgKvTEjZ1xlJZAY0d9mWbdN9aj1XhVJS8BIT8QK6ArmN/jwjmM7ML8hgEa/hnlBncLYBEEUhAx1mRBC4g8vHIQtJI2sLBOD8RRSFRzezZmjwc0gM/3vrnCJR1VgWPakQ94MQMirwqMpCOgqWuu8OOeodpy6opmMMkEQJUGGukzc+dQ+bOuKAlJCS09uIvnlycMZKmqk20I6Ql4NthToSk84A5wWLY+qQNc4Emb+wrFieN8pi/GeExZT4RdBEFOGDHUZEELirqf2QUgJj8LAGYOqcAqBTwGfxjNzo0cXfk0VzgBN4bCEwMGhtIpZGoUzGKY9KSOtpcddKpzhX45fRNrbBEGUBTLUZWDrwQi6I0ln7nA6w8lZbrESURqukQbKa6QB55x0hdOTzdJTsFLp6R1yCrKfAgAYcGRHCGsWkJEmCKI8kKEuAwPxFCAdcY6kJcCZHFM9TNQW2VF1M2vE1mSL1jhz5lY3BT24/s2rKMxNEETZIENdBpr8HnhUDl3jOBQxStanJqqLLPD3YvF7FPg9Co5sD+GKM1ZQixVBEGWFDHUZcMdcbjsYgcpZ2UQ5iPJRTBqi0LnTFAYJwM6KkmgKw4lLGvCWYxZgUZOfCsYIgqgYZKjLAOcMl69fjo//+gUMxgW1Z9UQCnPOxURG2pX2VtNlBm40nDMnb82Z82K2LdEY8OBjbzqcFMQIgpgWamJ61mxg3YpmfGDtEiickZGuERiAkw5rLKqgz1Wz5ZxnKrdVhUFIwBISKdupOwjoCr574evwvlOWkJEmCGJaIENdJixLwLQkzaOuIVSFoTtiFPVYKQEhJXwah6Yw2EJCCAlVAVTu/FAYnHw0L6BRTxAEUQnIqpSBHz+2Gyfc+Fd8+687ETMmL5JBlBfr/7d379FRVWcbwJ9z5j5JZiY3MgESQgiXAAGJMRBE+fqBBkUFoYp+KaK0VBFaKFYLVaRqFaTWZbUUsaslaqkoVtCqRSkoKgoIQiRAAUWEagIIJCEkzO283x8hRyY3LjNJJsnzW2vWcubsmezzyuTNPmfvdwcER056zrnlqKoAdqsRmckOFE7ORa+kaBgNNbO4RRQoigK7xYhu8XZoomDx+i+hcR4CEbUQ3qMO0Z8/+BKPr96DgCYwGmpmLPF3eGQQAP4zW4+e9gXQ2GR8RQHi7Sbcf20mjKqK46d86BZvB0SBX9NgVFVYzSoU1BSy+fJIJXZ+W8GCJkTUIpioQ+D3a1j0/pcIaAKzUYGqqNA0jqgjiT8giI821SyZk5qJfnULxqXFR+GRMf0xNCMB6/cehS8gsBgMZ+5BG4LaWgwqyjWpWTtPOk0T7pVN1EyYqEPwz89LcLLaB6OhJkmLSKOjNmodigpUeQPo7LLiu0oPPH4NtdMIBEBavB3vzLgSxjMvxtnNMBkUeAMarKqh3ud5AhpMqoI4u7kFzyKyffzFd1i8/kt8eaQSvoDAZFDQo1M0pg7ntp1E4cB71CH4pqwKGs4s3QGCakZTZDCoKixGFZWeAJIcVqTE2pEYY0G0xYiuLiseGdNfT9LA92viT1T5UHerdhFBWZUPPTpFo1/ni9u3vL2p3Yd9d0lFzS5hMRZEWYzYXXISv165Ax9/8V1rd5GozWOiDkEXl71mwwip+SUeYJ6OODaTip+N6InM5BhUewM46fFDAZDV1Yn54wbUG/HVromPthhQWuFBtS8ATRNU+wIorfAg2mLA1OE9eFkXNZe7F6//EpUeP9wOK6ymmtsFVpMBbocFlZ4AJ94RhYEidYcNHVBFRQWcTifKy8vhcJz/SMnv15Dz2L9RXuWD0QCEsCsiNQMFwNAecXjxx0MA4ILuoQZdztUEJpWXc+va8d9y3PniFkRZjLCa6t8mqPYFUOXxY8nEHE68IwoB71GHwGhUMe1/euDx1XtY3zsCuewmTPtBTz0hX0iyGJqRgCHp8Zwg1YTjVV74AgKzoeELc5x4RxQeTNQhmnJlD2gCLFz9H04ka2YNlWY1GhT46wReAZCWYMejY7NCGv2qqsKRYBM48Y6oZTBRh8HQHgmINiko9zJTNxejqpzZWEOQGG1BlTeAhGgzrCYDSsurcdqnQQDERZnxkyvTcduQNH30y6VDzaN24t3ukpNwO1QoZ1Vsq514l5kcw4l3RCFiog6DZZu+ZpJudjVL38wGA7wBgc1sQKU3gPLTfsRFW2FSFZz0+FFe7ceS9fuRkRiNYT0TuXSoGdVOvPv1yh0orfDAZTfBYlDhCWgoq/Jx4h1RmHAyGS5+MhkAfLTvKCYXboGXU77DzqjW7GJ1dmntWLsJmclOlFd7UVJ+Gm6HFae8ARw9eRoev6bX7HbYTJg6vAde2nwQlR4/Yu1mmA0qvAENJ84kkcduDO3SeHNqS1cBOPGOqHkxUePiE7WmCcYt/hhFh8q4Y1aY1eYkBYDLbkZKnB35/dwYlpEATQRT/7YVURYjfJqGb45XIyACg355HGdKuqqwGlWkxtnrXZYtrfAgMzkGz9+RG3EJ8OzEV+0LQFUUpMTZ8cure2FYz8TW7l6D2tIfFkRtDS99h2DntxU4eOwUk3SYqQrgshmRGh+N/H5JGJaRGPSLv7bMp8cfwDcnqvVJfBIQKApgVFUAAp9fg7GBna4URYHLborImt21BUROVHnh9Qt8gQBEgBNVXvzkhS2456pemHJlj9buZj2ceEfUfJioQ3C8ygsvp3pftLqzuM1GFSmxNvzw0hQMy0hodFQWZzdDEwlK0sqZD9ME8AY0qErN5/sCGk77NNjMLVuz+2JGmLUFRE5UeVHlCUBQU1lNUWqOeXwafr9mLzKTHRE7siai8GOiDkGc3YwAy4ZetNrkalAV/F9uCsZfmoKsLs5zJrRMdwwCDdVVVwBFvk/+qgJoqC3tGpyom3Pp0MVOYNv5bQW+PFIJr18gqFl6pqAmFgZVARQNXr+GJ97di6E9EnhpmaiDYAnREGS6Y+CtuxUTnTdNAItJxa9G9cbDY7MwMMV1Xslnd+lJGBTAePa/Xql5CGpG0oqiwGCo2SjFUOfyd3PW7A6l9vXxKi+qfQH4AgEY1O+TdC0VNXtjHzx2Cju/rQhrv4kocjFRh2BnSQWLnITApCq4/9rMC77nerzKC1VR0dlpg+FMLjt7FG0yqIAIjKoCs1FFWbWvRWp2h1r7Os5uhqooEAme6V5LUPOF1c7EgIg6BibqEGw/WNbaXWiTDArgdljhtJuQGh91we+vrYhlMRmQEmeH6cxsb6NBgcmgQFBz6dhpM+Geq3qhb2cHqjx+HKn0oMrjR2ZyTLMszaq9dB1rNwfNMgfqT2BrSL/ODqTE2SFAvWQuIvCfmcluM6qs9kXUgfAedQg0zveux6gqCGjSaGSsJhXJThsMqoIqj/+iEk5wRSwLusbZ9XXUAe37ddQLfzgAw3om4sfD0ltk6VCota9VVcEvr+6Fn7ywBR6fBigaVCgQAH5NYDhztSAjidW+iDoSjqhD4LCaWrsLEUdVFBgN9ZOg1aiis9OKjMRoRJkN532PWNMEO/5bjvV7j2LHf8uhaVJvK0qDqiA11o4khxV2sxFJDiv+eOsgfWZ07dKh4b0SkdX13JPVLtbZta8bcj4T2Ib1TMQ9V/WCxaTCHxD4NIGm1SR/q8mIuCgTq30RdTAcUYcgPoqXH+vSpOY6g1GtSdhevwabyQi30wKr0YDT/vMvL3mu2dOP3ZilHy8/UxFrYIqz1Spihav29ZQreyAz2YEn3t2Lg8dOQQNgM9aMpFnti6jjYWUyXHxlsk8PHMNNz25sxp5FPoNacznW46sZRapKzQjWYTWib2cnhmUk4F/FpTh0vAqaCGwmw3ktVaqdPX2u8p+RVhHr+34HGqx9fSH3xiPt3IiodXBEHYJ/bPlva3ehRdUtUKIqQLLTimqvhli7iolDUpHstMMVZUJClAXl1V4s+WA/DpdXI6AJVAXo5LDizivTm0xWdWdP145MraoBboeK0goPFq//EkPS4yOuIlZjI/3M5AsfDUfauRFR62CiDsGWDjTr26AqSHZa4T8zOvT6NaiKgipPAKnxUfXqUH/8xXd4YFWxPiKOi6oZEf/3RDUeWFXc5MjyQmZPR2IiG5qRgCHp8RwNE1FYMFGHwO/rOGtZRQQOixHeM2uRNQAWgwJNgMPl1VjywX6oiqJfjr6QEXFdoc6ejgQcDRNRuHDWdwgOnIjcRBEuypkHAJRUnMaJU154/BqsRhVupw1dXDZEW01BlbdCXU8cjtnTRETtBRM1NUoFEGUxICXWBofNhMmXd0dKnB1RZgNS4+yNVt46Vuk554jY18SIuHb29IkqH+rOdWzO8p9ERJGIiZoaZFCB7olRSIuPgtlkgN1kQNdYO45UnEZclKXJkfKJKl9II+K666RbovwnEVGkYqKmegwKkBoXBbu5ZgpD7QjWFWU6r5GyK8oU8oi4dvZ0ZnJMi5T/JCKKVJxMRkFUBXA7bbCbDKj2BYKKk8RYTfpI2aoa6r23dqScEGXB1OE98OuVO1Ba4WlwPfH5jIg5e5qIiImaUJOcM90xyE2Px77Dldh/tBJHKj311v9qmpx35S1VVcKynpizp4moo2Oi7qDi7CZ4NYHdpOLnI3rh/3JToapKk9Wwau8dn+9ImSNiIqLQsYQoLr6EaNrst5qxV81HQU3S7ZscgznXZF7w/d6gGtxnRsrnUxaUiIguHEfUHYjVqCAu2gKTqqK82genzYQh6fEX/DkcKRMRtRwm6nZOBeCKMiHWZobNbNDvK5uMKvYfPXXRZTh575iIqGUwUbdjqgKkxNrhsNXfN7stlOEkIiKuo26XFADXDXAjKcYCs7Hh/8Usw0lE1DYwUbcjBgWIjzLhhTty8fQt2chIimEZTiKiNo6Juh1QAbhjzBiakYBnbs3GFb0TWYaTiKid4D3qNs5sVDFzRE9c0TOx3szr2jKcoRYdISKi1sNE3UYpACwmFfdc1QtTruzRaDsupSIiatuYqNsgu0lFL7cDv7y6F4b1TDxney6lIiJqu5io2wiHRcXkK3pgQBcnEmOsHBUTEXUQTNQRTgGQGG3CU7dk854yEVEHxEQdoRQAJoOK3u7oi6rHTURE7QMTdYRJcVkw+YoeUBQFg1JcyOri5CVuIqIOjIk6QphUYMltl+J/+7hbuytERBRBmKhbWZzdiCW35eDS1DiOnImIqB4m6lY0Z1Qv3Pk/PVu7G0REFMGYqFvB4G4uLJuSB2MjG2YQERHVYqJuYS/ekYsrep+7SAkRERHATTlCcmDB6PNumx5vxf7HrmWSJiKiC6JI3T0QO6CKigo4nU6Ul5fD4bjwbR/TZr/V5PFdD14Nu910sd0jIqIOjCPqMGhsZP23KVk4sGA0kzQREV00jqgR+oiaiIiouXBETUREFMGYqImIiCIYEzUREVEEY6ImIiKKYEzUREREEYyJmoiIKIIxURMREUUwJmoiIqII1m4S9aJFi5CWlgar1YrBgwdj8+bNrd0lIiKikLWLRP3yyy9j1qxZmDdvHj777DMMHDgQ+fn5OHLkSGt3jYiIKCTtooTo4MGDcdlll+GPf/wjAEDTNKSkpOBnP/sZZs+eXa+9x+OBx+PRn1dUVCAlJYUlRImIKOK0+RG11+vF1q1bMXLkSP01VVUxcuRIfPLJJw2+Z/78+XA6nfojJSWlpbpLRER0QYyt3YFQfffddwgEAkhKSgp6PSkpCf/5z38afM+cOXMwa9Ys/Xl5eTlSU1NRUVHRrH0lIiI6W0xMDBRFabJNm0/UF8NiscBisejPaxM0R9ZERNSSzueWa5tP1AkJCTAYDDh8+HDQ64cPH4bb7T6vz+jcuTMOHTp0Xn/ZNKX2XvehQ4d4r7sBjE/jGJumMT6NY2wa1xZiExMTc842bT5Rm81mXHrppVi7di3Gjh0LoGYy2dq1azF9+vTz+gxVVdG1a9ew9cnhcETsP4pIwPg0jrFpGuPTOMamcW09Nm0+UQPArFmzMGnSJOTk5CA3NxdPPfUUTp06hTvuuKO1u0ZERBSSdpGoJ0yYgKNHj+LBBx9EaWkpLrnkEqxevbreBDMiIqK2pl0kagCYPn36eV/qbi4WiwXz5s0LmqhG32N8GsfYNI3xaRxj07j2Ept2UfCEiIiovWrzBU+IiIjaMyZqIiKiCMZETUREFMGYqImIiCIYE3UYtfc9sefPn4/LLrsMMTEx6NSpE8aOHYs9e/YEtTl9+jSmTZuG+Ph4REdHY/z48fWqxh08eBCjR4+G3W5Hp06dcO+998Lv9we1ef/995GdnQ2LxYKMjAwUFhY29+mF1YIFC6AoCmbOnKm/1tFj88033+BHP/oR4uPjYbPZkJWVhS1btujHRQQPPvggkpOTYbPZMHLkSOzbty/oM44fP46CggI4HA64XC78+Mc/RmVlZVCbzz//HFdccQWsVitSUlKwcOHCFjm/ixUIBDB37lx0794dNpsNPXr0wCOPPIKz5/l2pNh88MEHuP7669G5c2coioJVq1YFHW/JWKxYsQJ9+vSB1WpFVlYW3n777bCf73kRCovly5eL2WyWv/71r7Jz506ZMmWKuFwuOXz4cGt3LWzy8/Nl6dKlUlxcLNu3b5drr71WUlNTpbKyUm9z1113SUpKiqxdu1a2bNkiQ4YMkaFDh+rH/X6/9O/fX0aOHCnbtm2Tt99+WxISEmTOnDl6m/3794vdbpdZs2bJrl275JlnnhGDwSCrV69u0fO9WJs3b5a0tDQZMGCAzJgxQ3+9I8fm+PHj0q1bN7n99ttl06ZNsn//fnnnnXfkiy++0NssWLBAnE6nrFq1SoqKiuSGG26Q7t27S3V1td5m1KhRMnDgQNm4caN8+OGHkpGRIbfeeqt+vLy8XJKSkqSgoECKi4vlpZdeEpvNJkuWLGnR870Qjz76qMTHx8ubb74pX331laxYsUKio6PlD3/4g96mI8Xm7bfflvvvv19ee+01ASArV64MOt5SsdiwYYMYDAZZuHCh7Nq1Sx544AExmUyyY8eOZo9BXUzUYZKbmyvTpk3TnwcCAencubPMnz+/FXvVvI4cOSIAZP369SIiUlZWJiaTSVasWKG32b17twCQTz75RERqvoSqqkppaaneZvHixeJwOMTj8YiIyH333Sf9+vUL+lkTJkyQ/Pz85j6lkJ08eVJ69uwpa9askeHDh+uJuqPH5le/+pUMGzas0eOaponb7Zbf/e53+mtlZWVisVjkpZdeEhGRXbt2CQD59NNP9Tb/+te/RFEU+eabb0RE5E9/+pPExsbq8ar92b179w73KYXN6NGjZfLkyUGvjRs3TgoKCkSkY8embqJuyVjcfPPNMnr06KD+DB48WO68886wnuP54KXvMLiYPbHbg/LycgBAXFwcAGDr1q3w+XxBcejTpw9SU1P1OHzyySfIysoKqhqXn5+PiooK7Ny5U29z9mfUtmkLsZw2bRpGjx5dr/8dPTZvvPEGcnJycNNNN6FTp04YNGgQ/vznP+vHv/rqK5SWlgadm9PpxODBg4Pi43K5kJOTo7cZOXIkVFXFpk2b9DZXXnklzGaz3iY/Px979uzBiRMnmvs0L8rQoUOxdu1a7N27FwBQVFSEjz76CNdccw2Ajh2buloyFpH0XWOiDoOm9sQuLS1tpV41L03TMHPmTFx++eXo378/AKC0tBRmsxkulyuo7dlxKC0tbTBOtceaalNRUYHq6urmOJ2wWL58OT777DPMnz+/3rGOHpv9+/dj8eLF6NmzJ9555x1MnToVP//5z/H8888D+P78mvoOlZaWolOnTkHHjUYj4uLiLiiGkWb27Nm45ZZb0KdPH5hMJgwaNAgzZ85EQUEBgI4dm7paMhaNtWmNWLWbEqLUsqZNm4bi4mJ89NFHrd2ViHDo0CHMmDEDa9asgdVqbe3uRBxN05CTk4PHHnsMADBo0CAUFxfj2WefxaRJk1q5d63rlVdewbJly/D3v/8d/fr1w/bt2zFz5kx07ty5w8eGanBEHQbh2BO7LZk+fTrefPNNvPfee0Hbg7rdbni9XpSVlQW1PzsObre7wTjVHmuqjcPhgM1mC/fphMXWrVtx5MgRZGdnw2g0wmg0Yv369Xj66adhNBqRlJTUYWMDAMnJyejbt2/Qa5mZmTh48CCA78+vqe+Q2+3GkSNHgo77/X4cP378gmIYae699159VJ2VlYWJEyfiF7/4hX5lpiPHpq6WjEVjbVojVkzUYXD2nti1avfEzsvLa8WehZeIYPr06Vi5ciXWrVuH7t27Bx2/9NJLYTKZguKwZ88eHDx4UI9DXl4eduzYEfRFWrNmDRwOh/6LPC8vL+gzattEcixHjBiBHTt2YPv27fojJycHBQUF+n931NgAwOWXX15vKd/evXvRrVs3AED37t3hdruDzq2iogKbNm0Kik9ZWRm2bt2qt1m3bh00TcPgwYP1Nh988AF8Pp/eZs2aNejduzdiY2Ob7fxCUVVVBVUN/lVsMBigaRqAjh2buloyFhH1XWvx6Wvt1PLly8VisUhhYaHs2rVLfvrTn4rL5QqawdvWTZ06VZxOp7z//vtSUlKiP6qqqvQ2d911l6Smpsq6detky5YtkpeXJ3l5efrx2iVIV199tWzfvl1Wr14tiYmJDS5Buvfee2X37t2yaNGiNrEEqa6zZ32LdOzYbN68WYxGozz66KOyb98+WbZsmdjtdvnb3/6mt1mwYIG4XC55/fXX5fPPP5cxY8Y0uOxm0KBBsmnTJvnoo4+kZ8+eQctuysrKJCkpSSZOnCjFxcWyfPlysdvtEbcE6WyTJk2SLl266MuzXnvtNUlISJD77rtPb9ORYnPy5EnZtm2bbNu2TQDIk08+Kdu2bZOvv/5aRFouFhs2bBCj0ShPPPGE7N69W+bNm8flWe3BM888I6mpqWI2myU3N1c2btzY2l0KKwANPpYuXaq3qa6ulrvvvltiY2PFbrfLjTfeKCUlJUGfc+DAAbnmmmvEZrNJQkKC3HPPPeLz+YLavPfee3LJJZeI2WyW9PT0oJ/RVtRN1B09Nv/85z+lf//+YrFYpE+fPvLcc88FHdc0TebOnStJSUlisVhkxIgRsmfPnqA2x44dk1tvvVWio6PF4XDIHXfcISdPngxqU1RUJMOGDROLxSJdunSRBQsWNPu5haKiokJmzJghqampYrVaJT09Xe6///6gpUMdKTbvvfdeg79nJk2aJCItG4tXXnlFevXqJWazWfr16ydvvfVWs513U7jNJRERUQTjPWoiIqIIxkRNREQUwZioiYiIIhgTNRERUQRjoiYiIopgTNREREQRjImaiIgogjFRExERRTAmaiJqcwoLC+ttGUrUXjFRE7UTR48exdSpU5GamgqLxQK32438/Hxs2LABAKAoClatWhXWn1lYWAhFUZp8HDhwoNH3/+Y3v8Ell1wS1j4RtTfcj5qonRg/fjy8Xi+ef/55pKen4/Dhw1i7di2OHTvWbD9zwoQJGDVqlP583Lhx6N+/Px5++GH9tcTExGb7+UQdAUfURO1AWVkZPvzwQzz++OP4wQ9+gG7duiE3Nxdz5szBDTfcgLS0NADAjTfeCEVR9OcA8PrrryM7OxtWqxXp6el46KGH4Pf79eOKomDx4sW45pprYLPZkJ6ejldffRUAYLPZ4Ha79YfZbIbdbtefe71ejBs3DtHR0XA4HLj55pv1PX4LCwvx0EMPoaioSB99FxYWAgCefPJJZGVlISoqCikpKbj77rtRWVnZIrEkijRM1ETtQHR0NKKjo7Fq1Sp4PJ56xz/99FMAwNKlS1FSUqI///DDD3HbbbdhxowZ2LVrF5YsWYLCwkI8+uijQe+fO3cuxo8fj6KiIhQUFOCWW27B7t27m+yTpmkYM2YMjh8/jvXr12PNmjXYv38/JkyYAKBmNH7PPfegX79+KCkpQUlJiX5MVVU8/fTT2LlzJ55//nmsW7cO9913X8hxImqTWmXPLiIKu1dffVViY2PFarXK0KFDZc6cOVJUVKQfByArV64Mes+IESPkscceC3rtxRdflOTk5KD33XXXXUFtBg8eLFOnTq3Xh7O39nz33XfFYDDIwYMH9eM7d+4UALJ582YREZk3b54MHDjwnOe2YsUKiY+P158vXbpUnE7nOd9H1B5wRE3UTowfPx7ffvst3njjDYwaNQrvv/8+srOz9cvJDSkqKsLDDz+sj8ijo6MxZcoUlJSUoKqqSm+Xl5cX9L68vLxzjqh3796NlJQUpKSk6K/17dsXLpfrnO/997//jREjRqBLly6IiYnBxIkTcezYsaA+EXUUTNRE7YjVasVVV12FuXPn4uOPP8btt9+OefPmNdq+srISDz30ELZv364/duzYgX379sFqtbZgz7934MABXHfddRgwYAD+8Y9/YOvWrVi0aBEAwOv1tkqfiFoTEzVRO9a3b1+cOnUKAGAymRAIBIKOZ2dnY8+ePcjIyKj3UNXvfz1s3Lgx6H0bN25EZmZmkz87MzMThw4dwqFDh/TXdu3ahbKyMvTt2xcAYDab6/Vp69at0DQNv//97zFkyBD06tUL33777YWfPFE7weVZRO3AsWPHcNNNN2Hy5MkYMGAAYmJisGXLFixcuBBjxowBAKSlpWHt2rW4/PLLYbFYEBsbiwcffBDXXXcdUlNT8cMf/hCqqqKoqAjFxcX47W9/q3/+ihUrkJOTg2HDhmHZsmXYvHkz/vKXvzTZp5EjRyIrKwsFBQV46qmn4Pf7cffdd2P48OHIycnR+/TVV19h+/bt6Nq1K2JiYpCRkQGfz4dnnnkG119/PTZs2IBnn322+YJHFOla+yY5EYXu9OnTMnv2bMnOzhan0yl2u1169+4tDzzwgFRVVYmIyBtvvCEZGRliNBqlW7du+ntXr14tQ4cOFZvNJg6HQ3Jzc+W5557TjwOQRYsWyVVXXSUWi0XS0tLk5ZdfbrAfZ08mExH5+uuv5YYbbpCoqCiJiYmRm266SUpLS4P6PX78eHG5XAJAli5dKiIiTz75pCQnJ4vNZpP8/Hx54YUXBICcOHFCRDiZjDoWRUSklf9WIKIIpigKVq5cibFjx7Z2V4g6JN6jJiIiimBM1ERERBGMk8mIqEm8O0bUujiiJiIiimBM1ERERBGMiZqIiCiCMVETERFFMCZqIiKiCMZETUREFMGYqImIiCIYEzUREVEE+38vCnwrO7MNLQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.lmplot(x =\"StepTotal\", y =\"Calories\", data = step_vs_calories, order = 2, ci = None)\n", + "save_path = '../Images/total_steps_vs_calories.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2a7fc204", + "metadata": {}, + "source": [ + "#### Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "aeabb9fd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.6883662506078383\n" + ] + } + ], + "source": [ + "X = np.array(step_vs_calories['StepTotal']).reshape(-1, 1)\n", + "y = np.array(step_vs_calories['Calories']).reshape(-1, 1)\n", + " \n", + "step_vs_calories.dropna(inplace = True)\n", + " \n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)\n", + " \n", + "model_lr_1 = LinearRegression()\n", + " \n", + "model_lr_1.fit(X_train, y_train)\n", + "print(model_lr_1.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "6f0bcc73", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABivklEQVR4nO3de3gTVd4H8G9aaCmWtrT0ArS1qLwgwiqCIiogaxUU30ULuCIoKquIoBSU3WUFXESBVVZwVxbEC+hy8YVS1wXRFWqLuHa5o1wEFVoutS0ItAWE0ibn/WM2aSbXSTLJTCbfz/PkCZycTE4maefXc37nHJMQQoCIiIjIoKK0bgARERFRMDHYISIiIkNjsENERESGxmCHiIiIDI3BDhERERkagx0iIiIyNAY7REREZGjNtG6AHlgsFvz4449o1aoVTCaT1s0hIiIiBYQQOHv2LNq1a4eoKPf9Nwx2APz444/IysrSuhlERETkh2PHjiEzM9Pt4wx2ALRq1QqAdLISEhI0bg0REREpUVdXh6ysLNt13B0GO4Bt6CohIYHBDhERUZjxloLCBGUiIiIyNAY7REREZGgMdoiIiMjQGOwQERGRoTHYISIiIkNjsENERESGxmCHiIiIDI3BDhERERkagx0iIiIyNK6gTEREREFhNgObNwOVlUDbtkCfPkB0dOjbwWCHiIiIVFdYCEyYABw/3lSWmQm8/jqQlxfatnAYi4iIiFRVWAgMHSoPdACgokIqLywMbXsY7BAREZFqzGapR0cI58esZfn5Ur1QYbBDREREqtm82blHx54QwLFjUr1QYbBDREREqqmsVLeeGhjsEBERkWratlW3nhoY7BAREZFq+vSRZl2ZTK4fN5mArCypXqgw2CEiIiLVREdL08sB54DH+v/580O73g6DHSIiIlJVXh5QUAC0by8vz8yUykO9zg4XFSQiIiLV5eUBgwdzBWUiIiIysOho4LbbtG4Fh7GIiIjI4BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZWjOtG0BERBQKZjOweTNQWQm0bQv06QNER2vdKgoFBjtERGR4hYXAhAnA8eNNZZmZwOuvA3l52rWLQoPDWEREZGiFhcDQofJABwAqKqTywkJt2kWhw2CHiIgMy2yWenSEcH7MWpafL9Uj42KwQ0REhrV5s3OPjj0hgGPHpHpkXAx2iIjIsCor1a1H4YnBDhERGVbbturWI9/U1dUhMTERJpMJP/74o2btYLBDRESG1aePNOvKZHL9uMkEZGVJ9Uhd06ZNQ2JiIurq6gAAW7Zs0awtnHpORESGFR0tTS8fOlQKbOwTla0B0Pz5wV1vJ9LW99m7dy+6desmK7v//vtx3333adQi9uwQEZHB5eUBBQVA+/by8sxMqTyY6+wUFgI5OUD//sCDD0r3OTnGnO5uNpvRq1cvp0DnyJEj+L//+z+NWiVhsENERIaXlweUlwPFxcCKFdJ9WVnwA51IWd/ngw8+QLNmzbB161Zb2RtvvAEhBLKzszVsmcQkhKvVByKLNYGqtrYWCQkJWjeHiIjCnNks9eC4m/ZuMkk9S2Vl4T2kdfLkSaSlpcnKcnJycODAAcTGxgb99ZVev9mzQ0REpLJIWN/nqaeecgp0SktLUVZWFpJAxxdMUCYiIlKZkdf32bJlC2666SZZ2ZgxY7Bo0SKNWuSdpj07ZrMZ06ZNQ4cOHRAXF4crr7wSM2fOhP3ImhAC06dPR9u2bREXF4fc3Fx8//33suOcPn0aI0aMQEJCApKSkjB69GicO3cu1G+HiIgIgDHX96mvr8eVV17pFOhUV1frOtABNA52/vSnP2HhwoV444038O233+JPf/oTXnnlFfz1r3+11XnllVfwl7/8BYsWLcKWLVtw2WWXYcCAAbh48aKtzogRI7Bv3z5s2LAB69atwxdffIEnnnhCi7dERERkuPV9Fi5ciBYtWuDw4cO2smXLlkEI4TSUpUeaJijfc889SE9PxzvvvGMrGzJkCOLi4mwnsV27dnj22Wfx3HPPAQBqa2uRnp6OpUuX4oEHHsC3336LLl26YNu2bejZsycA4NNPP8Xdd9+N48ePo127dl7bwQRlIiJSm3U2FuB6fZ9gT3tXw7Fjx5xmU/Xs2ROlpaVo1kz7TJiwSFC++eabUVRUhO+++w4A8PXXX+PLL7/EXXfdBQAoKytDVVUVcnNzbc9JTExEr169UFpaCkBKhkpKSrIFOgCQm5uLqKgot6s11tfXo66uTnYjIiJSk5br+wRKCIFhw4Y5BTrffPMNtm3bpotAxxeatvb3v/896urq0LlzZ0RHR8NsNuPll1/GiBEjAABVVVUAgPT0dNnz0tPTbY9VVVU5daE1a9YMycnJtjqOZs+ejRkzZqj9doiIiGTy8oDBg8NrBeWioiJZJwMATJkyBbNmzdKoRYHTNNhZtWoVli9fjhUrVuCaa67B7t27kZ+fj3bt2mHUqFFBe90pU6Zg0qRJtv/X1dUhKysraK9HRESRKzoauO02rVvh3fnz55GRkeE0waempgaJiYkatUodmg5jTZ48Gb///e/xwAMPoFu3bnjooYcwceJEzJ49GwCQkZEBQMr0tlddXW17LCMjAydOnJA93tjYiNOnT9vqOIqNjUVCQoLsRkREFKlmzZqF+Ph4WaCzdu1aCCHCPtABNA52fv75Z0RFyZsQHR0Ni8UCAOjQoQMyMjJQVFRke7yurg5btmxB7969AQC9e/dGTU0NduzYYavz+eefw2KxoFevXiF4F0REROHpu+++g8lkwvPPP28rGzhwICwWC+655x4NW6YuTYex/vd//xcvv/wysrOzcc0112DXrl147bXX8NhjjwEATCYT8vPz8dJLL6Fjx47o0KEDpk2bhnbt2uHee+8FAFx99dUYOHAgHn/8cSxatAgNDQ0YP348HnjgAUUzsYiIiCKNxWLB7bffjpKSEln5oUOHcMUVV2jTqGASGqqrqxMTJkwQ2dnZokWLFuKKK64Qzz//vKivr7fVsVgsYtq0aSI9PV3ExsaK22+/XRw8eFB2nFOnTonhw4eL+Ph4kZCQIB599FFx9uxZxe2ora0VAERtba1q742IiEiPCgsLBQDZbe7cuVo3yy9Kr9/cCBRcZ4eIiIzvzJkzSE5OlpW1adMGR44cQcuWLTVqVWDCYp0dIiIiCr7nnnvOKdApKSnByZMnwzbQ8UV4rQpEREREiu3atQvXX3+9rGzkyJF4//33YXK3l4UBMdghIiIymIaGBnTv3h379u2TlVdUVETk5B0OYxERERnIkiVLEBMTIwt03n77bdt+k5GIPTtEREQGUFlZ6RTMdOnSBbt370bz5s01apU+sGeHiIgojAkhMGrUKKdAZ/v27di3b1/EBzoAgx0iIqKwtXnzZkRFReH999+3leXn50MIgR49emjYMn3hMBYREVGYuXDhAnJycpz2hjx16pTTFHNizw4REVFYmTdvHlq2bCkLdAoKCiCEYKDjBnt2iIiIwkBZWZnTvlV9+/ZFcXGx06baJMdgh4iIDM1sBjZvBiorgbZtgT59gOhorVulnBAC99xzD9avXy8r//bbb9G5c2eNWhVeGAoSEZFhFRYCOTlA//7Agw9K9zk5Unk4WL9+PaKiomSBzosvvgghBAMdH7Bnh4iIDKmwEBg6FHDc7rqiQiovKADy8rRpmzd1dXVo3bo1LBaLraxly5aorq5GfHy8hi0LT+zZISIiwzGbgQkTnAMdoKksP1+qpzfTpk1DYmKiLND57LPPcP78eQY6fmLPDhERGc7mzcDx4+4fFwI4dkyqd9ttIWuWR3v37kW3bt1kZXl5eSgoKIioTTuDgcEOEREZTmWluvWCyWw2o3fv3ti2bZus/MiRI8jOztaoVcbCYSwiIjKctm3VrRcsK1euRLNmzWSBzhtvvAEhBAMdFbFnh4iIDKdPHyAzU0pGdpW3YzJJj/fpE/q2AcDJkyeRlpYmK8vJycGBAwcQGxurTaMMjD07RERkONHRwOuvS/92THex/n/+fG3W2xk7dqxToFNaWoqysjIGOkHCYIeIiAwpL0+aXt6+vbw8M1ObaedbtmyByWTCokWLbGVjxoyBEAI33XRTaBsTYTiMRUREhpWXBwwerO0KyvX19ejSpQsOHz4sK6+urnbq4aHgYM8OEREZWnS0NL18+HDpPpSBzsKFC9GiRQtZoLNs2TIIIRjohBB7doiISPfCbX+rY8eOOc2m6tmzJ0pLS9GsGS+9ocaeHSIi0rVw2t9KCIFhw4Y5BTrffPMNtm3bxkBHIwx2iIhIt6z7Wzmuhmzd30pPAU9RURGioqJQUFBgK5syZQqEEE4rI1NomYRwtQJBZKmrq0NiYiJqa2uRkJCgdXOIiAjS0FVOjvttH6xr5ZSVaTukdf78eWRkZODcuXOy8pqaGiQmJmrUqsig9PrNnh0iItIlX/a30sqsWbMQHx8vC3TWrl0LIQQDHR3h4CEZVrglNBKRnJ73tzp48CA6d+4sKxs4cCDWr1/PTTt1iMEOGVJhITBhgvyvwsxMaUXVUC8kRkT+0eP+VhaLBb/85S+xadMmWfmhQ4dwxRVXhK4h5BMOY5HhhFNCIxG5Z93fyl1HickEZGWFbn+rwsJCREdHywKduXPnQgjBQEfn2LNDhmI2Sz06rtLuhZB+OebnSyuqckiLSN+s+1sNHSr97Nr/XIdyf6szZ84gOTlZVpaWloby8nLExcUF98VJFezZIUMJh4RGIlJO6/2tnnvuOadAp6SkBNXV1Qx0wgh7dshQ9JzQSET+0WJ/q127duH666+XlY0cORLvv/8+E5DDEIMdMhQ9JjQSUeCs+1sFW0NDA7p37459+/bJyisqKtCuXbvgN4CCgsNYZCh6S2gkovCxZMkSxMTEyAKdt99+G0IIBjphjj07ZCh6SWgkovBRWVnpFMx06dIFu3fvRvPmzTVqFamJPTtBUlsL3HorkJ0t3dfWat2iyKF1QiMRhQchBEaNGuUU6Gzfvh379u1joGMg3BsL6u+NddVVwKFDzuVXXgn88EPAhyeFuIIyEbmzefNm9O3bV1aWn5+PefPmadQi8ofS6zeHsVTmLtABpPKrrmLAEyqhSmgkovBx4cIF5OTk4MSJE7LyU6dOOU0xJ+PgMJaKamvdBzpWhw5xSIuISAuvvfYaWrZsKQt0CgoKIIRgoGNw7NlR0aBByut9+WVw20JERJLDhw/jyiuvlJX17dsXxcXFiIri3/yRgJ+yio4eVbceERH5TwiBQYMGOQU6Bw4cwKZNmxjoRBB+0irKzla3HhER+Wf9+vWIiorC+vXrbWUvvvgihBDo1KmThi0jLXAYS0UffwwkJSmrR0RE6qurq0Pr1q1hsVhsZS1btkR1dTXi4+M1bBlpiT07KkpMlKaXe3LllVI9IqJIYzYDJSXAypXSvdms7vGnTZuGxMREWaDz2Wef4fz58wx0Ihx7dlT2ww9cZ4eIyFFhITBhAnD8eFNZZqa04nmgC33u3bsX3bp1k5Xl5eWhoKCAm3YSAPbsBMUPPwA1NcAtt0j7MN1yi/R/BjpEFIkKC6UtXOwDHQCoqJDKCwv9O67ZbMaNN97oFOgcOXIEa9asYaBDNgx2giQxUZpefvSodM+hKyKKRGaz1KPjaq1+a1l+vu9DWitXrkSzZs2wbds2W9kbb7wBIQSyOQuEHHAYi4iIgmbzZuceHXtCAMeOSfWUrHh+8uRJpKWlycpycnJw4MABxMbGBtZYMiz27BARUdBUVqpXb+zYsU6BTmlpKcrKyhjokEfs2SEioqBp2zbwelu2bMFNN90kKxszZgwWLVoUQMsokjDYISKioOnTR5p1VVHhOm/HZJIe79PH+bH6+np07twZ5eXlsvLq6mqnHh4iTziMRUREQRMdLU0vB6TAxp71//PnS/XsLVy4EC1atJAFOsuXL4cQgoEO+Yw9O0REFFR5eUBBget1dubPl6+zc+zYMafZVD179kRpaSmaNeMli/zDbw4REQVdXh4weLA066qyUsrR6dOnqUdHCIH7778fBQUFsud98803TuvoEPmKwQ4REYVEdLTr6eVFRUXIzc2VlU2ZMgWzZs0KTcPI8BjsEBGRJs6fP4+MjAycO3dOVl5TU4NErsRKKmKCMhERhdysWbMQHx8vC3TWrl0LIQQDHVIde3aIiChkDh48iM6dO8vKBg4ciPXr13MvKwoaBjtERBR0FosFv/zlL7Fp0yZZ+aFDh3DFFVdo1CqKFBzGIiKioCosLER0dLQs0Jk7dy6EEAx0KCTYs0NEREFx+vRppKSkyMrS0tJQXl6OuLg4jVpFkYg9O0REpLpJkyY5BTqbNm1CdXU1Ax0KOc2DnYqKCowcORIpKSmIi4tDt27dsH37dtvjQghMnz4dbdu2RVxcHHJzc/H999/LjnH69GmMGDECCQkJSEpKwujRo52mMhIRBZPZDJSUACtXSvdms9Yt0sbOnTthMpkwb948W9nDDz8Mi8WCvn37atgyimSaBjtnzpzBLbfcgubNm+OTTz7B/v378ec//xmtW7e21XnllVfwl7/8BYsWLcKWLVtw2WWXYcCAAbh48aKtzogRI7Bv3z5s2LAB69atwxdffIEnnnhCi7dERBGosBDIyQH69wcefFC6z8mRyiNFQ0MDrrnmGvTo0UNWXlFRgffee48zrUhbQkO/+93vxK233ur2cYvFIjIyMsSrr75qK6upqRGxsbFi5cqVQggh9u/fLwCIbdu22ep88sknwmQyiYqKCkXtqK2tFQBEbW2tn++EiPSksVGI4mIhVqyQ7hsbg/daa9YIYTIJIe3p3XQzmaTbmjXBe229ePfddwUA2e3tt9/WulkUAZRevzXt2fnnP/+Jnj17YtiwYUhLS0P37t3x1ltv2R4vKytDVVWVbBnxxMRE9OrVC6WlpQCA0tJSJCUloWfPnrY6ubm5iIqKwpYtW1y+bn19Perq6mQ3IjKGUPaymM3S5pZCOD9mLcvPN+6QVmVlJUwmEx577DFbWZcuXXDp0iWMHj1aw5YRyWka7Bw+fBgLFy5Ex44d8a9//Qtjx47FM888g/feew8AUFVVBQBIT0+XPS89Pd32WFVVFdLS0mSPN2vWDMnJybY6jmbPno3ExETbLSsrS+23RkQaKCwEhg6V76wNABUVUrnaAc/mzc6vZU8I4NgxqZ6RCCEwatQotGvXTla+fft27Nu3D82bN9eoZUSuaRrsWCwWXH/99Zg1axa6d++OJ554Ao8//jgWLVoU1NedMmUKamtrbbdjx44F9fWIKPi06GWprFS3XjjYvHkzoqKi8P7779vK8vPzIYRwytch0gtN19lp27YtunTpIiu7+uqrsWbNGgBARkYGAKC6uhpt27a11amursZ1111nq3PixAnZMRobG3H69Gnb8x3FxsYiNjZWrbdBRDrgSy+Lq523/WH3a0mVenp24cIF5OTkOP2+PXXqFJKTkzVqFZEymvbs3HLLLTh48KCs7LvvvsPll18OAOjQoQMyMjJQVFRke7yurg5btmxB7969AQC9e/dGTU0NduzYYavz+eefw2KxoFevXiF4F0SkB1r0svTpA2RmAu4mGplMQFaWVC+cvfbaa2jZsqUs0CkoKIAQgoEOhQVNe3YmTpyIm2++GbNmzcL999+PrVu3YvHixVi8eDEAwGQyIT8/Hy+99BI6duyIDh06YNq0aWjXrh3uvfdeAFJP0MCBA23DXw0NDRg/fjweeOABp/FkIjIuLXpZoqOB11+X8oFMJvkQmjUAmj9fqheODh8+jCuvvFJW1rdvXxQXFyMqSvNl2oiUC8XUME/Wrl0runbtKmJjY0Xnzp3F4sWLZY9bLBYxbdo0kZ6eLmJjY8Xtt98uDh48KKtz6tQpMXz4cBEfHy8SEhLEo48+Ks6ePau4DZx6rr5QTv0lEkL6jmVmup4Gbp0KnpUVnO/imjXSa9u/XlZW+E47t1gs4q677nKaTn7gwAGtm0Yko/T6bRLCVTpfZKmrq0NiYiJqa2uRkJCgdXPCXmGhlChqnz+RmSn9BZyXp127yPiss7EA170sBQXB+w6azVI+UGWl1HvUp0949uh8/PHHuOeee2RlM2fOxNSpUzVqEZF7Sq/fDHbAYEdN1ouN47cqFBcbIsB1sJ2VJQ0nRdp3z5cArLa2Fq1bt4b9JaFly5aorq5GfHx8iFpM5Bul128OupJqIn2BNdKHvDygvBwoLgZWrJDuy8oiL9DxZXHFqVOnIikpSRbofPbZZzh//jwDHTIETROUyVi0mPpL5Ep0dNN3zCjDS75w18NqXVzR2sO6d+9edOvWTVYnLy8PBQUF3MuKDIXBDqkmEhdYI32LxPwxbz2sJhMwYYIZs2f3xvbt22SPHzlyBNnZ2SFqKVHocBiLVBNJC6yR/oV66wi98N7DuhLHjzeTBTpvvPEGhBAMdMiw2LNDqrEusFZR4fqvSpNJejzcF1gj/VPSu5GfDwwebLwhLfc9pycByPcRzMnJwYEDB7iiPBkee3ZINdYF1gDnFWWNsMAahY9I3aATcNdzOhaOgc6CBaUoKytjoEMRgcEOqSovT0p+bN9eXp6ZyWnnFDqRnD8m38JiCwATAPvNlccgK0tgzJibNGkfkRY4jEWqy8uThgcibQYM6Uck549FRwNz59bjgQc6Ayh3eLQaJlMae1gp4jDYoaCwn/obLiJxirJRRXL+2MKFC/HUU085lC4H8GDELq5IxGCHCJE5RdnIjL5BpyvHjh1zmk3Vs2dPzJlTihMnmjGAp4jGnB2KeJE6RdnoIiV/TAiBoUOHOgU633zzDbZt24bbb2+G4cOlnlYGOhSpFO+NlefDb4bCMLs6cG+syGU2S0vou5u5Yx3uKCvjhcIq3Ib7wq29vti4cSPuuOMOWdmUKVMwa9YsjVpEFFpKr9+Kh7ESExNt/xZC4MMPP0RiYiJ69uwJANixYwdqamp8CoqItMYtLnwTjsN94Zg/5s358+eRkZGBc+fOycprampkv6uJSKI42FmyZInt37/73e9w//33Y9GiRYj+759IZrMZTz31FHtGKKxE8hRlXyndb4mCa9asWXj++edlZWvXrsU999yjUYuI9E/xMJa91NRUfPnll+jUqZOs/ODBg7j55ptx6tQp1RoYChzGilwlJdJu0N4UFxuvd8AXHO7T3sGDB9G5c2dZ2cCBA7F+/Xpu2kkRS+n1268E5cbGRhw4cMCp/MCBA7BYLP4ckkgT8gXYnJlMQFaWMaco+yKSVyTWmsViwW233eYU6Bw6dAiffPIJAx0iBfyaev7oo49i9OjROHToEG688UYAwJYtWzBnzhw8+uijqjaQKJgicYqyPzjcp43CwkIMGTJEVjZ37lw8++yzGrWIKDz5FezMnTsXGRkZ+POf/4zK//52a9u2LSZPnswfQgo71inKrhJvuQCbJJJXJNbC6dOnkZKSIitLS0tDeXk54uLiNGoVUfjyK2fHXl1dHQCEda4Lc3YIMPYU5UBZc3a8rUjMnJ3ATZo0CfPmzZOVbdq0CX379tWoRUT6pfrUc0eNjY0oKSnBoUOH8OCDDwIAfvzxRyQkJCA+Pt7fwxJpxohTlNXC4b7g27lzJ3r06CEre/jhh7F06VLm5RAFyK9g58iRIxg4cCCOHj2K+vp63HHHHWjVqhX+9Kc/ob6+HosWLfJ+ECIKKxzuC46GhgZcd9112L9/v6y8oqIC7dq106hVRMbi12ysCRMmoGfPnjhz5oxs/Pi+++5DUVGRao0jIn3JywPKy6Wp+CtWSPdlZQx0/LVkyRLExMTIAp23334bQggGOkQq8qtnZ/Pmzfjqq68QExMjK8/JyUFFRYUqDSMifeJwX+AqKyudgpkuXbpg9+7daN68uUatIjIuv3p2LBYLzGazU/nx48fRqlWrgBtFRGREQgiMGjXKKdDZvn079u3bx0CHKEj8CnbuvPNOzJ8/3/Z/k8mEc+fO4YUXXsDdd9+tVtuIiAxj8+bNiIqKwvvvv28ry8/PhxDCKTGZiNTl19TzY8eOYeDAgRBC4Pvvv0fPnj3x/fffo02bNvjiiy+QlpYWjLYGDaeeE1GwXLhwATk5OThx4oSs/NSpU0hOTtaoVUTGENTtIrKysvD111/j+eefx8SJE9G9e3fMmTMHu3btCrtAh4goWF577TW0bNlSFugUFBRACMFAhyiEfO7ZaWhoQOfOnbFu3TpcffXVwWpXSLFnh4jUdPjwYVx55ZWysr59+6K4uBhRUX79jUlELgRtUcHmzZvj4sWLATWOiChc+LKythACgwYNwieffCIrP3DgADp16hSC1hKRK379iTFu3Dj86U9/QmNjo9rtISLSjcJCaZuM/v2BBx+U7nNypHJHH3/8MaKiomSBzsyZMyGEYKBDpDG/1tnZtm0bioqK8Nlnn6Fbt2647LLLZI8XuvpNQEQURgoLpe0xHAf6Kyqk8oICaTHF2tpatG7dGvYZAfHx8aisrOTWOUQ64Vewk5SUhCFDhqjdFiIiXTCbpW0xXGU0CiHtB5afD2zfPhWzZ78se/yzzz7DHXfcEZqGEpEiAe96bgRMUCYieyUl0pCVe3sBdJOV5OXloaCggJt2EoVQ0Hc9B4ATJ07g4MGDAIBOnTpx2jkRGUJlpbtHGgH0BrBdVnrkyBFkZ2cHuVVE5C+/EpTr6urw0EMPoX379ujXrx/69euH9u3bY+TIkaitrVW7jUREIdW2ravSFQCawz7QeeaZNyCEYKBDpHN+BTuPP/44tmzZgnXr1qGmpgY1NTVYt24dtm/fjjFjxqjdRiKikOrTB8jMlHJzgJMATABG2NXIQWbmRbz22jhN2kdEvvErZ+eyyy7Dv/71L9x6662y8s2bN2PgwIE4f/68ag0MBebsEJGjwkJgyJCxABY5PFIKk+km22wsItJOUHN2UlJSkJiY6FSemJiI1q1b+3NIIlX5shAckaMtW7ZgyJCbHErHAFiErCxg/nwGOkThxK9gZ+rUqZg0aRL+/ve/IyMjAwBQVVWFyZMnY9q0aao2kMhXhYXStOHjx5vKMjOB11/nBYo8q6+vR+fOnVFeXi4rLyysxsWLaQycicKUX8NY3bt3xw8//ID6+npbYt7Ro0cRGxuLjh07yuru3LlTnZYGEYexjMPdQnDW2cAcelCfUXrRFi5ciKeeekpWtnz5cjz44IMatYiIvAnqMNa9997rb7uIVON4kb35ZmULwQ0eHJ4XYz0yQi/asWPHnGZT3XDDDfjqq6/QrFlAq3MQkU4EdVHBlStX4le/+pXTdhJ6w56d8OPqIpuaCpw86f25xcXAbbcFrWkRI9x70YQQGDZsGNasWSMr37NnD7p27apRq4jIF0qv335NPVdqzJgxqK6uDuZLUASyXmTtAx1AWaADeFowjpTytp0CIPWimc0hbZZiGzduRFRUlCzQmTJlCoQQDHSIDCiofbTciYLUYh2yqqgAJk50fZFVyvWCceSLzZudg017QgDHjkn19NSLdu7cOWRkZDgtj1FTU+NyhikRGUNQe3aI1FBYCOTkSHsVjRypvAfHkckEZGVJCbQUGKW9Y3rqRXvppZfQqlUrWaCzdu1aCCEY6BAZHLPvSNfc5YX4yppHMn8+k5PVoLR3TA+9aAcPHkTnzp1lZQMHDsT69eu5aSdRhGDPDumWp7wQb9q0kf8/M1P/CbPhRL6dgjM99KJZLBb069fPKdA5dOgQPvnkEwY6RBGEwQ7plre8EFesF9mKCmnW1YoV0n1ZGQMdNUVHS9PLAeeARw+9aIWFhYiOjsYXX3xhK5s7dy6EELjiiiu0aRQRacavYaxRo0Zh9OjR6Nu3r8d6l19+OZo3b+5Xw4h8zfewv8jGxOgrMdaI8vKk3jJX6+xotZ3C6dOnkZKSIitLS0tDeXk54uLiQt8gItIFv3p2amtrkZubi44dO2LWrFmoqKhwWW/v3r3IysoKqIEUuXzN9+BQVejl5QHl5froRZs0aZJToLNp0yZUV1cz0CGKcH4vKnjy5En8/e9/x3vvvYf9+/cjNzcXo0ePxuDBg8OuN4eLCuqT2SzNwqqocJ+3k5oKzJsHtG8fvtsUaC3ct3vYuXMnevToISt7+OGHsXTp0ojMywn3z5PIF0qv36qsoLxz504sWbIEb7/9NuLj4zFy5Eg89dRTTvtk6RWDHf2yzsYC5AFPuKzSq3fhvN1DQ0MDrrvuOuzfv19WXlFRgXbt2mnUKm2Fw+fJYIzUFLIVlCsrK7FhwwZs2LAB0dHRuPvuu7Fnzx506dIF8+bNC/TwFOGseSHt28vLOWQVOHcrUVdUSOWFhdq0S4klS5YgJiZGFui88847EEJEdKCj98/Tfs2sBx+U7nNy9NE2Mja/enYaGhrwz3/+E0uWLMFnn32GX/ziF/jNb36DBx980BZZffjhh3jsscdw5swZ1RutNvbs6B//GlSXdYjQ3Ww3k0kKKMvK9HWeKysrnYKZLl26YPfu3WE3fK6mcPg8w30vNdKnoO563rZtW1gsFgwfPhxbt27Fdddd51Snf//+SEpK8ufwRE6iozm7Sg3WoLGoKLy2exBCYNSoUfj73/8uK9++fbtTvk4k0vv2Hd72UjOZpL3UBg/WV3BNxuFXsDNv3jwMGzYMLVq0cFsnKSkJZWVlfjeMiNTlKp/DGz1s9/DFF1+gX79+srL8/HwOk9vR+/Ydeg/GyPj8CnYeeughtdtBBsdhKG35u+1GsLZ7UPJ9uHDhAi6//HKcdNgM7dSpU0hOTlb99cKZ3rfv0HswRsbHFZQp6JiUqC1/tt1Qc7sHsxkoKQFWrpTuV6/2/n147bXX0LJlS1mgU1BQACGEz4FOJHz/9L59h96DMYoAgkRtba0AIGpra7VuiuGsWSOEySSEdKltuplM0m3NGq1baHzFxc7n39NNzc9mzRohMjOVv+aCBYcEANmtb9++wmw2+/36kfL9s75Xx/erh/fa2Ch9D1x9FtY2ZmVJ9Yh8ofT6rco6O+GOs7GCw9sMEYCLAqrJOlRTUQGcPCmd2/btpf+PHKn8OFlZyrd7cPeaffoAH33ky9CZADAIwCey0gMHDqBTp07KG+/QNr3PUFKbq7wsXz7PYOKaWRQMIV1UMNwx2AmOkhJpyEApvS1+5oneckA8JR+npkqBiFKrVgHDhrl+zP59f/898NZbrl+zfXvg4kXg1Cklr/gxgHtkJTNnzsTUqVOVN9oFpd+/4mJjJcXq7btpT8/BGIWnoE49J1LC12RD6+Jnev8LT2+r1HpLPvYl0DGZgGefld6H4wXSl9lcbrbLc1ALoDWkXh2reLz7biUefTRecZvdidSkWD0v05CXJ00v12swRsbFBGUKGl+TDa0X6/x86a9TPdLbKrX+JB97Yj8F2F5hITBkiG/T1j2bCiAJ8kDnMwBn0aFD4IEOwKRYvbIGY8OHS/cMdCgUdBXszJkzByaTCfn5+bayixcvYty4cUhJSUF8fDyGDBmC6upq2fOOHj2KQYMGoWXLlkhLS8PkyZPR2NgY4taTI28zRFxxd7HVA28LowGhD9S8rV/iL/veDrMZeOIJtY68F4AJwMt2ZUMBWGAy3aHqjCG9z1AiotDRTbCzbds2vPnmm/jFL34hK584cSLWrl2L1atXY9OmTfjxxx+RZzdWYDabMWjQIFy6dAlfffUV3nvvPSxduhTTp08P9VsgB9HR0tAO4FvAA+hzaMGXhdHU4Dhl21UQFazzZN/bUVKiNPfGk0YANwDo5lB+BMBq2+7k8+er95e+p++f9f9qvh4R6VgIZoZ5dfbsWdGxY0exYcMG0a9fPzFhwgQhhBA1NTWiefPmYvXq1ba63377rQAgSktLhRBCrF+/XkRFRYmqqipbnYULF4qEhARRX1/v8vUuXrwoamtrbbdjx45x6rkXjY3SFOYVK6R7X6aIKp1+bH8rLg7SGwnAihXK2r5iReCv5eqcZWY6Tx/2dVq5klt8vPzznTo10GMud5pODrwhq5OVFbyp0a7OZTBfj4hCR+nUc1307IwbNw6DBg1Cbm6urHzHjh1oaGiQlXfu3BnZ2dkoLS0FAJSWlqJbt25IT0+31RkwYADq6uqwb98+l683e/ZsJCYm2m5ZWVlBeFfGEeiibHl5QHm5NOtl2TJpdpAehhaU9JzYC1UOiKe8oCFDgBdfbGrzzTcrHypMTVX2+ufOSdPGA3cC0pDVCLuyHGRmXsTq1eNQXAysWCF9L8rKgpfcbf/9C8XrEZH+aD4b64MPPsDOnTuxbds2p8eqqqoQExPjtKFoeno6qqqqbHXsAx3r49bHXJkyZQomTZpk+39dXV3EBDy+Tkt1N9PH15lT9jNE4uKk55pMrtfbCMXQgj8zqqw5IBUVrvN2rOu2BBKoKckLeuEFeZuHDwfmzvV+7AcflC72SmZnPfkkcOFC05o5vnsSwJuykj/+sRT9+t2kyewbJTOU9Dxlm4gCo2nPzrFjxzBhwgQsX77c46aiaouNjUVCQoLspjZfew1CwdceGrUSch3PxeDBUpDUvr28XmZmaKad+zujKhQ5IL4mHB8/Drz6KnD//dL5c8XantdfVz4N/eRJaSHC/v2B0aOBeMUTpP4DqTfHPtAZA0Dg7bdvwunT+gwgImFLCaKIFqJhNZc+/PBDAUBER0fbbgCEyWQS0dHRYuPGjQKAOHPmjOx52dnZ4rXXXhNCCDFt2jRx7bXXyh4/fPiwACB27typqB1qbxehNN8ilPxZNl9pPoin/BpP5yKQPCB/WZetd/delCxbH8wcEKV5Qa5u7doJMWOGEMuWCTFvnhDPPKNODo+7Jf7lt4sCyHGRm1PtdCy95cpE0pYSREaj9PqtabBTV1cn9uzZI7v17NlTjBw5UuzZs8eWoFxQUGB7zoEDBwTgnKBcXV1tq/Pmm2+KhIQEcfHiRUXtUDPY0eMvTn8v8IEm5OrxXKgRwAkRvEAt0IRj63n19pn7c9yUFCmgsi9v316Iyy77m4sgZ7nbY+lpDyQ1gl8i0o7S67emOTutWrVC165dZWWXXXYZUlJSbOWjR4/GpEmTkJycjISEBDz99NPo3bs3brrpJgDAnXfeiS5duuChhx7CK6+8gqqqKkydOhXjxo1DbGxsSN+Pt2Efk0ka9hk8OLRd+b5MmbbPawgkIVev50KtVXXVXKXWPlckLc1zXpAS+flAYqK66+8IIU0/37hReu+VlUB09DH8+tfZDjVvAPAVPKUDuvquacXfnw0iCi+aJyh7M2/ePERFRWHIkCGor6/HgAED8Le//c32eHR0NNatW4exY8eid+/euOyyyzBq1Ci8+OKLIW+rXn5xOiZaKlu6HygqkidnBpKQq5dz4UjNGVVqJLS6SpROSWkKCH0NeKzntaTEt+cpdeIE8MADAsOGDcOaNWtkj7VuvQdnznR180w5vayjFKlbShBFGt0FOyUOv6VbtGiBBQsWYMGCBW6fc/nll2P9+vVBbpl3evjF6eriqXTK8UsvNf3bOjPp9df9mzmlh3PhilozqpTO5vIUELmb6Xb6tHSfnKzGYn6e+bpJ6I8/bkRU1B2ysj/84Q94+eWXsXy58t3VPQWTas6K8nYsbilBFCFCNKyma2rl7KiVD+IvTzky/uRoWPM//EnI1fpceGI9T+7Oi90alh6f7y0XyVtytrdckcxMITZulPKCZszw7XPcuFF6vrvnWHNR6uulZGbvxzwrgMuccnNqamps50XpZ56a6j4HRs3kfiXHsn4O3s4Tc3aI9CksEpT1Qq1gR8tfnGonpDq219eEXL1fRDyt6uzp4qo0oXXVKs8B0YwZvgeDSlaitj+v7oI6x6DMeyL6TKcgZ+3atT6fG+tt1Sr3n4laCe2+HEvpeSIi/WGw44NgzMYK9S9OpX9Vt2nje9Djb++L3i8iq1a5DxgCnY7v6TybTEIkJys7juNMt8ZG94GSuwu5t1459+/pgFOQM3DgQGGxWNyeU3dBhvU2ebLr56k5K8qfY3FLCaLwxGDHB6FYZyfYvziVThNftqyph0bpnkeB7PWk14tIsKfjq3VzF2j6cl699co598KZBdDXKdD57rtDis6tq7alpnoeHlQaRG7c6P31/R1C1WLdJyIKTFhMPTeqvDxpSnUol55XmkDZvn3T7KeSEnlScqDHdkWLc6GE0tlif/wjcPvtTW1WM1E1ORk4c0Z6LUfeEqV9Oa/epslbV4YeOhQA1gAY6lBjLtaseRYdOyp6W3595koT1e+/H3jrLc+rbCs9luMsRTWXEyAinQlR8KVravfsaMGfHBm959UEk689NI6JxZ7OWWqqsmNak471MMx36tQpp54cIE20b/9zSNrhy2KK3s6NL4nSWvcwElFgwmrXcwqcP/s2hWKvJ73ytYfGum/WRx95P2d/+5vnncitO7s//7w6e4Qp3YfNXb1JkyYhJSVFVnfatE0oLq7GkSNxIdkd3LokgJLd2wHPe7IpPdZPP3neC42IDCREwZeuGaFnx8qfHBm95tUIEbw8Cm89NN56urydM1+SswN5j0qnaruql5a2w6k35+GHH/aYgBxMa9aok89kPZaSz9bIvZdEkUDp9dskhKuMgchSV1eHxMRE1NbWBmUH9FDzZ1E2NRdyU4vShfsCOf7Q/6an+PJTUFwsnZ+SkqaVim+7TbrZnzNX7c/KknrL1Gy/Y9utPRrW3iHneg0ArgOwX/a8iooKtGvXLvCG+clsBtLTlS+kuGIFMHy4+8cLC4ExY6QeHG+Ki5mvQxSOFF+/QxJ66ZyRenaMIlSbiCpZu8bxlp+vfOG7YPdMeeuxqK93rPeuU2/OZZe9IzZu1L53w9dNUJUsibBsmbJjBTLjkIi0w54dHxitZyfcmc1ATo772VLWmUplZer0Pll7tYqKlM1Oc9cmwLdcG1/Z975VVwMTJ3p/zrx51nqVABx7bboA2A2gOQB1e838sXIl8OCDyupmZSn7/EtKgP79vR+PPTtE4Unp9ZsJyqQKpUmySviyiagarFOO//hH35JkHdsEeE6cDURhoRQA9u8vBQRKAh0A+OEHAeBhOAc62wHsgzXQAZqSsLVK2PUlaVxp4ry3ZGVrsri3vdAocGr+jiDyFYMdCpjjhbh/f+n//l40tdpE1NPsNCXUDsKsrDk3ngJA177AggVRAP5uV5YPafSqh1PtYAds3vTpI+347kl0NLBqlfLep0iecagnav+OIPIVgx0KiLsLcSC9BFruRJ2X53o6uC/UDMLMZinJ2bfB5gsA0gD0cyg/BWCex2cGK2BT4qOPvCcnf/ABMGyYb8d195n6OsWf/BOM3xFEvmLODpiz469g5dZYj1tR4foir3bOjrs2/PWvyoeL7KmZ/6E056TJnwE851BWAGCIT687dSrQuTNw8iSQmioFCsGcoeftuwRIvT7V1f63QY8zDo0u1Pl3FHmUXr+5XQT5zZfcGl8u/vbbF5hM8oBHzaEHTxe/6GhpGrSvUlLUzf9Q3kt0CMBVDmV9ARTDnw5cV4nawUxg9vZdAqReH1+/S/a4HUToBet3BJGvOIxFfgtmbo23oYfBgwNLdlSSQxDIMJlayZje2yAA3AXnQOcAgE1w9SPuTz4SIF20gjXsoFWeFgUXP1fSCwY75Ldg59bk5QHl5dKw0IoV0n1ZmfRYIMmOSnMIfN3CAJB6H15+Wb1kzJMnPT26DtKP8Ke2kscemwkpAOrk9lmBDlwHI4FZyzwtCh5+rqQXzNkBc3b8pWTF29RUKaiIiXH9fF9zKJSuGuypzb7kEPi7yrKr4yppn7K21gJIkpXEx8ejsrISa9fGK16rJhBqr0ujhzwtUh8/Vwo2rrNDQadk9szJk8CVVzr3avgzFdXTzCRr2YQJ0uKA7oaPfF3DR43ZWfbtU9IrYh0C++MfXbV1KhwDnVdf/Qxnz55FfHx8yP5CDuW0f04RD1/8XEkvGOyQX6yBhxKOw0P+TkVVEqgcPw7k5roPoHzJITCbpcBp1y7g4YeBV14BWrdW9nx37fM2rds+CJQnCe8FYALwsl3ZUAAWtG9/hy1AqqiQetP8zctRKpTT/jlFPLzxcyU94Gws8ouS2TNWQkgX3/x84J57PPfOWOsNHuz8154/vQnWAMr6S1XpRfr7710P0cXHS/euZokpHeZy9z5cD9E1AugNacVje0cAZNva6m3atq9t9HSMzMzgrTiclyd99pwibiz8XElrzNkBc3b84cs+RvZGjgSWLfNez1VOiO9rzkjs8wIA7zkEycneh+dSUuR1srKA3/wGeOEF7+2ZN08KpOx/4bvOz1kBYITDs98AMM6ntlqlpnpLePbOZOJf40SkH1xnh1xSa2E1f4cxlAQ6gOveD+vsKHeBijuOa3l4WsNH6XFbtAA2bgROnGg6jwDw1lue2xcdLV+o0Lp2TXKyfaBzAoDjIj85kKaTx9raqkRCAvC3v0lDCBUVUrDpTXw8cO6cc3lWlpRfwUCHCxQShRvm7EQQNfen8Wdati9cBVOB7l1VUSH1Dl24AIwaBSQlyR/PzARmzFDWU1JRIbVn+HApgIqOVtY+x+Rk6zDbRx9ZS56Ec6BTCqAM1kDH2tY//tF7W+vqgEOHpDZmZHh/XwCwZo3Us7ZsmdQLtWxZ07R/Bjrc54koLAkStbW1AoCora3Vuil+aWwUorhYiBUrpPvGRuc6a9YIYTIJIfU5NN1MJum2Zo3vr2s9pqvj+nszmYTIynL9HuxfNzPT92OnprouT04WYsYM6TVXrFB+vGXLlLcvOtrze05KKhWQFsixu41xqjt1atNnrLStKSlS/Y0bldXfuNG374GS759RBOPniIj8p/T6zWBHhHew4+rCmpkp/6Xb2Og5OHAXYCgNovwJPNy1Q+kFw75tGzcK0b59YEGX9XWLi5U/Z948Ze2bN8/TcS4K4HIXgU6118/I17aOH6+s7ooV3s+/p8/f8ftnFP7+HBFR8DDY8UG4BjtK/8pUelEsLpYfW+lFzP7CPmOG/8FPVpb/F0k1epmSk4X47DMhWrdWVv/995W1zX0PzBsugpzlTu/BXRDY2Ci12d/3q+R7oOSce/v+GYU/P0dEFFwMdnwQjsGOL39lKh3usP5FH+hFzBr8TJ2q7HXth2YC4SpAczd05emWkKCsXps2yi7ozhfJIy6CnBvExo0NLt+DpyBwxgz1ghxfeiYisZfD158jIgo+pddvTj1HeE49VzoNu7hYuldat08f37ZT8ESLpeLtZ8mkpUkzpubM8e0YvszKUjIVu2lauYC0EKBjJuseZGV1tZ0HX2b6KNmyQ+n7AJRPK/fl+2eU3awj8T0T6R23izA4X1YC9jZzymSSphX36eP7dgqeqL1UvJKdxKOjpQtNbCzw61/7HugAygMdK29bQERHA489thHSj5t9oPMHmEwCJlNX2Xmwvgf7mV6ejr14ceCz4nxdzTYSd7P25eeIiPSFwU6Y8mU3YV+CDrUvYmotFe/LdN/CQmDIkMB7O5SwBn9//avrgOfcuXOIj4/Hiy/eYVcaBaAGwMuqLJlvPceZmb4/d/x4/6aVR+Ju1tzniSiMhWRQTefCOWfHXUKuq5wJJfkgwUrC9GV6smPd1auV5xA1Nkozs9TKY/Hl5pjAPXPmTKfcnH/8Y23Qpmk3Nvqew+NvMq0/3z+j8DWvioiChzk7PgjHnB2gaS8lQD704in/wls+iBZ5NvYKC6W9s+yH0qx5LK44tsffLSXUYD3vr79+EM8801n22IABA/G7361HVZUpaCvuut5ywn1bA/0c/fn+GQVXUCbSB+bsRABfh4iU/IIORp5NUREwbZp0KypyH7i42w3dUz6MYw6RLzkisbHe6/hCCAuE6OcU6CxYcAj79n2CX/7SpNqKu67yl3zZnBUIfMglknez9iWvioh0ICT9TDoXjsNY9vxd/M/T4m9qdNWvWSOt3us4xJGS4nrNmEAWJ7RO9/Vlob0hQ9RcAbrAachq7ty5QVu52tVnmZ+vrK2uzn8gImkFZSLSFw5j+SBch7GUsvaYOH7S3oYbAumqtyYJezJjBvD88+oMP82YAUyfLrU5IwP46Sfvz9m4EaitdR42881pACkOZWlYurQcI0fGqTaN38rTZ6n0J/mFF6R9tfSOQ0VE5I3S6zeDHRg72PGWxxGstW6U5o5Yd/2ur5dmWfkrORlYtUoaUvjwQ2DYMM/1U1KA6uqmfKA//hF46SVfX3UigPkOZZsA9PV5fSMl67Io+SxNJsBi8XyczEygvFzfgYOr3C3rd8XIw2NE5Bvm7BAAddfNUes17R0/LvUAffttYK95+jSQmysFA1FRwOTJnusvXuy8ro1yOwGYIA90HgZggcnU17bWitrT+JV8lt4CHUA6hpqft9rc5W5Zd4jn7uJE5CsGOwanxeJv/hxr5kx1XtsaPDU0SMM1KQ4jTJmZwOrVUk+QNbm3oAB45BElR28A0AVAD4fyCgDvwfTfcUFr4q/aa9Fo/RkppWTxR0/PnTDB9ZCctczbIo5ERI6aad0ACi4tFn/Tw0Jy8+dL9+3bS0GP9eIYHS1dLCsqfD3iuwBGO5S9A+Ax2/8yM6XXtQ6zWFfc9TaNX+mKu+HwGQU6/ORLTyS3ZCAipRjsGJzaF1xfXtP/pF/1VFRIycv+qwTQzqHsGgC7kJnZHI8/DnTs6DqB1jqNf+hQ5wRif6bxK/ksrdPAQ/l5W7lLnrYOPymZjh6J21AQUfBxGCuMKd0rSsm6OYD/Qw+eXjN8CUh5OPJA5803d2DFir0oLm6O8nJpBtj990uPrVrlfO7UXItGyWf5+uvabGmg1vBTJG5DQUQhEIJp8LoXjuvsrFnjvC1C+/a+rZuTmSltL5CfL0SbNsrX4PGlja7W2dH/bZPTmjn5+fmKz2tysnRe7debUXMtGiVrIIV6SwO1thmJ5G0oiMh3XGfHB+E29dzbGjZr1nhfN+f774G33vI8jRkIfCXcS5ekTTJXrQK2bvX/OKFxAcDlAE7KSj/66BR+9atkp9ruhm2sUlKkWV/+rGTtjZJjhHKdmpUrlS0dsGKFtOqwJ5G8DQUR+Ubx9TskoZfOhVPPTmOj996SlBTPf/m6W9XX1S01VYj6ev/a6qp3Qb+3uU69OUCB214EX1Z89tbjokYvmtbU3kCWm20SkRLs2fFBOPXsFBVJ68l4s3EjcPvtzuW+LPhnlZoKLFrk21/T3no99OMQgKscyvoCKIbJFOW2F8GXFZ+zsqRFGz/6yL+VrMNBMDaQ5QrKROQNFxU0qEWLlNUrKXFd7utmkQBw8qRvi7l5SlbVDwHgLjgHOgcAbEJWlvtAB/BtNtCxY9LnYeT1YwLZQNZdoj032yQitTDYCSNmM/CvfwV2jECm7Hq7GFt3OH/kEX1MO3dvHaSv/qe2kl//eiaKiwVWrOiE4mKpB8JTL4uvs4FKSkK/knWo+TPzrLBQ6hHq3x+q7QhPROSI6+yEAWt3flERcPassue4W3DN3ym71otxSYnr4bHCQuCJJ4BTp/w7vlqse125VgsgyaEsHkAl8vLifXqdYK0lFO7rx+TlAYMHKxt+UmNdHiIiJZizA33n7Lhakdab+Higpsb1BebSJekiffKk82NKjz15ctNu5dY2etvhXHt/ADDboewzAHcAkPbTst9XSsmqv0rykqy5KkuWKMu1ctwU1Kh5K1psUEtExsOcHQNwtyGiN5Mnu/9L+sor/Q90AODcOWn7hfR06XhmM/D44/4fL/j2QNq00z7QGQrAAmugAzhvoKlk08m8POC556RAyRX7XJXbbpMu3o75LPZ1rRuIWq1eDWRkyId4MjKk8nCnxQa1RBS5GOzolL9JvlFRQKdOzgmf/gZO7pw6JfXmzJgh7TiuP40AbgDwC4fyIwBWQwqA3FOSNFxYCMyd636n8eTkpqEYXxN4f/tbaWXmn36S1/3pJ6n8t7/12Hzd47YQRBRKHMaCPoexfJna7E1mJnDhgvb5NKGzAsAIh7IFAJ7y62iOQ0uAsin8mZlAebm8l83VsGRWlnwD0YICYNgw7+1avbpp8b1wo/T77ercExFZKb1+M0FZp9T8i1bfM6PUdAJAukNZDqTp5LF+H9XVZ6FkCv/x4867c3tL4DWbgacUxmRPPQXcd19wVl8ONi02qCWiyMVhLJ3iRoe+ehLOgU4pgDIEEugArj+LQIZhPK0fs3mz8pyqkyd9z2kpKJDej9ZTvQNZl4eIyFcMdnTIbJZuyc7bMZGT/0DKv3nTrmwMpEUDbwroyK6Shq2CtTu3rz16vtT/7W+l4THHYOr4cd8WjVSLmjvCExF5wmEsDbkaTvjoI9+nmkemegCdICUc26sGkKbKKwgB/OY3rh9TexjG+l3Yv9+3Nu7fL+W/eBuKWr0aePVV948LISVjDx4c2t4UX9blISLyFxOUoU2CsqtE1ZSUSEoiDsQCAOMdypYDULDtth/crbmj1u7c/qylpLSNgBRIZWQ4z+xyxZoQrIe8HiIib7jOjo65mwbOQMebo5CGrOwDnRsANCBYgQ4gfU5DhjgP87hbZycqSipXGuiosSSAp3WBNm9WFugAUnDDLRyIyGgY7IRYeGySqTcCwBAAlzuU7wGwFe5GY1u1UrcVTzwhX3PHus6O4zo8ZrNU7i04UPO74GldIF/yer7/3nXwpWSRRSIivWKwE2L+7DpuL/KSljdA+po2XWXj4v6AvDyBVq26ympmZkqLHK5YIQ3HfPihui05dappN3klgYq3jVN9/S7Ee9m+y92qw0qTpKOipKEwo+7MTkSRi8FOiFVUBPb8KVPUaYf+nQNwGYA77cqiANTgwoWXUVgobYqamipdgIuLgUOHgL59m2orHbrxhTXYUWO7A19nXp07p6ye43GtydTeWCyeV8PmFg5EFK40DXZmz56NG264Aa1atUJaWhruvfdeHDx4UFbn4sWLGDduHFJSUhAfH48hQ4agurpaVufo0aMYNGgQWrZsibS0NEyePBmNjY2hfCuKFBZKF2Z/WKdBnzmjapN06iUArQD8bFe2DoAZQKKs5k8/Sb0R69dL+37Z55mMcFxEWUVqbHfw/ffqtMWRdYaWtQfGuqaNu325fMUtHIgo3Gga7GzatAnjxo3Df/7zH2zYsAENDQ248847cf78eVudiRMnYu3atVi9ejU2bdqEH3/8EXl2mZ9msxmDBg3CpUuX8NVXX+G9997D0qVLMX36dC3eklvWRFR/ehvsF1lzt+mkMRyElIA8za5sIKRNOwe5fIYQ0u3VV517WoIx3GJdDTnQdXbMZmDxYlWa5OSll5yTiq1r2qSmBn58LnhJRGFH6MiJEycEALFp0yYhhBA1NTWiefPmYvXq1bY63377rQAgSktLhRBCrF+/XkRFRYmqqipbnYULF4qEhARRX1/v8nUuXrwoamtrbbdjx44JAKK2tjYo76uxUYjMTOtl2fdbVpYQa9ZIx9q40f/j6PdmFkBfASkT2e52KOivbTIpr5uSIn2W1s+0fXvPx83KaqrvqLg4+OfVZJJu1u+OEEIsWxbY8Ty9JyKiUKutrRVKrt+66ieora0FACT/Nwt3x44daGhoQG5urq1O586dkZ2djdLSUgBAaWkpunXrhvT0pq0CBgwYgLq6Ouzbt8/l68yePRuJiYm2W1ZWVrDeEoDAkpKnTgXKypqmMd92m7Qej3GsARAN4Au7srmQ4p0rgv7qn34q5fusWCElN3uyeHHTWjMffQRcvOi6npLtDgIdClKyHJQQ0r19UrHjasVKcQsHIgpnullB2WKxID8/H7fccgu6dpVm2VRVVSEmJgZJSUmyuunp6aiqqrLVsQ90rI9bH3NlypQpmDRpku3/dXV1QQ14Armw3X67fJPIkhKgY0cjrMlzGoBj1JYGoBxAXNBf3brCsf35BYCuXYGnnwZ+/LGpLCUFeOghaSac2SwFOkOHNgUTjpKTpcDI0zo7/g4FmUzS8ZV+/kI0JRXfdpuylZ+Tk4G4OHmAnpkp35mdiCic6CbYGTduHPbu3Ysvv/wy6K8VGxuL2NjANof0RSA5DtZc7MJCaZ2X8A9yAGAigPkOZZsA9HWuGgTeeikc86JOnZLqzp8v9YxcuOA+0AGkQGHwYM9t8BZ0uGu30rqOrAG3NVl56FDn41nPy+LF3MKBiIxFF8NY48ePx7p161BcXIxMuzmyGRkZuHTpEmpqamT1q6urkZGRYavjODvL+n9rHa1ZL2z+zIYZMQKYPFlawTf8A52dkBKQ59uVPQwpATl4gY7jRdrdRpNKVjOuqPA8PRuQnu9teranXb+tHIeqrOsI+fM9sA+4lWzA6WlndiKicKNpsCOEwPjx4/Hhhx/i888/R4cOHWSP9+jRA82bN0dRUZGt7ODBgzh69Ch69+4NAOjduzf27NmDEydO2Ops2LABCQkJ6NKlS2jeiBdKLmzuWFfjDW8NALoA6OFQXgHgPUgBkPpMJum2cmVTXk5xsTwHykrtla2VDF26Czqs6urk6wiVlUlDmL5wt3N7Xh5QXu79vBARGUJo8qVdGzt2rEhMTBQlJSWisrLSdvv5559tdZ588kmRnZ0tPv/8c7F9+3bRu3dv0bt3b9vjjY2NomvXruLOO+8Uu3fvFp9++qlITU0VU6ZMUdwOpdncgVqzJrBZWeF5e1sAjrOs3gnJa6emCrFqlevPorFRmhG1YoV0r/Yst+Ji5d+LxkYhZszwfLwZM5rarLQNrmZjEREZidLrt6bBjvNFULotWbLEVufChQviqaeeEq1btxYtW7YU9913n6isrJQdp7y8XNx1110iLi5OtGnTRjz77LOioaFBcTtCFewI0XTBys/XOggJ9q3CxWd7jQAuhbQdmZnOF3tXQWdysnqvGR0thJtVD9x+J5QEwe3bS8FbZqayKfP2SxYQERmR0uu3SQghQt2bpDdKt4hXi9ksLfgW6E7X+iQg5eEscyjfAeD6kLfGOmxozUWx5uUE+1tfXNy0AKE3JSXSIoBKmEzSjurWoU1X7yM/X0owZlIxERmd0uu3LhKUI02gm4Hq1yZIXyn7QGcipAAo9IEO0BQM5OcDly6Fbsd5X5Yb8HW/tA8+AFatcs71ycoC1qwB5s1jUjERkT3dTD2PJIFuBqo/FwBkA3DcC+MUgOBs0968OdDQoKyuENJaM2+8EbogU+lyA77ul2Z9L23aSAnGnB5OROQdg50QMpuBl182wuwqe38G8JxDWQGAIUF9VaWBjr0XXlC/HY6sixU6zn5yJZAhtcrKpunhRETkGYOdEDHWooAAcAjAVQ5lfQEUQ6+jo+fOBff4vmypEOhUd27GSUSkHIOdECgslBYFNAYB4G4AnzqUHwDQKfTN0ZE2baRFIK3bSngKePzN2/Kl54iIiCT6/BPcQKx/wRvDOkhfGftAZyakACgyA50ZM6Scm9RU4ORJqVenf39ptl1hofvn+bNfGjfjJCLyD3t2gswYM69qASQ5lMUDqPzvfeTJzGxaFdtV3k1FhVTualsKwL9hKG7GSUTkHwY7QRbIjuf68AcAsx3KPgNwhwZt0Y933pF2TM/JcZ13I4TUE2Nd88axJ0bJ7uPt2wNLlwInTnC2FRFRIBjsBFn4JpLuAfALh7KhAFYhWHtZhZPNm4GYGM+9dtZp4ps3O8+aUrL7+OuvSwEVEREFhjk7Qdanj/uNHvWpEUBPOAc6RwCsBgOdJkp77dzVU7L7OBERBY49O0H20UfAxYtat0Kp5QBGOpQtAPCUBm3RN19WKPbUu5eXJw1zcXFAIqLgYbATRKHahylwJwCkO5TlQJpOHhvy1uhdSkrTsJS3vBsl08S5OCARUXBxGCtIAl00LnTGwDnQKQVQBgY6ri1eLAUo1rwboCnPxorTxImI9IPBTpDof8r5fyDl3yy2KxsDac2cmzRpkd5lZkobbdrn0jDvhohI/ziMFST6nXJeD2kBwCMO5dUA0kLfHJ175BEgN1cKZtzl0jDvhohI3xjsBIk+p5wvADDeoWw5gAc1aIu+ZWX5toAf826IiPSLwU6QWBeN08dQ1lEAlzuU3QDgK0TaV8BxTRtHycnAqlW+zbYiIiJ9Y85OkERHA48/rnUrBIAhcA509gDYinAMdNq3l2ZDOSYEezN+PFBcLAUyJpPrhGKTCXjrLWkhPwY6RETGwWAniDp21PLVN0D6eO13o/wDpACoqyYtCtSMGcCRI9JsKMC3gGfIEKm3xrpflbeEYrMZKCkBVq6U7s1mFd4AERFpIvz+tA8jBw9q8arnIE0l/9muLArAaQCJWjRIFTNmANOnS/+2zoCaMMH7MKGrtW68JRQXFjof27rxJ2dXERGFH/bsBElBgXSBDq2ZAFpBHuisA2BGOAc6gHMvWV4eUF4uDU3l57t+jqe1bqwJxcOHy/NzrAtBOgZR1l3MCwtBRERhhsFOEKxeDfz616F8xQOQ1syZbld2NwALgEGhbEjQuJrdZg1Y5s2T1r/JzJQ/7utaN54WgrSW5edzSIuIKNxwGEtlhYXA/feH6tUsAPoB+NKh/BCAK0LViKBSuuWCGmvdeFsI0tMu5kREpF8MdlRkNgPPPBOqV1sDYKhD2VwAz4aqAUHn65YLga51E+gu5kREpE8MdlS0ebOU2xFcpwGkOJSlASgHEBfsFw/YuHFA797SbKiffgImTnTfm5KZ6dvCfoFSuhCkPheMJCIidxjsqCj4f/FPBDDfoWwTgL7BfmFVZGVJM5rse2nuu69p6Cntv7tVnDgR3C0XzGbXw13WhSAD3cWciIj0hcGOioL3F/9OAD0cyh4GsBRSYrL+mUyeZ0WFirdp5a+/Ls26clxpmbuYExGFL87GUtHNN6t9xAYAXeAc6FQAeA/hEuikpupjB3Al08q5izkRkfGYhPC0U1BkqKurQ2JiImpra5GQkOD3cUpKgP791WrVOwB+46LsMbVeIGSWLQNGjNC2DWYzkJPjPj/IOkRVVib13Lgb6iIiIv1Qev3mMJaK1MnZ+RGAQ7cCrgGwC0BzNV4g5Bx7SbTg67Ry7mJORGQcHMZSUWB9ZALAQ3AOdHYA2ItwDXT0ktDLaeVERJGLwY6K/B+q2QTpo1hmVzYRUgB0fYCtCtwNNwB//jPw/vtAmza+Pffxx/Ux/MNp5UREkYvDWJr6GcDlAH5yKD8FIDn0zXHjlVeahnQuu0xK5lXai6Xtzu9NOK2ciChysWdHM3MBXAZ5oFMAqTdHP4FOaqrzjuEFBVK5EnrpKYmOlqaVA03TyK04rZyIyNgY7ITcIUhTxifblfWFtDP5EE1a5MmCBc4BQF6elOzraUjLZJIWEdRTTwmnlRMRRSYOY4WMgLQT+acO5QcAdAp9cxSYPBkYNsz1YzExwJtvSkNaQPgswKfGhqFERBRe2LMTEusgnWr7QGcmpABIf4FOaiqwerWUq+NJuPaUWKeVDx/eNM2ciIiMiz07QVULIMmhLB5A5X/v9SM1VZpNNniwbz0d7CkhIiK9Y7ATNJfgHOh8BuCO0DfFi/XrgTvv9D9A4QJ8RESkZxzGCpoYAK3++++hACzQY6DTowdw113siSEiIuNiz05QVUJaMydb64a4NXeu1i0gIiIKLgY7QXXZf2/6pLep4URERMHAYCcC6XlqOBERkdqYsxMBUlLk/9f71HAiIiI1sWfHwNq3B/7yF04NJyKiyMZgx2BMJmDQIODZZ+VBDaeGExFRpGKwYwB9+khDVbfeCjz9tLSVAxEREUkY7IS51aub9qciIiIiZ0xQDlNZWcCaNQx0iIiIvGHPThh45hngV7+S/n3iBJOMiYiIfMFgR8dSUoDFizlFnIiIKBAMdnQiKQkYNgxo06ZpY83bbmPvDRERUaAY7OjA4MHAP/6hdSuIiIiMiQnKKvrb33yrn5sL/PwzAx0iIqJgMgkhhNaN0FpdXR0SExNRW1uLhISEgI5l3XfKW52GBg5RERERBULp9Zs9OyrzFjrGxAAWCwMdIiKiUGGwEwRCOA9pRUUBx48D9fXatImIiChSMdgJkrFjpaDHejObpY05iYiIKLQY7BAREZGhMdghIiIiQ2OwQ0RERIbGYIeIiIgMjcEOERERGZphgp0FCxYgJycHLVq0QK9evbB161atm0REREQ6YIhg5//+7/8wadIkvPDCC9i5cyeuvfZaDBgwACdOnNC6aURERKQxQ2wX0atXL9xwww144403AAAWiwVZWVl4+umn8fvf/96pfn19PertVverq6tDVlaWKttFEBERUWhEzHYRly5dwo4dO5Cbm2sri4qKQm5uLkpLS10+Z/bs2UhMTLTdsrKyQtVcIiIiCrFmWjcgUD/99BPMZjPS09Nl5enp6Thw4IDL50yZMgWTJk2y/b+2thbZ2dmoq6sLaluJiIhIPdbrtrdBqrAPdvwRGxuL2NhY2/+tJ4s9PEREROHn7NmzSExMdPt42Ac7bdq0QXR0NKqrq2Xl1dXVyMjIUHSMdu3a4dixY2jVqhVMJpNqbbPmAh07doy5QCrieVUfz2lw8Lyqj+c0OML1vAohcPbsWbRr185jvbAPdmJiYtCjRw8UFRXh3nvvBSAlKBcVFWH8+PGKjhEVFYXMzMygtTEhISGsvjzhgudVfTynwcHzqj6e0+AIx/PqqUfHKuyDHQCYNGkSRo0ahZ49e+LGG2/E/Pnzcf78eTz66KNaN42IiIg0Zohg59e//jVOnjyJ6dOno6qqCtdddx0+/fRTp6RlIiIiijyGCHYAYPz48YqHrUIlNjYWL7zwgiwZmgLH86o+ntPg4HlVH89pcBj9vBpiUUEiIiIid8J+UUEiIiIiTxjsEBERkaEx2CEiIiJDY7BDREREhsZgJ4gWLFiAnJwctGjRAr169cLWrVu1bpIuzJ49GzfccANatWqFtLQ03HvvvTh48KCszsWLFzFu3DikpKQgPj4eQ4YMcVol++jRoxg0aBBatmyJtLQ0TJ48GY2NjbI6JSUluP766xEbG4urrroKS5cuDfbb04U5c+bAZDIhPz/fVsZz6p+KigqMHDkSKSkpiIuLQ7du3bB9+3bb40IITJ8+HW3btkVcXBxyc3Px/fffy45x+vRpjBgxAgkJCUhKSsLo0aNx7tw5WZ1vvvkGffr0QYsWLZCVlYVXXnklJO9PC2azGdOmTUOHDh0QFxeHK6+8EjNnzpTtb8Tz6tkXX3yB//3f/0W7du1gMpnwj3/8Q/Z4KM/f6tWr0blzZ7Ro0QLdunXD+vXrVX+/ARMUFB988IGIiYkR7777rti3b594/PHHRVJSkqiurta6aZobMGCAWLJkidi7d6/YvXu3uPvuu0V2drY4d+6crc6TTz4psrKyRFFRkdi+fbu46aabxM0332x7vLGxUXTt2lXk5uaKXbt2ifXr14s2bdqIKVOm2OocPnxYtGzZUkyaNEns379f/PWvfxXR0dHi008/Den7DbWtW7eKnJwc8Ytf/EJMmDDBVs5z6rvTp0+Lyy+/XDzyyCNiy5Yt4vDhw+Jf//qX+OGHH2x15syZIxITE8U//vEP8fXXX4tf/epXokOHDuLChQu2OgMHDhTXXnut+M9//iM2b94srrrqKjF8+HDb47W1tSI9PV2MGDFC7N27V6xcuVLExcWJN998M6TvN1RefvllkZKSItatWyfKysrE6tWrRXx8vHj99ddtdXhePVu/fr14/vnnRWFhoQAgPvzwQ9njoTp///73v0V0dLR45ZVXxP79+8XUqVNF8+bNxZ49e4J+DnzBYCdIbrzxRjFu3Djb/81ms2jXrp2YPXu2hq3SpxMnTggAYtOmTUIIIWpqakTz5s3F6tWrbXW+/fZbAUCUlpYKIaQf9KioKFFVVWWrs3DhQpGQkCDq6+uFEEL89re/Fddcc43stX7961+LAQMGBPstaebs2bOiY8eOYsOGDaJfv362YIfn1D+/+93vxK233ur2cYvFIjIyMsSrr75qK6upqRGxsbFi5cqVQggh9u/fLwCIbdu22ep88sknwmQyiYqKCiGEEH/7299E69atbefZ+tqdOnVS+y3pwqBBg8Rjjz0mK8vLyxMjRowQQvC8+sox2Anl+bv//vvFoEGDZO3p1auXGDNmjKrvMVAcxgqCS5cuYceOHcjNzbWVRUVFITc3F6WlpRq2TJ9qa2sBAMnJyQCAHTt2oKGhQXb+OnfujOzsbNv5Ky0tRbdu3WSrZA8YMAB1dXXYt2+frY79Max1jPwZjBs3DoMGDXJ63zyn/vnnP/+Jnj17YtiwYUhLS0P37t3x1ltv2R4vKytDVVWV7JwkJiaiV69esvOalJSEnj172urk5uYiKioKW7ZssdXp27cvYmJibHUGDBiAgwcP4syZM8F+myF38803o6ioCN999x0A4Ouvv8aXX36Ju+66CwDPa6BCef7C5XcCg50g+Omnn2A2m522q0hPT0dVVZVGrdIni8WC/Px83HLLLejatSsAoKqqCjExMUhKSpLVtT9/VVVVLs+v9TFPderq6nDhwoVgvB1NffDBB9i5cydmz57t9BjPqX8OHz6MhQsXomPHjvjXv/6FsWPH4plnnsF7770HoOm8ePpZr6qqQlpamuzxZs2aITk52adzbyS///3v8cADD6Bz585o3rw5unfvjvz8fIwYMQIAz2ugQnn+3NXR2/k1zHYRFJ7GjRuHvXv34ssvv9S6KWHt2LFjmDBhAjZs2IAWLVpo3RzDsFgs6NmzJ2bNmgUA6N69O/bu3YtFixZh1KhRGrcufK1atQrLly/HihUrcM0112D37t3Iz89Hu3bteF4pKNizEwRt2rRBdHS000yX6upqZGRkaNQq/Rk/fjzWrVuH4uJiZGZm2sozMjJw6dIl1NTUyOrbn7+MjAyX59f6mKc6CQkJiIuLU/vtaGrHjh04ceIErr/+ejRr1gzNmjXDpk2b8Je//AXNmjVDeno6z6kf2rZtiy5dusjKrr76ahw9ehRA03nx9LOekZGBEydOyB5vbGzE6dOnfTr3RjJ58mRb7063bt3w0EMPYeLEibZeSZ7XwITy/Lmro7fzy2AnCGJiYtCjRw8UFRXZyiwWC4qKitC7d28NW6YPQgiMHz8eH374IT7//HN06NBB9niPHj3QvHlz2fk7ePAgjh49ajt/vXv3xp49e2Q/rBs2bEBCQoLt4tS7d2/ZMax1jPgZ3H777dizZw92795tu/Xs2RMjRoyw/Zvn1He33HKL07II3333HS6//HIAQIcOHZCRkSE7J3V1ddiyZYvsvNbU1GDHjh22Op9//jksFgt69eplq/PFF1+goaHBVmfDhg3o1KkTWrduHbT3p5Wff/4ZUVHyy090dDQsFgsAntdAhfL8hc3vBK0zpI3qgw8+ELGxsWLp0qVi//794oknnhBJSUmymS6RauzYsSIxMVGUlJSIyspK2+3nn3+21XnyySdFdna2+Pzzz8X27dtF7969Re/evW2PW6dJ33nnnWL37t3i008/FampqS6nSU+ePFl8++23YsGCBYaeJu3IfjaWEDyn/ti6dato1qyZePnll8X3338vli9fLlq2bCmWLVtmqzNnzhyRlJQkPvroI/HNN9+IwYMHu5zi2717d7Flyxbx5Zdfio4dO8qm+NbU1Ij09HTx0EMPib1794oPPvhAtGzZ0hBTpF0ZNWqUaN++vW3qeWFhoWjTpo347W9/a6vD8+rZ2bNnxa5du8SuXbsEAPHaa6+JXbt2iSNHjgghQnf+/v3vf4tmzZqJuXPnim+//Va88MILnHoeaf7617+K7OxsERMTI2688Ubxn//8R+sm6QIAl7clS5bY6ly4cEE89dRTonXr1qJly5bivvvuE5WVlbLjlJeXi7vuukvExcWJNm3aiGeffVY0NDTI6hQXF4vrrrtOxMTEiCuuuEL2GkbnGOzwnPpn7dq1omvXriI2NlZ07txZLF68WPa4xWIR06ZNE+np6SI2Nlbcfvvt4uDBg7I6p06dEsOHDxfx8fEiISFBPProo+Ls2bOyOl9//bW49dZbRWxsrGjfvr2YM2dO0N+bVurq6sSECRNEdna2aNGihbjiiivE888/L5vizPPqWXFxscvfo6NGjRJChPb8rVq1SvzP//yPiImJEddcc434+OOPg/a+/WUSwm7JSiIiIiKDYc4OERERGRqDHSIiIjI0BjtERERkaAx2iIiIyNAY7BAREZGhMdghIiIiQ2OwQ0RERIbGYIeIiIgMjcEOERERGRqDHSLSFbPZjJtvvhl5eXmy8traWmRlZeH555/3+PySkhKYTCanHd4DUV5eDpPJhN27d6t2TCIKHQY7RKQr0dHRWLp0KT799FMsX77cVv70008jOTkZL7zwgoatI6JwxGCHiHTnf/7nfzBnzhw8/fTTqKysxEcffYQPPvgA77//PmJiYtw+r7y8HP379wcAtG7dGiaTCY888ggAwGKxYPbs2ejQoQPi4uJw7bXXoqCgwPbcM2fOYMSIEUhNTUVcXBw6duyIJUuWAAA6dOgAAOjevTtMJhNuu+224LxxIgqKZlo3gIjIlaeffhoffvghHnroIezZswfTp0/Htdde6/E5WVlZWLNmDYYMGYKDBw8iISEBcXFxAIDZs2dj2bJlWLRoETp27IgvvvgCI0eORGpqKvr164dp06Zh//79+OSTT9CmTRv88MMPuHDhAgBg69atuPHGG7Fx40Zcc801HgMuItIf7npORLp14MABXH311ejWrRt27tyJZs28/31WUlKC/v3748yZM0hKSgIA1NfXIzk5GRs3bkTv3r1tdX/zm9/g559/xooVK/CrX/0Kbdq0wbvvvut0zPLycnTo0AG7du3Cddddp9bbI6IQYc8OEenWu+++i5YtW6KsrAzHjx9HTk6OX8f54Ycf8PPPP+OOO+6QlV+6dAndu3cHAIwdOxZDhgzBzp07ceedd+Lee+/FzTffHOhbICIdYM4OEenSV199hXnz5mHdunW48cYbMXr0aPjbEX3u3DkAwMcff4zdu3fbbvv377fl7dx11104cuQIJk6ciB9//BG33347nnvuOdXeDxFph8EOEenOzz//jEceeQRjx45F//798c4772Dr1q1YtGiR1+da82nMZrOtrEuXLoiNjcXRo0dx1VVXyW5ZWVm2eqmpqRg1ahSWLVuG+fPnY/HixW6PSUThg8NYRKQ7U6ZMgRACc+bMAQDk5ORg7ty5eO6553DXXXd5HM66/PLLYTKZsG7dOtx9992Ii4tDq1at8Nxzz2HixImwWCy49dZbUVtbi3//+99ISEjAqFGjMH36dPTo0QPXXHMN6uvrsW7dOlx99dUAgLS0NMTFxeHTTz9FZmYmWrRogcTExFCcCiJSgyAi0pGSkhIRHR0tNm/e7PTYnXfeKX75y18Ki8Xi8RgvvviiyMjIECaTSYwaNUoIIYTFYhHz588XnTp1Es2bNxepqaliwIABYtOmTUIIIWbOnCmuvvpqERcXJ5KTk8XgwYPF4cOHbcd86623RFZWloiKihL9+vVT7f0SUfBxNhYREREZGnN2iIiIyNAY7BBRWHnyyScRHx/v8vbkk09q3Twi0iEOYxFRWDlx4gTq6upcPpaQkIC0tLQQt4iI9I7BDhERERkah7GIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMrT/B0wJtjRaqLK4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "y_pred = model_lr_1.predict(X_test)\n", + "plt.scatter(X_test, y_test, color ='b')\n", + "plt.plot(X_test, y_pred, color ='k')\n", + "plt.xlabel('X_test')\n", + "plt.ylabel('y_pred')\n", + " \n", + "save_path = '../Images/linear_reg_1_x_test_vs_y_pred.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "cc88ef67", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAE: 20.72540497281495\n", + "RMSE: 35.59781358312404\n" + ] + } + ], + "source": [ + "from sklearn.metrics import mean_absolute_error,mean_squared_error\n", + " \n", + "mae = mean_absolute_error(y_true=y_test,y_pred=y_pred)\n", + "rmse = mean_squared_error(y_true=y_test,y_pred=y_pred,squared=False)\n", + " \n", + "print(\"MAE:\",mae)\n", + "print(\"RMSE:\",rmse)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "bbe8783d", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc_curve, auc" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "7c27e7b4", + "metadata": {}, + "outputs": [], + "source": [ + "label_encoder = LabelEncoder()\n", + "step_vs_calories['Category'] = 1 - label_encoder.fit_transform(step_vs_calories['Category'])" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "706b27fe", + "metadata": {}, + "outputs": [], + "source": [ + "X = np.array(step_vs_calories['StepTotal']).reshape(-1, 1)\n", + "y = np.array(step_vs_calories['Category']).ravel()\n", + " \n", + "step_vs_calories.dropna(inplace = True)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)\n", + "\n", + "scaler = StandardScaler()\n", + "X_train = scaler.fit_transform(X_train)\n", + "X_test = scaler.transform(X_test)" + ] + }, + { + "cell_type": "markdown", + "id": "f73ba24f", + "metadata": {}, + "source": [ + "#### Logistic Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "34f2c36f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.8747511312217194\n" + ] + } + ], + "source": [ + "model_LogReg_1 = LogisticRegression()\n", + " \n", + "model_LogReg_1.fit(X_train, y_train)\n", + "print(model_LogReg_1.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "f7608850", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 87.48%\n" + ] + } + ], + "source": [ + "y_pred = model_LogReg_1.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "9dd02295", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Confusion Matrix:\n", + " [[3634 207]\n", + " [ 485 1199]]\n", + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.88 0.95 0.91 3841\n", + " 1 0.85 0.71 0.78 1684\n", + "\n", + " accuracy 0.87 5525\n", + " macro avg 0.87 0.83 0.84 5525\n", + "weighted avg 0.87 0.87 0.87 5525\n", + "\n" + ] + } + ], + "source": [ + "print(\"Confusion Matrix:\\n\", confusion_matrix(y_test, y_pred))\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "0da44d86", + "metadata": {}, + "source": [ + "#### Support Vector Machine" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "034188be", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.875475113122172\n" + ] + } + ], + "source": [ + "from sklearn.svm import SVC \n", + "model_svm_1 = SVC(kernel='linear') \n", + "\n", + "model_svm_1.fit(X_train, y_train) \n", + "print(model_svm_1.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "12335c2f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 87.55%\n" + ] + } + ], + "source": [ + "y_pred = model_svm_1.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "5fb085fb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[3621 220]\n", + " [ 468 1216]]\n", + " precision recall f1-score support\n", + "\n", + " 0 0.89 0.94 0.91 3841\n", + " 1 0.85 0.72 0.78 1684\n", + "\n", + " accuracy 0.88 5525\n", + " macro avg 0.87 0.83 0.85 5525\n", + "weighted avg 0.87 0.88 0.87 5525\n", + "\n" + ] + } + ], + "source": [ + "print(confusion_matrix(y_test, y_pred))\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "3abab963", + "metadata": {}, + "source": [ + "#### KNN" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "21ee2724", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier " + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "0295791c", + "metadata": {}, + "outputs": [], + "source": [ + "model_knn_1 = KNeighborsClassifier(n_neighbors=1)\n", + "model_knn_1.fit(X_train, y_train)\n", + "y_pred = model_knn_1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "94a5142c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[3454 387]\n", + " [ 481 1203]]\n", + " precision recall f1-score support\n", + "\n", + " 0 0.88 0.90 0.89 3841\n", + " 1 0.76 0.71 0.73 1684\n", + "\n", + " accuracy 0.84 5525\n", + " macro avg 0.82 0.81 0.81 5525\n", + "weighted avg 0.84 0.84 0.84 5525\n", + "\n" + ] + } + ], + "source": [ + "print(confusion_matrix(y_test, y_pred))\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "97e278b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.84289592760181\n" + ] + } + ], + "source": [ + "print(model_knn_1.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "7bd8111b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 84.29%\n" + ] + } + ], + "source": [ + "y_pred = model_knn_1.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))" + ] + }, + { + "cell_type": "markdown", + "id": "c7442ff5", + "metadata": {}, + "source": [ + "#### TotalSteps vs TotalActiveMinutes" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "db2973a9", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new DataFrame 'steps_vs_active_mins' with selected columns from 'daily_activity'\n", + "steps_vs_active_mins = daily_activity[['TotalSteps', 'TotalActiveMinutes']].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "a9e005c9", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TotalStepsTotalActiveMinutes
013162366
110735257
210460222
39762272
412669267
\n", + "
" + ], + "text/plain": [ + " TotalSteps TotalActiveMinutes\n", + "0 13162 366\n", + "1 10735 257\n", + "2 10460 222\n", + "3 9762 272\n", + "4 12669 267" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steps_vs_active_mins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "3f07af66", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TotalStepsTotalActiveMinutes
count940.000000940.000000
mean7637.910638227.542553
std5087.150742121.776307
min0.0000000.000000
25%3789.750000146.750000
50%7405.500000247.000000
75%10727.000000317.250000
max36019.000000552.000000
\n", + "
" + ], + "text/plain": [ + " TotalSteps TotalActiveMinutes\n", + "count 940.000000 940.000000\n", + "mean 7637.910638 227.542553\n", + "std 5087.150742 121.776307\n", + "min 0.000000 0.000000\n", + "25% 3789.750000 146.750000\n", + "50% 7405.500000 247.000000\n", + "75% 10727.000000 317.250000\n", + "max 36019.000000 552.000000" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steps_vs_active_mins.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "6cea261b", + "metadata": {}, + "outputs": [], + "source": [ + "steps_vs_active_mins['Category'] = np.where(steps_vs_active_mins['TotalSteps'] > 7637, 'High', 'Low')" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "58a24519", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TotalStepsTotalActiveMinutesCategory
013162366High
110735257High
210460222High
39762272High
412669267High
\n", + "
" + ], + "text/plain": [ + " TotalSteps TotalActiveMinutes Category\n", + "0 13162 366 High\n", + "1 10735 257 High\n", + "2 10460 222 High\n", + "3 9762 272 High\n", + "4 12669 267 High" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steps_vs_active_mins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "b6e5515a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAHqCAYAAAAgWrY5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADXCElEQVR4nOy9eZwcdZ3///pUVVf1Md09M5mZzEwOcgK5uE1IwEQkS4hRl0NXxNXIIYeBBaKAQcRFXeOirqAi4LocIiyCP9H14Mg3miAkEBIIDGEg5GJyzJmZ6bvr/Pz+qK6a7pmeme45Mp3k/Xw8hjDd1VWfru6pd72v15txzjkIgiAIgig5hLFeAEEQBEEQ+SEjTRAEQRAlChlpgiAIgihRyEgTBEEQRIlCRpogCIIgShQy0gRBEARRopCRJgiCIIgShYw0QRAEQZQoZKRHCM45otEoSBuGIAiCGCnISI8QsVgM4XAYsVhsrJdCEARBHCOQkSYIgiCIEoWMNEEQBEGUKGSkCYIgCKJEISNNEARBECUKGWmCIAiCKFHISBMEQRBEiUJGmiAIgiBKFDLSBEEQBFGikJEmCIIgiBKFjDRBEARBlChkpAmCIAiiRCEjTRAEQRAlChlpgiAIgihRpLFeAEEQBDGyWBbHjkNRdCY1VPplzKkPQRDYWC+LGAJkpAmCII4hNu3qwAMbd2N3Wxy6yeERGabXlOH6JdOxaEbVWC+PKBIKdxMEQRwjbNrVgTuebUBjcxQBRUJNUEFAkdDYHMMdzzZg066OsV4iUSRkpAmCII4BLIvjgY27EVcN1Ia88HpECAKD1yOiNqQgrpp4YONuWBYf66USRUBGmiAI4hhgx6EodrfFUeGXwVhu/pkxhnK/B7vb4thxKDpGKySGAhlpgiCIY4DOpAbd5JDF/Jd1RRSgWxydSe0Ir4wYDmSkCYIgjgEq/TI8IoNmWnmfV00LHoGh0i8f4ZURw4GMNEEQxDHAnPoQpteUoSupg/PcvDPnHN1JHdNryjCnPjRGKySGAhlpgiCIYwBBYLh+yXSUKSJaoipSugnL4kjpJlqiKsoUEdcvmU790kcZZKQJgiCOERbNqML3L56HWXVBJFUDbXEVSdXArLogvn/xPOqTPgphvHdchBgS0WgU4XAYkUgEoRCFkwiCGDtIcezYgRTHCIIgjjEEgWHexPBYL4MYAcY03P3AAw/glFNOQSgUQigUwsKFC/Hcc8+5z3/sYx8DYyzn57rrrsvZR1NTE1asWAG/34+amhrceuutMAwjZ5sNGzbgjDPOgKIomDFjBh599NE+a7n//vsxZcoUeL1eLFiwAFu2bBmV90wQBEEQhTKmRnrixIn4wQ9+gG3btmHr1q34+Mc/jn/+53/Gjh073G2+8pWvoLm52f2555573OdM08SKFSugaRo2bdqExx57DI8++ijuuusud5u9e/dixYoVOO+887B9+3bcfPPNuPrqq/HCCy+42/z2t7/F6tWr8e1vfxtvvPEGTj31VCxbtgxtbW1H5kQQBEEQRD54iVFRUcF/9atfcc45X7JkCb/pppv63favf/0rFwSBt7S0uI898MADPBQKcVVVOeec33bbbXzOnDk5r/vc5z7Hly1b5v4+f/58vmrVKvd30zR5fX09X7t2bcHrjkQiHACPRCIFv4YgCIIgBqJkqrtN08RTTz2FRCKBhQsXuo8/8cQTqKqqwty5c7FmzRokk0n3uc2bN2PevHkYP368+9iyZcsQjUZdb3zz5s1YunRpzrGWLVuGzZs3AwA0TcO2bdtythEEAUuXLnW3yYeqqohGozk/BEEQBDGSjHnhWENDAxYuXIh0Oo2ysjI8++yzmD17NgDg8ssvxwknnID6+nq8/fbbuP322/H+++/j97//PQCgpaUlx0ADcH9vaWkZcJtoNIpUKoWuri6Yppl3m/fee6/fda9duxZ333338N48QRAEQQzAmBvpk046Cdu3b0ckEsHvfvc7rFy5Ehs3bsTs2bNxzTXXuNvNmzcPdXV1OP/887F7925Mnz59DFcNrFmzBqtXr3Z/j0ajmDRp0hiuiCAIgjjWGHMjLcsyZsyYAQA488wz8frrr+O+++7DQw891GfbBQsWAAB27dqF6dOno7a2tk8VdmtrKwCgtrbW/dd5LHubUCgEn88HURQhimLebZx95ENRFCiKUuS7JQiCIIjCKZmctINlWVBVNe9z27dvBwDU1dUBABYuXIiGhoacKux169YhFAq5IfOFCxdi/fr1OftZt26dm/eWZRlnnnlmzjaWZWH9+vU5uXGCIAiCOOKMZdXaN77xDb5x40a+d+9e/vbbb/NvfOMbnDHGX3zxRb5r1y7+ne98h2/dupXv3buX//GPf+TTpk3jixcvdl9vGAafO3cuv+CCC/j27dv5888/z6urq/maNWvcbfbs2cP9fj+/9dZbeWNjI7///vu5KIr8+eefd7d56qmnuKIo/NFHH+Xvvvsuv+aaa3h5eXlO1fhgUHU3QRAEMdKMqZG+8sor+QknnMBlWebV1dX8/PPP5y+++CLnnPOmpia+ePFiXllZyRVF4TNmzOC33nprHyO4b98+vnz5cu7z+XhVVRX/2te+xnVdz9nm73//Oz/ttNO4LMt82rRp/JFHHumzlp/97Gd88uTJXJZlPn/+fP7qq68W9V7ISBMEQRAjDWl3jxCk3U0QBEGMNCWXkyYIgiAIwoaMNEEQBEGUKGSkCYIgCKJEISNNEARBECUKGWmCIAiCKFHISBMEQRBEiUJGmiAIgiBKFDLSBEEQBFGikJEmCIIgiBKFjDRBEARBlChkpAmCIAiiRCEjTRAEQRAlChlpgiAIgihRyEgTBEEQRIlCRpogCIIgShQy0gRBEARRopCRJgiCIIgShYw0QRAEQZQoZKQJgiAIokQhI00QBEEQJQoZaYIgCIIoUchIEwRBEESJQkaaIAiCIEoUMtIEQRAEUaKQkSYIgiCIEoWMNEEQBEGUKGSkCYIgCKJEISNNEARBECUKGWmCIAiCKFHISBMEQRBEiUJGmiAIgiBKFDLSBEEQBFGikJEmCIIgiBKFjDRBEARBlChkpAmCIAiiRCEjTRAEQRAlChlpgiAIgihRyEgTBEEQRIlCRpogCIIgShQy0gRBEARRopCRJgiCIIgShYw0QRAEQZQoZKQJgiAIokQZUyP9wAMP4JRTTkEoFEIoFMLChQvx3HPPuc+n02msWrUK48aNQ1lZGS699FK0trbm7KOpqQkrVqyA3+9HTU0Nbr31VhiGkbPNhg0bcMYZZ0BRFMyYMQOPPvpon7Xcf//9mDJlCrxeLxYsWIAtW7aMynsmCIIgiEIZUyM9ceJE/OAHP8C2bduwdetWfPzjH8c///M/Y8eOHQCAW265BX/605/wzDPPYOPGjTh06BAuueQS9/WmaWLFihXQNA2bNm3CY489hkcffRR33XWXu83evXuxYsUKnHfeedi+fTtuvvlmXH311XjhhRfcbX77299i9erV+Pa3v4033ngDp556KpYtW4a2trYjdzIIgiAIoje8xKioqOC/+tWveHd3N/d4PPyZZ55xn2tsbOQA+ObNmznnnP/1r3/lgiDwlpYWd5sHHniAh0Ihrqoq55zz2267jc+ZMyfnGJ/73Of4smXL3N/nz5/PV61a5f5umiavr6/na9euLXjdkUiEA+CRSKS4N0wQBEEQ/VAyOWnTNPHUU08hkUhg4cKF2LZtG3Rdx9KlS91tTj75ZEyePBmbN28GAGzevBnz5s3D+PHj3W2WLVuGaDTqeuObN2/O2YezjbMPTdOwbdu2nG0EQcDSpUvdbfKhqiqi0WjOD0EQBEGMJGNupBsaGlBWVgZFUXDdddfh2WefxezZs9HS0gJZllFeXp6z/fjx49HS0gIAaGlpyTHQzvPOcwNtE41GkUql0NHRAdM0827j7CMfa9euRTgcdn8mTZo0pPdPEARBEP0x5kb6pJNOwvbt2/Haa6/h+uuvx8qVK/Huu++O9bIGZc2aNYhEIu7P/v37x3pJBEEQxDGGNNYLkGUZM2bMAACceeaZeP3113Hffffhc5/7HDRNQ3d3d4433draitraWgBAbW1tnypsp/o7e5veFeGtra0IhULw+XwQRRGiKObdxtlHPhRFgaIoQ3vTBEEQxFGHZXHsOBRFZ1JDpV/GnPoQBIGN6jHH3JPujWVZUFUVZ555JjweD9avX+8+9/7776OpqQkLFy4EACxcuBANDQ05Vdjr1q1DKBTC7Nmz3W2y9+Fs4+xDlmWceeaZOdtYloX169e72xAEQRDHN5t2dWDlI1tw7eNb8fWn38K1j2/Fyke2YNOujlE97ph60mvWrMHy5csxefJkxGIxPPnkk9iwYQNeeOEFhMNhXHXVVVi9ejUqKysRCoVw4403YuHChTj77LMBABdccAFmz56NL37xi7jnnnvQ0tKCO++8E6tWrXK93Ouuuw4///nPcdttt+HKK6/E3/72Nzz99NP4y1/+4q5j9erVWLlyJc466yzMnz8f9957LxKJBK644ooxOS8EQRBE6bBpVwfueLYBcdVAhV+GLArQTAuNzTHc8WwDvn/xPCyaUTUqxx5TI93W1oYvfelLaG5uRjgcximnnIIXXngB//RP/wQA+MlPfgJBEHDppZdCVVUsW7YMv/jFL9zXi6KIP//5z7j++uuxcOFCBAIBrFy5Et/5znfcbaZOnYq//OUvuOWWW3Dfffdh4sSJ+NWvfoVly5a523zuc59De3s77rrrLrS0tOC0007D888/36eYjCAIgji+sCyOBzbuRlw1UBvygjE7vO0VRNSGBLREVTywcTfOnjZuVELfjHPOR3yvxyHRaBThcBiRSAShUGisl0MQBEGMAA0HIrj28a0IKBK8HrHP8yndRFI18NAXz8K8ieERP37J5aQJgiAIolToTGrQTQ5ZzG8uFVGAbnF0JrVROT4ZaYIgCILoh0q/DI/IoJlW3udV04JHYKj0y6NyfDLSBEEQBNEPc+pDmF5Thq6kjt7ZYc45upM6pteUYU796KQ5yUgTBEEQRD8IAsP1S6ajTBHRElWR0k1YFkdKN9ESVVGmiLh+yfRR65cmI00QBEEQA7BoRhW+f/E8zKoLIqkaaIurSKoGZtUFR7X9CqDq7hGDqrsJgiCObcZCcWzMZUEJgiAI4mhAENiotFkNeMwjejSCIAiCIAqGjDRBEARBlChkpAmCIAiiRCEjTRAEQRAlChlpgiAIgihRyEgTBEEQRIlCLVgEQRADMBa9sQThQEaaIAiiHzbt6sADG3djd1scusnhERmm15Th+iXTR1VliiAcKNxNEASRh027OnDHsw1obI4ioEioCSoIKBIam2O449kGbNrVMdZLJI4DyEgTBEH0wrI4Hti4G3HVQG3IC69HhCAweD0iakMK4qqJBzbuhmWRqjIxupCRJgiC6MWOQ1Hsboujwi+Dsdz8M2MM5X4PdrfFseNQdIxWSBwvkJEmCILoRWdSg25yyGL+S6QiCtAtjs6kdoRXRhxvkJEmCILoRaVfhkdk0Ewr7/OqacEjMFT65SO8MuJ4g4w0QRBEL+bUhzC9pgxdSR29p/lyztGd1DG9pgxz6mksLTG6kJEmCILohSAwXL9kOsoUES1RFSndhGVxpHQTLVEVZYqI65dMp35pYtQhI00QBJGHRTOq8P2L52FWXRBJ1UBbXEVSNTCrLojvXzyP+qSJIwLjvWM5xJCIRqMIh8OIRCIIhSgERhDHCqQ4RowlpDhGEAQxAILAMG9ieKyXQRynULibIAiCIEoUMtIEQRAEUaKQkSYIgiCIEoWMNEEQBEGUKGSkCYIgCKJEISNNEARBECUKGWmCIAiCKFHISBMEQRBEiUJGmiAIgiBKFDLSBEEQBFGikJEmCIIgiBKFjDRBEARBlChkpAmCIAiiRCEjTRAEQRAlChlpgiAIgihRyEgTBEEQRIlCRpogCIIgShQy0gRBEARRooypkV67di0+8pGPIBgMoqamBhdddBHef//9nG0+9rGPgTGW83PdddflbNPU1IQVK1bA7/ejpqYGt956KwzDyNlmw4YNOOOMM6AoCmbMmIFHH320z3ruv/9+TJkyBV6vFwsWLMCWLVtG/D0TBEEQRKGMqZHeuHEjVq1ahVdffRXr1q2Druu44IILkEgkcrb7yle+gubmZvfnnnvucZ8zTRMrVqyApmnYtGkTHnvsMTz66KO466673G327t2LFStW4LzzzsP27dtx88034+qrr8YLL7zgbvPb3/4Wq1evxre//W288cYbOPXUU7Fs2TK0tbWN/okgCIIgiHzwEqKtrY0D4Bs3bnQfW7JkCb/pppv6fc1f//pXLggCb2lpcR974IEHeCgU4qqqcs45v+222/icOXNyXve5z32OL1u2zP19/vz5fNWqVe7vpmny+vp6vnbt2oLWHolEOAAeiUQK2p4gCIIgBqOkctKRSAQAUFlZmfP4E088gaqqKsydOxdr1qxBMpl0n9u8eTPmzZuH8ePHu48tW7YM0WgUO3bscLdZunRpzj6XLVuGzZs3AwA0TcO2bdtythEEAUuXLnW36Y2qqohGozk/BEEQBDGSSGO9AAfLsnDzzTfjnHPOwdy5c93HL7/8cpxwwgmor6/H22+/jdtvvx3vv/8+fv/73wMAWlpacgw0APf3lpaWAbeJRqNIpVLo6uqCaZp5t3nvvffyrnft2rW4++67h/emCYIgCGIASsZIr1q1Cu+88w5efvnlnMevueYa9//nzZuHuro6nH/++di9ezemT59+pJfpsmbNGqxevdr9PRqNYtKkSWO2HoIgCOLYoySM9A033IA///nPeOmllzBx4sQBt12wYAEAYNeuXZg+fTpqa2v7VGG3trYCAGpra91/nceytwmFQvD5fBBFEaIo5t3G2UdvFEWBoiiFv0mCIAiCKJIxzUlzznHDDTfg2Wefxd/+9jdMnTp10Nds374dAFBXVwcAWLhwIRoaGnKqsNetW4dQKITZs2e726xfvz5nP+vWrcPChQsBALIs48wzz8zZxrIsrF+/3t2GIAiCII44Y1m1dv311/NwOMw3bNjAm5ub3Z9kMsk553zXrl38O9/5Dt+6dSvfu3cv/+Mf/8inTZvGFy9e7O7DMAw+d+5cfsEFF/Dt27fz559/nldXV/M1a9a42+zZs4f7/X5+66238sbGRn7//fdzURT5888/727z1FNPcUVR+KOPPsrfffddfs011/Dy8vKcqvGBoOpugiAIYqQZUyMNIO/PI488wjnnvKmpiS9evJhXVlZyRVH4jBkz+K233trHEO7bt48vX76c+3w+XlVVxb/2ta9xXddztvn73//OTzvtNC7LMp82bZp7jGx+9rOf8cmTJ3NZlvn8+fP5q6++WvB7ISNNEARBjDSMc87Hzo8/dohGowiHw4hEIgiFQmO9HIIgCOIYoKT6pAmCIAiC6IGMNEEQBEGUKGSkCYIgCKJEKYk+aYIgiCONZXHsOBRFZ1JDpV/GnPoQBIGN9bIIIgcy0gRBHHds2tWBBzbuxu62OHSTwyMyTK8pw/VLpmPRjKqxXh5BuFC4myCI44pNuzpwx7MNaGyOIqBIqAkqCCgSGptjuOPZBmza1THWSyQIFzLSBEEcN1gWxwMbdyOuGqgNeeH1iBAEBq9HRG1IQVw18cDG3bAs6kwlSgMy0gRBHDfsOBTF7rY4KvwyGMvNPzPGUO73YHdbHDsO0ehZojSgnDRBEMcNnUkNuskhi/n9E0UUELE4OpPaEV7Z4FCh2/EJGWmCII4bKv0yPCKDZlrwCmKf51XTgkdgqPTLY7C6/qFCt+MXCncTBHHcMKc+hOk1ZehK6uitiMw5R3dSQ03Ii46EioYDkZLITVOh2/ENaXePEKTdTRBHB47Ri6smyv0eKKIA1bTQHktDNSwEZBECE0rCW7UsjpWPbEFjcxS1IW9OHp1zjpaoill1QTx2xXwKfR+jkCdNEMRxxaIZVfj+xfMwqy6IpGqgLa6iK6FBNSzIooDKgFIy3upoF7pZFkfDgQg27mwvmcgBkQvlpAmCOO5YNKMKZ08bhx2HojgcV3Hv+g+wvzOBurDPNYZeQURtSEBLVMUDG3fj7Gnjjri3OpqFbpTnPjogT5ogiOMSQWCYNzGMcWUK2qJpVAaUkmvLyi50y8dQC90oz330QEaaIIjjmkK8VX2M2rIGL3TTMb2mDHPqC6+DIUGXowsy0gRBHNeMlrc6EggCw/VLpqNMEdESVZHSTVgWR0o30RJVUaaIuH7J9KLC8CTocnRBRpogiOOa4XirR6LwKl+hW1I1MKsuiO9fPK/o/HEpRw6IvlDhGEEQxzWOt3rHsw1oiao5bVndSb1fb/VIFl71LnTrSuooD3gQ9HpgWbwoT/poFXQ5XiEjTRDEcY/jrTpGN2JxeASGWXXBvEa3p9faQIVfhiwK0EzLLbwaioc7GILAEEvr+J9X9g7rxsCJHDQ2x1AbEvr0XncndcyqCxaV5yZGDxIzGSFIzIQgjn4K0cfuT2CEc46UZqI9rmFadQC/u3YhJGnkMor93Rh0Zbz9Ym4M+hN06R7CvojRhYz0CEFGmiCODxoORHDt41sRUCR4PXa4OK4armKZxQFwjnkTy3HbspNGxNiNhvJYTrg+EzmgPunSg8LdBEEQRdC78CquGjjYlYLJOSSBQWAchgnsbY+PWOi7mIrseRPDBe0zO89Nk7VKFzLSBEEQWQwW8s4uvFKYgPZYGia3PVHGGCwOCAJQVaYgkjZGRK1stJTHHEEXonQhI00QBJGhkIrt7MKrsFeCaliQMgaag8O0OLweET5FBBNY0R5uPqgi+/iF+qQJgiBQuFRmtsBIe1yzc9DgsDiHYXIIjKE6qICBjVjP8WgojxFHB2SkCYI47ilWKtNp2ZpWHQAyxtnitgc9ocKHMsUOUo6UhzsaymPE0QEZaYIgjlpGSvFrKFKZi2ZU4XfXLsS8ieUoUyRMrvBjSpXfNdAj7eGOtPIYcXRAOWmCII5KRlLxa6iFWZIk4LZlJ+GOZxsQSRtgAitIrWyoUEX28Qd50gRBHHWM9KjF4QzZONIerlORveTEasybGCYDfYxDnjRBEEcVvfPHTnjaK4ioDQloiapFtz0NVyqzEA+3EDUzgugNGWmCII4qRkPYY6hDNnrvo7/jHclhHMSxBYW7CYI4qhitUYujFbYe6dA8cXxBnjRBEEcVoynsMdKFWaMRmieOL4r2pN944w00NDS4v//xj3/ERRddhDvuuAOaRkPCCYIYXUZb2GMkC7OG0tpFENkUbaSvvfZa7Ny5EwCwZ88eXHbZZfD7/XjmmWdw2223jfgCCYI4/hio//loEvYYrdA8cfxQdLh7586dOO200wAAzzzzDBYvXownn3wSr7zyCi677DLce++9I7xEgiCOJwopsnLyx852kcyoxVl1wZIqxiLNbWK4FG2kOeewLLuX8P/9v/+HT37ykwCASZMmoaODCiAIghg6TpFVXDVQ4ZchiwI003KLrLILuIabPz4SLVHDbe0iiKKN9FlnnYXvfe97WLp0KTZu3IgHHngAALB3716MHz9+xBdIEMTxwVCKrIY6avFItUSNRGsXcXxTdE763nvvxRtvvIEbbrgB3/zmNzFjxgwAwO9+9zssWrRoxBdIEMTxQaFFVg0HI8PS6z7SLVGkuU0MB8Z7l0cOkXQ6DVEU4fF4RmJ3Rx3RaBThcBiRSAShEIWuCKJYNu5sx9effgs1QSWvZ2lZHAe6U5hY4UNXQsvxgK9dPA1hnzxo6NqyOFY+sgWNzdEcbx2ww88tURWz6oJ47Ir5I+7dkuIYMRSG3Ce9detWNDY2AgBmzZqFs846a8QWRRDE8cdgRVZdKQ1x1cDBrhSqg4qbr377QDeu/vVWBGQRAhMGDF2PhlpZoQw1NH8sQTcqxVN0uPvAgQP46Ec/ivnz5+Omm27CTTfdhPnz5+Pcc8/FgQMHitrX2rVr8ZGPfATBYBA1NTW46KKL8P777+dsk06nsWrVKowbNw5lZWW49NJL0dramrNNU1MTVqxYAb/fj5qaGtx6660wDCNnmw0bNuCMM86AoiiYMWMGHn300T7ruf/++zFlyhR4vV4sWLAAW7ZsKer9EAQxdAbqf7YsC+0xFQIDJlT0zHs2LI6kakLVLcRVEz6PAFFgePdQNG/omlqiCmekxoA6bNrVgZWPbMG1j2/F159+C9c+vhUrH9lCimuDULSRvvrqq6HrOhobG9HZ2YnOzk40NjbCsixcffXVRe1r48aNWLVqFV599VWsW7cOuq7jggsuQCKRcLe55ZZb8Kc//QnPPPMMNm7ciEOHDuGSSy5xnzdNEytWrICmadi0aRMee+wxPProo7jrrrvcbfbu3YsVK1bgvPPOw/bt23HzzTfj6quvxgsvvOBu89vf/harV6/Gt7/9bbzxxhs49dRTsWzZMrS1tRV7igiCGAID9T8f7E7D4kBN0AuB2ZctDo72mAozY9BVw8LB7hRaommkdROdCR0PbNydY1yGM+3qeGKkDSpJow6donPSPp8PmzZtwumnn57z+LZt2/DRj34UyWRyyItpb29HTU0NNm7ciMWLFyMSiaC6uhpPPvkkPvOZzwAA3nvvPcyaNQubN2/G2Wefjeeeew6f/OQncejQIbe6/MEHH8Ttt9+O9vZ2yLKM22+/HX/5y1/wzjvvuMe67LLL0N3djeeffx4AsGDBAnzkIx/Bz3/+cwD2nfukSZNw44034hvf+Maga6ecNEEUT77w56t7DvdUXmf6nysDMvZ3pTCx3OeGR1Oaib2HE7AsDuci5hGY62ELDAh5JTx6xQI3zNyTk46hNqQc0Zz00UJ/bXBdmWr0YovdxrIO4FigaE960qRJ0HW9z+OmaaK+vn5Yi4lEIgCAyspKALbh13UdS5cudbc5+eSTMXnyZGzevBkAsHnzZsybNy+n/WvZsmWIRqPYsWOHu032PpxtnH1omoZt27blbCMIApYuXepuQxDEyNKftwYAj10xHw998Sz86LOn4qEvnoX/uHgeArKY4wEblpVjoBlsb1xgDB6BweIc0bSBjoTqvuZoUisbC3q3wTlpBa9HRG1IQVw1+0QnBoOkUYdH0Ub6hz/8IW688UZs3brVfWzr1q246aab8KMf/WjIC7EsCzfffDPOOecczJ07FwDQ0tICWZZRXl6es+348ePR0tLibtO7P9v5fbBtotEoUqkUOjo6YJpm3m2cffRGVVVEo9GcH4IgCmOw8Oerew7n6GfPmxDuk682sgw0ADBmG2r7/21jbVkc3Ylcp4JaovpnNAwq1QEMj6Kru7/85S8jmUxiwYIFkCT75YZhQJIkXHnllbjyyivdbTs7Owve76pVq/DOO+/g5ZdfLnZJY8LatWtx9913j/UyCOKoY6iiJb1FQbKdXQZAEnoUvTg4LIuDMYb93Uk0HIjkVBKP9LSrY4VCDGqkSINK0qjDo2gjPRra3DfccAP+/Oc/46WXXsLEiRPdx2tra6FpGrq7u3O86dbWVtTW1rrb9K7Cdqq/s7fpXRHe2tqKUCgEn88HURQhimLebZx99GbNmjVYvXq1+3s0GsWkSZOKfOcEcfwx1Dao3nrdKd2EwACLZ7xoZhtnzgHDtGByQADHw//Yi6dea+rTlkUtUX0ZDYNK0qjDo2gjvXLlyhE7OOccN954I5599lls2LABU6dOzXn+zDPPhMfjwfr163HppZcCAN5//300NTVh4cKFAICFCxfiP/7jP9DW1oaamhoAwLp16xAKhTB79mx3m7/+9a85+163bp27D1mWceaZZ2L9+vW46KKLANjh9/Xr1+OGG27Iu3ZFUaAoysicCII4jhiOt5btAR+Oq7h3/QfY0x6DaQGaaYFbgMU5nJSpLAqoCykwOPLqfxO5jIZBJWnU4VF0ThoAdu/ejTvvvBOf//zn3Ral5557zi3UKpRVq1bhN7/5DZ588kkEg0G0tLSgpaUFqVQKABAOh3HVVVdh9erV+Pvf/45t27bhiiuuwMKFC3H22WcDAC644ALMnj0bX/ziF/HWW2/hhRdewJ133olVq1a5RvS6667Dnj17cNttt+G9997DL37xCzz99NO45ZZb3LWsXr0a//3f/43HHnsMjY2NuP7665FIJHDFFVcM5RQRBNEPw22Dcjzgj51cg9uWnYTKgAKfLKI25EVlwIPsfhXd4tjfnYJh8SEXPh1PjFZhHdUBDJ2iW7A2btyI5cuX45xzzsFLL72ExsZGTJs2DT/4wQ+wdetW/O53vyv84Cz/B/3II4/gy1/+MgBbzORrX/sa/vd//xeqqmLZsmX4xS9+kROG/vDDD3H99ddjw4YNCAQCWLlyJX7wgx+4OXPAFjO55ZZb8O6772LixIn41re+5R7D4ec//zl++MMfoqWlBaeddhp++tOfYsGCBQW9F2rBIojCGOk2KGdYxruHIuhK6nb4G4Ak2sVjhsUhMoYJFT6IAkNSNfDQF8+iUPcA5AwgybTBjcQAElIcK56ijfTChQvx2c9+FqtXr0YwGMRbb72FadOmYcuWLbjkkkuKVh07ViAjTRCF09OLa+YNfxbrXRmGhc88tBk7W2NIayZkKauIjHPoFofPI2ByhR/tCQ0/+uypWHJi9Wi9vWMCMqilQdE56YaGBjz55JN9Hq+pqaF50gRBFETvIrBIxlubVRcckrfW2BJDWzSNcQEZLWYaHLntWJJgK5JFVYMqiQuECutKg6KNdHl5OZqbm/sUeb355puYMGHCiC2MIIhjm5Fsg3KK0cr9HnQlRaR1E0wEWMZUMwCcA9GUgVMnhamSmDhqKNpIX3bZZbj99tvxzDPPgDEGy7Lwyiuv4Otf/zq+9KUvjcYaCYI4RhmKt5YvDOsUo+kmR3VQwcGuFAyTQxRsA21YFkwLkCWGaxdPo7AtcdRQtJH+/ve/j1WrVmHSpEkwTROzZ8+GaZq4/PLLceedd47GGgmCIAD0KmjqNU+6p3VIwYQKH9pjdnWymankZrAN/EMv7YHAGFUUE0cFRReOOezfvx8NDQ2Ix+M4/fTTMXPmzJFe21EFFY4RxOgy2OCHLyyYjCdea3KL0XTTtD1qC5AEhgnlXsiSOORBEQQxFhTdJ/2d73wHyWQSkyZNwic+8Qn8y7/8C2bOnIlUKoXvfOc7o7FGgiCOcwoZ/PDSBx343kVz3V7cQ5nxlgFZxKRKP0I+eViDIghiLCjakxZFEc3Nza66l8Phw4dRU1MD0zRHdIFHC+RJE8To0XAggmsf34qAIsHr6StXmdJNt/95Tn0If9x+CN/98w4EFAlhn6ePJkP29qVawUwtUAQwhJw05zyvCMlbb73ljpgkCIIYSYqREhUEhsoyGaIgIOTta6B7b1+K9Jd7H66YCHH0UbCRrqioAGMMjDGceOKJOV980zQRj8dx3XXXjcoiCYI4tijES8zepjOuQRJQ8OCHo3nyUn+591LQHh8p756iBIVTsJG+9957wTnHlVdeibvvvhvhcE+ISJZlTJkyxR1YQRAE0R+FeIn5tkkZFhJRFZMrfYMOfuhvUAQHR0o10RFXMbW6DLNqg0f+BAzAUMZ4HilGyrunKEFxDEm7+5xzzsnRxSYoJ00cO4ymlzNYhfb3L54HAHm3aYulkVBN+GUJNSFlUCnR3tKjummhLapCNey6mQq/B7PrwyVlHIrJvR/JXHohn1sh53Ck9nM8UbClNQwDpmliyZIl7mOtra148MEHkUgk8OlPfxrnnnvuqCySIIgjw2h6OYV4ib/YsBsAz7vNpAo/9nclwRiQSOuIcAwoJZotPfruoSi6kxo4AK8kojqoQJaEkgghZzOcMZ6jxUh596UcJShlCjbSX/nKVyDLMh566CEAQCwWw0c+8hGk02nU1dXhJz/5Cf74xz/iE5/4xKgtliCI0WO0c6E7DkWxuy2OCr/cp5iLMYZyvwfvt8TAwfvdpjroRVI1cOuyk1FZJg/q6S+aUYX5UyrxmYc2QzctVJfZYy2dfZeacSjFXHohn9vutjh2HIoO6N2P1H6ONwruk37llVdw6aWXur//+te/hmma+OCDD/DWW29h9erV+OEPfzgqiyQIYnQppA95uH3FhXiJmmlBNwbeRrc4KstkLDmxGvMmhgc1rM7wjfEhL/yKlGMgehuHscbJpXcldfTORDq59+k1ZUdUe7yQz00vwLsfqf0cbxRspA8ePJijKrZ+/XpceumlbgHZypUrsWPHjpFfIUEQo04xXs5QyfYS86GaFmRRgEcaeJtiPcmjyTgIAsP1S6ajTBHRErVlTS2LI6WbaImqKFNEXL9k+hH1+Av53Ar5TEZqP8cbBRtpr9eLVCrl/v7qq69iwYIFOc/H4/GRXR1BEEeEI2HICvEST6oN4uTa4Ih6kkebcXBy6Y5yWltcRVI1MKsuOCa585Hy7ksxSnA0ULCRPu200/D4448DAP7xj3+gtbUVH//4x93nd+/ejfr6+pFfIUEQo86RMGSFeIlf/dh0fPVjM0bUkzwajcOiGVV47Ir5eOiLZ+FHnz0VD33xLDx2xfwxKW4bKe++FKMERwMFt2Bt3LgRy5cvR11dHZqbm/H5z38e//M//+M+/9WvfhWJRAKPPfbYqC22lKEWLOJoxrI4Vj6yxZ0i1bsPuSWqYlZdEI9dMX/YF9GcCnKLwyMM0ifdzzbFHjO7HWuw9i2iLyP1mYz0Z3usU1SfdGNjI1588UXU1tbis5/9LAShxxH/5S9/ifnz5+O0004bjXWWPGSkiaOdI2nIilUcK7ZfO99rX91zmIzDMCHFsSPPkEdVErmQkSaOBY4FL2egXu+zp40j40AcVRRkpP/v//6v4B1++tOfHtaCjlbISBPHCqXm5RSzHlK0Io41CjLS2WHtAXfGGI2qJCNNECNGMQpoPXn1aI6iFTCyefVSu4khjm0KUhyzrPwVnwRBEKNFsQpoR0LR6mgdDkE3FiPLoe4U6st9R+RYNCWDIIiSYyg6z6Ote13KIyQH4mi9sSg1TItj3buteGzTPry29zA2fP08TB7nH/XjDslIJxIJbNy4EU1NTdC03C/8v/3bv43IwgiCOH4Zilc8mrrXR+twiKP1xqKU6E5qeOr1/Xh884c42N0j6PX4q/vwzRWzR/34RRvpN998E5/4xCeQTCaRSCRQWVmJjo4O+P1+1NTUkJEmCKJoeodjOxJq0V5xfzOkgfwzp4vhaBwOcbTeWJQKjc1RPLZpH/6w/SDSet+U745DUXDO+3wfRpqijfQtt9yCT33qU3jwwQcRDofx6quvwuPx4F//9V9x0003jcYaCYI4hskXjq0JeWFxqyiv2FG0uuPZBrRE1by93o6iVb4cLYB+87alOEJyMI7GG4uxxglpP7ppL17d09nneVFguHBuLb68aArOOqFi1A00MAQjvX37djz00EMQBAGiKEJVVUybNg333HMPVq5ciUsuuWQ01kkQRIkxEsVI/YVjD3QlkdBM6KaKyZW+gr3i7BnSu9viiGR6vbNnTue7KRhXZhv7w3Etb962FEdIDsbReGMxVnQnNfz29f34da+QtsO4gIzLF0zGFxacgNqw94iurWgj7fF43JasmpoaNDU1YdasWQiHw9i/f/+IL5AgiNJjJIqRBg7HerG/KwnVMNEcSaMiIPfrFfdm0YyqfkVL8t0UdKd0d7pXXdiLmqDSJ2979rRxA4bSuxIaJlX6cTiuouFApCSqp4/GG4sjzc7WGB7dtA+/f+NA3pD2vAlhfHnRFKw4pQ5eT99zeCQo2kiffvrpeP311zFz5kwsWbIEd911Fzo6OvD4449j7ty5o7FGgiBKiJEqRhosHFsd9LrGry2azusV94cgsD4h3Hw3BRwckZQOBgAMiKR0VPjlzBzt3Lxtf6H0tqgKzTSxvzOJW3/3dslUT49mjv5oxrI4/v5+Gx55ZR9e3tXR53lJYFg+rw5fXnQCzph8ZELaA1G0kf7+97+PWCwGAPiP//gPfOlLX8L111+PmTNn5gzcIAji2GMg73d8kOFgdxrf/2sj/uPieZg3ITygN1lIOFYQGG4+fybGlSnD7vHNd1OQ1iyohgkpswbVsJDWLfhksU/eNl8o3bIsaKYJRRJQGSit6ulicvTHA7G0jme2HsBjm/fhw8PJPs9XBmRcPn8y/vXsIx/SHoiijfRZZ53l/n9NTQ2ef/75EV0QQRClS3/eb1w10B5LI61beLc5iqsf24qT64K4dvE0hH1yXgNbaDh2XJkyIoVN+W4KDMsC5wATAHCAc/sxwF5P77xtdii9I6Hivv/3AQ50JUu2erqQHP2xzr6OBB7dtA+/23YAcdXo8/zsuhCuOGcKPnVq/ZiFtAeiaCP98Y9/HL///e9RXl6e83g0GsVFF12Ev/3tbyO1NoIgSox8hi6uGjjYlYLJOUQB4CbgERnePtCNq3+9FQFZhMCEPmHgIx2OzXdTIAkCGLONMwAwZj/m0F8V+byJYTQciKAtmi756umBcvTHKpxzbN59GA+/sg/r32tFb/FrgQEXzK7FFedMwfyplWMe0h6Ioo30hg0b+giYAEA6ncY//vGPEVkUQRClSW9DxzlHeywNk9seGgcgCAAYkFRNGBaHAIYp47zQLd6nGGvZnFrsbI3hQHcKVWUyFFEctXBsvpsCryxAkUSkNANggM8jwuuxjfRgNwpHU/V0vhz9sUhaN/F/2w/h4Vf24r2WWJ/nQ14Jl82fjC+efQImVY6+WthIULCRfvvtt93/f/fdd9HS0uL+bpomnn/+eUyYMGFkV0cQREnR29CldQuqYUESGMAA0+TwegREUwY4AI/EoFsWNJPDJ/eEgdc+14iwz4M97QmkNQsp3cR+LQWvR0RAFkclHNtfjjbs8yCpGQAHQj4POAfShjnojQJVT5cObdE0fvPqh3jitSYcTvS9KZpeHcCXz5mKS8+YAL98dKlhF7za0047DYwxMMbw8Y9/vM/zPp8PP/vZz0Z0cQRBlBa9DZ1HZOAc4OAwLUBgDCGfB+0xFaLAwAAYnLt5XsYYFEnAu80xBBUR1UEvKvwyVMNER1yDIgn46nkzcPn8yaMSju0vR+t4yofjGtriakF521Krnj4eh2i8czCCh1/eiz+9fQi62Xeg4+ITq3HlOVOweGb1UXsuChpVCQAffvghOOeYNm0atmzZgurqavc5WZZRU1MDUSy9pPuRgkZVEscTTp90Y3MUnQkNAgO8HgnVQQWccxzoSkHKGHCLc5xQGYBPFsHBsbc9gaRuYnKFHyGfx93nSI6THIxiFccGOg92O5qZt3r6SFV3H09DNBxVsIdf2Yste/uqgvk8Ii45YwKuOGcKZtQEx2CFI0vBRpoYGDLSxPGGZXE0HIzgjmcbcLA7hQnlXghMQEoz8WFnAgyAyQGfR8CUcQEwxpDSTOw7HAfAMGWcbbizSekmkqqBh7541pjlUIv1SHMMZMYzP5IGsr++9a4ibxRK3ROPqwaefn0/Ht20D02dfVuo6sJerFw0BZd9ZBLKj6EUw5CC87t378a9996LxsZGAMDs2bNx0003Yfr06SO6OIIgxpaBLtyCwHDqpHJ88xOzcMezDWiNaij3eyBLDJLAkNYtiAJDyNvjLeumCdMC/LLgFmhlM9bFVpt2deAXG3bhvZYYdIPDIzGcXBvEVz82o19Dl696elZtEI0tMWzc2T6qBm+khmiUsid+oCuJR1/Zh9++vh+xPC1Up00qx1XnTsWFc2vh6aeI72imaE/6hRdewKc//WmcdtppOOeccwAAr7zyCt566y386U9/wj/90z+NykJLHfKkiWONYi7c2dsmNBNJzXBzhJJg56HDfg+SmolY2kBtSEFlQOlzzHye9JHy8F7+oB3/9tSbiKR0wG3JYmDMFrr4yb+cVpDBOpIGr+FABNc+vhUBRcrb41tIZGKkPPGRZtuHXXj45b147p1mWL2slDPo4qpzp+KMyRVHfG1HkqKN9Omnn45ly5bhBz/4Qc7j3/jGN/Diiy/ijTfeGNEFHi2QkSaOJYZy4bYsjie3NOFn6z+AapjwyxIiKR2qYXvPgsAwqzYIxoDmiIrakNKn2Kp3Tjrb4GmGBTCgNuTFZfMnj2hx2csftOO632xDXDXdxwTYxsACB+d2odgfV507qEeafd48AkNMNRBJGQgoIn74mVNw7szqfl9fLBt3tuPrT7+FmqCSd12WxdEWV/Gjz56KJSf2Pa5lcax8ZAsam6M5njhwZGsEHAzTwgs7WvGrl/fgzabuPs8HvRI+P38yVi6aggnlvlFfTylQdLi7sbERTz/9dJ/Hr7zyStx7770jsSaCIMaQ4YRQX9jRApNzTKzwgzGGyjIZac2CbpqIpA2U+2Vct2Qa7vzDOwNKVQLAb179MMvgi0jpJlTDwuGEhm//3w789vUmrFk+a9he3qZdHbj1d2/nGGgAsABwi0PKGOr3W+JoOBjBqZPKBz1v44MKulI6OhMaDNNWNYurOm743zfx88+fPmKGeqhtYE504o0Pu9DYHEW5z3PEBVmyIyReScDbByJ4dNO+vFOoThjnxxWLpuAzZ01CmXJ0tVANl6LfbXV1NbZv346ZM2fmPL59+3bU1NSM2MIIghgbsqU/wYCUZsKwLEiCAK8s9HvhzicZysDgk0X4IMIjidjTHkfYJw8oVQkAX3p4C17f1wnNtCAwhkjKAGOARxQgAjBMjvdaYljzbAPWFhCO7S9k7hjWaFrPrNf5DzKtZXCV1AzLwpv7u/s10s77VyQBuzsSOVOVBNjSo5Gkjpt/ux1XnTsV586oxqzaIHY0R7G9qRsmOMJeD8YFZIwrUwoK6w+lDax3aiKW1pHSTNSEvH0MYCE1AkNJRzhreL8lhljaQFo3kS+kO39qJa46dyqWzhoPsYSK2I4kBRvp73znO/j617+Or3zlK7jmmmuwZ88eLFq0CICdk/7P//xPrF69uqiDv/TSS/jhD3+Ibdu2obm5Gc8++ywuuugi9/kvf/nLeOyxx3Jes2zZshy98M7OTtx4443405/+BEEQcOmll+K+++5DWVmZu83bb7+NVatW4fXXX0d1dTVuvPFG3HbbbTn7feaZZ/Ctb30L+/btw8yZM/Gf//mf+MQnPlHU+yGIUqbQi6mjpKWZFpojaaiGaetbM0CRRIwrk6HnuXAXo8C15MTqvFKVr+45jDuebUB3Uodp2V6gbnL7Ap7R1hYFAZLIYVoWIil90MKogXLEQa99w+H3iEj08qQduVDnBwDYAMnBzqSGhGoiqRt9enYt9z92L/Z/rduJX/1jL1TDhKpbMCzuGimRAX5ZwvSaMnz9ghMH9LqLHaLROxzv9YhIqDrSuomDXSlMqPDlGOrBBFmGkn/ftKsDX3t6Ow4ndTuF0QuRMaw4pQ5Xf3QqTplY3u97P14o2EjffffduO666/Ctb30LwWAQP/7xj7FmzRoAQH19Pf793/8d//Zv/1bUwROJBE499VRceeWVuOSSS/Juc+GFF+KRRx5xf1eU3GKTL3zhC2hubsa6deug6zquuOIKXHPNNXjyyScB2LniCy64AEuXLsWDDz6IhoYGXHnllSgvL8c111wDANi0aRM+//nPY+3atfjkJz+JJ598EhdddBHeeOMNGr9JHBMUczGt9MuwOMfBLjvsKAoMTLANlXMxD/s8fS7cxYZee0tVOl5tLK3bqmVpAMyt4QKH7c0KzNbbBhj8HnHAcOxgYzU/95FJ0E2OMq+EjrgGDteRduEALAvwSAJOm1ze7zku93mQ0k2YmSqn3l65gyjYvb5dSa1PQRRgt63FVANvZbTPv/ZPJ+Iri/vvnCl0iEZ/ozq9HgkpzYDJLbTH0gjIdrvcYIIsxY4sNS2OF3e04Pb/721E032rtIXMTeC8CSHc+7nTSqr9aywp2Eg79WWMMdxyyy245ZZb3JGVweDQGsaXL1+O5cuXD7iNoiiora3N+1xjYyOef/55vP766+50rp/97Gf4xCc+gR/96Eeor6/HE088AU3T8PDDD0OWZcyZMwfbt2/Hf/3Xf7lG+r777sOFF16IW2+9FQDw3e9+F+vWrcPPf/5zPPjgg0N6bwQxFuTzlh3vtNCL6azaIEzOYVocssQgOKFrBkDg0AwOk3PMqs39ux+uAteOQ1G8eyiClGYhYhqwOGD18kidEDQynr3XIyKmGnnDsYXk1l/Y0QqPyCAKDF6PgJSemYoF5FhrDuDE8WWYN6HvjGrnfHfE1JxhHdlrzkZgAkzLyhvezX0hoOoWfrxuJ2bVhQb0qAsZotFfOqI6qOBglwXTssd0JjUTgsAGlEUtpm4hbZj43bYDePjlvdiXZ0SkLAoYVyajwi9DMy0c6EqN+VCSUqKonHTvwoKhGudi2LBhA2pqalBRUYGPf/zj+N73vodx48YBADZv3ozy8vKc8ZlLly6FIAh47bXXcPHFF2Pz5s1YvHgxZLnnrn/ZsmX4z//8T3R1daGiogKbN2/uE6pftmwZ/vCHP4z6+yOIkSKftzytugyRlFZUEVhjSwwiAySRwbAASeBgcDxZ+3GR2dtlX0gLCb0um1OLf+zqyGtEXt7Vga6kDsYy3ruFPoaMw1Yw49w20IKAfsOx/Y3V5OBI6xZkkeFAZxITK3040JXG+JAXB7pSMK2e8Dpg2+qaoIw1y2flrLf3+TYtC6bF8xrqbCzeE9p2zms+OABJADTDwo9e3IlF06sG9C4HG6LRXzqiTJEwocKHtmgaKd3E4YQ2qH56f+cW6Ck429kSwzd+34AX321Bd1Lvsw+/LKKqTEHIK7n7UFA6Q0lKhaKM9IknnjjoSK/Ozr4ybUPlwgsvxCWXXIKpU6di9+7duOOOO7B8+XJs3rwZoiiipaWlT7GaJEmorKx0B4C0tLRg6tSpOduMHz/efa6iogItLS3uY9nbZA8R6Y2qqlBV1f09Go0O670SxHDYtKsDa55tQCSpwy+LCHolCALwzqGI25dcaPVuZ1KDwATUh304nFChGpabk/Z5BIwLKEjqZt4LaX+h17qwnab6xd935Q23WxbHCzvsvzeRMYhMACSeN2epm3bFdVWZjO6kUdSUKnvutQrVMGFljHGZV4IoAHHVxPiQF91JDWndhJV5z7PrQrjjE7lV5PlCvdG0ju6UDgY7dGtx9LHADLaRLhQhE3be35kctnc5UDqiTJEglnsRSRpY9fEZOHNyxYAFYAPVH6R1Ex0xFd0pHU9v3d/r/QCyJKC6TMmrCkZDSfpSlJG+++67EQ4fuRDEZZdd5v7/vHnzcMopp2D69OnYsGEDzj///CO2jnysXbsWd99995iugTj6GA1hDsviWPtcIw51p8A5R1w13CKvgGx7Jt1JPa/Xk69617mYy5It55nWrZ7qbo+AtGHBY1r9Xkh7h173dybx3y/tRkIz+w23B70etEXTUCQRumlBGCQYzLmd063wywVPqXLmXluc2566aOeau5M6FI+AurCCw3ENflmCX5ZQE1Lw+Tz92P2FekNeCR2SHTKXRQaL2+tkzI5AOIiMZSRTBzfWHPaNgsUL9y77+44Nno6wb3i+dPYJg34n840sTWi2cc6nCuaXRfzLWZNwxaIpuPOP76CxOYYw52M+lORooCgjfdlll41pm9W0adNQVVWFXbt24fzzz0dtbS3a2tpytjEMA52dnW4eu7a2Fq2trTnbOL8Ptk1/uXAAWLNmTU6IPBqNYtKkSUN/c8QxT7GVsIUa9Ce3NOHd5hjAOSRRcMOtad2EaphgDFANO9/YWys7n+eSezFXMq+xX1fshZRbHL/bdgBx1UBd2NdvuP2qc6ZCNzlqQgqau9MwTO4aseyQMENGYCRzgf/eRXMLmlI1PsTQHlNhcQ5JtKvRDMuODEwo96I1piHs8+B7F81Dd0of8HznC/XaHnoammlbYy3z+UqZ6nQHRWKoK/ehPaYhoRoD3ooImc/RI4rwecSCvMvBvmPFVIIPhHNu3z0Uhc8joiOh5rScOYwPKfjyoqm4fP5khP22POxIrWE0KEX98oKN9GBh7iPBgQMHcPjwYdTV1QEAFi5ciO7ubmzbtg1nnnkmAOBvf/sbLMvCggUL3G2++c1vQtd1eDz2l2TdunU46aSTUFFR4W6zfv163Hzzze6x1q1bh4ULF/a7FkVR+lSaE0R/FFsJW6hBtyyOp7Y0weIcsphb5MVEuAbC5By6acGHHiPd2+BmX6CWzalFU2dySBfS7LWndBPRlA5FEpHQzJz2nuxwe1dSt713UcCECh9aImkYek9LFIOdc60LeTO5cg7TtBD0etBwINLvRXXZnFrsbI2h6XAKad3IhI8Bw+IQGUN10AtBsHu/97QnIDCGj86owo5D0X5z571DvY6HbnIOSRAgwIJu2b3cJgOCXg/K/R7E0gYEZreQjSuTMxXV/X9nWOZHluzPfrCbokK/Y4VUgg9GUjdxQqUfm3Yfzju/2SMyXHXuVKz+p5MgS7kh8f7WcHJtGS6cWwfd4mg4EDniBrJU9csLlgUVBCFvDng4xONx7Nq1C4AtN/pf//VfOO+881BZWYnKykrcfffduPTSS1FbW4vdu3fjtttuQywWQ0NDg2sgly9fjtbWVjz44INuC9ZZZ53ltmBFIhGcdNJJuOCCC3D77bfjnXfewZVXXomf/OQnOS1YS5YswQ9+8AOsWLECTz31FL7//e8X1YJFsqBEfxQrvViMJGfDgQiueHQLupM6RKHHSLvHzhhnAAh5PagKKnnHKQLoc4EaV2Z7bofjWsHTnXqvXTXsli0wQGRCnz5cR7byns+cgodf3ut673HVwP7OVEbAwvaqfR7RnaZlWRwHulOYWOFDV0Lrc1HNfj8J1URCM2BYPGMkbS3x6mCPeIezjivPmYpNuzsGvFBn62UrkoB9hxNI6XZEgjHbyzctC7UhL6JpA7VhL25ffjKau9N4/p0W7Gm3p2VZFnf7pPVevVh2O5IAUWAIKBJu/PjMAWVQi/2ODdVjbI2m8cgr+/DEax8ilqeNSpEEzKwpw5rlJ+OcQVTVstewvzPZc27GwECWqn45MMajKjds2IDzzjuvz+MrV67EAw88gIsuughvvvkmuru7UV9fjwsuuADf/e53c4q8Ojs7ccMNN+SImfz0pz/tV8ykqqoKN954I26//facYz7zzDO48847XTGTe+65pygxEzLSRH8UMwRhTn2oqIvtxp3t+NpvtyOlm3auOGMoHCxuQTM4Thjnx8QKH/a0J/oYXAD9XqACsoCrPzoNlgVwBpw+qRzzJoT71YnuvfaBxlb2fu+xtO7OZvZ5BDRHUhmjZ+dxsw384YSK1qiKoGLPsM5es1PLZFrcfT+RlIaD3WkwBtSGvajslZ9P6Sa6EirkTE58oAt1z/uMIeQV0dSZ1U/ObA/a6xFRHZTRElGhGSaCXg/8sohp1QFcOLcOkyr97rQsR3FsV0ccr+05jI64Bs2woGfkRH0eEQFFHNBoOd8xUbDbyRx1OIa+53koxWc7W2P475f24A/bD/YRapEEhsUzq3HerBqcNrG8aA94rA1kqemX92ZMRVA/9rGPYaB7hBdeeGHQfVRWVrpec3+ccsop+Mc//jHgNp/97Gfx2c9+dtDjEUSxFKPEVUhrS3Y1dqVfhiwJUDwC2mO2xysJPXlcw+QQBIarPzoNl8+f3Md7AoCVj2zpt0Vrf1cSP163Ez5JgGFhQA9nx6EodrXG4PPYRVqSIEDxMCiSiLRuQhRyc+O9w+2CwHLCoIwxmJbtQWdLVlqWhfaYCoEBEyrsGdbOmscHGd5vjYOD44QKPxRJyJw3GV1JHUnNRCSpozLQk9/lnKMrocHkgG5aBbWqXb9kOm55ejs+7EwiE6iAYXE3Z16mSDjYlYZpWQBjCPs8kCUB77XEcaBrD75/8TzXWJ46qdyVGs0dUgJUlSlQJHHA1AgAvLyrHe1xNXM9ZW7hYHVQQZkiDWkEKOccr+3txC9f2oO/vdfW5/mgIuHzCybjinOmoC48tGEXIzVqM99+C40UFPs3d6Q5vpTKCWIMKFSJq9znwbamLiRUE16PmKkMHrgaO7s4qr7ci454bsuUINjzkJ1Qae+LTMOBSL8XqIRmIqGasDhHsNyHyoBnQGPx8q4OdCQ0W74TjoyogDLFA82wYJq2wdJNC9CRN7+dXRn+8q52/Hrzh9AMey61ZXGopoWOmAqL29OwHAMN2LnhlkgaRiZ03NSVzHi0toGvCXlxoCuJlG4b6pDX44b9ZUmAZlg554Fz7la2ez0CdrXG+lyo+zMbkZRmV5GLLFP8JcDrKczw9B5SAgxstDbt6sCvN38I0+KuJ52tDjehwgdRYAW3NpkWx/PvtOCXL+3GWwcifZ6vC3tx5TlTcdn8SQhmzQofCqNhIIvNLRdzEz0WkJEmiFGmECWuurCCH77wvj1wQNWR0Ax4Pbl5UyC/tKZTLev0+XJuhzdTmomwT+ojwpFNfxcoDo72mO2ZCcy+8AsC69dY2IZin2soJMbAAaR0C5qhoTIgI5LSoRkmImkdfk//YhnOzcS8iWGcOrG8T4HRxAof9nelUO7rMRBO8ZZh9VQYMzCkdCtHk7o+7MOhSApJrSc9MKsuiEXTx+Hhl/flFIO1x9I9Nzz2DvHyrg7MqQ/hgY27YVocJ9aUYe/hFFTDhJQ5R7phG3ePyGBmKsi9Hnu/gxmeYo2W44lqhgmfR0TasCByu7+aiXYkpS2ahk8WMasuNGDxWVo38cy2A/jVP/bgwzzKYCfXBnHN4mn45Cn1fYrBhspIG8hiCzSBoU8SO1KQkSaIUWYwJS5RANpiKpojaZT7PUhq9lSgVK+hB/21P/WulnVyzvMmhgctvOnvApXWLKiG6Rp3Sei5iPY2Fo7R0k0LPo8I1bAAARDA4BEA3eKIpXX4ZQEn1QZx09KZqAoUNuUpn9ylxTmu/822nh7dzA2FxTk8omAfP3PeRdjHdzSpPZKAcX4PLl8wBYIATCj341On1KGxJYbHN38IzbRg6DyrWtsOHTsyqb/evA9Br+QaUlEUURv2utszDjBmK6LZNyz2jVa2we3P8FgWLzqS4hj1yoACw7LXnZ3yYMy+YQv7PP1W5HclNPx684d4bPM+dOap1D5nxjhcs3g6Fs+syq13GIF2pZE0kEMNnQ9Xzna0ISNNEEeAgdpOIikdzZG0e2GpCWUu+pYFk1toi6YhhL2IpIx+258K0W7OR38XKMOyYFm2C+nziK4n6NBfHj3otQ2FYdrjHRmzK5VTuomQz4Pblp1UdBFQvkEc2WtO6/YNhVMJ3gMHYwKkTC48pZloj2sQBOCp15vcUOjv3zyAaxdPc/t+07oJk3O3CI+Dg1v2edBNC/+7pSkTGrfPiSOr2eN52+sQhb7V7EBfw+Pkof93SxMOdqeKiqRke6JeD+u1jp6+8i8unNLnvO/vTOJ/Xt6L376+Hyk9dwKYwIAVp9Tj2sXTMHdC3zDzSLUrjaSBHGrovNhJYkcaMtIEcYQYyCvMvrD0XPRVpHXDzqGmdMyqCw14ERxMu7m/1+S7QDn61SIYQl6PWwjm9dgX0mxjkd9Q2NKb3AJsg8XwpYUn9Onx7m/Gs/O4E9LuLTCSvWZZtF/DRMC07GpjwP5/CLY2p8WB5ogtNhJQRAQUKScUeucf3sEXFkzGrrY4upKabfAzSl+mZYf8a0JeiAJDW1QFGHK8vzJFQkC21dkSmo72mAafLCDQSzymt+HZtKsDa59rxLvNMVgWh8h6zk1KN3GgM4nqkF29LjKG7pSO2fU9Yevenmj2OgzLcvvJz8067+8eiuKhl3bjz283uxO7HLweAZ87axKu/ug0TKr05/3ODCWkXOz3bygGcjih85HqHx8NyEgTxBGktyHduLO936EHAUVEUrUHHtx43kx8ceHgco1Dob8LlF8WkdLNTNVwTyFYVZmCuGq6hmbHoSg8IkM0rbvtP1PG+V1DYVochsVRG/Jh4852VPplRFIaHnppTx9PbPHMKrz0QYfb35zSTXfaVUDObUNy1vxec8wdJ+nLeJ8A+mh0CyJDQBIxqZ+CrJc+6MAXz56Mn/y/D8A5h2H2TNpyqqStjFGrDXnRElVzvD/G7Ela3SlgVl0Q0bQxoOF5dc9hrPn92zgUSQPcnjgGMFgmhwUOZgEmOJq707YICzhkScDimT2DNvJ5ooyxTPW84LYPza4LYtPuDjy4cQ9e2tne5ztQGZCxcuEUfHHhCTmV770ZjWrskTKQww2dDzUaNdqQkSaIMWSgCwuDXYgUkEWccULFqF4s8ult/3T9TiQ109W6BgNSmommziSqg4rr4URSGpIZZTFHGSy7/Wd/VxKMMdzzfCMMy+7dTmgmFElATdDremJvH+jG5t2H3QEhKd1wPXrDtCBLDI3N0Rxv7exp49BwMIJvPtuAA10pTCi3FcQAIKCISKkmOuIqxod9iKU0lHk9A4ZCLzl9IqrLlH77jVXTLgi7bP5k/Oofe/o1wmuWzwKAvEVvy+bUIqBI+OEL7yOS0u3iPIGBczv/7REBzcidow1wKJIIWWJ44rUmzKkPY9GMqkE90YAs4MzJFbjkgU15K7UnVfpwzUen4TNnTnIlYwfKNY9Wu9JIGMiRCJ0PJRo12pCRJogxpJSKVpwLlCPuYHFgcqUfHXHNDV3bOWaGmqCCs6eNw6ZdHbjzD+/YodqMpjYApDQD+zttQ6waFvyyiDKvBx6BYd/hJFTdgmlyGAEOr4dBEQRbRtPiMDIGxrB4z/xoAB2ZEHJaN/Eff220e40nhHHqpHLc8YlZWPP7t3Gw265k9nlEMAZE0gYqAjIuPn0CHn5576Ch0PKAJ0e3vL/P4/L5kzGtKjCo95fdTvbCjla0RlJ4+OW9+J+X9yCWNqBk+s/td8ldKVDnPUsCwDnD+JCCyjIZ4OjjrebzRCUGlPs9iKcN3Lv+gz7vd059CNctmY7lc2shZZ2TwXLNo9muNFwDWeq55aFCRpogxpBSvLBke0tej4gyr4S01jMJC4zjcFxDw8GIG/qcXOlHQjPdoiVHHlM1LPg8DNVlCnTTQkrj0C0LHonBsoD2WBoC8yKpmVANC1ImqsB5ZtQjenqROYCkZlduv9scxVWPve7m6QEg5POgJaoimrZnF0uCgJNqy7Bm+SwEvR48vnkfNNOCwoScyV6KxBBJGzBNC90JHdcunoY7//AOmiO2wRcZg8k5UpqJoFdyP49CvD9BYIildfz29f05OdyupAbVsNxKdGS9x+wssR2+BvyyZHvzGePb21t11vL6vk78f28cxLp3W9DcFu/z2Z47owrXLZmOc2aM6+MJF5JrLvV2pVLOLQ8VMtIEMcaU2oWlt7fEwHImYVkWR8QysL2pG7vb4jkKYyeM80PVOQzLrqZui6nQTIamrmTGK+awLEASbeOTUE18eNh+zuQ9nqRjuli2hc6G2+pnjc0x3PL0dgB2y9OkSh8sy+75Teomohl9aSdi8db+CEzLcm8EOGwPmXN7TT984T1MrynDOdPH4S/vtKC5OwULgAAg6PPgCwsm53we2dGHfEM5+svh+jxijscM9PRiZ4swmhaHX5bglXs813zeantMxSOv7MXjr/bV1BYYsHxeHa5bPL1fT7XQXPMjKz9SMpGf/ijV3PJQISNNECVAKV1YCvWW9nTE+5WiDHrtfm8OW2rTkxmhaXK7GCpb/5kx+8c0+3qSDtmjKp1tRMbgUwR82JUCA3DS+LKsfLSEyozu8gMbd2P+lErMrCnDK7s6YHFk+oiZq04GAH5FgigwbG+yc+MBWUR9uc8d/ZnSzZx8sMNAIeKg19NvDjcb530xnhvuFhhDdVBxc+LZ57/SL6PpcBK//MduPL31ALReXrksCfjsmRPxlY9Ow5SqQL/HBgrPNTe2xEou8pOPUswtDxUy0gRRIpTKhaVQhbQXdrT0K0VZX273dQO2J+dM5xIBGOA5htjJPefDVftyfs/6//a4CtPirnb2no4kasM9fcWOcXn3UBSfeXAzGlui7v568sA9RJM64mkD3OKwMusK+z2ugQxnGf1spbXeIWLVMNFwIIJbfrsdF86tzempdjAzSm7OzGy7cIzD6nUexgXknD5p5/xPqvThly/txl8amvu8JuiV8MWzT8CXz5mCmkyl+2AUk2tecmJ1SUV+jnXISBMEkUMheXIArsJYthQlBLvwy5bo5Bmv0G4fYrDbgySB5YxmHGwOX39PGybPGH97C83IVWgDAN0w0ZnUEE3ptkCJyGwDnGeQMwdy+oYTmonOhIZxAXssrm30JbzXHMOvX/0Qp08qxy827MoJEWfLiUbStkgJA4Pi0VAZ6Jk/LwkCMul9mJajDsYgMDvsrkgC4qqdp0/pJhRRQNowMxOyTLzZpOLNpu6c9VcHFVx97lRcvmBy0ZraxeaaSynyc6wzpqMqjyVoVCVRKoyEXCPQK4ybNd5y2Zxa/OLvuxBQJFeK0uQcAmwjlx10lUXmenrOKEfT4n3GHQ4FZ99OyFqRbBEWr0fElCo/OmIqWqLqsI4hMmDyuADKFAlx1UBbNI2UbiKo2FOtIikd1UEZlQHF1Q935EQ55xnVNruIbnKl3zWenHPs7UggqZnwywJqwz6YFncnh7VGNdSFFYR9dpg5kdFiz3fepozz49ol03Hx6RPyjkIthOzxm/mq2sd6XOPxDHnSBHEMMVJyjUB+b2lWbRC/2dLk6ksHZBETKnxojqSQ1nNzogy2QWaMQRLtsZM8dxOImTy1s72TkC3EhGu9DJbTz60aJpq70zicR4e6WCxuF2UB3B09KTCGcWUy0roJ3bTHZnpEAR1xNVdOlNmvHxeQ0R5XcbA7hUkV9pt0ZDhFgUES7ZRCQBahmhZaoxrKFBG3LTsZHXEV963/AM15bjZm14Xw1fOmY/ncuowk6tApxS4DwoY86RGCPGlirOmvhaYrc5HtT66xUM/buQF4rzmGwwkVQkZhK6BImQEXPdsy2IVLRiaW6/WIqA16M7lYuHOYJcHJD2cquTMGWmDI2Z8AoJd9z4uUldvtXTk91AudKDD7XBqm/V4kEbUhL5K6ibZoGpwDikeAkZEPdfLvFuewOMcJlQGkdBNtsXSmtcxeiUcUUF9u59APxzU3WjG1KoCTa4NY19iGps6+06jOnlaJ6z82o8/Ai5Ggv+gJ5ZrHDvKkiWEzUuFVojDynW8AfVponNaigCyiO6njFxt29ZFrLNTzzr4ByJ7UldRMxNWe4QzZ1deGZaufcItD1S1wAJIooDupo9wnoyupwcq2vM4catj5bYvb05wAp8IZaImm+9wMeCQBnNshdCennKdja8iYFodq2fKkDHaxl9NS5twMqIYFBgZRdI7H3dC7VxagZ+RRfR4RYZ8HXo8IQQC6kwYsi+Or581AVVDBa7sP488NzXhl9+E+61g6azyu/9h0nHlChfvYSP/tUa659CBPeoQ4Xj3pkQyvEoPT3/nOzhN7M33L2dOQANvw3fWp2fjXs09w91WI520YFj7z0GbsaY+jukyBTxaR0OwiLc0sxL+18csiyn22ote1i6fhP59/D43NUZhWdsuR7bmalu0NCwyQRQHjAjJMbo+kzI5yewRAylhGwzRhWLbYR1dSh0ewQ+m9q5+HAgMy6mB2Zbok2DXfBuduEZpT9MXA3KEcEyp8CCgidrcloBompo4LwN+rWvtQJI0yRUQkZSCS0nOOKwoMnz61HtctmY6TaoM5z2V/FzTDjljUhry4bP5kXD5/8oCGlW6sjx7ISI8Qx6ORHmp4lRgaA51vUbBnQE+s8CGpmzjYlXTzwc61Vzc5akIKfvIvp+HsaeMyhULRHPEKILdQ6NrF0/CjF3ei4UA3kNmXItlDLFTDxKHudMHr93sEfOasSbj0jImYNyHsDpjoiGtIG5bb+lQsomBXSxuWfUOyfG4tnn+nBYJgG8xibiR6Y1dd29EIw+TQrJ6cs4OeuTlwHhEFwOuRXO3ypGpg7+EEvJKIadUB97W6aaEjruJwQutT4S5LAv7lrIm4dvF0dxpVtmHd35nEf7+029VA707qUA3Lbe2aXRfEmuWz8v790Y310QUZ6RHieDPSPdWgA1/kqRp0ZBjsfB/oTiGpmphU4cXBSDqniMspyGKwpTPnTQjj6xechOt/s831vHuT0k10xtMQBAFJ1UBatyCJAGO2NykyhoAioiup93ntQIgCUB2QUVvux7I54xH0evBcwyG82dSNpD50YypkhFT8soBvLJ+Ff/+/HUhqJuSM/Kg+RHdaZEC5X8a4Mhm72uKQRAaR9fQSc9ietEcU4BHtIjCLc1SVyVBEuxCsPZpGTDUwqcKPkM8DzbCLzbqSWp8wfJki4V/PPgFXLJqCtpjqerq9p4ZF0zoszlEZkNGV0N2KcmTWIwgM9eU+rO11ozxWN9bkuQ8dykkTQ2K0puEQ+RnsfFeVydivpXCwW0U6U4mVIwKSSfYGZBG72+J4c3/3gOIVum6iK+mIkdi9xbppT2jyCAy6ZSGSKt6omhbQmdTRFu9Gw4FuBBTJnU/trDk7r10wHBCZBZML+K8X37fz8QBUg2OopsAjMPgVEbPrQ1g4rRI/fnEnTJODidxVIeuZNa0gqZn48qIpWPduK/Z3JmFxDT6PiKnVZdjfmQAHx/7OJLpTfW9sBAZcvuAE3LrsJOw4GMHXf/eWa5B7Tw0zLY6upD0+tC2qgmVSAvb3gkESOUzLQiSl5wivjMaYyUIgz3145P8LJcYEy+JoOBDBxp3taDgQcWfXliKFKBTpQ5yGQ/Rl8PMtwusRoVs9RVyOdXKLsQB0J3XoJgfLaF/nCwXHVQMHImlbelOA7UFn9qObdgEUA/oUcA10Wc++r9BNDkm0FcqiacMWGslUeksZsZFiv/kWgKRm9yULAstZW+99DbZWZxvTsgeELJ5ZhY/OrEG5X4YsibAyeWiL24VhEyp88IgCLMvCunftSVfOOaoJeXHR6fUAGJo6U30MtJQZRXr2tHH4zqfnYMfBCO54tgGNzVEEFAnVZTJSmgVVt5BUTRgWz1SH22NMbe3xXmvPhE78HtG9UQaKu7EeKRzP3Xk/NUEFAUVyh3Zs2tUxYsc6ViFPukQ42u42S30azrFGIedbFgX4JLuoy7l425XSdlU1A6AaJvyyhNMml+eV/uScoy2adquk7dcxeCQOzbArtPOFjgcyqqzXBnarFXPFQUUGGBywLPumoPdrCzXYHpGhMiDjQEbtrD8K2Z8gMCiiAEkU8MRrTZhVF8Ls+hAam6MIe72Z8LI9axocaOpMQTNNHOhKosIvozJgC53sOBTB9v3dffYviwxhvwzL4gh6Jdxw3gwAfSv0U5rZa2qYivEhJeemx4k6OA9xWz8FXo+ImGq4N8qjOWYyH2PluR9rkCddAhyNd5uOvnNXUkfvsgZHX3h6TdmYTsM5lijkfNeEFCiSAL8sQmR2uFaWBMiSADHThGxaQE1IwbwJYVy/ZDrKFBEtURUp3YRlcXSndKR0E5IAV4+7EAa8xPZ60uKwp1A563f6itHTQ+y+t0GOKwkMYmb/YZ8H7bF0joFmrP+1DdRizGAX2U2u9CGumnjopT24dvE0lCkSImkDkihAkeyRl82RNDTTDkePD9ojOfceTuBAd6qPQphT4R7y2bO1Z9eH3DxwPk/XKYYTwFyhFsDOv2e3rzmnzWn9UiS7xSv7Rjn7Ri8fI31jPRae+7EIGekxpvfdpt0/yWzxh5CCuGrigY27Sy707SgU9b7Ip3QTLVGVFIpGmELO9+fnT4biEVHu90AUhJ5K6YyAhlNQ9PlMe44zInNWXRBJ1UBbXEVSNSAKduuQzyPaKmGw9bgHgjHbk815zDl8HgWx7C2z9bKLUQu1B3fYrVoMtgHMns+cLY7SZ73oMWzZjqWzLoszdMS1nPnNYZ+c93xNqvTD7xHhlyXs6Uhi3+EkkpqZczyPyPDNT8zC23ddgMevWoAf/8tpeOiLZ+GxK+a7kbJ8nq4k2NPDeOb9OHnw6qCSs24Oq+czztQodCeNnBvlI31jTSmxkYHC3WPM0VyAVWpzkI91BjvfZ08bhxd2tKCxOYb6ci864qrbJ82YbehPrg3i8vmTc/aZLV7RGdfwwxfegyyKqA4Kdi+0YeXtNZYy/cwctncscA5RAAbreBqp2zbOAccWeiWGuGb2WWd/qmPZj/deL4NtuFXDRFqzoEi5E6Cyz1fY68Hz7zSj4WAEZp5K94AsoqpMQUIzcGJtEJIk9Pt3nC+l4fXYHntKtyAy+3OUBAG+zBjN/V22cptuApJgQZFElPtlxFWzz43ykZb+pJTYyEBGeow50nmikYYUio4sg51v5yIcV02MD3ndOcgpzUTYJ2HN8ll9PpvsEZmWxfH7Nw+gsTmGMkWEKNgGoDcS65svdnqFBQZUlymZWdN9XztSMaHs/aQNjnRc63+DAo/rSJKKzJ41bVgWYOaGjQWB4eS6IJ598yD+/f92YG9Hos9+yrLSVindhGwKgxqjfCNCGWOoDnpxsCsJ3bQL1WTJ1v6OqyYmVfhx3sk12LK3E20ZfW/Oeb83ykfyxrqQkaez6oKUEhsEMtJjzLFwt1kqc5CPdXr3mn50RlUfg+tchH+xYRfea4m5RYhzJ4Tw1Y/NGPQi7Hhbtzy9HU2dSderNHp5mxbvmz924BwIKCJUQ0LYJyOuGkMeduG8vcqAjFhaBwNzW8wGY6g3A5IguOFlkbEcY5LWTTyz7QAe3LAbB7tTfV4b8kqoCXrhk+2/ZYvbgiUTyn22lnem+jwf/Xm6osDg9UgQBBN+WUR7XOtjWIvpQz5SN9ZH0nM/lvuwScxkhBiqmAmNiCMKYbDq/95qVM81NGNnaxyaaYExYEK5D58vQC4SsL+T/3z/y3ivJQagJw/KYctwFqI5Igm23nZAlsDB0XQ4CWRyqgNVXudDgN2a1XvqFdA371xMNXh/eES7p1iWRAQUEWWKhG9/ajb2dCTxy5d2o7XXRCqBAWdPG4d9HQloJneNUXdKR1vM1hovkyUEFLGgjo3+hlxcu3gawj75qDNEoz2042jrjCkWMtIjxHAUx3pUgMy8d5skr3l8M5hK1BcWTMZLH3TYc4dVE3HNgMCAkNeDtG5CNUyYlu3Z5JOL7O2FWJzj+t9sg18WATAYlgXNtNAeVWFxXlRxlyiwTAGa5fZHO2poTo61QMe4X7INtSQwlCkiYmkDLBOyLhRn0pYTsi/3yzixtgxTKgNY19hqF5JlIQkMl54xEdd/bDqmVAVyjEVCMxFX7c+hJqig3CcXpex1rHmGo/V+jgdpYjLSI8RwZUFpRNzxy0AXsMHkQPd3JaEaFgKyiAq/jOZIGmndtCc0oWdgBThgclvOs77ci7WXnIJFM6ryeiEVARkHOlOYWOHLuZDGVQMtkbQ7C7lQbGPs9GHb6wBsj9U0C9PrZrCNsVPJna9anGeONbHCj4Rm4KvnzcC+9jh+81pTUUM2BADjymRMqQrgg9Z4HwESWRLwubMm4dol01Af9vWZt72jOYpvPtuAA11JTCj3QRCyZERHKDp2NBvxkVr78SJNTDnpEoEKsI5PBgvVOdX/5X4P0roFw7J6RDQYoBm2yMiEsA/IDJMQRWZPZspMgOIm76lq5hwdcVsu0uIcd/7hnT5eyMHuFOKage6UhsqA4q61TJFQE1Iykpe28RcYYGTtPx8Wt42nR2QwLQtmxsZbFock9lRoD0R2y1Q+nKcsDkRSGiRBwJmTK/CREyrxx+2HEE0b/Rr2fI+1xzW09/KcvR4BX1hwAq5ZPA3jQ15s2tWBNb9vyDuRrDOhoTrozTHQwMh0bBST+ii168hIhqaP5s6YYiAjXUJQAdbRxXAvhk6oLpbW4ZclW1qSc7x7KIo7nm3A9y+eB93iSGgmIindFgDJtFMpkoiQT4JummDMnnGMzPzo3pKdQK4edtowsONgBD96cWdeNagJ5V7sbI2jLaai3OfJMTQSY65hMy2OQnxqnjlXKu/R0WYZ79o+7uC+tCD0hK4HuiHgALpTtub4Lb/djjNPqABjdg91OhMBcGZA9/f63jAAnzq1Dnd9ag6qyuyblv7CrI3NMexsjSGtWajop9hzOB0bAx33jmcbclIfpZafHWztxYamj/bOmEIhI00QQ2C4HoEjYtOZ0GBaHNF02jXAsihAN+3nL5g9HnHVADi3JToF26NM6yZSmpGZuWyLWCiSkAkJ5zE1WW6jo5nddDiBcWVKHy9EYPYgh5ZoGge706gKKm6dRHs8XbAKWc77hX18UQCUjKcvCLYWeCEIjEEeQC0rH3s6EtjbkXB7i1nmBkMUAHMQ79+BAQj6JHQldbfDYjC5ywPdKaQytQA+ue8ldqgdG4Mdd39XEj9etxMBWURlQBm2ERxJRkMi9FjojCkEUhwjiCIZCRnXHYeiePdQBCndRNqwIDAGSWAQmN1ilNJtb/d32w7YbUjMGQxhb8OYrc7FYf/bGkujJZqG2Gu4hINjWG2VLtuQ61b/Xki5z4OALGJcQEZnXMXBSAqJtA5BEKCIQw+d1pQpqC/324poVk+LVW/6PswhCqyPqtlgcNjvXTctcG7fTDmFYQMhCQyKZEtxlskSdrfF8cfth7BxZzv+uP0QdrXG4JUEHE5o6Mgoj3HO3YlkjAEdca2PspfTklURkN2WrHzkG7YzUHg3O/VR7pNLTrlwNCRCjxdpYvKkCaIIRsoj6EioiKYNWJzDI/QIPTA4bU4WomkD+zuTqAkqaI+p0E0rsx3PqYh2iqrShpVXzSu7PUnMjCwUGINH6N8L6UppSOsWIpm5xZzbIWddN90JT9n7LpSYamJcUMGECh/aYypU3czZiyN9yZ33lXnWtOyRjSxzk+ERBXfgR/Z5yBuuZrYnblq2vKksiUia+QP1kmDfLDHGYHEOxjgscByOa/jun3dAFASkdQMxNff1DIDiEVAX9sHvsSeSKZKQ0x+c3ZJ1oDOF63+zLW/0JV+UpibkxcyaMqR0uwOkN2nNyk195Lz/sc/PjkZo+kgrqI0V5EkTRBGMlEfQndBdY5lvP0LGSOiWPW3JGb9oq2D1bOtUb1uWPRTC4vY+eyMw2wDZIXWGsM+DyeMCeb2QWFpHSyQNDg5ZskPvcdXEwe40EroFgw9h3jPs4jFHarNMkTClyo8TxgVQ7rN9BYbcnbJMi5Yo2NECw+KZ+coZz7jQA3P7Pxx2u1dvXW3Hs5ZFBo/ohMXtQRWSwNARs1MSAUWCX7anjOU7RFq3sL8zia6UhoAs4sbzZ7o63we6U2iJpgEAtSEFEyt8faIvlsXxm1c/xC1Pb0fDgQj8igi/IqIrqePtA9343bYDiKR07O1I2imQLHoGcdih/d6MtU72aA336E9/flZd8JhovwLIkyaIohiKR5CvwKzC77ENr8XBBQ6W5QNzcNeAg3MciqRg8YzIBu/lRWcMbndmJjNgh7IdAZDslicwZMYv2tOXvvLRqbj9/2vA/s4kQj4PgoqEaFpHc8aYVAY86IhpMKz82t3FIor2zYRhWQBEMDCY3EJcNcCy1usUiLnHHCB8n/NYP8e1gJyJUe56GHD+rBo0NkfRElFhWByc29qmTkU657ax9ssiQl4J+w4n+hblZfVpGxZHe1TFgmmVuDwjHtNwMJK3JSs7+rL2uUaEvB68vq8Lumm52uHOFC0pq3AurZs40JnExEo/yhQp817sfLtHFOD19P1ujnV+djQlQo/1zhgy0gRRBMUWq/RXYLZsTi1CXg8iKR2GaQ+myJ5yxBhDyCtBN+2iMDsX65jyHivBOUcsbffxemyrAjNjYDSTuyFjZEK+kshQ4Zcxo6YM9zz/PhKqgZRmIqYaWeMO7dd0xDQ3pztcBGYXazlFXAAQV3V8eDjpGj1b5UvIGKiBDzqcJYkCQ4XPA9Ww0BbT8IUFJ+Bnf9+FhGq6RXcCA3yKhFjagJQJN6sGz5mylbMYBjC3RoDjwrl1PYMtGMvbksU5R1q3YHELOw5F4feIdvpDYrb8qW5HC+SMNChjtpa4kBFpaYmkMbXKD83kiKR1yJI9/7rP8kpAJ3u0Q9PHcmcMGWmCKIJiPIKBWk6aOpOoL/fCsCwYJrfbqyynvcr2diePC2BPexwcyEhi9jVNjlH3SEImDNwzlQqZVzgXPqd4yucx8evNH8LKiJuIAmAYmW3RM4M5W1msv3xvoTgiJJJgW7NoWsfBrh4D7RHsYrhUIZqjw0Bg9nCQ7pQGDoa393fj3eYofJKA6jIZ0bQBw7Tz0I5qWX3YhzJFQiyt53jR2W1t2SfH5xExqdLv/p4v+hJXDbTH0lANy+0zTxtmZpqY/QE4uzQsC4IguIWD48pkRFMGNMNEcyQNn0fErLoQFs+swhOvNZVsfpam5g0NMtIEMQD5QtWFeAQABi0wC3kllPs8SGgmKj2y60mndBNlioSTa8vw9v5uAPmNpJAJyzr5aq0/fU3OURVUIDCGlkgarVHVzcFy9Hitjixm3vDyMM+jQ3WZgraYikS6Z6ykXXHNCm7HGg4WB9RMhEFkdp+3ZliwLAuVAT9CXg+SuglwjphqIq3bxjClCa54S29DLWXWz8HBOYdflnLCyr2jL3HVwMGuFEzOIeQYY/tfzbQL1pz9Z1rg7d8Z4BHsG4rOlI4rzp2K806sccO7c+rDJW0Ej/XQ9GhARrqEKGWloOORgXqhB/MIGg5EBi0wOxzX8NXzZuCFHS05crCz6kK4dvE0fPv/drgyH9kV2kKm/SrbWOi9DHS2UecA4mnDDslmGXaBCZnwbiYHPLKnLy+HIuk+j1kW71ORPNpwANkRdcMC9h5O2mkH2Dcv3LIlS5ujKiRBhSKJbnW9sw876pBpiTPtCVcn1eaGlbOjL+ODDO2xNExuf9b9aYtnpx4A+xw5ofiWaAo8M63kb41tOGtyhXudOBqM4LEcmh4NyEiXCMf6JJejjULUkR67Yn6/F8NCC8wmVfrz7ufJLU3Yl2dOsRPKzvbonAlVTotV9oXfeSzVqyKZc/uib45y36yQWcRAKl/FDOwYbUwLkATknBeWeTxvVTdHTsVySJHw1Y/lhpWz87EHu9NI63ZhmFNo5h6H9Z//Nzl3P3dRsDXPZUnEga5kH6ESMoLHFmPagvXSSy/hU5/6FOrr68EYwx/+8Iec5znnuOuuu1BXVwefz4elS5figw8+yNmms7MTX/jCFxAKhVBeXo6rrroK8Xg8Z5u3334bH/3oR+H1ejFp0iTcc889fdbyzDPP4OSTT4bX68W8efPw17/+dcTfb3+MhDgGMXL07oXuTxgCAOZNDGPJidWYNzGcc2EupuXEuag6+wGA/93S/1CI7JxzXdgLryRAACBnxDeyvWjGMj3GgPsD2J6jalhFj40sFgsYkcrwI0nvc1JIu5lzMyRL+S+pTj52YoU9V9o0udtv7n5reoXRey/CaaOzLEAUBNSGvagNecdcqIQYXcbUSCcSCZx66qm4//778z5/zz334Kc//SkefPBBvPbaawgEAli2bBnS6Z6Q2Re+8AXs2LED69atw5///Ge89NJLuOaaa9zno9EoLrjgApxwwgnYtm0bfvjDH+Lf//3f8ctf/tLdZtOmTfj85z+Pq666Cm+++SYuuugiXHTRRXjnnXdG781nKNQg0B/gkWMkeqGz1ZAsy7IrqNM6UpoJy7IGVEPacSiKA12pnBB3PsJeCavOm4GwX3a91T7mhB99RrKUyY4aS/aME8iigKlVfpw8vgymhX7/XhfNqMJ/XDwP4wIKxoe8qC6Te6aUIfeTEwX7WAxAVcDObzs3X16PiAkVdjHbUNW6iKOHMTXSy5cvx/e+9z1cfPHFfZ7jnOPee+/FnXfeiX/+53/GKaecgl//+tc4dOiQ63E3Njbi+eefx69+9SssWLAA5557Ln72s5/hqaeewqFDhwAATzzxBDRNw8MPP4w5c+bgsssuw7/927/hv/7rv9xj3Xfffbjwwgtx6623YtasWfjud7+LM844Az//+c9H/RyMhlweMTwKCVUPJgzhhDhFAdjZFse+wwkc6Eph3+EEdrbFIQrot9r2cFxFUssVq2BZPw4TK/y4fP5k/PAzpyDk89gDLyzk7PNI5JmPJ5xwtEdg8IgiZEkAB4fABAiCMOjf67wJYZxcF0RcNe3edt7Xc3dQJBGVAQ9uOG8Gwn4PJlT4cEJlAFOqevqjgbEXKhku+SRQiR5KVnFs7969aGlpwdKlS93HwuEwFixYgM2bNwMANm/ejPLycpx11lnuNkuXLoUgCHjttdfcbRYvXgxZ7qm2XLZsGd5//310dXW522Qfx9nGOc5oMhIGgRhZRkcdiWeUvQa/ANneN3c9tf5esfikaggCw7kzq/Hzz5+O8SEvfB4RQUUaVJt6pCmdsqSRI/umqK8Maqb6OpNHNjJqKYP9vQoCw+KZVUioer/tZuV+D2pDXngEYFJlAKdOLofPI0KRRPhkMUf4Bhh7oZLhsGlXB1Y+sgXXPr4VX3/6LVz7+FasfGQLpfiyKFkj3dLSAgAYP358zuPjx493n2tpaUFNTU3O85IkobKyMmebfPvIPkZ/2zjP50NVVUSj0ZyfoTBacnnE0BkJ4X4njWFaHCeOL8OUcWWYVOnHlHFlOHGQsGh5wFYj47DbexyDm23iRYFh/tRK9zXnzqzGledMgSAA3Sn9iIe4j9ThGOw+5yMF7/Wvg25lCvY4cgRaBvt7tSyO/3vr0ICfTySp42B3GnHNxP7OBH784vsYVyaX5CCJ4XjBVItTGFTdPUTWrl2Lu+++e9j7GU25PGJojIQ6UnYaQ2ACfDIA9CiUDTTwoCqgIOSVMgM4bEPt5JadSUthn4SqgOK+ZtOuDjzxWpPdooVjL8wtCXZjlAWGurCC5ohqS3Y6/cMY2o2ClOl91rJKzJ3zN9j+nBtrRRIgS4X9vTYcjGBna9weEiIJrhiNmRligsxxFYmhNuSDLAl4r8VOj4gCSkqoZDgdKaMxuvJYpWQ96draWgBAa2trzuOtra3uc7W1tWhra8t53jAMdHZ25myTbx/Zx+hvG+f5fKxZswaRSMT92b9/f7FvEUCPQShTRLREVaR0E5bFkdJNtETVklAKOh4ZrnD/cNIYc+pDmF0fhs8jwZu5kFsZj83rEeGXJcyuD7uGIPuCJ0viiBrosf7aOYc3LO56r80RFUGvhJCvZxrUUD15Z2hH9tss9vyphoX3WuLY054Y8O/Vsjj+2tAMzbCneQG2ZKhHFNxZ4A6Vfhkhn8ctIDUtoCao4OTa0hgksWlXB9Y824CGAxEAQNArwa+IBXvBVItTOCXrSU+dOhW1tbVYv349TjvtNAB2pfZrr72G66+/HgCwcOFCdHd3Y9u2bTjzzDMBAH/7299gWRYWLFjgbvPNb34Tuq7D47H/qNetW4eTTjoJFRUV7jbr16/HzTff7B5/3bp1WLhwYb/rUxQFiqL0+3wxkFxeaTIcYYjhDKTP9uRjaQMVARliZgRhSjMR9Eo5hsC54JX7PDjY3dP5MFDfbX9k91/XlMmQJAGHuvsKkPSHOEhPdDFkC7dkP8YAyJKA0yaV48UdrcM+FgdQH/bCsDgSqoG0YQHc1hnvT8StNxYHkrqJRdMr8/69Ol7n2/u73WlcFrcgiYI9HKN3uUKW4coWv/neRfNsLfAxFCqxLI61zzXiUHcKnHN7QAqzC92qymS3I2UgL3g0Rlceq4ypkY7H49i1a5f7+969e7F9+3ZUVlZi8uTJuPnmm/G9730PM2fOxNSpU/Gtb30L9fX1uOiiiwAAs2bNwoUXXoivfOUrePDBB6HrOm644QZcdtllqK+vBwBcfvnluPvuu3HVVVfh9ttvxzvvvIP77rsPP/nJT9zj3nTTTViyZAl+/OMfY8WKFXjqqaewdevWnDat0eZoUAo6HilWGMJRjetIqKgJeXGgK5kTzgMKC4v2vnFTLduoz87IkmYbAueCZ2UKmNzQ7xAMtPMagQGdSd2WoRSZO41p0PfPkbk5Gb6Zdm4yPKItJiIwhpqQggqfB/u70ti4s72PER90n5n/9L55iaR1+DwiplYFkNBMtMfSfUZa2nO+B97/01sP4sK5dVh8Yk+tTLYwTtArIZK2K/ctnlGKkwR3ipazRr9HdAdwOEM1NNNCV0LDuLKRcQ6GypNbmvBucwzgHJIouJ9TWjdxqDuN6qAy6Ozq4dzEHm+MqZHeunUrzjvvPPf31atXAwBWrlyJRx99FLfddhsSiQSuueYadHd349xzz8Xzzz8Pr9frvuaJJ57ADTfcgPPPPx+CIODSSy/FT3/6U/f5cDiMF198EatWrcKZZ56Jqqoq3HXXXTm91IsWLcKTTz6JO++8E3fccQdmzpyJP/zhD5g7d+4ROAs9kFLQ0U3vHJ3FLSQ0E/u7kqgOerPyiBpkUcCi6VXYcSja781YoTduzgUvrZvgmRy2M7ShEEQG1Ia8SOomupL2RC07V2sXr/WrCZ4HDrhzmIcjlOJoVjvv1S8LqA56UaZI4JxDNy1ohoVynwedmTUXs8jeOeykaqLC5wFjDGWKhIAcQEs0jY54jyc3kIF29mdYHKuffgs/vex0LJpR1Sf3CgZ0JDSkMzvjsA21JPZ8popHgAmOfYcTUA0rK1fNseb3DdAtC+B2NOFIqxJaFsdTW5pgcQ5ZZO7scsYAJgKGydGd1OCXpQG9YKrFKRzGe5cLEkMiGo0iHA4jEokgFKIv1vFGfzKirVEVmmkiIEvu/GiTc4gMEJiQU2wz1EiKZXGsfGQLGg5EkNAM17jaU6/6bp+vyKp3sZnA4IZiVcMcUrW4WKSXm7MeZouEjA953RnJzoU8pZn48HACFueoCXnRFlNhZRVeufsQ8s+R7g9FElBf7nN7kJOagT3tiaLD6X6PgDOnVLpyr9c+vhUBRYLXY3uMcdXA/s5kzk2MkyYAgJqQgq6EDpPzjMIYh561rcDsSVvlfg9Ug6NMEY9YXrrhQARXPLoF3Uk9M3Ak9/tpS81aqPArePjLHxnQ6ej5mzHzFsONRa69FCnZnDRBDIcjOaxkoErVyZU+NEfSmFTpxwWza/D4q03QDBOVASVHD/yWp7ejJqjgcFwrulLWyWGv+f3bSGgGDNP2zCQhf5g6n9HJtmUMPaFYLrIht3P1Z6ALqcS2uCNbauUUiAF2SD97TbIoQDctMAE571fgxRWB6aaFg10pV83L5xGheATX6y2UoLen6Clf7rVMkTCp0o+2aBpp3b4BCigSJlf60BZT0ZnQYFn2jHHT4n3y4s6kND3GUV/uLSgHPFJ0JjWA2zc0acOCR0Cvwi9bUKcmpAzqBVMtTmGQkSaOOY70sJLBKlUrAjLaomm8+G4bdNNCXdiXY8jLFAtNnUkcjmuoCSoIeiUIAnKGeQy27kUzqrD2klOw9rlGvNscg2Y43jrcfGehtja7N7jQXHQhCAyoDiqIJDWkjcH3ywG0RVWU+zwQhB4jpxqWOzWrPaZmtMw5hEw+3An1F3CIPpiWheZIChPCPvgUERU+Gc164YVzAFDhl3A4abg3iPlyrwFFRG3Yi2hKh2pyfPuTs3Hx6RPw5JYmfPfP78IER555HgDs82JHKSx0xFWMD3kHzQGPFJV+GbIkQPEIaI9p0HuJ7hiZSWCfnz+5oBsGqsUZHDLSxDFFIdOrRtpQF1Kpelg30XQ4gXFlSp/8W0s0DYvbhqY1Zs96LqZS1mHRjCr8cdW5eHJLE/53SxPaoio000IsrRdd5c2yjPtwKVMkjCuTEUsbKJMlHI6rgx8/86/JOfYdTqEi4EFIkdCd1tGSGXdp617bW+smYIGD9woLBxUJCc0sKD/uThXTLew7nIAsia5+tiLZ3vpg9ywMQFzrKXrKGVMZYlB1uxo6ktKhmyZMC/CIAp598wDqwl5MqvTDK4mZKVy83yiGYdnHSul2SuNIqRJmv5/6ci864qqbN2fMjuqcXBvE5fMnF7xPqsUZmJLtkyaIYhmrYSWFqMYJzA4b9zbknUktJ5xqe7/MrZRVJKGoflFBYPjXs0/An244FzctnYmJ5d6hSXY6IirDRJEE/PCzp2DtxfMQ8kpoj2sFhc8dz4xzIG0YaO5O4YP2ONqiKiSRYXxIgSQIbijYIzotWwwekSEgC5hVG8TkcQGMKyu+QpgDUA0TuskR9EqYWOFDTbCwqupIlgJYjoZ7axx7OuJoiaaR0k0Ylq0cVx2U8V5LHHc824APDyeQ0k1btKaANZoWR3dKO2KV0Nm6DnHVxPiQF5Mq/KgOKgjIEurDXqxZPos84RGEjDRxzDBWAgmFyIhOqvTD57G9ep7pd46mNLRHc0OpjNnFOJLIYHG7UlY3c72kQqQYX91zGL/6xx4c7E4BYIP+ofe+pDoGYLhYnONwXHPzj1VlnoKMtHPbIjCGyZV+1Jfb6lsW56gOKqgJejGhwgefR8gUK9nbMgb4PBLqy/1gzJ6jLTAGkdk3QL3fM8vzmMiA8SEvpo4LICDbYjLtMbWg88FhV2fnFTTh+fvWZannJvL32w64LWKFnv5oSse06sARq4TOFvpJaSZiqgEGe2zr2ktOoVzyCEPh7hLiSBY7HYuMlUBCITKiX7/gRDz00h68tT8C07KQNqy8F/2eXlkGUbC9Ob8suV5SIfl2J6LQlfHSzQJi3RxO+LgnpzsSAQeLc9z/912YMs4PADicKK5dyusREJClzM0L0KSmEEnqqPTLbqtUdi9xR1wFmN021hxJuaHYfGFqDoDxvo/JkoBxARkJzUTa4FB1E2BApIDUNANw5TlT+nwWpsUxqcKHpq4kGFjm79q+uWiPqQhU+e2byPY4TJMXVfBmceDCuXWjcq3o75pEueQjBxnpEuFIFzsdi4ylQEIhlaqNzVFs3n14wPyoI24hsp6LeE1IwazaIH7z6of42d8+gKpbqArKUEQxb759x6Eo3j0URUI1czz7waqqhYyOtaP0BWaLiAwHbgGt0TSu+802eEQBsbQOSShcySuc6V0GAI8oZm5cLKR1y54IxRh8sghAREo3IUsCdIPjUCRl654LDNYA7zrfMyGfBwnNxMGuFExuS3iOK5MRTWXUyDIw9KQETItDyGiqf3Rmj5BJdnRHNy0ADKLAMu+JAQKHaphIaxZ000JctavFspXfBsIjAH7Fg0mV/sE3LpLBrkmUSz4ykJEuAcai2OlYZKwFEgbyLiyL46UPOhCQRcRUo98LsCNuAYnBzFTKzp9aiZWPvIYt+7rs6llmtyFVB70IKCLCXgkdcRX3vPA+fjelEofjKqJpO/QuiQw8o0bGkd9QOzKbpsWhWfYxp1T60NSVgjlI6VhGLCuvMZcEO2xvWjxjfEwIACRJAMAHvFlxQtGy1BMV8coCFElEUjehmxZ8WQNLnM/3pPFl2HEoBsPkkCU7/G0WWKHOYN+olMkSWqJpmFZGY5sxBL0eVJcp2NORQEq33G0t3tO3LApCH031bU1dSKgmvB4RYiYc73wOyLxHbgG6aaItZkd4vB6hIAEZgQHjwz5YFu9z4zncqBxdk0oHMtJjDE2DGT7ZF6Rlc2rR1Jkc0rSgkUg39OddOB5VyOdBUjchwg5p61ZfwREOW4RDEBgmVvjwl7cPoTOhud6nyYGEaiKpJeyWI4uDW8Db+7vxmYc2Y9G0cbAyxlZgAiTBVujq3YYliwI4uC1BCfuiP6Hch88vOAGaYeI7f24s6D2HvR50p3QwIGcqFWDnVl2DhJ5iMFFgbrjfWZN7qrktRMIYc0dAInO+yv0y0tE0IikdHknoo+I2oyaEdw7FMvsHGLNvUHrfnIjMMbJ2tMI2uoDPIyCpG0hqpiutysDRGlVRHVQQ9slI6+nMZ8QzFc0CRAGoDHjc79fLH7TjRy/uxN6OBKKqjoRmQJEEiJnedUmwTbWV+fANy/aovR4R48MKDnWlBr25kEUBad3ErLpQzo3ncKNydE0qLchIjzHFFDtRaKkv+S5I48pkhLwSDse1ggUSCr2wDdWQO/lySWSudCcDA5hgi4ZktpOYXTRlt2DZIh7Z0pRArrFTezUD72yJ4VAkBTBkVLg4RIHB4n1lOgUG1IZ9iKftMC4Dg0cUoeomfvnSnkHfE2CHrfPJcnLYhidHVUuwPW7Dss8vyxPS9ckiuMWR0i34ZVtpzN0n51ANC7Prggj7PNjTnkDE4q6KG+cm/vDmQcRUHbJoh5RzRlAy23M1LftmItsIOjl4RRLc3mvnXEsZydX9ncmc8+987rppgTEBX1gwGWdPG4fv/GkHHn/1QxiZ6Vp2zzaHpdtFbPb7cI5q05IpIKwJKQgqHtSXA02dyQFD3pppISDn3niOhAdM16TSgoz0GEPTYIZOfxek5oiKgCzgq+fNwKRK/4DG1LI4ntzShJ+t/wCqYaKqTIEi5c/1DtVDsSyOzrgGK2NknIEEjMHOPUs9htoZSTlzfBkuOWMCvvfnRrviOOOBDSZKopkWEqoBAQwctpykAJ63SE0zLXx4OGlXTWcM3fYD3dh+oLvYj6IgOM9UYMMWvRAFOxSf7UmHfR4kVAOaySEKtqqV4y13JTTIkoBPzKvDoun2+X5lVzsefmUfTMNC0C9DEhgSmmGPn2SwW4XSJgQhUxRn5T+DjmcdSRluxILBnvksMvtcqplWOY9kpy9qQ15IIoPIGLpTOv7vrUP44/ZDeCere4BlqspNq2ceeO+jiyxXDAQAJMH2umH13yttceD8WeP7FKkN1wOma1JpQUZ6jKFpMEOjkAvSCzta8NgV8/u9IG3a1YFfbNiN1/d1QjMteyhENO0Ocsi+sFmc484/vFO0h+IY9l2tMUTTuu29MVt4wyMJdqUv7FCrLArwCAzTaoL43bUL8ZstTTAsW+JTAANjffWps7Ev9NwNw8qiBM4tW/Ais43AHGPZo0KmGlafcHAxOB7yYJgckJittx1NGVAN0z0uA+CXJYADp0wsx0dnjMNf32lF0+EELPRoi2uGhYdf3ofHN38InyziYHcKqm5BYEDaSLtDHzTbIiKaykycMgHwHolNEYCQyZcrkoipVT4c6laR0AzUBmVE0iY003Rb1zjvOT+myeGTbe1sV0/cMN3JUNk49wRiRkc810O3268CHhE+ieFAVENrNI1ynwQjkwbJ3p19P5eJwGRuwLbs7XRTGyPlAdM1qbQgIz3GjHWx09HKcC9IjhfendRhZsZAMsaQ0nP1m8v9HuxqjeFHL+4s2kPp4+lLIg5FUq7UJtctiJl+aCGTfw14JSybMx6NLbEe9SwOMMF+vj/BFMfrc7xUxSMiIItI63ZInGVCvU6hk8VzPbThdFv1bmMaeGMGvyyi3OdBLG0gmtLhVyR89WPTMXlcAJV+GZGUhode2oO2aE/uN2lY8EkCKkMKNNMWesmWLHXmMdstZ7nvyxn0kS3BbcI2tizjvYuCCL8sIprW4Vc88CkeHOxKubKX2b3ojDFUB3u+B5xzRJJ67jbIPaf5PjbdtAvGEmqu/uf7rfb3OtvnZ7CVycTMMS1uv6+WaNr9jo+UB0zXpNKCxEzGmGwFn5ZoGt1JDZGUhu6khpZoetBip+OVQi5I/UklZnvhYZ8EZPpWBcbgERhMztEeS4NzDkUUkDIs7O9MFiWSkk/9LOTzYGKFHwFZdC/iVqZ1x+cRIIrM9RSvfXwr/vjWQYjM9vY47PCwlOd7wFhPWJbB9jhlkeHG82diUqUfHNxtxXKmJ43k7LtCNbIZgIkVPiRVE+1xDabFccqkcvz4s6fiiwunYMmJ1Yilddz5h3fQ2BxFQJFQF/LCMDl0w0JSM3E4rqKpM4XemuIW7Fx39sPZZyrfnw9j9gWwM6EhrhrulKqUbkBkDBUBD2TRFkvJtrE1QcWdlAXYNwZOGsP5egx2SgZ6noPjcEJ1P7PssDtgG0rD4lAyle/Od7wQ5btCPODca5KKlG7CsjhSuomWqErXpCMMedIlwKIZVfjCgsm4f8NuHOpOueG/oM+DLyyYTK0OeRhOSC7bC3dyw86/dkVxTy8uMhdye35u4R5Kf55+mSIhUBVAd0pHUjXw5UVTIYoMv3n1Q+imlRNKP9CVsr1fy5k5LEDoNVOSwS52YhmTZGUM8uRxAVw+fzLmTQjj6se2wiMyKJKImKrjcFwbEU3uYgl5Jdx32ekQGMtbeJcvhZHSTOiWBU+mJW2g2dG935NTsV4TVNCd0pHOhP0lARAFwTWohsnRHlNRG1IgCgztMRUdTMvcyHBIooAySUQkbVewV/h7pnJZloWupAbD9biHf54mhb3oTpvweUS0xtJ2Oxp68tmGxSEyhrDfA3CgM65h4852lPs8mFZdhvdahu8B04Sq0oGMdAmwaVcHnnitCSID6st9GZ1njqRm4onXmjCnPkx/FL0YTkgu2wtngl1JndZNMNFu87EviHbVbkIzMXlcAG3RdFE3BAN5+owxhL0eqIaFeZPCePjlvdBNK08o3WsLYGimO6e3txFwbjDA7Fy0bnIoHgFfv+BEux1sQhgzxgfw1v4I0np6RFTEhgIDMHdCCPMmhPv1wPLd2Di52ULFPXrjRAwMi0MS7RCzxe0Ln3NjIwpAWjNwsNvO+dsSoz1V8WndcvXVBQbsbIujJmh/Nh1x1V1XoQItg2FwoCqoIJHWMbUqkKny5u6NpM8joKpMQVdSA2MM9zzfCMOC29kgChhSC2JvSFWsNKBw9xiT7T3UhX0o98sI+Two98uoC3tHbSjE0c5wQnLZXjgDQ3VQgcBsOUw7tGmf60iqR9JzMG1uZ6BCvmPkwzHs3Ql9wNx6ddCLoNeDufXlCCgeCAJD73ekmxZ0w7JDoB4BX/unE3HuzGqkdRMPv7IX7xyMIqmZY2agHZbPqx+wR90R/jCtnvC8lPF4HTGWYmEM6ErZ+WJHalVkdn+6YVkwzMwPR2boBXcFTHq3kHklAbUhLwDgUHcKbTF1VM6pbtppFoMDnzlzEurDXgRkCdVBBZMq/Bgf8qIrqSGh2t/5Mq8HNUEFAUVCc8SeMFYXVpBUDbTFVSRVA7PqgkMSIHH6/pecWI15E/u/wSJGD/KkxxjqSRw6Qw3J9fbCyxQJEyp8aI+pSOuGOz5w7oQQvvqxGbYEImMDanP3viEo1NOv8HvyetwcHGnNgmbaXvTS2TV44rUmcM4R9nkgAGiPa0gbdtGRX5EwvboMX1t6IoI+D+7+0w786a1DfXqsRwKB2QMoEqqBaNoo7DUCw4QKX97nnAr495pjiGWEP7wewVZUk0UokoBk1nDlQivRRdhV8057m5Gpyi7zSuiIqdB7WVg792vHUgyLux68JyP6YnIOvyxhRpWIxtaEfQwGSKLgKsUNtC6ngG0wPJnvlkdgOHdGFU6dGHa/4zHVcIsc/bKISRU+qAZHQjMgCQLGB2W0xjSEfR5876J56E7p5AEf5ZCRHmOoJ3F4DCUkl28ght8jojasoCPOoEgCbvz4TFyeNbi+2BuCQoZuXL9kOoJeT5/celw10B5ToRqmG0F58KU9EABMrvS7Bj/o8yCl2UVY06oDuHnpDPzHc434oC3epy/aIwoQWEZyNHNqhuIFSpn5zRbnSOrmYJu7r+GcozvPcI3sCvhyvwdJzUBaN5HSTbfKvjroxf5MyBco3KO2K7hzH1MNE+mYmdH1zg1Rc9gSnaKYqUuwuCtPyjiDwTkMy0J3qufGxOSAlSkaE7JU1Hrj5JX7e855lciAkFdEW7wnXSMILOc73hnXcM/zjRAEhn2Hk5khIhyM2d/dsN8WehEYw5ITqws8W0SpQkZ6jKGexOEzFKH//ozuvAnhfr3ws6eNQ0CR8Ob+bjAOnDa5fMAc66IZVfjeRXPxoxd3ukbG5xFxcm0ZLpxbB92yw+vZxT7OYAe7LQsAs0O+ibQBSWRIaKZbWcwYg1+RUM2A3W1xXP3Ytrx62Ay2QUpl8qqyYGtna4W4db2wLEAUgWjKKDgFY1q2ald2wZW9r9xCMTAg7PdAjVp2Dp5baIumURv2wi+LiKtGTr/yUMg2yvlyyIbFIQo9/egWBwyzR7o1rRvoTPTcMDufvN0P3b+B5rANer7cevav5X4P2uJ9ozPZ3/GNO9uR1CwkNCP38+YchmZCNSwEFIlu7I8RyEiPMdSTOHyGKtVZjBc+mNpYvjW8uucwHnppD1ojqcyUJFv2sjup4xd/35UjY2oX+6QzOVm7f9q0AJEJKPd70BFTYWVawwJyAGBAWrMQV3V0J/Wc6UwOzttgyJ0NrZtWUaFPISOioWdGKDKLI20ONnoj9/UhrwfjypScx7NTPQnNdKMHjoiHBSCpm4ikdJw6yRY4eWTTh4ikNGjGwAM6hgqHXcmf/XeYfWpbonkMH7N7xXuvxjHO2Y/XhrwwOUdbVM0ZeGKLuYhQJHFQFbtynx1xcN5/9ifpVH8nVQPlPk/e1xNHF2Skx5hCw6KUT8rPcIcJ9PbCLYuj4UCkj7EdSA/5Cwsm46UPOvroh7fFVJgWR4VfRmVAQHdKw94OO5dZF/ahJii7MqaiYItqdCU0gNn63r5MXlZkzPXeVMNCZ1JDV0JHWs9vKENeCYZpQTXt6AAHMmMSbTjQb1i2N6JgS3k6kqRA8UVcPlnE7PpQnxtNJ9WjmRaau9OwMjrjogRwzuzQPIAV8+rw7U/NgSAwzJ1QjrXPNeLd5tiwVNIGQjc5WIF7dgxsb0RmD9zoiOvunjiAjoQKn0fEpAovVpw6AQFZRF3Yh2nVAUTTRkE3mdziMLJ6qLMX4NwsGJz3iOEQRzVkpEsA6kkcGiM9Ti+fwZ9WHUAkpferNra/K4kfr9uJgCyiMqBAFgWopon3WmIwLY7JlX54PaKtSpXSkRkTjUhKR0XAk6Na5pUEBL0ehH0eeER7uATL6EYrkoiUZod7m7vTeU0IA1AX9sIvS9h3OJ5p5QOQkRMdilEzLbjjKh1bIBRYAAXYYfaqMiXvjaaT6mmL2lECd+gIMhKYkl1x/9b+CBoORtCd0lHu8yDk9SCoSPB5BLSOQoV1b+930O3zbBzyeRBJme7n7WyimxwCs/DFhVPwlcXTh7S+tw5EctbKslxy3mu7006oGNIxiNKBjHSJQD2JxTHS4/T6M/jvHIwi1usYLgzQDA7NsDAh7HMVq2DYk44YgPZYGiJjSOom0rppq4IJzC5g0iz4ZNGt4m+NqfCIAmRJ6NkX7H7eyoCM/arRr3EGbOMZTeuZ1iGgeHOTi0fokdL0ZM2N/v/bO/Pwtqoz/3/PuZsky5L3LXH2HUISlgQDZQ2EwFCg/FomTWkoDNPS0GEpW2jL2k46bSlLW1oe9k6BFFrCTMtS0gBhAlkgJJCEELKSzWtsS5YlXd3l/P44uteSLe92rMTn8zwCW3fRudc3es/7nvf9vr1ZyvYoktsdqn2E4riKAEoCHtSE4yma1ByWbCGpSBSfVYdw7XMfgiSbhrTETRT5Nd5Jq89X1zntJzO9ndzke2XEDYvrrlN+tGVz1bCKoAehmIn3djTg2jPG9enfNyNwm6449dPOJIwSuDoLTHx1HBMII51F9CUBargykKVrXRn8oFdBKG6gOZpAfo6SZkjiCRuGZYEQkmyVyBA3bLTEjaTACBBN2PiyMcqNDgMoGCSJf6matg1eKMSz+AHeqvBgcwxBjwxFkqDIBIcjCTRE9IyGwiNTlAY1HI4YiCVMxAzLTRDrC6lrpK4bCIAhvdVlTwyXlOw89eTqPfjfTw7hcCTRYUli3nFl+PRAMyzGQJIC3Dbj4XhCCEzLTsqcUuT7VDRFE0hYPKGsOKClDnHQ6Mnpg14ZusFgWBZa9LZOWk5ynkwJyoNe5GgyKKVpz2ZvcypmVeZBppRrzks8u9AROgEYTItBphSzKvP6eeWCbEAYacFRyUCWrnVl8J2mBqmer0OqGlbCsrH3cCt0k6uCWWlOLF9rtZKJV7bFIFGete2gW3bSyFtoiZtojhqdqmzJlCDPy8PijidOCcX+w9w4ULA+hbbbkxrGdQy0IhG3nWJ3WDbQEjMRjvGM6NEFvg5tQP/tK+OQ71MQS9jQLRu2ndLKMTkAiRL4VBk0+X+Z8laRja2JQRETkVJKs3p6H1t1CwU5CgyLIhzvXLoUSH82+5JTMX1EEJPL/Nh6KJyUIyVuVzMzef8ml/kxfYSY8B8LCMUxwVHJQDUTALo2+B6FQpMpLJt3LEqF9xnmEZD6sI6YYfN+ye3aQpk22pSsHBigykAsYSEcM1DdHEdEN9EcTSBX4w042hsgnyoh4JExutCH8jwvfJrsTir8moz8HJ49TZIhz97iGCSJEniUjvdCkQgkSrgUaQ/PaSfPyf/DG5l4FAllAQ0R3cKbW2owtTwAWQII4/dIkUjSQ0yew2bJqEPb34OBN7YYDCPdvna6ZzDkehRIlGB0gQ8yJUm9dApN5s+J07TFeTb3N0Zx1/LNbjMRRzXMmcB8sLMh4ydRSrBk/lRXKc9KKqNZyWYtxbkalsyfKpbKjhGEkRYclTila72R6nRwMrhXfVGPzQdCyPMqnRp8kmxkQClBKG6myY+G4gZUmcK0bd4fOplJnan+NtneuG2MAHbXR7H3cCv2NUXRmjBhWAzhuInmWMe1Zwpg+ogARhf6EIqZGa9ZN3n4c1ShD0W5asbOT13hhLmL/RrGF/tRGtCSa5z886XkCaU+fPnzLlVtN8ZZkthdH8G848qQsPhygCwRPvlpdwNqwzpsZoMQgiK/NqBdvPqCRHljE0UikAjgVWU0Rw3k+1T4NDmZLOhMmChkSqCbNmIJC81RA+OK/XhzS3Val7T2E5iu5IBPm1CEh74xE3PGFiDPpyAn2VZ1ztgCPPSNmSLZ9BhChLsFRyV9LV3LnMHtR6FfRXVIz1irnjAZppXnIuhVsbs+Nfs+gAklfvxxzZeA06GoE8/eHTdxtKMZ4qYNiQAKJUhYfC3WbhdKlgiXtmSMYHtNBKrMk4L2NcYQ8MoIaDISNp+U5GhS0mgQtOo9k+tsj7OuuaMugoSZXraVMPvnuaaG94G2sK9tAzmqBIqkpjZjrrqY89kxw8Lu+ijKgh5Xz7s/hro/ywHcS+ZSocwGVFmCkkziUiXq6sEfbIrBTC5tOGvt9ZEECnIUXHh8GR57Z2e/cipEsunwQBhpwVFLb0vXOsvg/rymJZnk1Hn3oCXzp2b8Qly1ox4vf3QARrJRQ3sj5hgDORkmthnSErBsBlgZ1ngJuI60RCjvH8x4/+DUNfZW3UAtJQh4ZEyrCOK7Z47D4+/txuYDIeim7Wb59gab8XvgICUnFQmb9ctAq8mSslScsK/JbOgmQ44mgUAGg42mqNlh7HHDwv7GKAp8Sq/HokgkmazX+4vIUQlaE8kEMMK9fd6VjK/9qzLp0CktVQ8+Vd51XHEObp83GUayY1l/cypEsumxjzDSgqOannoTPSnZKg9qCHq57nFnBt/5QrRthhfW78PT7+9BNGGmZX3TpJfn5I45pTF2sqwolfYmwzXqEjfQzj4MwOHWRFKjGags8MG0GMIxA6os4btnjsMZE4tBCcHNf96EUJxB6odDJXPlUDcZqb+U5KodIhTNUQO5HgkPvfUFIgkLkba5AZ+kSFxExT0mOZa6PjQN4QIlbfS01psAKM71whs30dCagMUAltTqViQJqkyQ71Nx6wWT8Ph7u9OUA/2ajBxNQky30BDRMbbYj798twqyTLH5QEjIAQt6hDDSgqOenngTPSnZOhxJ4KeXTQclpEuD/8HOBlf1qi0bmblrwJm0mVMVu7rC2cdxIlmyqQMYX9eVKc+ajuoWcj0KRubLqG1J4A+rdiPXo0C3bHxlUjFe3XiwV+1N24d/B6o3MsCV01oTNhTZSolQJJAwbXzZkLm0jNdk939ykJoh75ytN6FuLolKURrwwLAYCv0qQjHD1WFPzcTurFNaKG4iP0fF7fMmQ+YdSoQcsKDHCCMtGBb0tGSrOWZ02Tlo9Y563PryJ6iP6GAMUCUCG9wId2VTemtuTJsBJFniBQKbMEhok+dsiCTQGE1Akyk8soQP9zbiqqfW8Z7IPZwQ9HV8vTFyEgHuumgq3vqs1l2ScLK1U9tcZjpnf20098Z5Yl9qBINSwpXhzO57bKuyBI9KETds5GgSHrpyZqeTuN4svwyGHHBfNewF2Y0w0oJhwUB0G1u9ox43vLgRoWibHrNhc+EIroU1sFgWgy/Z/7i+RYeRotcsS/ynWMJCROelYbwH8sCPoz29Of+0igAWzhmNhXNGY+uhMFbvrMcf13yJ1nZtKwdyzEl9D6iS5NayA4AmE+T5VORqCjSZ4MvGKKK6hc6CBgRAaUADGFzPtquuZ0DvkrkGUg64vxr2guxFGGnBsKC/4cUPdjbgtr98inDMAE2GnAHu7RmW3S8ZyVQoAfJ9SrK0jLcuVCWa5vEpclt2c+q6KksRAjkCQlzdkqNJuPKUUQC453hcRQC/+MfniCZMJMzOR9eXsacewwD4FAmjC3yIGzZqWuLQDRsj87zwaW2doYpzPThoxngJHUs/BwFQHNAgSzxfoTeebW+SuQYiQ3ugNewF2YUw0oJhQX/Ci07SWatutmkmpxjE9galP8aREoKAV4Xfo+BQcwyxhIVW1hYWdsL1GcuhklYmGww0wDXHH3tnJ/6xtQbXnzUeuR5eVpQwu/b2+zJ2ibbJlhICFOZo0C2GUNxEsV9DrkdGdUiHV00XgKnI8+BgcwwKIfCpEj8H4xnbjAFR3Rz0Rjf9ydAeaA17QfYhjLRg2NDX8KKTdBb0KogZVp8tYHfGU6F8fbu+JY7SgAfFfg23zZuCg81R/GHVbuiG1WVIO5s6E3oVilH5Xhg2cz26K08ZhZhh8Z7RA/x5DHClMf2qjKhhQbFs928LIOMELaJbqAh6cN2Z41FZ4EOBT8XUslxsq2k5KtZ2B1LDXpCdCCMtGFb0JbzoJJ3l+RQ0RSVEE5m7UbWHAmnrnV0dQwhAKIEM3jP6cCSB6SODuHRmBbYeCuOFdftgKJSXYfXsUocUnypBkigkCa5H94+tNQDreb21X5MR6UKUxZn0qDJFeUBDKG7iuPIAbr9wCppjRoe/bW8maEfCoA1EotdAatgLshNhpAXDjt6GF52kM8NiKMxRujQcDkoysYv1tPSKAYZpQ6J8nVmTqRt+D8USiBpWWsKao889EGVKg0EoZiLgNeFP6ovn+RTUhePI9SpoinV//wIeGSW5Huw53JredCMF572gV0ZrwkaeV8HicyZgRifdn7JJoWugEr0GIiFSkN0I7e4sor2mdG/qXAWDh5N0VhvWURuO9+gYw+p5bbQDF+vg684/OG8iTptQhA92NuDHr26BbbM0Y8LYwNQRDwYEfHz1Lbqb865JFIbNMHtMfo/OkaPJ8KgU3qSmtZJUbGuPTAkUSjG1PLdHCVLOBO2sScWYPrLrTO3Bwkn06m1jjUz0R8NecHQgPOks4VgroTiWajYpJfjKhEK8v7Oh21CtlFSychPMugnvpsqGsuS+owt9+NeTK2GaNn7xj+1obE2g2K8hJ2GhJhwf0HB3pnVyAkCTeCJWF0nYXSJJ6e09HY9uVIG/R8dH4iYKc1RXA9tmPDxt2QwSpfDIBD5NxqLTxuCMCcVpz1c2P3sDneg1GPXWguxCGOks4Fgrocj2CUf7L/HuEoXW7jqM37yzq0fG1imJ6kpO0+nJ7Mh9ot2+NaE4Lv/9+4gmLOxtaAUIQawpClUiUGXSrXBKb8h0GkqAeA97Rnd2TiOpHc7rlKlb4ibRzhPoqJOdTvmatmN0yvM8qAtzDWwAyPVImFYR7PA8OVKty9bvQ004nszSpln17A1GotdA1lsLsg9hpIeYY6WEwjF8q3c24I9r9sKw7KyccLSfQNjMhsV4EwlKSNqEoiSg4edvbMc/t9V2e95ehbVZUgnLstMSy5IaHAABthwMu+dVCAMYQcyw+T79bQHVDf2wzy58wsLQmjAR0S34NQlnTizC0+/v7fI4SgmCXgU/OG8i/rG1hv+dbIZ8n4KSQC7mHVeGMyYUdZhIpUm1MgaJJHs5KzRrnj1g8BK9smm9XTCwZPWa9L333gtCSNprypQp7vZ4PI7FixejsLAQfr8fV1xxBWpr079Q9+3bh4svvhg+nw8lJSW47bbbYJrpiSvvvvsuTjzxRGiahgkTJuDZZ589EpcHoHcz62zlg50NWPTMevz7Hz/Er1dsR204jliClwv1pkfukRjnklc+xeYDzUhYNkzbRnPMRChqIBQz4NMk5Ggyth4M49//ewMueOi9Hhno3sIlP9OFR+Rk+ZANIJzsJ92masaVzWxXvKQLIZAh/E7O9NGhmIkpZbn46WXH470dDTAsm2d+J/tUtz/Gp1JMqwjgm7NH4bnvzMbjV52MX319Bh6/6mS8cv1puP7s8R3Wkj/Y2YAlyzfj85oWgDGoEoFECeKmjfqWBPyaNOTPnkNqolcm+pPolQ3r7YKBJ6uNNAAcd9xxqK6udl+rV692t918883429/+hpdffhmrVq3CoUOH8LWvfc3dblkWLr74YiQSCXzwwQd47rnn8Oyzz+Luu+9299mzZw8uvvhinHPOOdi0aRNuuukm/Nu//Rv+8Y9/HJHr68nM2sjiEorUJBhZogDja7G6aeNgU8zNhB7qCYdtMyx9YxsONMcQiploiCTQFDVgJTOHGWNoaNERihloiiYQ0c1OQ8qux9sPDItBlSkkSiBR9Grt17Iz/8NNtoIeUki7n32KhNvmTUbQq7qT0ZKABxKloIRAlghUiUCmTvcvinnHlQHomdFxIlGhZOKULFFQws+tUAKLMTREdAS9clZMdkWil6C3ZH24W5ZllJWVdXg/FArhqaeewgsvvIBzzz0XAPDMM89g6tSpWLt2LU499VS89dZb+Oyzz/DPf/4TpaWlmDlzJh544AHccccduPfee6GqKv7whz9g7NixePDBBwEAU6dOxerVq/HQQw9h3rx5g359R1sJRep6bp5XwWPvtoXqIzr3AGVCAAqYFkN9i57sE0z6FMobqCSgF9bvw9ZD4U4Nr8WA1oSF1oTVYZuTDObAkKxrZj23iakRak2iGJHvRXM0gaaY0afItQ1uBEtyNd5CsV2ZUmr3pyMFQ1tbTplSWDaXS22OGWA2Q8ywkkZZwoh8D+pbEtBNC5bddn/jCTtNpay78LQTifKpEiK6mRZJIIQbf93k+t3ZMNkViV6C3pL1RnrHjh2oqKiAx+NBVVUVli5dilGjRmHDhg0wDANz5851950yZQpGjRqFNWvW4NRTT8WaNWswffp0lJaWuvvMmzcP119/PbZu3YpZs2ZhzZo1aedw9rnpppu6HJeu69D1tga44XDfZuhHU8u69uu5DAwtcRNFfi35hZjUlAbv3CRRZMzw7emEo7cJaJ0ZdNtmeHH9Ptdo9WZJV6EEskSRsKy0TkqdHd9ZtrSzv0QIcr0yHrpyJnbXt+Kev21BuAd1w5nwe2RYDCgLaKgNx2HZbZ99pA20IhEQ8DIp5/4SwsvJ9jdG8ZcNBxCOGUntcwJNllCcq0I3bdSFdVDGDVhZ0AOJkh6vIzuRqFyPnPa5Ds69jxlW1kx2RaKXoDdktZGeM2cOnn32WUyePBnV1dW477778JWvfAVbtmxBTU0NVFVFXl5e2jGlpaWoqakBANTU1KQZaGe7s62rfcLhMGKxGLxeb8axLV26FPfdd1+/r/FomVlnykBviiaQsGzUheNQZYocVYImU8QMGwpNflnb6JDh25MJR08y3lMTZfY3RvHmlmrsrm/tYNBzPQoONscA9C5MTQD3vjueYXf7KhJB3EjfL3XtmRBgcqkf00cEMX1EEL/4x+d9MtIEQGGOipH5Puyuj0BTJLTqHaMAg4WU0jubED75cCaYDAymZYNSgtKAhife49EWTZagWxYIgLhh4WBTDFKy9IxQwKNQ+FQJhJAeJ006kShKAU2WEDcsEInrhvOx8PHFEhamjwxmxWQXEIlegp6T1UZ6/vz57s8nnHAC5syZg9GjR+Oll17q1HgeKZYsWYJbbrnF/T0cDqOysrJP58r2mXVnGeg+VYac9FTrW3TkFPl4Z6GmGAyb8ZIaMFg261UnoZ5kvC99YxuCXgW761vRmrAQ0U1QwsO/Jbmaa9CXvPIpzp5cioTJDWc3eVcdcEfKWJqXXOJXAULQENFdzWivQlHk13CgKZax/IoBsBlDOG5i7e7DOHVcYd91wAlvn/jQlZNACcGPlm/GgaYoclQJ1WF90DxpTaYozFFxVdUY5HpkPLryCzREEjAsG5LEb4QTei/IUUEIX0YoD3rRmuCG2WKMr8ObDAmLQSKARCiKc9v+1j0tR0qNRBX5VRxqjsO0+PkBBtNiyYxxOSsmu6n0p7GGYPiQ1Ua6PXl5eZg0aRJ27tyJ888/H4lEAs3NzWnedG1trbuGXVZWhvXr16edw8n+Tt2nfUZ4bW0tAoFAlxMBTdOgadpAXBaA7J5Zd5aB7lEo95wTFuKGiXjChl+TMSLfi7pwHDHDgpQUoOjphMO2Gf5n0yF8digMnyp1cH1JsrTms+oW5GoSinI1hGIG14QGUN+SgCpL8Gsy/JqNg80xvLD+Sxh9rCuyeVYZb2yR8n4obqIsoLnemyIRFOd6AACyRDIaaY9MUOj3oDqk467lm/FvXxkHowvvvLtxNccM/OTVLfjX2aO44EmuBwmrrX/yYHTDGl2Yg3svmeb+HccV5WDpG9uwvSYCM7keoEgUk0r9uPKUUXjsnZ3uc+M8G/Utceim7Q5QlSnKgl74tfSvo57kMKRGoiK6heJcDc3RtrVuSgmmlOViyfypQz7ZFQj6wlFlpCORCHbt2oWrrroKJ510EhRFwcqVK3HFFVcAALZv3459+/ahqqoKAFBVVYWf/exnqKurQ0lJCQBgxYoVCAQCmDZtmrvP66+/nvY5K1ascM9xJMnWmXVnGeiEkKTnHIVhMUQTJrRkxrJHkRDwKvh21egOilCd4axBbz0YQlPMQCgGNEUNFOdq7hc4A0NzNAGbMQS9KsB40p0sURDw5KD6ljgY03CoOQ7Lkf/qAwzIWCpDwXtI72+Kwa/JYKBQJQkJk4f+7XZed8oNgypT5PsU1IR1LFu/DwnT7rMxlQhwoCmG36zcgbjJ69JjibYOUwNtoP0eGX9ffDpUtS3B8bQJRfifxWdg88EQNu5vBmHAzFF5mD4iiP/b2dDhufFrMnLUHMQNGxHdQG1YR55X6WCggZ4nTbaPRPlUGT5VRklAw4LZo/DN2aOyYrIrEPSFrDbSt956Ky655BKMHj0ahw4dwj333ANJkrBgwQIEg0Fce+21uOWWW1BQUIBAIIAf/OAHqKqqwqmnngoAuOCCCzBt2jRcddVV+MUvfoGamhr8+Mc/xuLFi10v+Hvf+x5++9vf4vbbb8c111yDt99+Gy+99BJee+21obz0rKKrDHS/JqMoV0NDCzfkdREdCiWYVhHoVag+dQ06R5PREjcB0rZ2OSKfe1rxhA3dtCARwgVBbO45EsrXIWXKj6kJxfk29DxJTCJ84tGZUhjA5TsrC7wgAGpbdOR6FJw7uQifHghjW00YJmOghKSV1zhGWDds91ryfAr2N0bREu9ZR61MKDLFiDwPDjbHETcs6JaFTir5+oSzhm4zft03njshzUA7UEowozKvQ2OLzp4bQgi8qgQGBkUyEDNtvi7dj6TJbI5ECQT9IauN9IEDB7BgwQIcPnwYxcXFOOOMM7B27VoUFxcDAB566CFQSnHFFVdA13XMmzcPjz32mHu8JEn4+9//juuvvx5VVVXIycnBokWLcP/997v7jB07Fq+99hpuvvlmPPLIIxg5ciSefPLJI1J+dbTQXQZ6wmSYPTYft83L3CKwO9qvQQNAUzSBmGFDpnyN0ynlMpJZ1j6VwqNQxI30bGICwLaBeIYwMi8P4rWz7d+XJN6ogYGBJWu923vRXoWHZQGgOhRDzLDRqsfwp3X7IUtcpzvfp/Dwf2p4PKVcy2L8Wkble9GaMHuVad6eghwVlFIU+lXsb4yhIZJAoU/tc/mVRAimVeRiV30E8YTtllTl+RQsPns8rjtzfI/O42TZH47oKAl4sL8xivKgp8NzE4qZmFzmRzhuDkjSZLZGogSC/kBY+4p6QZ8Ih8MIBoMIhUIIBLIjg3QgafN0rYxfpv2RXNx8IITv/vdHfA0aXO85YdpoiOiwGK+7ZYyhPOhFi26iJbkeXJCjgYFhb0MUccMCJZ13nsr3KSgNeGBYNvY2tIIByPMq0BSK+pYEZMqzk3lDDIZRBT5EE9wjJwQoDWgo9Gto1S3sb4ymedsy5UbRTo7VaSPp6HM7tokx7q0ztPVKztVkhOJ9K8EaU+iDX5P5OMNxeBQKw7QR0a1eeeeO8lfAq+Dhf52F08cV4m+fVuNgcxQj8ny45IRyyHLPXPSOsqtcGlSVJJQEtIzPDYC2Y5JJk9mkty0QDCVZ7UkLsofBzEBvjCbQqlsIxQw38YkQ7s1SAFayoUQ0YeH4iiBCsQSqQ7obInWELDqjMEdFRR73gGWJQJUl6KblJjQ1kETSqPFMdI8iwatyARYePibIURUAvP1iaotIAnD1LMYzle2knqdEmeslp06Dnfy1cNIwE/A17t6mjxEANeE4JMLV3WzGoEi8/K03BlpOXp8i8baQBT4Vskxx+YkjejmizsvmTJsvUTS16qCUZnxuRKhaIMiMMNKCHjNY6377G6OIJEwgKevoCKIYFgMFEPQpsG2GH188DZfOrMDa3Ydx1/LNqA7FYdqMZ3d3AgHQEjdwuJVClSgkwjtJMVA0xwzk+RSoEkXc4DXGEqUoztW4QprSVvuryQTxhI24ke6lOiF2QglIihdvE0AC98y7ormPXjQhQNywuWfOAEUm8CgULXGn9K1nIW876d2rMumXHGVXZXOV+T7UhOMYme/DjXMnoihH6/DciFC1QJAZYaSHAQPZXzf1y3QgzmvbDG9uqXHXUbnR41IUCgUM20YoZmDO2AJcOrMClBJUjS/E108aid++swsxI5OMJ0/VspiToc1wqDkOKfkZikRwzpQStOomdte3cs1x0wYlQHGuBp8iIWZYaI4aKMxRYQM4GIqDEnTwornKWlLwRCJuqRfvqjh4K0nOMBzP3LSAhkiiT2vRPk1Cvk/tVx1x941iVNSF4yjK0YQxFgh6gTDSxziD1du5L+fNZNS3Hgpjd30EJbke1LforhCF402D8VDwhceXg1KCzw6F8Z+vb8PqnQ0ZP8NJApMIRcK00jS3nZ8TFsOKz2oxtSyA758zASPzvFi/pxGrdtSjLqyjrkWHIvH62omlfrzzeR2aWhPuGrPzOYrEy80cKCGgZOB6PfcUJdn1ybIZeqs5xhhwfEUQi8+Z0O8li8FowSgQDHeEkc4iBtLjBXomrdmXL+a+nLczo37a+EIYFkNJrgpVpqhv0aGbFpjNDbVjCJtbE7j9L5/g5Q0HOmRDOyVOzv8Tpg2JtnmbmdZ8bQZsrQ5j6evbUBb0IJawuCoZAcoCHsweW4D1ew7jj2sOw2Y87K7JvDzLTGpkc/Vy7vkzxtxyMJkARX4NzXEDCdMeVKPN18R57MFReOvV8QT42okjceq4Qmw+EOrzs3e0NYoRCI4WRHb3ANHf7O6B9nhtm2HRM+uxrTqctkYI8EzpmrCOqeW5eO47s3v1Zeyc97NDIeR5VViMQaa8HApAxvN2ZtSbogb/YjdtFOSo8Ci8djae4EIXoZiJhGHBRs9MT09EQZwrbb+fR6YoDXqgShS1YR3RhMmNsA2ePEa4p5rJ4EqUn9DZVB708MxzxrhnHtE7HjSAaDJvzWjZrNM+xe3hoXpejnbFiSNRE47369lre95aUBbQBux5EwiGO1nfT3o4kNqTOUeTUZKrIUeTXc/0g05Cu13R/Rph33o7bz0UxmeHQoglbOxriuJAUwxfNrZi72Guod3+vO0TijyKBJpUJCsLaEiYNizG0BRN8GxtcMNxOJJA3LBgIXNXqUz0xECzTvbTTRuHmqJoak0gZpgwbQbL5h64YSNZTpT5vJbNPfPiXA25moI8L/cWCSEo8iuD/o/MSU5r92fu9D4RwoVQnB3e2V7X72fPkef0axJqwjpihgU72Z6yN7rtAoEgHWGkh5jujFhEt/D7Vbtg9zJm2pM1wr701129swFNUQO6ZYESApkSUEIQS6ppGaaddt5MkwXGGGLJphheVQIFD2vzL3cT1c28QUdnV5yWXd2LsXd1Bxm4MW5oTXTQ+e7qMyjaeijz7PQ2KdGIbmJfU6zPsqQ9hTHGXylXSAlQkefp8A+cEO55E6f5BCGwbXtAnj2nTG9qeS6iuom6iI6obmJqeW6/6ugFguGMWJMeYnrj8fYmK3Yw1ghtm+EfW3mLT4lw4wwgJROboa5FR55Xds/bfrIQ0U23wQJzZLUJcMFxZdhZH8HmAyHefKEXDEYjiVQ6OzdB0iMF92Z50wiCxtYEcj0y1w5nvAuT3ccGH52Rfs18rZwQ3vREN2xXP70ooKEu3BZul5Nhcac7lE+lKPR7BuzZE/KcAsHAIoz0EDNYWbHdSXn2RhfZYeuhMGrDca6ZbdkghLWVTBECiTLopoXSYNt5UycLpsHcVoVc4YvLZJoWw98+OQTdtDvoZsuU1xpLhMDopP1jpq9/SrjKWGOrMWgGnCTVxZAULPGqMnSDB+j3N8XAGG/DaA5im2dKgLKABolSWMkIRZ6XoDhXw+FIAowBAQ9XJbMZg8UYCOO15xceV4aV2+oG/NkTNc8CwcAhjPQQk2rENEoRT3CFJplSeFTa56zY1BZ+A6GLDACrd9Zzqc5kApVl2nx9k3IBEsvi3Z/mHVfqnteZLHx2KMzXmBlXKuMSnLbbe7g1kW7JNJn3Zq5riUOmpEt968ybCMLx/mljdwfvvEVgg7nGukU3oUjUrad2M8wJ3x8sc2et3kCTamx+TcbIfC8ORxLQDSutsUl7b3ZyiR+vbalJk/rcVtOC976oFxnZAkEWI4z0EOMYsU8PNMO0WJospipRyBLBCSPz+qQENZBSnh/sbMAf13wJy2aQKIGc1Ni2k0ZHolxu06dKOGNCsXucM1n44cufoCma4HXFBDAtO6NnXOhXUZSjoiHC9bRtm4eSe2NneQ0zYFh9azTRE2jSKFuMJ74pEkV9RE+20JR46JsxtzabUpLMAO/7gCgBvIoEnypjclkuvn92R2OcGlpu7822l/ocjGiLQCAYWISRHmIoJThzYhHW7DoMy2aQJeLW+EYTFqTk9r6u6Q3EGqGT3JYwLXgVCXHThkIBVaZgjGc+K5QgR5MwtTzQ4Uv9tAlF+HbVaPx6xRewk+uhHTK2kwZo6demw6/KuGv55mSDjd4bNQZAN9vkMQcDu51HLBGu++1TJQS9CkIxAwxtbrxpdcwrlwjQ3VJ1sroLOSrFfZdOR1Gu1q0x7imDEW0RCAQDi8juHmJsm+G9HQ3wqVKyCxQv6QGQfE/Gezsaep3dnYqzRnjWpGJMHxnM+KVr2wybD4Sw6ot6bD4QSvs8J7mtIEdDScDjrg+zpCQYJcxN9vrumeMynn/GyDweBmYZSqoIX//0KhTlAS9Om1CEn152fJqaV184UspfBFzFjBKgJOCBV5GgybTbv1lP5h/OLhNKA7h81ogu/4Z9QWRkCwTZjfCkhxjHAJYGPNBkiriRsiatUMRNu0/Z3b2hOyGV1OQ2j0IwIt+L+pY4YoYNO6VUSjcsPP7eblBC3C93w7Lxp7Vf4lf/2I5oomMGlUz5JEJPqn2FYjxJKehV4VMkKJSgsdXodZcoh4HO/CZI1+imAAjlEytF4tEEAoIiv4Yv9WiX5+nsmpyMd5ac0Kgywa0XTBo0j1ZkZAsE2Ysw0kNMqgEkhMCrSgDakngGW/M4VQ0sz6fAtoG4YWHzwRCWLN+MpZdP71DO5ddkMKbhQFOMt5RMWsI8n+qKYPzssuORsBgeeO0z7K5v7fTzHSEQmfJM7qVvfI7/9ChojCYQTSbRkX5Y2oEy0I654jrZFJTYMG2gKIffm+pQHAmLr+Pm+RTIlIIm9bRTcZK+7GTynUeRkOuR0dia4BMeJ0KectjXZo3AGROLMZiIjGyBIDsRRnqIGUrN41QhFb8moyaU1M1OhrFbdRNL39iG5defnpZgBMI7LgHcaJk24FUpgl4FQS9woDmGG17ciKZo5y0kHVjyv4RQxBIWtlWHce1zHyLoVdCiG27DDNvse8qVnPR0+2Ow3VIvwpOqAN5MQ5IImqK8+xQDcKg5huaokfSoud6363WnJGZ5FAmEEKgSQdCrIEeTXd1yx67LyQzuhXPG9GPkAoHgaEYY6SFmKDNsnVC7Jks41Bzn9ciUuOFby+INP178cF9agpFXoYgbJgjhBloiBMW5HlhJMZPmDMaZEv5ydEoIuPdmJ9e2nSQsAsC2bexrjPLWlQAUQqDIBIZp98nQOp+ZqdFGb+DNOxgo+MBUmaI+rMMGQGlbLkEsYSKeMMFAYFpc23xEvgcSoe5SBghDVLdQEvDgQFMMZQENOUU+twRPIgShuJExEU8gEAwfROLYEDOUmsdOqL05moDNeGa500XKtBhs8FD0z9/8HDZjbQlGiaS3x7jCVWGOglA0ge21LTjcmh6WlyiBlCwnkyhNa3Bh2emtH533QzETNks+nIRnjzutIftD/6qT089jMz5+G9xTJyDwKJTLnFICk/HSMUoJKvI88GsKvKqEXI8Cj0LRHDUxvsSPWy+Y5P7t44YNTaaQJYpQnEc3RHa1QDC8EUY6CzjSGbZOJveehlYYtg3d4KVeNgOMDK0Vo7qF2/7yKQDgue/Mxo8vnoY8r4I8nwrTYqgO62iMGmnHUQLkemSUBzRQStxwcfsmEA6pH2klDaAscelRVaKwGeMTiX4+sQNl7gh4WRUBb8RBCUF50IuxhTkYXZCD8qAHuR4ZRX6ugd3Z5OuMicUiu1ogEHSKaFU5QPS3VSUw8P2kM5GayZ0wbYRiBgybQaHcONpJIRXnqUh2aUSOpmBGZRDPfWc2AGDew6uwoy5zQhgBMKrAi1bdQkmuhi8bo4gblrsmm0nEpDMkQlBZ4IVECaIJC5G4iRbd7M8t6BcSgRuGt5O/e1UZxbka/Frb6pFtM9RFdFxz+lh8sKsBu+oiiCXvQWWBD7deMCktGexI/O0FAsHRh1iTziIGO8O2fV/nfB+X86yPJGCkxIIdA83XjfnPqkywrTqMNbsO45+f12Y00Kk2RZYoFMlGKG7ASipv9UWYxGIMLXETusk9/t4Y+MGAUsK1r70yGqMG8nNUlAU9IO18dCfh74wJRZg+IoBfvfUF9h1uhWUz1IZiHUrVRHa1QCDIhPCkB4iB8KQHE9tmWPTMemyrDqMs0Nb1iIFhZ20E8ZTOU05YmoB7187vjCFjWZHTqpFSAk2mCHgVgHExlt0NrfxYAHY/FoWlZDOLXjbIGnAUid+30oAH9S06vIqEkfneDgl/NWEdU8tz8d0zx+HHr25xJ0aqRJGwbDQlFb1ESFsgEHSF8KSHCZ21xCQgKM/zci+PJRtBJLOuTcejpgCz25K9HBSJoCzggSrRZGcrLsDCGFDXorsdrRxRjv7AkqMFF9sc1NaUXWEzwCNTxA0Lk0r9CMeMTiU1v3vmODz+3m63V7hz3z1UQlmA98/+/apdOHVcoQhtCwSCjAgjPUzoqiWmX5MxssCLfYdjYE7WckrIO5MHLBGCynwvcjQFAPce44aNiG7CtBkYY4joJsqDXhyO6Gmeel9gLKl1jf4ZaCVFLawvOIpjfk3GkvlTAaDTBia5HmVQeoULBILhgzDSw4TuRFMUSUJBjgpCeDZ3zOASnu3NWZ5PQZ5XRnVIR2OrAZ8qozVhob4lDt3kHbxsxuBVpKRXTvu0Ft0eht4lnKXilG+1D9N3RdAjQzdtJEzbLd2SKRcecdpBOmHqziQ1V31RPyi9wgUCwfBBGOlhQk9EU6aU5aIs6MGrGw91MM6aTDEy3wufKsO2GTyKCU2m2NcYQ8wweU0wIWDJ/xvJtpsteke97sEkUyi8OFdDjiZhf2MUZspwUuVGnWOczlQMgN/D/3mU5mo4c3IJ5owpQKFf65B53VnS11CqyQkEgmMDYaSHCd21JbSZjY/3NbsetHscASryvMjzKq5h1y0bOaqE688ejwdXfAHLZq5kpipzjzW1jeNg0Nm6tPOeRyaQKIEiS5ApQSRuQaIUNkv26045kVtuRng2O7OBBaeMwmkTi/pVDiX6NQsEgv4ijPQxSGc1t45oSuoaKgVg2XanOtsUPFTsZoOnGJcTRubBp0jI1WRIlHuM9eF4WjnXYEEIFxAhgJugRgEoMkHAq4Axvtb+08uOR9CrojGawP7GKH779g7UhHUk5cnbzge+zm7bPAHuohPKMaMyr19jFP2aBQJBfxFG+hiju7aTp44rRI4m48MvG7FuVyNW72zo4D0DbZ6qyYCaUAxlQQ90w0bUsJDnVXD9WePR1JpAzLCQ6+FGOhwxjlgPZ02WUBb0IEeTUBuO86YWqgxFolBo+jWnMqbQh+/9aQMiKWF4imRnKnCZ0sllfkwfMTCJXJkmRqnJZaL8SiAQdIWokx4gsqFOur1YSfua3IVzRuG9HQ3YejCEUMzMmNDlKGq13+LUSsuUYnKZH1+dUYHXNtdg84Fmvp3w+unURhODhSZTTCzxgyTXwGvCOqaU5eK2eZPRHDO6DVGv3lGP/1i2EaGY4V4oIQSEAAU5Kh76xsxBkWIVimICgaC3CCM9QAy1ke5MrATgIer9TVHEDN6GMlMJEgEg0c7FQgiA0qAHflVCfURHq27Bp1KYFqBbVjLsPCiX1oEReR7kedW0sHFvRUE+2NmAx97dic9rWtyIw5SyXHz/7AnCuxUIBFmDCHcfI3QmVgJwac1W3XLXblPJUSW0Jiwe2u7CyDIAzdEEinL8MC0Gy+aNJUoCGg41x2H1R06sBzj1ySPzvdANG3URvV9hYyf0L7xbgUCQzQgjfYyQSazESfKqDsU7hLZzVAkVeV6EYgm0JnpWJhU3bFSHYtBNG3KytIj3SvairiWOqG71S2jE6TEtUyR7TDNIBAh4ZIwu4m0dTxtfNGCGVehlCwSCbEcY6aOMztY229fkRhMmDjXHOySFyZSgPMilPMNxA42R3glpHG7lWeBcr5vAtG3kehTkqDlojCZQ0xyHjc5LpDKhSbxUKtcjwavIIARojhpQZYpvV43GGROK04yxMKwCgWC4IIz0UUSmzO1xxTm48PhyjMzzoiTgwZeHW8EY0BzrWFIlU4KKPA8aWxPQTRumxfrs+TLwMLpTD00IQWGOBjCgOhTv8XkoAa75yjhsORjCrroIWnQTCiUdVL0EAoFgOCKM9FFCpszt5lgC6/Y0Ys3uRnhkCtNm0LtYWLYZw6HmGBgIKBmYJhWhqMHlRMEzrRMWw3EVARxuTSAUMxDtJpQe8Cr44dxJoJSI9WGBQCBohzDSRwG2zfD7VbvSuilFdBP1LQm3GUZn68qUAF5FgkehONzK65hlykBAMRBmOm5YiOoWKCVupvVdF7U1ntjwZVOnhlqmBIvPHg9Z5uvoIowtEAgE6QgjfRTQPnObMYb6ljgMy+7SzBblyPAoMizGYFhtLR4tGzDRv2xsRz7TZsDh1gRyVKlDprWTPf2ntXvxt0+q3fVxQrgHvfjs8bjuzPH9GodAIBAcy4g66QFiMOukV31Rj1tf+gQluRooJWjVTew93JpR3YsmxUiANn3q9rvRpLXuj5lWJQKL8SzxH54/GSeOzu8yRG2aNv72aTUONkcxIs+HS04odz1ogUAgEGRGeNJHAU7mdnNUR6thIxzLLL+pSAQExE3m6mz21VfpTqeJhtOOkjFgXLEfV1WN7nb9WJYpLj9xRN8+WCAQCIYpwkhnIe3LrA63xtEQ0ZHIoBSWCmMAIen7EPc/bd2e+kXyHJYNaArFrRdMEgleAoFAMEgII51FPLD8NTy1Lv293tQbm07LyExkOEnqubksKAGlBIlkhrgiETCbwQY38Kmn0BSKH54/CWdMLO7h6AQCgUDQW8SiYDt+97vfYcyYMfB4PJgzZw7Wr19/RD53zJ0dDTTQ+/zr9vszdDSwDqkGXZIIZMqT0hyD7VVklAQ98CoSJEqSAibA+OIcPPntk0XSl0AgEAwywpNO4c9//jNuueUW/OEPf8CcOXPw8MMPY968edi+fTtKSkoG7XPH3PnaoJy3Oy88z6fAo0gIxQ0kTBumzWAzhqCPt6JcvbMBu+oi8KoSvKqEsoAH/zp7FL45e5QIcQsEAsERQGR3pzBnzhyccsop+O1vfwsAsG0blZWV+MEPfoA777yzy2P7mt2dKcTdXzwyhWHbbsvIzrK8FYlgVIEPmkQR1k2EYyZyNAm//H8n4IyJxaK9okAgEAwxwpNOkkgksGHDBixZssR9j1KKuXPnYs2aNR3213Uduq67v4fD4T597kAZaImAZ17bwNWnj8FLHx1AYyvX5W5vnGVKEPQqiOgmQjEDhBAolGBGZTCtzlk0oBAIBIKhRRjpJA0NDbAsC6WlpWnvl5aW4vPPP++w/9KlS3HfffcdqeF1CyW81WTQp+DW8ycj6FXxq7e2w7ZZWnKYplCUB73wKRLqWnTccM4EjCnOEZ6yQCAQZCEicayPLFmyBKFQyH3t379/SMdj2jzZy5HZPGNCEUr8Kkbke1Ae5K9xRTmYUOKHX5OhWzYUieDE0fk4a1Ixpo8MCgMtEAgEWYYw0kmKioogSRJqa2vT3q+trUVZWVmH/TVNQyAQSHv1hWvn9OmwNCjhHvQdF052M66PqwhgQmku4gZDYY6KIr8Gnya7jTCaowbGl/hxXMXAqqMJBAKBYOAQRjqJqqo46aSTsHLlSvc927axcuVKVFVVDdrn/uTyi/t0HCXAiKCGr580Eg9+fSY+umtuWkkUpQTXnzUefk1CTVhHzLBg2wwxw0JNWIdfk3D9WeOF9ywQCARZjMjuTuHPf/4zFi1ahMcffxyzZ8/Gww8/jJdeegmff/55h7Xq9vRXu7u7MqzyoAfnTyuFR5FQHvDgxNH5mD6i+xB1Wg9qm0GhBONL/KJXs0AgEBwFCCPdjt/+9rf45S9/iZqaGsycOROPPvoo5szpPiY9EA02MpVjXX1qJS49sRIzRub12esVpVQCgUBwdCKM9AAxmF2wBAKBQDA8EWvSAoFAIBBkKcJICwQCgUCQpQgjLRAIBAJBliKMtEAgEAgEWYow0gKBQCAQZCnCSAsEAoFAkKUIIy0QCAQCQZYijLRAIBAIBFmKMNICgUAgEGQpwkgLBAKBQJClCCMtEAgEAkGWIoy0QCAQCARZijzUAzhWcPqUhMPhIR6JQCAQCI4WcnNzQUjnXQmFkR4gWlpaAACVlZVDPBKBQCAQHC101zlRtKocIGzbxqFDh7qdFXVHOBxGZWUl9u/fP6xbXor7IO4BIO6Bg7gPx+49EJ70EYJSipEjRw7Y+QKBwDH1IPYVcR/EPQDEPXAQ92H43QOROCYQCAQCQZYijLRAIBAIBFmKMNJZhqZpuOeee6Bp2lAPZUgR90HcA0DcAwdxH4bvPRCJYwKBQCAQZCnCkxYIBAKBIEsRRlogEAgEgixFGGmBQCAQCLIUYaSzjN/97ncYM2YMPB4P5syZg/Xr1w/1kAaM9957D5dccgkqKipACMGrr76atp0xhrvvvhvl5eXwer2YO3cuduzYkbZPY2MjFi5ciEAggLy8PFx77bWIRCJH8Cr6x9KlS3HKKacgNzcXJSUluOyyy7B9+/a0feLxOBYvXozCwkL4/X5cccUVqK2tTdtn3759uPjii+Hz+VBSUoLbbrsNpmkeyUvpM7///e9xwgknuPWuVVVVeOONN9ztx/r1Z+LnP/85CCG46aab3PeGw3249957QQhJe02ZMsXdPhzuQbcwQdawbNkypqoqe/rpp9nWrVvZddddx/Ly8lhtbe1QD21AeP3119mPfvQj9sorrzAAbPny5Wnbf/7zn7NgMMheffVV9sknn7CvfvWrbOzYsSwWi7n7XHjhhWzGjBls7dq17P/+7//YhAkT2IIFC47wlfSdefPmsWeeeYZt2bKFbdq0iV100UVs1KhRLBKJuPt873vfY5WVlWzlypXso48+Yqeeeio77bTT3O2mabLjjz+ezZ07l23cuJG9/vrrrKioiC1ZsmQoLqnX/O///i977bXX2BdffMG2b9/O7rrrLqYoCtuyZQtj7Ni//vasX7+ejRkzhp1wwgnsxhtvdN8fDvfhnnvuYccddxyrrq52X/X19e724XAPukMY6Sxi9uzZbPHixe7vlmWxiooKtnTp0iEc1eDQ3kjbts3KysrYL3/5S/e95uZmpmkae/HFFxljjH322WcMAPvwww/dfd544w1GCGEHDx48YmMfSOrq6hgAtmrVKsYYv2ZFUdjLL7/s7rNt2zYGgK1Zs4Yxxic7lFJWU1Pj7vP73/+eBQIBpuv6kb2AASI/P589+eSTw+76W1pa2MSJE9mKFSvYWWed5Rrp4XIf7rnnHjZjxoyM24bLPegOEe7OEhKJBDZs2IC5c+e671FKMXfuXKxZs2YIR3Zk2LNnD2pqatKuPxgMYs6cOe71r1mzBnl5eTj55JPdfebOnQtKKdatW3fExzwQhEIhAEBBQQEAYMOGDTAMI+0+TJkyBaNGjUq7D9OnT0dpaam7z7x58xAOh7F169YjOPr+Y1kWli1bhtbWVlRVVQ2761+8eDEuvvjitOsFhtdzsGPHDlRUVGDcuHFYuHAh9u3bB2B43YOuENrdWUJDQwMsy0p72ACgtLQUn3/++RCN6shRU1MDABmv39lWU1ODkpKStO2yLKOgoMDd52jCtm3cdNNNOP3003H88ccD4Neoqiry8vLS9m1/HzLdJ2fb0cDmzZtRVVWFeDwOv9+P5cuXY9q0adi0adOwuH4AWLZsGT7++GN8+OGHHbYNl+dgzpw5ePbZZzF58mRUV1fjvvvuw1e+8hVs2bJl2NyD7hBGWiAYIhYvXowtW7Zg9erVQz2UI87kyZOxadMmhEIh/OUvf8GiRYuwatWqoR7WEWP//v248cYbsWLFCng8nqEezpAxf/589+cTTjgBc+bMwejRo/HSSy/B6/UO4ciyBxHuzhKKioogSVKHzMXa2lqUlZUN0aiOHM41dnX9ZWVlqKurS9tumiYaGxuPunt0ww034O9//zveeeedtO5pZWVlSCQSaG5uTtu//X3IdJ+cbUcDqqpiwoQJOOmkk7B06VLMmDEDjzzyyLC5/g0bNqCurg4nnngiZFmGLMtYtWoVHn30UciyjNLS0mFxH9qTl5eHSZMmYefOncPmWegOYaSzBFVVcdJJJ2HlypXue7ZtY+XKlaiqqhrCkR0Zxo4di7KysrTrD4fDWLdunXv9VVVVaG5uxoYNG9x93n77bdi2jTlz5hzxMfcFxhhuuOEGLF++HG+//TbGjh2btv2kk06Coihp92H79u3Yt29f2n3YvHlz2oRlxYoVCAQCmDZt2pG5kAHGtm3ouj5srv+8887D5s2bsWnTJvd18sknY+HChe7Pw+E+tCcSiWDXrl0oLy8fNs9Ctwx15pqgjWXLljFN09izzz7LPvvsM/bv//7vLC8vLy1z8WimpaWFbdy4kW3cuJEBYL/+9a/Zxo0b2ZdffskY4yVYeXl57H/+53/Yp59+yi699NKMJVizZs1i69atY6tXr2YTJ048qkqwrr/+ehYMBtm7776bVnYSjUbdfb73ve+xUaNGsbfffpt99NFHrKqqilVVVbnbnbKTCy64gG3atIm9+eabrLi4+KgpO7nzzjvZqlWr2J49e9inn37K7rzzTkYIYW+99RZj7Ni//s5Ize5mbHjchx/+8Ifs3XffZXv27GHvv/8+mzt3LisqKmJ1dXWMseFxD7pDGOks4ze/+Q0bNWoUU1WVzZ49m61du3aohzRgvPPOOwxAh9eiRYsYY7wM6yc/+QkrLS1lmqax8847j23fvj3tHIcPH2YLFixgfr+fBQIB9p3vfIe1tLQMwdX0jUzXD4A988wz7j6xWIx9//vfZ/n5+czn87HLL7+cVVdXp51n7969bP78+czr9bKioiL2wx/+kBmGcYSvpm9cc801bPTo0UxVVVZcXMzOO+8810Azduxff2e0N9LD4T5ceeWVrLy8nKmqykaMGMGuvPJKtnPnTnf7cLgH3SG6YAkEAoFAkKWINWmBQCAQCLIUYaQFAoFAIMhShJEWCAQCgSBLEUZaIBAIBIIsRRhpgUAgEAiyFGGkBQKBQCDIUoSRFggEAoEgSxFGWiAQCASCLEUYaYHgGIUQgldffXXQP+fss8/GTTfdNOif0xl79+4FIQSbNm0asjEIBIOFMNICwSBDCOnyde+993Z67GAYoO9+97uQJAkvv/xyr4579913QQjp0JXolVdewQMPPDBg4wPa7tnatWvT3td1HYWFhSCE4N133wUAVFZWorq62u3JPVAM9eRDIACEkRYIBp3q6mr39fDDDyMQCKS9d+uttx6xsUSjUSxbtgy33347nn766QE5Z0FBAXJzcwfkXKlUVlbimWeeSXtv+fLl8Pv9ae9JkoSysjLIsjzgYxAIhhphpAWCQaasrMx9BYNBEELc30tKSvDrX/8aI0eOhKZpmDlzJt588033WKeV5axZs0AIwdlnnw0A+PDDD3H++eejqKgIwWAQZ511Fj7++ONux/Lyyy9j2rRpuPPOO/Hee+9h//79adt1Xccdd9yByspKaJqGCRMm4KmnnsLevXtxzjnnAADy8/NBCMHVV18NIN3jvOuuuzK2DZ0xYwbuv/9+9/cnn3wSU6dOhcfjwZQpU/DYY491OGbRokVYtmwZYrGY+97TTz+NRYsWpe3XPtrgePwrV67EySefDJ/Ph9NOOw3bt293j7n66qtx2WWXpZ3npptucu/v1VdfjVWrVuGRRx5xvfq9e/cCALZs2YL58+fD7/ejtLQUV111FRoaGtzz/OUvf8H06dPh9XpRWFiIuXPnorW1tcP1CQQ9QRhpgWAIeeSRR/Dggw/iV7/6FT799FPMmzcPX/3qV7Fjxw4AwPr16wEA//znP1FdXY1XXnkFANDS0oJFixZh9erVWLt2LSZOnIiLLroILS0tXX7eU089hW9961sIBoOYP38+nn322bTt3/72t/Hiiy/i0UcfxbZt2/D444/D7/ejsrISf/3rXwHwnr7V1dV45JFHOpx/4cKFWL9+PXbt2uW+t3XrVnz66af45je/CQB4/vnncffdd+NnP/sZtm3bhv/8z//ET37yEzz33HNp5zrppJMwZswY93P37duH9957D1dddVWP7u2PfvQjPPjgg/joo48gyzKuueaaHh0H8L9LVVUVrrvuOjfiUVlZiebmZpx77rmYNWsWPvroI7z55puora3FN77xDQA8arJgwQJcc8012LZtG95991187Wtfg+hjJOgzQ9yFSyAYVjzzzDMsGAy6v1dUVLCf/exnafuccsop7Pvf/z5jjLE9e/YwAGzjxo1dnteyLJabm8v+9re/ue8BYMuXL3d//+KLL5iiKKy+vp4xxtjy5cvZ2LFjmW3bjDHGtm/fzgCwFStWZPwMp9VoU1NT2vvtWyzOmDGD3X///e7vS5YsYXPmzHF/Hz9+PHvhhRfSzvHAAw+k9Ql2xv7www+zc845hzHG2H333ccuv/xy1tTUxACwd955J+M9csb5z3/+0z3fa6+9xgC4vckXLVrELr300rQx3Hjjjeyss87q9LqccV5wwQVp7+3fv58BYNu3b2cbNmxgANjevXuZQDAQCE9aIBgiwuEwDh06hNNPPz3t/dNPPx3btm3r8tja2lpcd911mDhxIoLBIAKBACKRCPbt29fpMU8//TTmzZuHoqIiAMBFF12EUCiEt99+GwCwadMmSJKEs846q1/XtXDhQrzwwgsAAMYYXnzxRSxcuBAA0Nrail27duHaa6+F3+93Xz/96U/TvG+Hb33rW1izZg12796NZ599tlfe8AknnOD+XF5eDgCoq6vrz6Xhk08+wTvvvJM29ilTpgAAdu3ahRkzZuC8887D9OnT8fWvfx1PPPEEmpqa+vWZguGNyLQQCI5CFi1ahMOHD+ORRx7B6NGjoWkaqqqqkEgkMu5vWRaee+451NTUpCVYWZaFp59+Gueddx68Xu+AjG3BggW444478PHHHyMWi2H//v248sorAQCRSAQA8MQTT3RYu5YkqcO5CgsL8S//8i+49tprEY/HMX/+/G5D+g6Korg/E0IAALZtAwAopR1C0IZhdHvOSCSCSy65BP/1X//VYVt5eTkkScKKFSvwwQcf4K233sJvfvMb/OhHP8K6devc/AKBoDcIIy0QDBGBQAAVFRV4//3307zX999/H7NnzwYAqKoKgBvTVN5//3089thjuOiiiwAA+/fvT0teas/rr7+OlpYWbNy4Mc0YbtmyBd/5znfQ3NyM6dOnw7ZtrFq1CnPnzu1wjs7G0p6RI0firLPOwvPPP49YLIbzzz8fJSUlAIDS0lJUVFRg9+7drnfdHddccw0uuugi3HHHHRkNeV8oLi7Gli1b0t7btGlTmmFXVbXDtZ544on461//ijFjxnSaTU4Iwemnn47TTz8dd999N0aPHo3ly5fjlltuGZCxC4YXwkgLBEPIbbfdhnvuuQfjx4/HzJkz8cwzz2DTpk14/vnnAQAlJSXwer148803MXLkSHg8HgSDQUycOBH//d//jZNPPhnhcBi33XZbl57wU089hYsvvhgzZsxIe3/atGm4+eab8fzzz2Px4sVYtGgRrrnmGjz66KOYMWMGvvzyS9TV1eEb3/gGRo8eDUII/v73v+Oiiy6C1+vtUA7lsHDhQtxzzz1IJBJ46KGH0rbdd999+I//+A8Eg0FceOGF0HUdH330EZqamjIasgsvvBD19fUIBAK9vb2dcu655+KXv/wl/vjHP6Kqqgp/+tOfsGXLFsyaNcvdZ8yYMVi3bh327t0Lv9+PgoICLF68GE888QQWLFiA22+/HQUFBdi5cyeWLVuGJ598Eh999BFWrlyJCy64ACUlJVi3bh3q6+sxderUARu7YJgx1IviAsFwon3imGVZ7N5772UjRoxgiqKwGTNmsDfeeCPtmCeeeIJVVlYySqmb2PTxxx+zk08+mXk8HjZx4kT28ssvs9GjR7OHHnrIPQ7J5KuamhomyzJ76aWXMo7p+uuvZ7NmzWKMMRaLxdjNN9/MysvLmaqqbMKECezpp592973//vtZWVkZI4SwRYsWMcYyJ1g1NTUxTdOYz+djLS0tHT7z+eefZzNnzmSqqrL8/Hx25plnsldeeaXD2DPR08Sx1AS3jRs3MgBsz5497nt33303Ky0tZcFgkN18883shhtuSEsc2759Ozv11FOZ1+tNO/aLL75gl19+OcvLy2Ner5dNmTKF3XTTTcy2bfbZZ5+xefPmseLiYqZpGps0aRL7zW9+k/E6BIKeQBgTtQECgUAgEGQjIrtbIBAIBIIsRRhpgUAgEAiyFGGkBQKBQCDIUoSRFggEAoEgSxFGWiAQCASCLEUYaYFAIBAIshRhpAUCgUAgyFKEkRYIBAKBIEsRRlogEAgEgixFGGmBQCAQCLIUYaQFAoFAIMhShJEWCAQCgSBL+f+VCNnmtSBHjQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.lmplot(x =\"TotalActiveMinutes\", y =\"TotalSteps\", data = steps_vs_active_mins, order = 2, ci = None)\n", + "save_path = '../Images/total_active_mins_vs_total_steps.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9c9927ca", + "metadata": {}, + "source": [ + "### Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "30b43d63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.5919799262433367\n" + ] + } + ], + "source": [ + "X = np.array(steps_vs_active_mins['TotalActiveMinutes']).reshape(-1, 1)\n", + "y = np.array(steps_vs_active_mins['TotalSteps']).reshape(-1, 1)\n", + " \n", + "steps_vs_active_mins.dropna(inplace = True)\n", + " \n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)\n", + " \n", + "model_LinReg_2 = LinearRegression()\n", + " \n", + "model_LinReg_2.fit(X_train, y_train)\n", + "print(model_LinReg_2.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "513ae999", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtRklEQVR4nO3deVxVdf4/8NcBvYjpBREEFdzSscytLBkqS0dGNCwNKzXza7Za2oioqZNpznznq9miLU7O1JQt4paYv9QsFzAr0lxIzaU0zBU0FXAFuff9++PMvXLhLufcHXg9H4/zQM753HM/59xb581neX8UEREQERERkVMhga4AERERUXXAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpEGdQFegpjCbzThx4gQaNmwIRVECXR0iIiLSQERw/vx5NGvWDCEhztuSGDR5yYkTJ5CQkBDoahAREZEbjh49ivj4eKdlGDR5ScOGDQGoN91oNAa4NkRERKRFSUkJEhISrM9xZxg0eYmlS85oNDJoIiIiqma0DK3hQHAiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINmBGciIhqHZMJ2LwZOHkSaNoU6NEDCA0NdK0o2DFoIiKiWiUrCxg7Fjh27Nq++HjgjTeAtLTA1YuCH7vniIio1sjKAh54wDZgAoDjx9X9WVmBqRdVDwyaiIioVjCZ1BYmkarHLPvS09VyRPYwaCIiolph8+aqLUwViQBHj6rliOxh0ERERLXCyZPeLUe1D4MmIiKqFZo29W45qn0YNBERUa3Qo4c6S05R7B9XFCAhQS1HZA+DJiIiqhVCQ9W0AkDVwMny+9y5zNdEjjFoIiKiWiMtDfj0U6B5c9v98fHqfuZpImeY3JKIiGqVtDRgwABmBCf9AtrS9M4776Bz584wGo0wGo1ISkrCF198YT3es2dPKIpis40aNcrmHEeOHEFqairq16+PJk2aYOLEiSgvL7cpk5OTg1tuuQVhYWFo27YtFixYUKUu8+bNQ6tWrVCvXj0kJiZi69atPrlmIiIKvNBQoGdPYOhQ9ScDJtIioEFTfHw8Zs2ahe3bt2Pbtm3405/+hAEDBuCnn36ylnnyySdx8uRJ6zZ79mzrMZPJhNTUVJSVleG7777Dhx9+iAULFmDatGnWMvn5+UhNTUWvXr2Ql5eH9PR0PPHEE/jyyy+tZZYsWYKMjAxMnz4dO3bsQJcuXZCSkoJTp07550YQERFR0FNE7OVGDZyoqCi88sorePzxx9GzZ0907doVc+fOtVv2iy++QP/+/XHixAnExsYCAObPn49Jkybh9OnTMBgMmDRpElavXo09e/ZYXzdkyBAUFRVh7dq1AIDExETcdtttePvttwEAZrMZCQkJeO655zB58mS7711aWorS0lLr7yUlJUhISEBxcTGMRqM3bgURERH5WElJCSIiIjQ9v4NmILjJZMLixYtx8eJFJCUlWfcvXLgQ0dHR6NixI6ZMmYJLly5Zj+Xm5qJTp07WgAkAUlJSUFJSYm2tys3NRXJyss17paSkIDc3FwBQVlaG7du325QJCQlBcnKytYw9M2fOREREhHVLSEjw7AYQERFRUAv4QPDdu3cjKSkJV65cQYMGDbBixQp06NABAPDwww+jZcuWaNasGXbt2oVJkybhwIEDyPrviooFBQU2ARMA6+8FBQVOy5SUlODy5cs4d+4cTCaT3TL79+93WO8pU6YgIyPD+rulpYmIiIhqpoAHTe3bt0deXh6Ki4vx6aefYsSIEdi0aRM6dOiAp556ylquU6dOaNq0KXr37o1Dhw7h+uuvD2CtgbCwMISFhQW0DkREROQ/Ae+eMxgMaNu2Lbp164aZM2eiS5cueMOSfaySxMREAMDBgwcBAHFxcSgsLLQpY/k9Li7OaRmj0Yjw8HBER0cjNDTUbhnLOYiIiIgCHjRVZjabbQZYV5SXlwcAaPrfhYGSkpKwe/dum1lu69atg9FotHbxJSUlYcOGDTbnWbdunXXclMFgQLdu3WzKmM1mbNiwwWZsFREREdVuAe2emzJlCvr164cWLVrg/PnzyMzMRE5ODr788kscOnQImZmZuOeee9C4cWPs2rUL48aNw1133YXOnTsDAPr06YMOHTpg+PDhmD17NgoKCjB16lSMHj3a2nU2atQovP3223j++efx2GOPYePGjVi6dClWr15trUdGRgZGjBiBW2+9Fd27d8fcuXNx8eJFjBw5MiD3hYiIiIKQBNBjjz0mLVu2FIPBIDExMdK7d2/56quvRETkyJEjctddd0lUVJSEhYVJ27ZtZeLEiVJcXGxzjsOHD0u/fv0kPDxcoqOjZfz48XL16lWbMtnZ2dK1a1cxGAzSpk0b+eCDD6rU5a233pIWLVqIwWCQ7t27y/fff6/rWoqLiwVAlfoRERFR8NLz/A66PE3VlZ48D0RERBQcqmWeJiIiIqJgxqCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAQRMRERGRBgyaiIiIiDRg0ERERESkAYMmIiIiIg0YNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBoENGh655130LlzZxiNRhiNRiQlJeGLL76wHr9y5QpGjx6Nxo0bo0GDBhg0aBAKCwttznHkyBGkpqaifv36aNKkCSZOnIjy8nKbMjk5ObjlllsQFhaGtm3bYsGCBVXqMm/ePLRq1Qr16tVDYmIitm7d6pNrJiIiouopoEFTfHw8Zs2ahe3bt2Pbtm3405/+hAEDBuCnn34CAIwbNw6ff/45li1bhk2bNuHEiRNIS0uzvt5kMiE1NRVlZWX47rvv8OGHH2LBggWYNm2atUx+fj5SU1PRq1cv5OXlIT09HU888QS+/PJLa5klS5YgIyMD06dPx44dO9ClSxekpKTg1KlT/rsZREREFNwkyDRq1Ejee+89KSoqkrp168qyZcusx/bt2ycAJDc3V0RE1qxZIyEhIVJQUGAt884774jRaJTS0lIREXn++eflpptusnmPwYMHS0pKivX37t27y+jRo62/m0wmadasmcycOVNzvYuLiwWAFBcX67tgIiIiChg9z++gGdNkMpmwePFiXLx4EUlJSdi+fTuuXr2K5ORka5kbbrgBLVq0QG5uLgAgNzcXnTp1QmxsrLVMSkoKSkpKrK1Vubm5NuewlLGco6ysDNu3b7cpExISguTkZGsZe0pLS1FSUmKzERERUc0V8KBp9+7daNCgAcLCwjBq1CisWLECHTp0QEFBAQwGAyIjI23Kx8bGoqCgAABQUFBgEzBZjluOOStTUlKCy5cv4/fff4fJZLJbxnIOe2bOnImIiAjrlpCQ4Nb1ExERUfUQ8KCpffv2yMvLw5YtW/DMM89gxIgR2Lt3b6Cr5dKUKVNQXFxs3Y4ePRroKhEREdVIJhOQkwMsWqT+NJkCU486gXnbawwGA9q2bQsA6NatG3744Qe88cYbGDx4MMrKylBUVGTT2lRYWIi4uDgAQFxcXJVZbpbZdRXLVJ5xV1hYCKPRiPDwcISGhiI0NNRuGcs57AkLC0NYWJh7F01ERESaZGUBY8cCx45d2xcfD7zxBlBhbphfBLylqTKz2YzS0lJ069YNdevWxYYNG6zHDhw4gCNHjiApKQkAkJSUhN27d9vMclu3bh2MRiM6dOhgLVPxHJYylnMYDAZ069bNpozZbMaGDRusZYiIiMj/srKABx6wDZgA4PhxdX9Wlp8r5IeB6Q5NnjxZNm3aJPn5+bJr1y6ZPHmyKIoiX331lYiIjBo1Slq0aCEbN26Ubdu2SVJSkiQlJVlfX15eLh07dpQ+ffpIXl6erF27VmJiYmTKlCnWMr/++qvUr19fJk6cKPv27ZN58+ZJaGiorF271lpm8eLFEhYWJgsWLJC9e/fKU089JZGRkTaz8lzh7DkiIiLvKS8XiY8XAexviiKSkKCW84Se53dAg6bHHntMWrZsKQaDQWJiYqR3797WgElE5PLly/Lss89Ko0aNpH79+nL//ffLyZMnbc5x+PBh6devn4SHh0t0dLSMHz9erl69alMmOztbunbtKgaDQdq0aSMffPBBlbq89dZb0qJFCzEYDNK9e3f5/vvvdV0LgyYiIiLvyc52HDBV3LKzPXsfPc9vRUTEz41bNVJJSQkiIiJQXFwMo9EY6OoQERFVa4sWAQ8/7LpcZiYwdKj776Pn+R10Y5qIiIiImjb1bjlvYNBEREREQadHD3WWnKLYP64oQEKCWs5fGDQRERFR0AkNVdMKAFUDJ8vvc+eq5fyFQRMREREFpbQ04NNPgebNbffHx6v7/Z2nKeDJLYmIiIgcSUsDBgwANm8GTp5UxzD16OHfFiYLBk1EREQU1EJDgZ49A10Lds8RERERacKgiYiIiEgDBk1EREREGnBMExERVWEyBcfAW6JgwqCJiIhsZGUBY8fariwfH6/mzPH3FG+iYMLuOSIissrKAh54wDZgAoDjx9X9WVmBqRdRMGDQREREANQuubFj1bXjK7PsS09XyxHVRgyaiIgIgDqGqXILU0UiwNGjajmi2ohBExERAVAHfXuzHFFNw6CJiIgAqLPkvFmOqKZh0ERERADUtALx8VVXlLdQFCAhQS1HVBsxaCIiIgBqHqY33lD/XTlwsvw+dy7zNVHtxaCJiIis0tKATz8Fmje33R8fr+5nniaqzZjckoiIbKSlAQMGMCM4UWUMmoiIqIrQUKBnz0DXgii4sHuOiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINAho0zZw5E7fddhsaNmyIJk2aYODAgThw4IBNmZ49e0JRFJtt1KhRNmWOHDmC1NRU1K9fH02aNMHEiRNRXl5uUyYnJwe33HILwsLC0LZtWyxYsKBKfebNm4dWrVqhXr16SExMxNatW71+zURERFQ9BTRo2rRpE0aPHo3vv/8e69atw9WrV9GnTx9cvHjRptyTTz6JkydPWrfZs2dbj5lMJqSmpqKsrAzfffcdPvzwQyxYsADTpk2zlsnPz0dqaip69eqFvLw8pKen44knnsCXX35pLbNkyRJkZGRg+vTp2LFjB7p06YKUlBScOnXK9zeCiIiIgp4iIhLoSlicPn0aTZo0waZNm3DXXXcBUFuaunbtirlz59p9zRdffIH+/fvjxIkTiI2NBQDMnz8fkyZNwunTp2EwGDBp0iSsXr0ae/bssb5uyJAhKCoqwtq1awEAiYmJuO222/D2228DAMxmMxISEvDcc89h8uTJLuteUlKCiIgIFBcXw2g0enIbiIiIyE/0PL+DakxTcXExACAqKspm/8KFCxEdHY2OHTtiypQpuHTpkvVYbm4uOnXqZA2YACAlJQUlJSX46aefrGWSk5NtzpmSkoLc3FwAQFlZGbZv325TJiQkBMnJydYylZWWlqKkpMRmIyIiopqrTqArYGE2m5Geno477rgDHTt2tO5/+OGH0bJlSzRr1gy7du3CpEmTcODAAWRlZQEACgoKbAImANbfCwoKnJYpKSnB5cuXce7cOZhMJrtl9u/fb7e+M2fOxIwZMzy7aCIiIqo2giZoGj16NPbs2YNvvvnGZv9TTz1l/XenTp3QtGlT9O7dG4cOHcL111/v72paTZkyBRkZGdbfS0pKkJCQELD6EBERkW8FRdA0ZswYrFq1Cl9//TXi4+Odlk1MTAQAHDx4ENdffz3i4uKqzHIrLCwEAMTFxVl/WvZVLGM0GhEeHo7Q0FCEhobaLWM5R2VhYWEICwvTfpFERERUrQV0TJOIYMyYMVixYgU2btyI1q1bu3xNXl4eAKBp06YAgKSkJOzevdtmltu6detgNBrRoUMHa5kNGzbYnGfdunVISkoCABgMBnTr1s2mjNlsxoYNG6xliIiIqHYLaEvT6NGjkZmZiZUrV6Jhw4bWMUgREREIDw/HoUOHkJmZiXvuuQeNGzfGrl27MG7cONx1113o3LkzAKBPnz7o0KEDhg8fjtmzZ6OgoABTp07F6NGjrS1Bo0aNwttvv43nn38ejz32GDZu3IilS5di9erV1rpkZGRgxIgRuPXWW9G9e3fMnTsXFy9exMiRI/1/Y4iIiCj4SAABsLt98MEHIiJy5MgRueuuuyQqKkrCwsKkbdu2MnHiRCkuLrY5z+HDh6Vfv34SHh4u0dHRMn78eLl69apNmezsbOnatasYDAZp06aN9T0qeuutt6RFixZiMBike/fu8v3332u+luLiYgFQpW5EREQUvPQ8v4MqT1N1xjxNRERE1U+1zdNEREREFKwYNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAQRMRERGRBgyaiIiIiDRg0ERERESkQZ1AV4CIiGoPkwnYvBk4eRJo2hTo0QMIDQ10rYi0YdBERER+kZUFjB0LHDt2bV98PPDGG0BaWuDqRaQVu+eIiMjnsrKABx6wDZgA4PhxdX9WVmDqRaQHgyYiIvIpk0ltYRKpesyyLz1dLUcUzBg0ERH5gckE5OQAixapP2tTgLB5c9UWpopEgKNH1XJEwYxjmoiIfKy2j+U5edK75YgChS1NREQ+xLE86iw5b5YjChQGTUREPsKxPKoePdSWNUWxf1xRgIQEtRxRMGPQRETkIxzLowoNVbsigaqBk+X3uXOZr4mCH4MmIiIf4Viea9LSgE8/BZo3t90fH6/urw1ju6j640BwIiIf4VgeW2lpwIABzAhO1ReDJiIiH7GM5Tl+3P64JkVRj9emsTyhoUDPnoGuBZF7Ato9N3PmTNx2221o2LAhmjRpgoEDB+LAgQM2Za5cuYLRo0ejcePGaNCgAQYNGoTCwkKbMkeOHEFqairq16+PJk2aYOLEiSgvL7cpk5OTg1tuuQVhYWFo27YtFixYUKU+8+bNQ6tWrVCvXj0kJiZi69atXr9mIqo9OJaHqGYJaNC0adMmjB49Gt9//z3WrVuHq1evok+fPrh48aK1zLhx4/D5559j2bJl2LRpE06cOIG0Cp3fJpMJqampKCsrw3fffYcPP/wQCxYswLRp06xl8vPzkZqail69eiEvLw/p6el44okn8OWXX1rLLFmyBBkZGZg+fTp27NiBLl26ICUlBadOnfLPzSCiGoljeYhqDkXEXqNxVWk6/svOcjPxyOnTp9GkSRNs2rQJd911F4qLixETE4PMzEw88MADAID9+/fjxhtvRG5uLv74xz/iiy++QP/+/XHixAnExsYCAObPn49Jkybh9OnTMBgMmDRpElavXo09e/ZY32vIkCEoKirC2rVrAQCJiYm47bbb8PbbbwMAzGYzEhIS8Nxzz2Hy5MlV6lpaWorS0lLr7yUlJUhISEBxcTGMRqNb109ENZfJxLE8RMGopKQEERERmp7fmluaIiIirJvRaMSGDRuwbds26/Ht27djw4YNiIiIcLvixcXFAICoqCjrOa9evYrk5GRrmRtuuAEtWrRAbm4uACA3NxedOnWyBkwAkJKSgpKSEvz000/WMhXPYSljOUdZWRm2b99uUyYkJATJycnWMpXNnDnT5p4kJCS4fd1EVPNZxvIMHar+ZMBEVP1oHgj+wQcfWP89adIkPPTQQ5g/fz5C//tfvslkwrPPPut2K4vZbEZ6ejruuOMOdOzYEQBQUFAAg8GAyMhIm7KxsbEoKCiwlqkYMFmOW445K1NSUoLLly/j3LlzMJlMdsvs37/fbn2nTJmCjIwM6++WliYiIiKqmdyaPff+++/jm2++sQZMABAaGoqMjAzcfvvteOWVV3Sfc/To0dizZw+++eYbd6rkd2FhYQgLCwt0NYiIiMhP3BoIXl5ebrcFZv/+/TCbzbrPN2bMGKxatQrZ2dmIj4+37o+Li0NZWRmKiopsyhcWFiIuLs5apvJsOsvvrsoYjUaEh4cjOjoaoaGhdstYzkFERES1m1tB08iRI/H444/j9ddfxzfffINvvvkGr732Gp544gmMHDlS83lEBGPGjMGKFSuwceNGtG7d2uZ4t27dULduXWzYsMG678CBAzhy5AiSkpIAAElJSdi9e7fNLLd169bBaDSiQ4cO1jIVz2EpYzmHwWBAt27dbMqYzWZs2LDBWoaIiIhqOXGDyWSSl19+WZo1ayaKooiiKNKsWTN5+eWXpby8XPN5nnnmGYmIiJCcnBw5efKkdbt06ZK1zKhRo6RFixayceNG2bZtmyQlJUlSUpL1eHl5uXTs2FH69OkjeXl5snbtWomJiZEpU6ZYy/z6669Sv359mThxouzbt0/mzZsnoaGhsnbtWmuZxYsXS1hYmCxYsED27t0rTz31lERGRkpBQYGmaykuLhYAUlxcrPn6iYiIKLD0PL/dCpoqv5m7gQIAu9sHH3xgLXP58mV59tlnpVGjRlK/fn25//775eTJkzbnOXz4sPTr10/Cw8MlOjpaxo8fL1evXrUpk52dLV27dhWDwSBt2rSxeQ+Lt956S1q0aCEGg0G6d+8u33//veZrYdBERERU/eh5fmvO01RZeXk5cnJycOjQITz88MNo2LAhTpw4AaPRiAYNGninGawa0ZPngYiIiIKDnue3W7PnfvvtN/Tt2xdHjhxBaWkp/vznP6Nhw4Z4+eWXUVpaivnz57tVcSIiIqJg5dZA8LFjx+LWW2/FuXPnEB4ebt1///33VxlwTURERFQTuNXStHnzZnz33XcwGAw2+1u1aoXjx497pWJEREREwcStliaz2QyTyVRl/7Fjx9CwYUOPK0VEREQUbNwKmvr06YO5c+daf1cUBRcuXMD06dNxzz33eKtuREREREHDrdlzR48eRd++fSEi+OWXX3Drrbfil19+QXR0NL7++ms0adLEF3UNapw9R0REVP3oeX57lHJgyZIl+PHHH3HhwgXccsstGDZsmM3A8NqEQRMREVH149Og6erVq7jhhhuwatUq3HjjjR5VtCZh0ERERFT96Hl+6x7TVLduXVy5csXtyhERERFVR24NBB89ejRefvlllJeXe7s+REREREHJrTxNP/zwAzZs2ICvvvoKnTp1wnXXXWdzPCsryyuVIyIiIgKA8+fPo379+ggNDQ1YHdxqaYqMjMSgQYOQkpKCZs2aISIiwmYjIiIi8tSRI0dwxx13QFEUGI1G/OUvfwlofdxqafrggw+8XQ8iIiIiXL58GRkZGXbXsW3WrFkAanSNW0GTxalTp3DgwAEAQPv27WtlfiYiIiLyjIhg/vz5ePbZZ+0eNxqNWL16Ne68804/18yWW91zJSUlGD58OJo3b467774bd999N5o3b45HHnkExcXF3q4jERER1UCbNm3Cddddh5CQELsB07///W+YzWYUFxcHPGAC3AyannzySWzZsgWrVq1CUVERioqKsGrVKmzbtg1PP/20t+tIRFTjmExATg6waJH6085ynkGnOtaZgs9vv/2GpKQkKIqCnj174tKlSzbHx4wZg0uXLkFE8OSTT0JRlADVtCq3MoJfd911+PLLL6tEfZs3b0bfvn1x8eJFr1WwumBySyLSKisLGDsWOHbs2r74eOCNN4C0tMDVy5nqWGcKHpcuXcK4cePw73//2+7xu+66CwsXLkR8fLyfa+bj5JYA0LhxY7uz5CIiItCoUSN3TklEVCtkZQEPPGAbfADA8ePq/mDM2FId60yBJyKYN28eFEXBddddVyVgioyMxLfffgsRwaZNmwISMOnlVtA0depUZGRkoKCgwLqvoKAAEydOxIsvvui1yhERVUeOurFMJrW1xl77vmVfenpwdXtVxzpTYOXk5CA8PBwhISEYM2ZMlePvvfcezGYzzp07h9tvvz0ANXSfW91zN998Mw4ePIjS0lK0aNECgJpLISwsDO3atbMpu2PHDu/UNMixe46IAOfdWFFRQK9ers+RnQ307Omd+phMwObNwMmTQNOmQI8egJ7cgDk5/q8zVT+HDx/G4MGDsXXrVrvH//KXv+Dll19GvXr1/Fwz1/Q8v91KOTBw4EB3XkZEVKNZurEq/ylq6cYaO1bbeU6e9F59nI1D0hJQaa2Lt+pM1cfFixeRnp6O9957z+7xnj174pNPPkHz5s39XDPfcStomj59uqZyixYtwsWLF6sss0JEVNO46sZSFGDhQm3natrU8/q4CuAmTFC7D10N7NZaF2/UmYKfiODtt992mJk7KioKq1atQlJSkp9r5h9udc9pZTQakZeXhzZt2vjqLYIGu+eIajet3VjR0cCZM/aDK0VRA5f8fH1daJWZTECrVlUHbrtimdn96afXAifLuY4f922dKbht3LgR/fr1Q1lZmd3j77//Ph599NGgSg+glc9nz2nlw3iMiCioaO2eeuQR9WflZ4vl97lzPQ8+Nm/WHzAB9gd2h4aqrU8V62jhzTpT8MnPz8dtt90GRVHQu3fvKgFTeno6rly5AhHByJEjq2XApJdPgyYiotpCa/fUgAFqS07lYR7x8bYtPJ7wZHyRCHD0qBp4WaSl+b7OFBwuXryIxx9/HIqioE2bNti2bZvN8T/96U84fvw4RARz5sxBWFhYgGoaGB6tPUdERKoePdQgwlU3lmWw9YABns1qc8Yb44sqB15pab6tMwWOiODNN99Eenq63ePR0dFYtWoVEhMT/VuxIMSgiYjICyzdWA88oAZIFQMne91YoaG+m6LvKoDTwl7g5cs6k/9t2LABffv2RXl5ud3jCxYswP/8z//Uim43rdg9R0TkJcHSjaVlHJIjigIkJKiBV03DtfOAX3/9Fd26dYOiKEhOTq4SMGVkZFjHKY0YMYIBUyVuBU0jRozA119/7bJcy5YtUbduXXfegoioWkpLAw4fVpM9ZmaqP/Pz/T/ux1kAN3GiGhzVpoHdWVnqLMBevYCHH1Z/tmpVO5aAuXDhgnWg9vXXX18l6XRycjJOnDgBEcFrr71W68Yp6eFWyoGBAwdizZo1aNmyJUaOHIkRI0bUqORV7mDKAaKax9Ns2sHA0TXYS3wZFaXue+GF6nedzjjKWWUvxUJNYTab8cYbbyAjI8Pu8SZNmuDzzz9H9+7d/Vyz4KPn+e12nqbTp0/j448/xocffoi9e/ciOTkZjz/+OAYMGFArW5cYNBHVLK6yadcEJhPwj3+o13T27LX9Nek6XeWsqml5ptatW4e+ffvCbDbbPf7RRx9h+PDhfq5VcPNLnqaYmBhkZGTgxx9/xJYtW9C2bVsMHz4czZo1w7hx4/DLL7+4e2oiooCytExUftBasml7o0snGMbXrFwJvPSSbcAEePc6A81Vzip7KRaqm0OHDuHmm2+Goijo06dPlYBpwoQJKC0thYgwYPKQxwPBT548iXXr1mHdunUIDQ3FPffcg927d6NDhw6YM2eON+pIROQ3rpZDAWyTP7ojGMbX+OM6g0FNXTvv/Pnz1oHabdu2RV5ens3xPn36oKCgACKCV155BQaDITAVrWHcCpquXr2K5cuXo3///mjZsiWWLVuG9PR0nDhxAh9++CHWr1+PpUuX4m9/+5u360tE5FO+bpnwZSuWntarYGyB8UXrW01aO89sNuO1116DoigwGo346KOPbI7HxcXhhx9+gIjgyy+/RGxsbIBqWnO5laepadOmMJvNGDp0KLZu3YquXbtWKdOrVy9ERkZ6WD0iIv/yZcuElkV909PVJJJ6x9foHYMVbC0wvhpDpifpaLD68ssv0bdvX4fHP/74YzxiWZ+HfMqtlqY5c+bgxIkTmDdvnt2ACQAiIyORn5/v9Dxff/017r33XjRr1gyKouCzzz6zOW5Z/K/iVvmLc/bsWQwbNgxGoxGRkZF4/PHHceHCBZsyu3btQo8ePVCvXj0kJCRg9uzZVeqybNky3HDDDahXrx46deqENWvWuL4RRFTj+KJlwtKC8tJLvmndcaf1KphaYHzZ+lZd1847ePAgunTpYve5BwDPP/+8dZwSAyY/kgBas2aNvPDCC5KVlSUAZMWKFTbHR4wYIX379pWTJ09at7Nnz9qU6du3r3Tp0kW+//572bx5s7Rt21aGDh1qPV5cXCyxsbEybNgw2bNnjyxatEjCw8PlX//6l7XMt99+K6GhoTJ79mzZu3evTJ06VerWrSu7d+/WfC3FxcUCQIqLi927GUQUFMrLReLjRRRFRA1jbDdFEUlIUMtpsXy5ej5753K0ZWbqr6+jczmqr7ev013u1l8ve59DQoK6P1gUFxfLI488IgDsbn379pXCwsJAV7PG0fP8DmjQVJGjoGnAgAEOX7N3714BID/88IN13xdffCGKosjx48dFROSf//ynNGrUSEpLS61lJk2aJO3bt7f+/tBDD0lqaqrNuRMTE+Xpp5/WXH8GTUQ1x/Ll6sO6ckBh2af1QWs5j56ACRDJztZe1+xs98/prev0hCf116u8XD1PZqb609cBoRYmk0lmz57tMFBq1qyZbNu2LdDVrNH0PL+DfhmVnJwcNGnSBO3bt8czzzyDM2fOWI/l5uYiMjISt956q3VfcnIyQkJCsGXLFmuZu+66y2bmQEpKCg4cOIBz585ZyyQnJ9u8b0pKCnJzcx3Wq7S0FCUlJTYbUXUSDFPeg5U3lkNxNn7JGb1LmHgyNikYln3x59gqy9p5Q4eqPwPZJbd27VooioLQ0FA8//zzVY4vXLgQIoLjx4+jW7duAagh2RPUC/b27dsXaWlpaN26NQ4dOoS//vWv6NevH3JzcxEaGoqCggI0adLE5jV16tRBVFQUCgoKAAAFBQVo3bq1TRnLjIKCggI0atQIBQUFVWYZxMbGWs9hz8yZMzFjxgxvXCaR39WGxI2eSktTB2S7mxHc1ew0R4YM0fcw93RskqfX6algGlvlaz///DMGDRqEPXv22D0+efJk/O1vf6uVCaKri6AOmoYMGWL9d6dOndC5c2dcf/31yMnJQe/evQNYM2DKlCk26elLSkqQkJAQwBoRaeNoSQnLoNvqtKSEr5c5sbRMuMPdlpHFi4GZM9X31nJ93pgd5sl1eqomzG5zpqSkBM888wwyMzPtHr/nnnvwwQcfVGkAoOAU9N1zFbVp0wbR0dE4ePAgADUnxalTp2zKlJeX4+zZs4iLi7OWKSwstClj+d1VGctxe8LCwmA0Gm02omBXkxIaBkOCSGfcbRmxzJ7Ten3VdXaYhd76V4duZbPZjJdffhmKoiAiIqJKwBQfH48dO3ZARLB69WoGTNVItQqajh07hjNnzqDpf/9vlJSUhKKiImzfvt1aZuPGjTCbzUhMTLSW+frrr3H16lVrmXXr1qF9+/Zo1KiRtcyGDRts3mvdunVISkry9SUR+VUwJjR0hz+WOfGUpQWlciCgxcqV+q4vGMYmeUJr/YM9UF6zZo11nNLkyZOrHF+0aBFEBEePHsXNN98cgBqSx3w9Kt2Z8+fPy86dO2Xnzp0CQF5//XXZuXOn/Pbbb3L+/HmZMGGC5ObmSn5+vqxfv15uueUWadeunVy5csV6jr59+8rNN98sW7ZskW+++UbatWtnk3KgqKhIYmNjZfjw4bJnzx5ZvHix1K9fv0rKgTp16sirr74q+/btk+nTpzPlANVImZnen/Lub76cou7t2VWOZqe52mJi3Lu+YJwdpoez+juaiejPmX727N+/Xzp06OBw9ttf//pXKSsrC0zlSJNqk3IgOzvb7pdsxIgRcunSJenTp4/ExMRI3bp1pWXLlvLkk09KQUGBzTnOnDkjQ4cOlQYNGojRaJSRI0fK+fPnbcr8+OOPcuedd0pYWJg0b95cZs2aVaUuS5culT/84Q9iMBjkpptuktWrV+u6FgZNVB34c3q3r/jqGuzl8YmP9/xhrCdPk6I4D5iqy2fkbf7K5aRVUVGRDBkyxGGg1L9/fzl16pR/KkMe0/P8VkT0Togle0pKShAREYHi4mKOb6KgZTKp3RmuBt3m5wfvGJhFi9SuGVcyM9Wp5Vo4Ghxv6VrztIur4oDuX34Bpk9Xz13x/SzvNXasOobHFT3XV93l5Khdca5kZ/tuQLvJZMLs2bPx17/+1e7xFi1aYOXKlQ5XyaDgpef5Xa3GNBGRZ6r7oGHA+1PU/TE4vmJ+oGnTgOXLHY/fGTBA2zlrwhR8rQK5Tt6qVaugKArq1KljN2BasmQJRAS//fYbA6ZagEETUS1T3QcNuxpgrSj6EkQGYnB8Whpw+LDaMpKZqf7Mz1f3e/v6agJ/53Lav38/brzxRiiKgnvvvbfK8alTp+Lq1asQETz00EPeeVOqFoI6TxMR+UagExp6wtJa9sADjru49LSWBaoVw1FuJG9fX03gj1xORUVFePrpp7F06VK7x++77z785z//QXR0tPtvQtUeW5qIaqlgWlJCL2+2lgUiI7WrXEPVvTXQ23zVrWwymfCPf/wDiqKgUaNGVQKmVq1a4ccff4SIYOXKlQyYCBwI7iUcCE7kf97ICK51cPzBg8B333neMqdnCRtfZzyvbuzdu4QENWDSE0h+/vnnuO+++xweX7ZsGR544AH3K0rVip7nN4MmL2HQRFT9WIKSlSvVB6+j7rAJE9RWIU/X6vP1LL3awN1Act++fRg4cCB+/vlnu8enTZuGF198EXXqcNRKbcOgKQAYNBFVL/ZaLSzrvVkkJKgL6L76qr5Ax96DHVBbtBwNOq8O6R6qm3PnzuGpp57Cp59+avf4wIED8d5776Fx48Z+rhkFEz3Pb4bURFTrOGrxsQRM6enqQPnbbweuv95xOgJFuVbWEug46n578knts/QCtXhuTWAymTBz5ky8+OKLdo+3adMGn332GTp16uTnmlFNwIHgRFSrOMvLBKiB0PLlauvQd9/pS0fgbE286dO11c8XuYZqg5UrV1rzKdkLmJYvXw4RwaFDhxgwkdsYNBFRraInL5OedARakmRqUZuSVnrqp59+Qrt27aAoCgYOHFjl+EsvvWTNp5TGwWLkBeyeI6JawTLOaPlybeUt45G0aNrUdTDmijdyDdUG586dw5NPPonlDj7ItLQ0vPvuu4iKivJzzag2YEsTEdV4WVnqIOxevYC339b2ml9+0ZedW0+3WnVdwiZQzGYz/u///g+KoiAqKqpKwNS2bVvs2bMHIoLly5czYCKfYUsTEXmN3ung/shD5GjQtysvvQR07Kg9O7fWVqkZM4B33606UPy114CoKDW1AXMyqfbt24ePP/4YCxcuxJEjR6ocX7Fihd1uOQvmuSKvE/KK4uJiASDFxcWBrgpRQCxfLhIfL6KGFuoWH6/u90Z5d5SXV30PrZuiiCQkqOewV9eEBNu6Wt5LURyfMyZGpLRULZudLZKZqf5ctsz396K6KCwslLlz50q3bt0EQJXtb3/7m5SXl9u8pvL9dPSZRUeLpKdfK6OFvXNTzaLn+c2gyUsYNFFttny5/WBBUdSt8sNfb3l3ZWe7FzBV3LKz1XNpeXg6ui5nwZCee1FTH+CXLl2SRYsWyT333COhoaHWAKlOnTrSv39/WbJkiVy6dMnua+0FR40bu/5ctQSl/gjsKfAYNAUAgyaqrVy15lRssXGnvCcyMz0PmjIz9b3nxIkioaHOr88SDOm5F756gHszENNzLpPJJBs3bpSRI0dKw4YNbVqTbrvtNnnzzTfl1KlTTt9PS5Cq5XPQc25vB/YUeAyaAoBBE9VWWltzLC02esv7o27eqofWh7glGFq/XlsdZszwzQPcm4GY1nP99NNPMnnyZElISLAJlFq2bCkvvPCC7Nu3T9P7edL1ai8o1XNubwb2FHh6nt8cCE5EHtGTy8id8p6wzH5zNxVATIz2FACukmZWJKLmgsrJ0XbuN96wf14R+1nJtXA0QP74cXW/nnXwXJ3rvfcKUVKyCB9//DF27NhhPR4REYEHH3wQw4cPx5133omQEO0Tuj1N8QBc+xwqZ2HXk8uL2dtrFwZNROQRPbmM3CnvidBQYOhQ4JVX3Hv9sGHaAxFvPMQdOXvW8TF3HuCuEnHqCcQcn+sSRFYC+BiPP/4VAHWNmjp16qBfv34YPnw47r33XtSrV09bpSvxZub0yufyZ2BP1QuDJiLyiKU15/hx+w/hykkb9Zb3hMmkTuF314AB2su68wANDXV9Lxo1ch40ufP+3mxJsT2XGUAOgI8BLAdw3lruhhu6Y/To4Rg8eDBiYmK0V9YBb2ZOr3wufwb2VL0wuSUReSQ0VO0+ArQlbdRb3hPutv5UTFqplTsP0P/8B3j99Wvvac/Ysd5/f2+2pKhlfgIwGUBLAL0BLIAaMLUCMBXAfkybtgVjxozxSsAEuE48qoWjz1lPUlOqXRg0EZHHBgxQk0E2amS7Pz7e/tiYtDR1f/Pm2sq7y53WH3cDN3ce4seOqa1MY8cCDRtWPR4VBdx4o/cf4N5oSSkoKMCcOXMwffotADoCeBnAMQARAJ4E8DWAQwD+DqC911tltATfjRs7fr2zz9mfgT1VM34YmF4rcPYc1Vb2Zk1FRakzvlzNLvJ13iF3Zs8lJKjJJt2plydT4B3N0lIUNY2B5d/emD3nKhGno9lhFy9elIULF0rfvn0lJCSkwuy3OgLcJ8AyAS77daaZs8Sjlu9XerqaWNReGXfPTTWHnue3IqJlrge5UlJSgoiICBQXF8NoNAa6OkR+4WjWlOWvcW+2GrnDZFLXnHM2Zqh5c2DBAuDUKbVl5fRpICOj6jInb7yh7Vo+/RQYMkR9b2+wjPF6/XVg3DjbeiUkqC0e7txjy2cH2N6byp+dyWRCTk4OPv74YyxfvhwXLlywlk1MTMTw4cNx3XWD8dhj0S7P5SsVl0tp0kTdZ/k8LUunuLukCpdiqfl0Pb99HsLVEmxpotqmuuSysbT+OGpVWbq0allP8iF5IzeUvc3S4uXNljlnuZV2794tzz//vDRv3rxCixKkdevW8uKLL8qBAwdcnsvfrTLM4E3uYJ4molrAV38Baz1vdcllYxk/NXas/fpmZKjXN2CAd6bh+2oa+smT6vt6+17aXm8BSkoyMWHCx8jPz7PujYyMxEMPPYThw4fjjjvugGJngFVamnpvAtUq4828U0SOMGgiqoaysqoGAXq6kLxx3uqUyyYtDTCbgQcfrHrM8lB96SXvBIG+mobu7fNeCzIuAvgMapqAdSgpMaOkBKhTpy5SU+/B8OHDkZqaqimfki+COi28mXeKyBkGTUTVjK/+otZ73mDNZWOvpQxQxwPZY3movvmmtvO7CgJd5aHSy5t5qyzKykx4+ulsiHwMIAvAhQpH/whgOJo0GYzlyxtXiyCjurR6UvXHlANE1Yirv6gB9S9qvYOQ3Tlvjx5VUwZUFIhcNllZ6sDvXr2Ahx9Wf7ZqBfz9764fqmfOaHsPV0FgaCgwZ47jgeeKok6F15KaQO/0dpNJXZpl0SL1Z+Xvwe7du/H888+jefMW+P33PwP4CGrA1AbANAA/A8gF8CxOnGiMzZtdv2cwqE6tnlS9saWJqBrx1V/U7px35UrgyhX75QORy8ZRS9mxY8CMGZ6fX0uLj8kE/OMf13L8VBYfr94TQK2rojhvjbKU19Jy6Khr9aWXTqKoKBMff/wxfvzxxwqvaATgIQDDAdwOoGoUV12CjGBt9aSah0ETUTXiq7+o9Z7XUYBiERUF/Pvfvh94a+mKO35c7X7zVQIVLUFgVhbw1FPOW6weewwoLVUf3kuW2E9t8OSTQLt2+gZSV/08LgJYgWPHPsYTT6yHurwJULduXaSmpqJLl+GYMSMVQJjT81aXIMOfS/NQ7cagiaga8dVf1HrO66wrzyI8XN+6be6w17LiK65afLKygEGDXJ+nYotXfLzajRcd7dlss2ufhwnARqgDurOgBk4qgyEJr78+HEOGPIRNmxq7XJol0EGG3pmhlgze9lrvmMGbvMoPKRBqBeZpIn9wN5OzN8+rNQ9RdrYv7oDK25m3HW1Tp7rOh+QqX5Wjzd1s3pW9996PAkwQoJlNPiXgegGmC/CL9fPQct+8VS93eZJrKRhyRVH1wzxNRDWUr/6i1nPelSu1ndNX42G0tHR5S4cOrseGubsosN6p8BVbX+rWPYFff83EwoUfY9euXRVKNQIwGOo4pSRUHKe0bh0wf77r+9a8ueepK9zl6czQQOeKolrAD0FcrcCWJvInX/1F7eq85eVV1/DydkuTq6zXvsq47e41ZGb6/n2WLxdp1uy8AB8J8GcBrq37VqdOXQHuFyBLgCse1+Wll7R9Ht7OTl5dMsxTzaPn+c2gyUsYNJG/+WqxW2fn1RqwxMS4Vx8tXTOffOL7YMnygC4tdX2PvRHEZWY6+izK5cUXvxTgEQGuswZK6na7AO/I+++fcat70NEWFXXtOh19HhMnen+5kmDo9qXaqdoETZs2bZL+/ftL06ZNBYCsWLHC5rjZbJYXX3xR4uLipF69etK7d2/5+eefbcqcOXNGHn74YWnYsKFERETIY489JufPn7cp8+OPP8qdd94pYWFhEh8fLy+//HKVuixdulTat28vYWFh0rFjR1m9erWua2HQRLWB1laV9HRt56sYoM2Y4TiAqTjGZs4c7wdI9t5Pa2DgajyYO4FAXl6ejB8/3vr/xmvb9QK8JMBBm+Bu+nTv3hOt45+cfU6++m45CjCJ3FVtgqY1a9bICy+8IFlZWXaDplmzZklERIR89tln8uOPP8p9990nrVu3lsuXL1vL9O3bV7p06SLff/+9bN68Wdq2bStDhw61Hi8uLpbY2FgZNmyY7NmzRxYtWiTh4eHyr3/9y1rm22+/ldDQUJk9e7bs3btXpk6dKnXr1pXdu3drvhYGTVQbeLM1wF4rhrMHsqVrxlstTdOn269DTIxI//76AgNXiwJrua5jx47J7NmzpVOnTpUCpSgBnhHgOwHMds8zdap3g6ZPPnF/cLu7XWjr13vvu1Xb+aoVuqaqNkFTRZWDJrPZLHFxcfLKK69Y9xUVFUlYWJgsWrRIRET27t0rAOSHH36wlvniiy9EURQ5fvy4iIj885//lEaNGklpaam1zKRJk6R9+/bW3x966CFJTU21qU9iYqI8/fTTmuvPoIlqA2/N3nN39lt2tvfGNEVFqfWwPGDS07WN13J0jcuXizRurLce5+W55z6U5ORkURTFGigZDAZJS0uTceNWCFDq8jzeDpo8bc3TG9gsXy7SvLnvArLaxJPZh7WVnud30C6jkp+fj4KCAiQnJ1v3RUREIDExEbm5uQCA3NxcREZG4tZbb7WWSU5ORkhICLZs2WItc9ddd8FgMFjLpKSk4MCBAzh37py1TMX3sZSxvI89paWlKCkpsdmIajrLLDug6jIgWmfveTL7beXKa4kMPXX2rDoja+VK9d9vvAGcPu36dSLXsqNXNGCAmp/KtXIAX6J+/UcQFhaLt94agfXr10NEcMcdd2D+/PkoKCjA8uXLcd99AwEYXJxPneHnjXtiWfomJsaz8+iZOWmZMXf8uPN6Acy15IrlXlaezWmZfZiVFZh61SRBGzQVFBQAAGJjY232x8bGWo8VFBSgSZMmNsfr1KmDqKgomzL2zlHxPRyVsRy3Z+bMmYiIiLBuCQkJei+RqFpKS1Onfldedy4+Xttiwe5O0QeAhQvVn2+8cW0dt4osv2td200E+Mtf3AviKgcGzq9LAOQBGA8gAUBfXLq0EKWll9C2bVvMmDEDhw4dwjfffIOnn34ajRo1AnAtQHR0LZYgp2dPYOhQffW3dy5ADUycrSmohdZkqVoD6ObN3V+Iurbw1bqUZCtog6ZgN2XKFBQXF1u3o0ePBrpKRH6TlgYcPgxkZwOZmerP/HxtDzVP8jedPq0GJ44Ct0aN1Kzb77yj/ZzHj7sXxFUODOznrzoOYDaAzgBuBvA6gAJERUXh2WefRW5uLn7++WdMmzYNbdq0qfJqrS17gLpIrycqBr2//+7eOfQu0qw1gF6wgAGTK3rWjyT3BW1yy7i4OABAYWEhmlb4v1NhYSG6du1qLXPq1Cmb15WXl+Ps2bPW18fFxaGwsNCmjOV3V2Usx+0JCwtDWJjzdZuIarLQUH2LAlt4up6ZJeiyJDK0LJB79qy6TZ+uBgATJgD/+Y+6z5vsLTGSlXUteAGKAXwGdTmTjVBbmQC1m+1e/P3vw/H88/1shgw4YwkQ7S3Ga1naJSdHX+CXkAC8/rr9JVxMJnUdP73c6ULTGkBX/N+8oyVW9C69UtP4al1KqsT3Q6y0gYOB4K+++qp1X3Fxsd2B4Nu2bbOW+fLLL+0OBC8rK7OWmTJlSpWB4P3797epT1JSEgeCE/mAp1P0LbOBLIO3HQ0aVhTvT8W3N3uuvFykefMrAqRbB3LbbncK8C8Bzno0kNnZjCit0/XHjHE9m0pPLq6Kv7uTXFXvbEx/5o2qbpjnyn3VZvbc+fPnZefOnbJz504BIK+//rrs3LlTfvvtNxFRUw5ERkbKypUrZdeuXTJgwAC7KQduvvlm2bJli3zzzTfSrl07m5QDRUVFEhsbK8OHD5c9e/bI4sWLpX79+lVSDtSpU0deffVV2bdvn0yfPp0pB4jEd1OX3Z2iHxMjsmyZtunwiqKWczUrS89WMTAwm83y/vvvOwiUIMDfBPjV5vW+eoh784GpNQD75BPPvxt6ZmP6O29UdeOrdSlrg2oTNGVnZ9v9n82IESNE5Fpyy9jYWAkLC5PevXvLgQMHbM5x5swZGTp0qDRo0ECMRqOMHDnSaXLL5s2by6xZs6rUZenSpfKHP/xBDAaD3HTTTUxuSbWer6cu68nTZNn699cfaDlKmqn1wQuoLVqWwCA3N1eioqKcBEtvib18SloTfrrDmw9MrQHYnDneCaaXLnUd9HiyKHJtChQc/TFS2wJIvapN0FSTMGiimsTRX/Xe/p+vpSVLa56h6Gj9D05n2cYrb0aj7e+WlqXjx49Lz549nQRKTwpwwem5fd0t4q0Hppbu09BQ29/dDaadBc4VW/U8zc1Vm7qkfLUuZU3GoCkAGDRRTRGIhVO1tJRoXSi48jZ1qpptWms33aOPqmN/Zs++LKNH/8VhoJSYmCiLFuVrOqe7a/Hp5a0Hpt7uU3eCaVfdbcuWXSvraOya1q22Lb3CjOD6MGgKAAZNVFP4e0Bp5UHdjlpKPH1wasvWbRbgPYeBUnh4uGT/98LLy7W3kPmya66y0lK162zMGPVnhcUQdLEXgFVuYar8OWkNpvUE5uXl7rUw+uK7SjWTnud30KYcIKLA8OfU5aysqlPpQ0JsE/BZptZHRVWc1q+f89QDuQDuAVBk9+iTT87Dv/71DJT/zqu3V29nBgzQUVEP2KvXa6+pKRn05jmypHSwTOMvLHSeikDkWh4gV6ko9OYU8iRvVOX0EESeYNBERDa05lHyNN+SZckHEdv9loApPV19aFfMwxMfryajrPwaLaq+5jiAhwF87eAVTwN4HYpSH2vXAmazWg9H9bbHnw9tR/WyLKHhTkbtirm4tCbP1BJM6wnMt27VVrYyLr1CvsCM4ERkQ+vSHZZAwGRSkysuWqT+1LJMg5blMxYuVB/4mzer5Z1lx7Z44AFX73wFwHMAFADxqBowJQH4DWpv3HwA9W1aPfSsm+fPh7arJTREgKeeAjZscH8ZDXeDaXvfD63natIE+OQTPbW8RuuyPkS6+KG7sFbgmCbSK5gHa2qdieVuWgK9s6EqntPZYGf7OYbMAvzb4Tgl4DoBNrmsg+Vz0lpnf85Y0lMvd2e6uZPWwNH3Y+lSbedav17/+KWoKPV1wfTfEwU3DgQPAAZNpEXFQc+VB7cGWwZjVzOxPElLoDWBoqNzOgo4bYOHbwQwOgmW3hF7+ZQcbZb301J26lT/PrT13E9P0kboSWvg6vsxcaLrc/nruqh20/P8ZvcckZ9kZQGtWgG9eqldNpUHt1rGnmRlBaJ2VaWlAYcOAXPmAGPGqD8PHlT3e7qiut7xUK7OaekC2rXrGOrU6QG1++1OACWVSj6D5s0vYdkyQXz8qP+Wc61xY7U7Umu9e/eu2iXnTjemVnrup5bPxxFHCyVX7grT8v1YvBhYutT+uZYsUQf+792rvW7sjiO/8EMQVyuwpYmc0boERDBlMHbW9eZpWgJP1p+bMaNyvS6JojzrpEXpDgGOOGyt+uSTqkktK2+NG1+b/u5O5m1fZ1d39366OxXfVdeynu9H5XNpXSbHsrE7jjzF7rkAYNBEjrizBESg88q46lrRmjPJWVJBd9efUzezAPOdBEoNBfja5jWOxhi5s2isnszb/squ7s799DTpo6PgSWu3WuX317O+HLvjyFvYPUcURFzlpLHHGzmQ3KWla2XhQm3nctZt5Kirx7nNABpCnfg7ys7xfwEwAyiBovRATIw6+yo7G8jPt991ozcvldYuKsDzbkw93Lmfzj4fV92JFbubH35Y/dmqlbrfnZl2emYmAtq643zZJUq1lB+CuFqBLU3kiN5Bz4FuadLa8hIT450FYit2k9k/5xEBbnfSqjRagEtu30t3uxq1zH70d3Z1S73Wr1e7rZy10jj7fFx1J7pqPdM6O67i+2u9V1Onaptt6usuUao5mBGcKIjoGaQbDBmMtba8DBum5k1SFNvWAWf5iUymaxmmmza9lrjSkkAxPNySa+kygAyouZLs6QEgE2quJc+uR2u26crlKtbb3ffWW87e/QOq7uvdG3j33Wt5q7R+PoDrJJlLlgAZGY5bzxQFGD9enTjw0EPavx9a70GHDq7vu6NrOHbM/USfRADY0uQtbGkiR/QM0g2GMRp6Wkf0LBDr6i9/s9ks//znPx22KNWrFyFqGgHvtdrpGW/mzgB9b7U0lZerA+Artx41blx1TT2tOa3cuR96Fk7W+/3w5r1y9ZkGy2QLCg56nt+KiL2/F0ivkpISREREoLi4GEajMdDVoSBj+csXsP8XOqBm2Z471/5fwI5aaLTS83qTSR2b4mi5EktrWH7+teVNXJ3b0V/+aivE1wgL64fS0kt26zNhwruYOfNxfPaZgiFDtI9LqVxPe3Jy1LE4WmVnu27lqEjvvbQnK0vN5n3mjLb3tLTszJgBtGunZtUGgFOnXH/2eu+HM5mZwNCh2r973rhXeq5B72dJNZeu57fPQ7hagi1N5Iq9v7pjYtSZaM7GaHg6NsOd1+udIVZZxfE+69eLNG9e+a/93wT4o8NWpeeee04uX75cpT5aW5e01lPveDN3Zpt5ci/1XrejTev3xZ3xd+62CHn7Xll88om2+n3yif76Uc3ElAMBwKCJtNC7dIqn09U9eb3erh1nr1O3iwI85TBQ6tLlbjl27Jjde6Y3ZYPWJUz0Lufi7oBtR4HrjBmOvwvuXLfeILLy91HrsiXemgSg9V7pWZJmzhxt1zBnjnv1o5qHQVMAMGgib9MyvsTZw8nT11vO4VmQZxbgbYeBEtBIgO8EcNyK4876Y8uWabnD+sabeToOpuK9nDGjautb5dYgvQGdlsCp4jU4CuQaN3YdEC1b5nmLkNZ7pXddRrY0kV7M00RUA7jK7yQCHD2qlvPF64FrM8SGDlV/OhtLYptnJwdAONR8SmPslP4P1HxKZwEkAbA/yzArS52BpYeiqLO7tIx9Cg1VZwBqOaej2WZaWe5lWBjw0kvq2J2KKi+j4+1cXRU/b8sYs8rfj+PH1bFTItdmuVlUnPVmmYGmJVeVv2nNU6UvPxiRikETUZDydLq6t6e7u7Js2WEcO5YIdT23XgCuVCoxFmoqAQHwGCzrvimKOgi+cpoFy4P97Fl99dASDFaUlgZMmOA4IEpI8F4goCfZpd71+bQ6ftx5HRRFXWuvWTPbY5UDorQ04PBhdUB1ZqbzBKJ6OEuaqUWPHmpdnbH3fSPSgnmaiIKUO1mV3X29u7PzLl68iPT0dLz33nsOSvQC8AmAZnaPOsrZozc7tD1ag8GsLODVVx2/1+uve6/lRE/rn+Xh72g2mbtOn3ZdhzNngPXr1c/E2XdCS64qPVzliNISvFpaD93JUUXkCluaiHzM3aUcLA/Nyt0kFo5aaPS+/vRpfX/ZiwjeeustKIqCBg0a2AmYGgPIhdqitBGOAibAcXeOO0vPVKYlaHQVnOnp6tNCT+tfxa5DR59hgwZqq5AWls87JkZb+VOntHfNeoM3l5zRs9QNkR4Mmoh8yJOuBmcPTS1/MWt5/ZAhwODB9se2VBxfAwDZ2dkICwtDSEgI/vKXv1R5v//85wM0b26GovwO4I9Vjlvy7Kxf77o7x5MuQ1fBZEXeGPelh97WQ1fryUVEAPPnX+simzHD8TlF1O+L1rE8vuoedMTbn4Wvug+plvP9uPTagbPnqDJvrW7v6RRsR69ftsz17LqmTX+VW2+9tdKMt2vbuHHj5MqVK1Wu2ZNZVeXl2qeNe3pvteYlcic/k6Nr07smm4i6lpuW612+3Pl1LF/ufh18zd+fBZEFUw4EAIMmqsgb0/0rn8/dKdiOXu94SvsFAR5zGCj17t1bTpw44fC9nAVp69erC65Onar+u/J1OM7xpG3TE0yKBGZBXb2BpdbvUmmp9u+cN4JbbwvEZ0EkwqApIBg0UUXV4QFg+5e9WYC5DgOlmJgY2bJli+ZzVw7Sli6tukYaoO5btkwtk57ufrBkCcLWr3ceWFaulyXQ8Heriy/WZNPaOmf5znnagultwdoCRjWfnuc3Z88R+YC/p/u7Qx2zsgFAXwDlDkp9iI0bh6NXLwcjkR2oOKvKWa6lM2eABx/UdWq7LlwAHn3UdkxMfLw6pssyhuXTT4Fnn1UHvltERwN//KP9sTS+nGmVlgYMGKBtxqLW78ihQ9rKWc6npw7+UHHWm2X9PAvOeqNgwaCJyAc8TRfgS7/++isefPBB7Nixw0GJ8QD+AUUJQ3w8cNdd7r+XyQTYGTPudXPnVt1XcZr6998Dr7xStczvvwOrVqn/tiw+bBEf73gBZW/QOl1f63fk+uu1lat4Pm+nDPCUZeD72LFVA2BffhZEWikiFeN5cpeuVZKpxvPWiu3ecuHCBTz33HNYsGCBgxJ/BvARgDhr/QDPp2drXXHeE5WDnYoUBYiKUlu0XLG0bqSnqy0wgWx1qUjrd+ngQTVwCpbvnCfczRtG5A49z2+mHCDyAU/TBXiDiGDOnDlQFAUNGza0EzDFAtiKxo0FjRt/BUvABHgvn40vux8t99FZ3h4RbQGTpayiAMuXB9dDWut3yWAI/HfOW/Qs30PkTwyaiHwkUAn21q1bh9DQUISEhCAjI8NOiY+gju8uAHAbzp5VA4sZM7yfz8ab3Y+VH5zx8WqrkDeJeDcvk7do/S4xqSORb7F7zkt81T3HZurqzx+f4aFDh/DAAw8gLy/P7vHx4ydi8eL/xfHjBrvHfdV1YzIBLVtWXZxWD0sryZIlajbrivdx82bfdP9lZqqtHMFG63eJ/98g0k7P85sDwYNYVpb9AZEVZwRR8PPVYNvz589jzJgx+Oijj+weT0lJwfvvf4iff47Fhg3OA5eKLSzerGtoKPDmm8CgQe6fw9kgYF+tz6anhcyfAYrW71KwDfAmqinYPRekLAtXalnegqoXd9eiA4CrV8149tnXoCgKjEZjlYCpadOm2LZtG0QETz21FomJsejVC/jf/9V2fl+MQUpLU8cJ6VkjDVC73lx1FWoZ76OHniVYAM+WySGi6ofdc17ize45y2wZR+swVadZMGTL3dbDr776CikpKQ6Pf/LJJxgyZJi1xeOXX4CXXtLf+pKdra2Fwp3WFUuwmJOj/t6zJ3D2rLogbsX7kZCgf3q5vfuakKC2cNlLR2CP3hmDlj9sKt9jb808JCL/0PP8ZtDkJd4MmrRO09b6gKPgoPche/DgQQwaNAi7du1ycMZJAP4GRTFgwgS15crZgqfO2AvEHQVG3u429lb3lr3z6BnzpCdY4x82RDWHrue3z/KSe8n06dOrLOnQvn176/HLly/Ls88+K1FRUXLddddJWlqaFBQU2Jzjt99+k3vuuUfCw8MlJiZGJkyYIFevXrUpk52dLTfffLMYDAa5/vrr5YMPPtBVT28uo8KFK33P07Xc3Hk/LeuCnTtXIo888ojD5UyAvgIUur3ciKP3rrzemL0lNuLjRSZO9HwR4or3XsvSJ964746W5rAs5WJvHTxnqsMyOUSkTY1ae2769Oly0003ycmTJ63b6dOnrcdHjRolCQkJsmHDBtm2bZv88Y9/lNtvv916vLy8XDp27CjJycmyc+dOWbNmjURHR8uUKVOsZX799VepX7++ZGRkyN69e+Wtt96S0NBQWbt2reZ6ejNoqqn/Q/Z3oOKIo4DAl2tuOf9MTQLMdhgoRUc3F2C7VwOlilvl9cYsi7naC4xcBV+u1gZztSCvLz4HXyxOyz9siGqOGhc0denSxe6xoqIiqVu3rixbtsy6b9++fQJAcnNzRURkzZo1EhISYtP69M4774jRaJTS0lIREXn++eflpptusjn34MGDJSUlxWG9rly5IsXFxdbt6NGjXguaauLClYEIVBzVQ2tLiTeDPPsP2S8cBkoAJPO/T1ytD2i929SpVa+rvNz+wrp6NkfBvKN7761AxhlvL05bU/+wIaqNalzQVL9+fWnatKm0bt1aHn74Yfntt99ERGTDhg0CQM6dO2fzmhYtWsjrr78uIiIvvvhilaDr119/FQCyY8cOERHp0aOHjB071qbM+++/L0aj0Wm97D3ovBE0ifjmr+NA0ROo+JLWLrLycu8HeTNmWM7zswAdHQZKDz88RcrKymxeq/UBrXVzFnRfq6f7m73WFVf3vvIWEyPy379pvMabQXBN/MOGqLbSEzQFfcqBxMRELFiwAGvXrsU777yD/Px89OjRA+fPn0dBQQEMBgMiIyNtXhMbG4uCggIAQEFBAWJjY6sctxxzVqakpASXL1+2W68pU6aguLjYuh09etQbl2tVUzL7mkzqoGGRqscs+9LT9U27d9fmzc4HSououYr+8Q/vpnv45JMSTJ8+DIAC4A8A9lQqkQrgFEJDBfff/3+oW7euzVFLLiJ3ptBX5mw5DZPp2vR9T9jLceTq3ld2+rT63ffm1H1vLs0RDMvkEJH/BX3Q1K9fPzz44IPo3LkzUlJSsGbNGhQVFWHp0qUBrVdYWBiMRqPN5m1pacDhw+osOW8vb+EvWgMVfyxboTUH0RtveB7kmc1mvPzyy1AUBcOHRwDIrFQiAcBOqA1MqwDEwGQCHnqoaqDgzVxEzoLuzZvVFADucpbjyJ38T7//Htw5yWrKHzZEpF3QB02VRUZG4g9/+AMOHjyIuLg4lJWVoaioyKZMYWEh4uLUxUfj4uJQWFhY5bjlmLMyRqMR4eHhProSbar7wpVaH5a+XNjVQmuWZ2eBg6sgb82aNVAUBaGhoZg8ebKdEouhBkpHAHS1ew57QZmzB/TEiWrA4iig0rqmnCefgavWFU/WoPNXS6Q7asIfNkSkXbULmi5cuIBDhw6hadOm6NatG+rWrYsNGzZYjx84cABHjhxBUlISACApKQm7d+/GqVOnrGXWrVsHo9GIDh06WMtUPIeljOUc5D6tD0tvLuzqiKtuLkXRnrW6YoBx4MAB3HTTTVAUBampqXZKvwCgDGqwNNjpeZ0FZY4e0LNnOw6oli8Hpk3TFnR78hm4al1xt4vRny2R7qruf9gQkQ5+GGPlkfHjx0tOTo7k5+fLt99+K8nJyRIdHS2nTp0SETXlQIsWLWTjxo2ybds2SUpKkqSkJOvrLSkH+vTpI3l5ebJ27VqJiYmxm3Jg4sSJsm/fPpk3b15AUw7UJME2YNbVAHutA6E//7xIhgwZ4nBA97333iunT592exC3O1PVPR3orCWnkb1tzhxt77V8uXcHlxMReUONmj03ePBgadq0qRgMBmnevLkMHjxYDh48aD1uSW7ZqFEjqV+/vtx///1y8uRJm3McPnxY+vXrJ+Hh4RIdHS3jx4+3m9yya9euYjAYpE2bNgFNblnTBNtMQGfTz50HDiYB/s9hoNSyZUvJy8uzeS93A5FATVV39Fl5K+B1d3Yep+4Tka/oeX5zGRUv8eYyKjWRo7XB9K4x5i3Olu6wLHcCWAZ/rwJwr8NzLV26FA8++KDD81vWgbt2PscqLr8BeGd5Eb3sfVb26gkAS5cC0dHa67hokbqwrVZcjoSIfI1rzwUAgybXvLXGmD+8+eZ+jB9/P8rL99s9/uKLL2LatGmoU6dOlWP2gg7LWKkzZxy/Z8U16ADvru+mleUzOn5cnfYfEwMcOgS8+27VgHfIkKrr3bmqo9Z1FS0UhTPRiMi3GDQFAIOm6q+oqAhPP/20w3QW9903AO+//x80djJa3NmivCLqTLZ27dTWp3//Ww1OLCwtb4C+hX29xdlCvAMG2Aa8p08Dgwfrr6PJdO31rsTEAPPnOz5PdQnAiSi4MWgKAAZN2gXTA89kMmHWrFmYOnWq3eOtW7fGZ599hs6dO2s4l/OV7wE1EDh2DDAY1PI5OeoGqDOvbr8daNnScVDhbneVq3vuLNgDbIMgV9fpqo7jxl0LDp355BNg2LCq+50Fd2yRIiK9dD2/fTi2qlbhQHBtgmUNupUrVzoc0A1APv30U93n1DpTLiZGvV579yIkxPsDo13dc1frzVUe8O3pumuevD5YluQhopqjRi2jQjWHpTXDW8uT6LVv3z60b98eiqJgwIABVY5Pnz4dV69ehYhg0KBBus+vNTnk6dPAoEHqVvlemM3efS8t9/wf/3A+1krENleSpwlLLTmbHHGUWTyYluQhotqJQRP5RaAeeEVFRXjwwQehKAo6dOiAn3/+2eb4/fffj99//x0igpdeesnuwG6t/JGgU897abnnY8dq6yoDrgVBniYstSwL4yyLub3M4sG0JA8R1U4Mmsgv/PnAM5lM+Pvf/w5FUdCoUSN8apmO9l/XX389du/eDRFBVlaW04HdenhzYV1HnK3vVpmWe37sGHDunLb3tgRBWjKru6qjO+u2BdOSPERUO7n/ZzWRDv544K1cuRIDBw50eDwrKwv333+/+2/ggqUFxZLjyVccre9WmTeDh8aNrwVBFa/TMivQwtUadBWlpVWdledsUkAwLclDRLUTW5rIL3z1wPvpp5/Qrl07KIpiN2B66aWXrOOUPAmYLDPdFi1SfzrqRrS0oERHu/1WDsXE6Es34M3g4S9/sQ1m3GkpskfPum3eaOEiIvIEUw54CVMOOGeZpn78uOOs2KGhalBSKbl2FefOncMTTzyBLAcjxwcNGoR3330XjRo18qzS/+XOFPeyMrWMlnxEWlRMVaCVq3uuKGrQIwKcOOH4c2ncGCgstB/Q+Dt9RNVs7Spf57AiopqLKQcCgCkHXHM0Xbzy1HF708bLy8tl2rSXHKYIaNu2rezZs8dvddYyxV3L9braPJ1Kr2XdP1frzQXbNH5nawcSEelVoxbsrS4YNGmzbJlIaKj2nEBZWVkOAyUA8vzzK3xWV8tiu1rrao+7C9R6MxjQEmRUt0CkvFzN45SZqf7Us2gwEVFFXLA3ANg9p422tcf2oFmzAThx4lcHx/8OYAoURe0H8lWXjNZ10rKz1fE49uhdoLZ5c+DDD4FTp7zb3aWlGy2YMrUTEfmLnuc3Z8+RXzme0XUWwOMAPgOgjrGx9SCAfwG4Nk5JRB3Lkp6uzsLy9gNe6+yz48fVAMtesKFnMLaiAG++CfTurbuqLlkGXHtahoioNmPQRH5lG0SUQ201+pvdsu3bt8eUKSvw6KM3OjxfxfxOPXteay05flwdvHzmDBASoh5zNTvLeV0dGzfOdsB3xUHilhlfzgbAV36Nr7FFiYjIPeye8xJ2z2ljMgFNmizH2bOOkxlFR/8/FBTca51Np6V7a+pUoHNnICPDcULHxo2Bf/9be2CiZcafPZVncjma8WUxYwbwwgv+CVy42C0RkS09z2/maSK/2L17N1q3bo06dRQHAdM/AJRDUQT/+te9uru3/vd/gYcecp4B+8wZdb03rWvcWZI4AvqyfFdeFsZRTqOEBGD5cmDaNP8FTIFc+4+IqLpjS5OXsKWpqjNnzuCxxx7D//t//8/u8fDwwbh8eT6ASABqEDF3rm2Lh7utPc7ExwMLFmgfbG2vdSYmRlsOpoqDxAPZLWa5j46CSkVR70t+PrvqiKh20fP8ZtDkJQyaVOXl5ZgxYwb+93//1+7xG2+8EcuXL8eNN96oOYhw1b3lKS3dU5Xrevw48Mgjrs+dmalmuw40b8wEJCKqiTh7jvxu2bJleOihhxwe//zzz9G/f3+bfVpna1m6tyq39niLpXvKWeqCynXNydF27mBZB42L3RIReY5jmshtP/74I1q2bAlFUewGTDNnzkR5eTlEpErApFdaGnD4sDrg29sqj0HSorqtg8bFbomIPMegiXT5/fffce+990JRFHTt2hVHjhyxOT506FAUFRVBRDB58mSEenGATGiob3IYAbapC7TWxdEgccvvc+cGz/ig6hbkEREFIwZN5NLVq1fxwgsvQFEUxMTEYNWqVTbHb7rpJuzfvx8igszMTERERABQW21yctS0ATk5VVtxXB23V85kUmeh6ZnNpoee7ilHs+Li44Nv4djqFuQREQUjjmkih5YsWYIhQ4Y4PL569Wrcc889do+5ygekNV+QvXKNG1/LBu7tgeF6u6fS0tRs5NUhWaSjsWHx8VVnLRIRUVWcPeclNWX2XF5eHu69914cczDietasWZg4cSJCQhw3Ulpmu1X+ZllaNCZMAF591fHxykkh7ZUTUYOnM2f0XJ1zCQm1Y8o9M4ITEV3DlAMBUJ2DptOnT+PRRx/FmjVr7B5/5JFHMG/ePIfXVfEh3KQJMGKEOiPNHkVRlzVx1BVnyRd08CBw/fXO8wo1b34t35LlfU+ccK/1SVGCr0uNiIh8jykHyKWrV69i2rRpmDVrlt3jnTp1wvLly9GuXTun57HXfeaMiPMZapYB2f/8p/NziqjHQ0Ov5UF68021ZUpvt53e5VWIiKh24kDwWmbRokVQFAUGg8FuwPT552sgIti1a5emgMneshzecOiQtnIVB247W65k4kS1BauiqCh13bfCQgZMRETkGluaaoEdO3bg3nvvxYkTJxyUeBXAOAAheOYZoKzMdRBhMqktTL7q3L3+em3lKg/cdjYwe+ZMjuUhIiL3cUyTlwTbmKZTp05hxIgRWLt2rd3jd989HJs2zQPQ0GZ/5cHYFpUHD5tMQHKy/nrpHdPkaM05rpVGRETeoOf5ze65GuTq1auYNGkSFEVBbGxslYCpc+fO+Pnnn1FeLjh06CNUDpgA+9mxs7LUxV579QIeflj96WTFFIcsAVlGhvpvZ/mCDAbmFSIiouDCoKkGWLhwoXWc0uzZs22OhYSE4Msvv4SI4Mcff0S7du2webPrQdaW7NiOxi2dPau/npakj7Nna0sKWZ2SRxIRUc3HMU3V1Pbt29G/f38UFBTYPf7aa68hPT3dbj4lrVmvV6xQgyZ3p/BXTAlQeQyR1qSQ1Sl5JBER1WwMmqqRwsJC/M///A+++uorByX+B82avY233mrotBVGa9brN9/UXUUA17rP3njD+VpxoaFAz56uz6e1HBERkS+xey7IrV4NKMq7UBQFcXFxdgKmmwEcBCAAPsTJkw3xwANqC5EjrhZv1SsqyvZ3dp8REVFNxKCpknnz5qFVq1aoV68eEhMTsXXr1oDVRVGA/v1PAniq0pE6qFdvHdRAaQeAa/Pz7Q3krsyyeKu35k0uXQpkZwOZmerP/HwGTEREVPMwaKpgyZIlyMjIwPTp07Fjxw506dIFKSkpOHXqlN/rcq0VqDGAZ/777zkAzACu4soVx/P9Kw7kdiQtTQ2sPK1jQoLaddazp5qZu2dPjjciIqKaiUFTBa+//jqefPJJjBw5Eh06dMD8+fNRv359vP/++36tx+rVFX8zAPgn1FaldADa+9RcDfgeMEB7nTjtn4iIajsGTf9VVlaG7du3I7lCxsaQkBAkJycjNze3SvnS0lKUlJTYbN7Sv793zuNqwLersU2WlqRlyzjtn4iIiEHTf/3+++8wmUyIjY212R8bG2t3Wv/MmTMRERFh3RISEvxVVZcswU6PHs7LWcY2WV5T+RyA2pL0wAPA4cMct0RERLUbgyY3TZkyBcXFxdbt6NGjga4SAP3dZloTSFqm/XPcEhER1VbM0/Rf0dHRCA0NRWFhoc3+wsJCxMXFVSkfFhaGsLAwn9Rl1SrtXXTNmgEV1+GNj1cDJj2tQEwgSURE5BqDpv8yGAzo1q0bNmzYgIEDBwIAzGYzNmzYgDFjxvi1Lqmp2spNnAjMnOmdYIcJJImIiJxj0FRBRkYGRowYgVtvvRXdu3fH3LlzcfHiRYwcOdLvdRFxnnxy4kR1DTeAwQ4REZE/MGiqYPDgwTh9+jSmTZuGgoICdO3aFWvXrq0yONxfRNT0AxW76p54Apg3DzAYAlIlIiKiWksR8VZe6NqtpKQEERERKC4uhtFoDHR1iIiISAM9z2/OniMiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAy6h4iSWxeklJSYBrQkRERFpZnttaFkhh0OQl58+fBwAkJCQEuCZERESk1/nz5xEREeG0DNee8xKz2YwTJ06gYcOGUBTFq+cuKSlBQkICjh49ynXtPMD76DneQ+/gffQO3kfP8R6qLUznz59Hs2bNEBLifNQSW5q8JCQkBPHx8T59D6PRWGu/1N7E++g53kPv4H30Dt5Hz9X2e+iqhcmCA8GJiIiINGDQRERERKQBg6ZqICwsDNOnT0dYWFigq1Kt8T56jvfQO3gfvYP30XO8h/pwIDgRERGRBmxpIiIiItKAQRMRERGRBgyaiIiIiDRg0ERERESkAYOmIDdv3jy0atUK9erVQ2JiIrZu3RroKgWVr7/+Gvfeey+aNWsGRVHw2Wef2RwXEUybNg1NmzZFeHg4kpOT8csvv9iUOXv2LIYNGwaj0YjIyEg8/vjjuHDhgh+vIrBmzpyJ2267DQ0bNkSTJk0wcOBAHDhwwKbMlStXMHr0aDRu3BgNGjTAoEGDUFhYaFPmyJEjSE1NRf369dGkSRNMnDgR5eXl/ryUgHrnnXfQuXNna5LApKQkfPHFF9bjvIf6zZo1C4qiID093bqP99G1l156CYqi2Gw33HCD9TjvofsYNAWxJUuWICMjA9OnT8eOHTvQpUsXpKSk4NSpU4GuWtC4ePEiunTpgnnz5tk9Pnv2bLz55puYP38+tmzZguuuuw4pKSm4cuWKtcywYcPw008/Yd26dVi1ahW+/vprPPXUU/66hIDbtGkTRo8eje+//x7r1q3D1atX0adPH1y8eNFaZty4cfj888+xbNkybNq0CSdOnEBaWpr1uMlkQmpqKsrKyvDdd9/hww8/xIIFCzBt2rRAXFJAxMfHY9asWdi+fTu2bduGP/3pTxgwYAB++uknALyHev3www/417/+hc6dO9vs533U5qabbsLJkyet2zfffGM9xnvoAaGg1b17dxk9erT1d5PJJM2aNZOZM2cGsFbBC4CsWLHC+rvZbJa4uDh55ZVXrPuKiookLCxMFi1aJCIie/fuFQDyww8/WMt88cUXoiiKHD9+3G91DyanTp0SALJp0yYRUe9Z3bp1ZdmyZdYy+/btEwCSm5srIiJr1qyRkJAQKSgosJZ55513xGg0SmlpqX8vIIg0atRI3nvvPd5Dnc6fPy/t2rWTdevWyd133y1jx44VEX4XtZo+fbp06dLF7jHeQ8+wpSlIlZWVYfv27UhOTrbuCwkJQXJyMnJzcwNYs+ojPz8fBQUFNvcwIiICiYmJ1nuYm5uLyMhI3HrrrdYyycnJCAkJwZYtW/xe52BQXFwMAIiKigIAbN++HVevXrW5jzfccANatGhhcx87deqE2NhYa5mUlBSUlJRYW1pqE5PJhMWLF+PixYtISkriPdRp9OjRSE1NtblfAL+Levzyyy9o1qwZ2rRpg2HDhuHIkSMAeA89xQV7g9Tvv/8Ok8lk86UFgNjYWOzfvz9AtapeCgoKAMDuPbQcKygoQJMmTWyO16lTB1FRUdYytYnZbEZ6ejruuOMOdOzYEYB6jwwGAyIjI23KVr6P9u6z5VhtsXv3biQlJeHKlSto0KABVqxYgQ4dOiAvL4/3UKPFixdjx44d+OGHH6oc43dRm8TERCxYsADt27fHyZMnMWPGDPTo0QN79uzhPfQQgyYisho9ejT27NljM/6BtGvfvj3y8vJQXFyMTz/9FCNGjMCmTZsCXa1q4+jRoxg7dizWrVuHevXqBbo61Va/fv2s/+7cuTMSExPRsmVLLF26FOHh4QGsWfXH7rkgFR0djdDQ0CozGgoLCxEXFxegWlUvlvvk7B7GxcVVGVhfXl6Os2fP1rr7PGbMGKxatQrZ2dmIj4+37o+Li0NZWRmKiopsyle+j/bus+VYbWEwGNC2bVt069YNM2fORJcuXfDGG2/wHmq0fft2nDp1Crfccgvq1KmDOnXqYNOmTXjzzTdRp04dxMbG8j66ITIyEn/4wx9w8OBBfhc9xKApSBkMBnTr1g0bNmyw7jObzdiwYQOSkpICWLPqo3Xr1oiLi7O5hyUlJdiyZYv1HiYlJaGoqAjbt2+3ltm4cSPMZjMSExP9XudAEBGMGTMGK1aswMaNG9G6dWub4926dUPdunVt7uOBAwdw5MgRm/u4e/dumwB03bp1MBqN6NChg38uJAiZzWaUlpbyHmrUu3dv7N69G3l5edbt1ltvxbBhw6z/5n3U78KFCzh06BCaNm3K76KnAj0SnRxbvHixhIWFyYIFC2Tv3r3y1FNPSWRkpM2Mhtru/PnzsnPnTtm5c6cAkNdff1127twpv/32m4iIzJo1SyIjI2XlypWya9cuGTBggLRu3VouX75sPUffvn3l5ptvli1btsg333wj7dq1k6FDhwbqkvzumWeekYiICMnJyZGTJ09at0uXLlnLjBo1Slq0aCEbN26Ubdu2SVJSkiQlJVmPl5eXS8eOHaVPnz6Sl5cna9eulZiYGJkyZUogLikgJk+eLJs2bZL8/HzZtWuXTJ48WRRFka+++kpEeA/dVXH2nAjvoxbjx4+XnJwcyc/Pl2+//VaSk5MlOjpaTp06JSK8h55g0BTk3nrrLWnRooUYDAbp3r27fP/994GuUlDJzs4WAFW2ESNGiIiaduDFF1+U2NhYCQsLk969e8uBAwdsznHmzBkZOnSoNGjQQIxGo4wcOVLOnz8fgKsJDHv3D4B88MEH1jKXL1+WZ599Vho1aiT169eX+++/X06ePGlznsOHD0u/fv0kPDxcoqOjZfz48XL16lU/X03gPPbYY9KyZUsxGAwSExMjvXv3tgZMIryH7qocNPE+ujZ48GBp2rSpGAwGad68uQwePFgOHjxoPc576D5FRCQwbVxERERE1QfHNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIahyTyYTbb78daWlpNvuLi4uRkJCAF154wenrc3JyoChKlZXgPXH48GEoioK8vDyvnZOI/ItBExHVOKGhoViwYAHWrl2LhQsXWvc/99xziIqKwvTp0wNYOyKqrhg0EVGN9Ic//AGzZs3Cc889h5MnT2LlypVYvHgxPvroIxgMBoevO3z4MHr16gUAaNSoERRFwaOPPgoAMJvNmDlzJlq3bo3w8HB06dIFn376qfW1586dw7BhwxATE4Pw8HC0a9cOH3zwAQCgdevWAICbb74ZiqKgZ8+evrlwIvKZOoGuABGRrzz33HNYsWIFhg8fjt27d2PatGno0qWL09ckJCRg+fLlGDRoEA4cOACj0Yjw8HAAwMyZM/HJJ59g/vz5aNeuHb7++ms88sgjiImJwd13340XX3wRe/fuxRdffIHo6GgcPHgQly9fBgBs3boV3bt3x/r163HTTTc5DdyIKDgpIiKBrgQRka/s378fN954Izp16oQdO3agTh3Xfyvm5OSgV69eOHfuHCIjIwEApaWliIqKwvr165GUlGQt+8QTT+DSpUvIzMzEfffdh+joaLz//vtVznn48GG0bt0aO3fuRNeuXb11eUTkR2xpIqIa7f3330f9+vWRn5+PY8eOoVWrVm6d5+DBg7h06RL+/Oc/2+wvKyvDzTffDAB45plnMGjQIOzYsQN9+vTBwIEDcfvtt3t6CUQUJDimiYhqrO+++w5z5szBqlWr0L17dzz++ONwt3H9woULAIDVq1cjLy/Puu3du9c6rqlfv3747bffMG7cOJw4cQK9e/fGhAkTvHY9RBRYDJqIqEa6dOkSHn30UTzzzDPo1asX/vOf/2Dr1q2YP3++y9daxhuZTCbrvg4dOiAsLAxHjhxB27ZtbbaEhARruZiYGIwYMQKffPIJ5s6di3//+98Oz0lE1Qu754ioRpoyZQpEBLNmzQIAtGrVCq+++iomTJiAfv36Oe2ma9myJRRFwapVq3DPPfcgPDwcDRs2xIQJEzBu3DiYzWbceeedKC4uxrfffguj0YgRI0Zg2rRp6NatG2666SaUlpZi1apVuPHGGwEATZo0QXh4ONauXYv4+HjUq1cPERER/rgVROQtQkRUw+Tk5EhoaKhs3ry5yrE+ffrIn/70JzGbzU7P8be//U3i4uJEURQZMWKEiIiYzWaZO3eutG/fXurWrSsxMTGSkpIimzZtEhGRv//973LjjTdKeHi4REVFyYABA+TXX3+1nvPdd9+VhIQECQkJkbvvvttr10tE/sHZc0REREQacEwTERERkQYMmoio1hk1ahQaNGhgdxs1alSgq0dEQYrdc0RU65w6dQolJSV2jxmNRjRp0sTPNSKi6oBBExEREZEG7J4jIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIg/8Ptdifjdcg3LwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "y_pred = model_LinReg_2.predict(X_test)\n", + "plt.scatter(X_test, y_test, color ='b')\n", + "plt.plot(X_test, y_pred, color ='k')\n", + "plt.xlabel('X_test')\n", + "plt.ylabel('y_pred')\n", + " \n", + "save_path = '../Images/linear_reg_2_x_test_vs_y_pred.png'\n", + "plt.savefig(save_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "04b7556c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAE: 2352.7343172904784\n", + "RMSE: 3434.275227263764\n" + ] + } + ], + "source": [ + "from sklearn.metrics import mean_absolute_error,mean_squared_error\n", + " \n", + "mae = mean_absolute_error(y_true=y_test,y_pred=y_pred)\n", + "rmse = mean_squared_error(y_true=y_test,y_pred=y_pred,squared=False)\n", + " \n", + "print(\"MAE:\",mae)\n", + "print(\"RMSE:\",rmse)" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "625f0da9", + "metadata": {}, + "outputs": [], + "source": [ + "steps_vs_active_mins['Category'] = 1 - label_encoder.fit_transform(steps_vs_active_mins['Category'])" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "da38b5f9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TotalStepsTotalActiveMinutesCategory
0131623661
1107352571
2104602221
397622721
4126692671
............
935106862661
936202263091
937107332531
938214203131
93980641611
\n", + "

940 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " TotalSteps TotalActiveMinutes Category\n", + "0 13162 366 1\n", + "1 10735 257 1\n", + "2 10460 222 1\n", + "3 9762 272 1\n", + "4 12669 267 1\n", + ".. ... ... ...\n", + "935 10686 266 1\n", + "936 20226 309 1\n", + "937 10733 253 1\n", + "938 21420 313 1\n", + "939 8064 161 1\n", + "\n", + "[940 rows x 3 columns]" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steps_vs_active_mins" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "800e1d8c", + "metadata": {}, + "outputs": [], + "source": [ + "X = np.array(steps_vs_active_mins['TotalActiveMinutes']).reshape(-1, 1)\n", + "y = np.array(steps_vs_active_mins['Category']).ravel()\n", + " \n", + "steps_vs_active_mins.dropna(inplace = True)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)\n", + "\n", + "scaler = StandardScaler()\n", + "X_train = scaler.fit_transform(X_train)\n", + "X_test = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "ec42626d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7787234042553192\n" + ] + } + ], + "source": [ + "model_LogReg_2 = LogisticRegression()\n", + " \n", + "model_LogReg_2.fit(X_train, y_train)\n", + "print(model_LogReg_2.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "b0a5e797", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 77.87%\n" + ] + } + ], + "source": [ + "y_pred = model_LogReg_2.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "id": "57129523", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Confusion Matrix:\n", + " [[99 26]\n", + " [26 84]]\n", + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.79 0.79 0.79 125\n", + " 1 0.76 0.76 0.76 110\n", + "\n", + " accuracy 0.78 235\n", + " macro avg 0.78 0.78 0.78 235\n", + "weighted avg 0.78 0.78 0.78 235\n", + "\n" + ] + } + ], + "source": [ + "print(\"Confusion Matrix:\\n\", confusion_matrix(y_test, y_pred))\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "8322949a", + "metadata": {}, + "source": [ + "### Support Vector Machine" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "2a0cdd2f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7787234042553192\n" + ] + } + ], + "source": [ + "from sklearn.svm import SVC \n", + "model_svm_2 = SVC(kernel='linear') \n", + " \n", + "model_svm_2.fit(X_train, y_train) \n", + "print(model_svm_2.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "id": "80298077", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 77.87%\n" + ] + } + ], + "source": [ + "y_pred = model_svm_2.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "id": "921c5c1d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[93 32]\n", + " [20 90]]\n", + " precision recall f1-score support\n", + "\n", + " 0 0.82 0.74 0.78 125\n", + " 1 0.74 0.82 0.78 110\n", + "\n", + " accuracy 0.78 235\n", + " macro avg 0.78 0.78 0.78 235\n", + "weighted avg 0.78 0.78 0.78 235\n", + "\n" + ] + } + ], + "source": [ + "print(confusion_matrix(y_test, y_pred))\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "73693bae", + "metadata": {}, + "source": [ + "### KNN" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "01c8d12d", + "metadata": {}, + "outputs": [], + "source": [ + "model_knn_2 = KNeighborsClassifier(n_neighbors=1)\n", + "model_knn_2.fit(X_train, y_train)\n", + "y_pred = model_knn_2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "1a49b6a2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7361702127659574\n" + ] + } + ], + "source": [ + "print(model_knn_2.score(X_test, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "95006e60", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 73.62%\n" + ] + } + ], + "source": [ + "y_pred = model_knn_2.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "id": "9f480124", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[99 26]\n", + " [36 74]]\n", + " precision recall f1-score support\n", + "\n", + " 0 0.73 0.79 0.76 125\n", + " 1 0.74 0.67 0.70 110\n", + "\n", + " accuracy 0.74 235\n", + " macro avg 0.74 0.73 0.73 235\n", + "weighted avg 0.74 0.74 0.73 235\n", + "\n" + ] + } + ], + "source": [ + "print(confusion_matrix(y_test, y_pred))\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "332e3566", + "metadata": {}, + "source": [ + "### For TotalSteps vs Calories\n", + "\n", + "Accuracies of Classification models:\n", + "\n", + "**Logistic Regression ~** 88.02%\n", + "\n", + "**Support Vector Machine ~** 87.87%\n", + "\n", + "**KNN Classifier ~** 84.40%" + ] + }, + { + "cell_type": "markdown", + "id": "d42ec2b3", + "metadata": {}, + "source": [ + "### For TotalSteps vs TotalActiveMinutes\n", + "\n", + "Accuracies of Classification models:\n", + "\n", + "**Logistic Regression ~** 79.57%\n", + "\n", + "**Support Vector Machine ~** 80.00%\n", + "\n", + "**KNN Classifier ~** 69.36%" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "70e92247", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/BellaBeat - Capstone Project by Google/Model/analysis.ipynb b/BellaBeat - Capstone Project by Google/Model/analysis.ipynb index 1c0625144..d10c8e3c4 100644 --- a/BellaBeat - Capstone Project by Google/Model/analysis.ipynb +++ b/BellaBeat - Capstone Project by Google/Model/analysis.ipynb @@ -15,6 +15,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Import necessary libraries\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -38,6 +39,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Read data from CSV files into DataFrames\n", "daily_activity = pd.read_csv('../Dataset/dailyActivity_merged.csv')\n", "hourly_steps = pd.read_csv('../Dataset/hourlySteps_merged.csv')\n", "hourly_calories = pd.read_csv('../Dataset/hourlyCalories_merged.csv')\n", @@ -1053,6 +1055,7 @@ } ], "source": [ + "# Displaying the shapes of the datasets\n", "print(\"------Shapes of Datasets------\")\n", "print(\"Daily Activity:\".ljust(20), daily_activity.shape)\n", "print(\"Hourly Steps:\".ljust(20), hourly_steps.shape)\n", @@ -1110,6 +1113,7 @@ } ], "source": [ + "# Displaying the columns in the datasets\n", "print(\"------Columns in Datasets------\")\n", "print(\"Daily Activity:\".ljust(20), daily_activity.columns)\n", "print(\"\\nHourly Steps:\".ljust(20), hourly_steps.columns)\n", @@ -1146,6 +1150,7 @@ } ], "source": [ + "# Displaying the number of unique users in each dataset\n", "print(\"------Unique Users in each Dataset------\")\n", "print(\"Daily Activity:\".ljust(20), f\"{daily_activity['Id'].nunique()} unique users\")\n", "print(\"Hourly Steps:\".ljust(20), f\"{hourly_steps['Id'].nunique()} unique users\")\n", @@ -1562,6 +1567,7 @@ } ], "source": [ + "# Displaying the number of missing values in each dataset\n", "print(\"------Missing Values in each Dataset------\")\n", "print(\"Daily Activity:\".ljust(20), f\"{daily_activity.isnull().values.sum()} missing values\")\n", "print(\"Hourly Steps:\".ljust(20), f\"{hourly_steps.isnull().values.sum()} missing values\")\n", @@ -1598,6 +1604,7 @@ } ], "source": [ + "# Displaying the number of duplicates in each dataset\n", "print(\"------Duplicates in each Dataset------\")\n", "print(\"Daily Activity:\".ljust(20), f\"{daily_activity.duplicated().values.sum()} duplicates\")\n", "print(\"Hourly Steps:\".ljust(20), f\"{hourly_steps.duplicated().values.sum()} duplicates\")\n", @@ -1620,16 +1627,17 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_15179/4287242047.py:2: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + "/tmp/ipykernel_7425/4216372866.py:3: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " hourly_steps[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", - "/tmp/ipykernel_15179/4287242047.py:3: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + "/tmp/ipykernel_7425/4216372866.py:4: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " hourly_calories[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", - "/tmp/ipykernel_15179/4287242047.py:4: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + "/tmp/ipykernel_7425/4216372866.py:5: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " sleep_day[\"SleepDay\"] = pd.to_datetime(sleep_day[\"SleepDay\"])\n" ] } ], "source": [ + "# Convert relevant columns to datetime format\n", "daily_activity[\"ActivityDate\"] = pd.to_datetime(daily_activity[\"ActivityDate\"])\n", "hourly_steps[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", "hourly_calories[\"ActivityHour\"] = pd.to_datetime(hourly_calories[\"ActivityHour\"])\n", @@ -1768,6 +1776,7 @@ } ], "source": [ + "#Merging the 'hourly_steps' and 'hourly_calories' DataFrames based on 'Id' and 'ActivityHour'\n", "merge_df = pd.merge(hourly_steps, hourly_calories,\n", " on=['Id', 'ActivityHour'], how='inner')\n", "\n", @@ -2569,6 +2578,7 @@ } ], "source": [ + "#Merging the previously merged DataFrame 'merge_df' with the 'sleep_day' DataFrame\n", "merge_df2 = pd.merge(merge_df, sleep_day,\n", " on=['Id', 'ActivityDay', 'WeekDay'], how='inner')\n", "\n", @@ -2730,6 +2740,7 @@ "metadata": {}, "outputs": [], "source": [ + "#Reorder columns in 'daily_activity' DataFrame based on the specified order in 'new_cols'\n", "new_cols = [\"Id\", \"ActivityDate\", \n", " \"WeekDay\", \"TotalSteps\", \n", " \"TotalDistance\", \"VeryActiveDistance\", \n", @@ -3713,6 +3724,7 @@ "Corr1 = [\"TotalDistance\", \"TotalSteps\", \n", " \"SedentaryMinutes\", \"TotalActiveMinutes\", \"Calories\"]\n", "\n", + "# Create a correlation matrix and visualize it using a heatmap\n", "fig, ax = plt.subplots(figsize=(10, 6))\n", "ax = sns.heatmap(daily_activity[Corr1].corr(), \n", " annot = True, \n", @@ -3765,6 +3777,7 @@ " figsize=(10, 10),\n", " sharex=True)\n", "\n", + "# Scatter plot for Calories vs. Total Steps\n", "scatter = ax0.scatter(x=daily_activity[\"Calories\"],\n", " y=daily_activity[\"TotalSteps\"],\n", " color=\"r\")\n", @@ -3773,6 +3786,8 @@ "\n", "ax0.legend(*scatter.legend_elements(), title=None)\n", "\n", + "\n", + "# Scatter plot for Calories vs. Sedentary Minutes\n", "scatter = ax1.scatter(x=daily_activity[\"Calories\"],\n", " y=daily_activity[\"SedentaryMinutes\"],\n", " color=\"b\")\n", @@ -4169,6 +4184,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Create a new column 'Category' in 'step_vs_calories' DataFrame based on a condition\n", "step_vs_calories['Category'] = np.where(step_vs_calories['Calories'] > 97, 'High', 'Low')" ] }, @@ -4313,7 +4329,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.6948214060621072\n" + "0.6883662506078383\n" ] } ], @@ -4328,7 +4344,7 @@ "model_lr_1 = LinearRegression()\n", " \n", "model_lr_1.fit(X_train, y_train)\n", - "print(model_lr_1.score(X_test, y_test))\n" + "print(model_lr_1.score(X_test, y_test))" ] }, { @@ -4339,7 +4355,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABugklEQVR4nO3deXwTZf4H8E9a2tICbend0lRQkUNQWVAo2kWkCyK7ixZ0geqCsroIKEXBlZVDvMATxFXw2EVdKMhRRRFRKEVQKpeCcqPcpS0CtoWFFpo8vz/mlzSTc5JMMkn6eb9e8yp9ZjJ5Jgmdb57j++iEEAJEREREISpM6woQERER+RKDHSIiIgppDHaIiIgopDHYISIiopDGYIeIiIhCGoMdIiIiCmkMdoiIiCikNdG6AoHAaDTi5MmTaNGiBXQ6ndbVISIiIgWEEDh37hwyMjIQFua4/YbBDoCTJ09Cr9drXQ0iIiLywPHjx5GZmelwP4MdAC1atAAgvVixsbEa14aIiIiUqKmpgV6vN9/HHWGwA5i7rmJjYxnsEBERBRlXQ1A4QJmIiIhCGoMdIiIiCmkMdoiIiCikMdghIiKikMZgh4iIiEIagx0iIiIKaQx2iIiIKKQx2CEiIqKQxmCHiIiIQhozKBMREYUwgwHYuBEoLwfS04GcHCA8XOta+ReDHSIiohBVVASMGwecONFQlpkJvP46kJenXb38jd1YREREIaioCBg8WB7oAEBZmVReVKRNvbTAYIeIiCjEGAxSi44QtvtMZQUF0nGNAYMdIiKiELNxo22LjiUhgOPHpeMaAwY7REREIaa8XN3jgh2DHSIiohCTnq7uccGOwQ4REVGIycmRZl3pdPb363SAXi8d1xgw2CEiIgox4eHS9HLANuAx/T57duPJt8Ngh4iIKATl5QHLlgGtWsnLMzOl8saUZ4dJBYmIiEJUXh4wcCAzKDPYISIiCmHh4cCtt2pdC22xG4uIiIhCGoMdIiIiCmkMdoiIiCikMdghIiKikKZpsGMwGDBlyhS0adMG0dHRuOqqq/Dss89CWKxcJoTA1KlTkZ6ejujoaOTm5uLgwYOy85w9exb5+fmIjY1FfHw8Ro4cifPnz/v7coiIiCgAaRrsvPjii5g7dy7+9a9/Ye/evXjxxRfx0ksv4Y033jAf89JLL2HOnDmYN28eNm/ejGbNmqFfv36ora01H5Ofn4/du3djzZo1WLlyJTZs2ICHHnpIi0siIiKiAKMTwt4C8P7xxz/+Eampqfj3v/9tLhs0aBCio6OxYMECCCGQkZGBxx9/HBMmTAAAVFdXIzU1Fe+//z6GDBmCvXv3omPHjti6dSu6desGAFi9ejXuuOMOnDhxAhkZGS7rUVNTg7i4OFRXVyM2NtY3F0tERESqUnr/1rRlp2fPniguLsaBAwcAADt37sQ333yD/v37AwAOHz6MiooK5Obmmh8TFxeH7t27o7S0FABQWlqK+Ph4c6ADALm5uQgLC8PmzZvtPm9dXR1qampkGxEREYUmTZMKPvnkk6ipqUH79u0RHh4Og8GA559/Hvn5+QCAiooKAEBqaqrscampqeZ9FRUVSElJke1v0qQJEhISzMdYmzFjBqZPn6725RAREVEA0rRlZ8mSJVi4cCEKCwvx/fff44MPPsArr7yCDz74wKfPO2nSJFRXV5u348eP+/T5iIiISDuatuxMnDgRTz75JIYMGQIA6Ny5M44ePYoZM2Zg+PDhSEtLAwBUVlYiPT3d/LjKykrccMMNAIC0tDScOnVKdt76+nqcPXvW/HhrUVFRiIqK8sEVERERUaDRtGXnwoULCAuTVyE8PBxGoxEA0KZNG6SlpaG4uNi8v6amBps3b0Z2djYAIDs7G1VVVdi+fbv5mHXr1sFoNKJ79+5+uAoiIiIKZJq27PzpT3/C888/j6ysLFx77bX44Ycf8Nprr+GBBx4AAOh0OhQUFOC5555D27Zt0aZNG0yZMgUZGRm48847AQAdOnTA7bffjgcffBDz5s3D5cuXMXbsWAwZMkTRTCwiIiIKbZoGO2+88QamTJmC0aNH49SpU8jIyMDf//53TJ061XzME088gf/973946KGHUFVVhVtuuQWrV69G06ZNzccsXLgQY8eORZ8+fRAWFoZBgwZhzpw5WlwSERERBRhN8+wECubZISIiCj5BkWeHiIiIyNcY7BAREVFIY7BDREREIY3BDhEREYU0BjtEREQU0hjsEBERUUhjsENEREQhjcEOERERhTQGO0RERBTSGOwQERFRSGOwQ0RERCGNwQ4RERGFNAY7REREFNIY7BAREVFIY7BDREREIY3BDhEREYU0BjtEREQU0hjsEBERUUhronUFiIiIKHAYDMDGjUB5OZCeDuTkAOHhWtfKOwx2iIiICABQVASMGwecONFQlpkJvP46kJenXb28xW4sIiIiQlERMHiwPNABgLIyqbyoSJt6qYHBDhERUSNnMEgtOkLY7jOVFRRIxwUjBjtERESN3MaNti06loQAjh+XjgtGDHaIiIgaufJydY+zdPDgQSxevNj9B6qIA5SJiIgaufR0dY8DgEuXLuH666/Hvn37AAA6nQ5/+ctfPKid99iyQ0RE1Mjl5EizrnQ6+/t1OkCvl45T4q233kJUVJQ50AGA3r17q1BTzzDYISIiauTCw6Xp5YBtwGP6ffZs1/l2Dh8+DJ1OhzFjxpjLrrvuOly6dAkpKSnqVdhNDHaIiIgIeXnAsmVAq1by8sxMqdxZnh2j0Yjc3FxceeWVsvIff/wRO3fuREREhA9qrByDHSIiIgIgBTRHjgAlJUBhofTz8GHngc7SpUsRHh6O4uJic9n06dMhhEDnzp19X2kFOECZiIiIzMLDgVtvdX3cqVOnkJqaKitLSEjAsWPH0KxZM99UzkNs2SEiIiLFhBAYMWKETaCzYcMGnDlzJuACHYDBDhERESm0bt06hIWF4YMPPjCXPfTQQxBCIEfpVC0NaBrstG7dGjqdzmYzjeKura3FmDFjkJiYiObNm2PQoEGorKyUnePYsWMYMGAAYmJikJKSgokTJ6K+vl6LyyEiIgpJ586dQ7NmzdCnTx9Z+enTp/H2229rVCvlNA12tm7divLycvO2Zs0aAMDdd98NABg/fjw+++wzLF26FF9//TVOnjyJPItRUgaDAQMGDMClS5ewadMmfPDBB3j//fcxdepUTa6HiIgo1Dz11FOIjY3FhQsXzGUff/wxhBBITEzUsGbK6YSwt+yXNgoKCrBy5UocPHgQNTU1SE5ORmFhIQYPHgwA2LdvHzp06IDS0lL06NEDX3zxBf74xz/i5MmT5r7DefPm4R//+Ad+/fVXREZG2n2euro61NXVmX+vqamBXq9HdXU1YmNjfX+hREREAe6HH37A7373O1nZgAED8Nlnn0HnKPugn9XU1CAuLs7l/TtgxuxcunQJCxYswAMPPACdToft27fj8uXLyM3NNR/Tvn17ZGVlobS0FABQWlqKzp07ywZJ9evXDzU1Ndi9e7fD55oxYwbi4uLMm16v992FERERBZFLly6hXbt2NoHOkSNHsHLlyoAJdNwRMMHOJ598gqqqKowYMQIAUFFRgcjISMTHx8uOS01NRUVFhfkY69Hgpt9Nx9gzadIkVFdXm7fjx4+rdyFERERB6l//+heioqJw4MABc9k777wDIQSuuOIKDWvmnYDJs/Pvf/8b/fv3R0ZGhs+fKyoqClFRUT5/HiIiomBw6NAhXHXVVbKy66+/Hlu3btU8+7EaAqJl5+jRo1i7di3+9re/mcvS0tJw6dIlVFVVyY6trKxEWlqa+Rjr2Vmm303HEBERkX1GoxF9+vSxCXR+/PFH7NixIyQCHSBAgp358+cjJSUFAwYMMJd17doVERERsvTT+/fvx7Fjx5CdnQ0AyM7Oxk8//YRTp06Zj1mzZg1iY2PRsWNH/10AERFRkFmyZAnCw8Oxbt06c9kzzzwTUMs8qEXzbiyj0Yj58+dj+PDhaNKkoTpxcXEYOXIkHnvsMSQkJCA2NhaPPPIIsrOz0aNHDwBA37590bFjR9x333146aWXUFFRgcmTJ2PMmDHspiIiIrLDsofEJDExEUePHg3I7Mdq0LxlZ+3atTh27BgeeOABm32zZs3CH//4RwwaNAi///3vkZaWhqKiIvP+8PBwrFy5EuHh4cjOzsa9996Lv/71r3jmmWf8eQlEREQBTwiB4cOH2wQ6GzZswOnTp0M20AECLM+OVpTO0yciIgpGxcXFslQuADBq1CjMnTtXoxqpQ+n9W/NurFB18SIwcSJw8CDQti3w8stAdLTWtSIiosbk3LlzSElJQW1traz89OnTQZP9WA2ad2OFojvvBGJigDffBL76SvoZEyOVExER+cM///lPxMbGygKdTz75JKiWeVALW3ZUduedwIoV9vetWCHt/+QTP1aIiIgale+//x5du3aVlf3pT3/CihUrgjL7sRoY7Kjo4kXHgY7JihXScezSIiIiNdXV1aFz5844ePCgrPzo0aPIysrSqFaBgd1YKpo4Ud3jiIiIlJgzZw6aNm0qC3Tee+89CCEafaADsGVHVVbBtNfHEREROfPLL7/g6quvlpV16dIFmzdvDpnsx2pgy46K2rZV9zgiIiJ7jEYjevfubRPo7Nq1C99//z0DHSsMdlT08svqHkdERGRt8eLFCA8Px/r1681lzz33HIQQuPbaa7WrWABjN5aKoqOBgQOdD1IeOJCDk4mIQpnBAGzcCJSXA+npQE4OEB7u/XntLfOQnJyMI0eOICYmxvsnCGFs2VHZJ59IAY09Awdy2jkRUSgrKgJatwZ69waGDZN+tm4tlXtKCIF7773XJtD55ptvcOrUKQY6CjDY8YFPPgEuXADGjAH69pV+XrjAQIeIKJQVFQGDBwMnTsjLy8qkck8CnrVr1yIsLAwLFy40l40ePRpCCNx8881e1rjx4NpY4NpYRETkHYNBasGxDnRMdDogMxM4fFhZl1ZNTQ2Sk5Nx6dIlWXljW+bBFaX3b7bsEBEReWnjRseBDgAIARw/Lh3nypNPPom4uDhZoPPpp582ymUe1MIBykRERF4qL/f+uO3bt6Nbt26ysoEDB+Ljjz9utMs8qIXBDhERkZfS0z0/rq6uDh07dsShQ4dk5ceOHYNer1ehdsRuLCIiIhcMBmD9emDRIumnwSDfn5Mjjclx1ACj0wF6vXScpddffx1NmzaVBTqmZR4Y6KiHLTtEREROFBUB48bJx+RkZgKvvw7k5Um/h4dLvw8eLAU2llN/TAHQ7NkNg5N//vlntLVKp9+1a1d89913aNKEt2a1sWWHiIjIAXemk+flAcuWAa1ayY/NzJTK8/IAg8GAXr162QQ6u3btwrZt2xjo+AinnoNTz4mIyJan08kdZVBetGgRhg0bJjvH888/j3/+85++u4gQp/T+zRCSiIjIDnemk996a0N5eLj894qKCqRbjUxOTU3FoUOHmP3YT9iNRUREZIe308mFEMjPz7cJdL799ltUVFQw0PEjBjtERER2eDOdfM2aNQgLC0NhYaG5bMyYMRBCoGfPnirVkJRiNxYREZEdpunkZWXy2VUmpjE7ltPJa2pqkJSUhMuXL8uOPXPmDBISEnxcY3KELTtERER2mKaTA7b5c+xNJ3/iiScQFxcnC3Q+++wzCCEY6GiMwQ4REZEDrqaTDxwIvP32Nuh0Orz88svm/XfddReMRiP++Mc/+rnGZA+7sYiIiJzIy5OCGuvp5MuW1SEqqgMMhsOy49955zgefDBTo9qSPQx2iIiIXLCeTn7//bPw/vuPWR01HzrdCPz970BiYkN2ZdIegx0iIiKFDh48iGuuucaq9EYAmwA0gRDSeJ6CAqk1yDLZIGmHY3aIiIhcMBgMyMnJsRPo7AGwBZZtB5bJBikwMNghIiJyYuHChWjSpAm++eYbi9KZAASADg4fpzQpIfkeu7GIiIjsKC8vR0ZGhqwsPT0d8+f/gttvj3b5eKVJCcn3NG/ZKSsrw7333ovExERER0ejc+fO2LZtm3m/EAJTp05Feno6oqOjkZubi4MHD8rOcfbsWeTn5yM2Nhbx8fEYOXIkzp8/7+9LISKiECCEwNChQ20CnU2bNuHkyZPIzY1GZqZt7h0TnQ7Q6+XJBklbmgY7v/32G26++WZERETgiy++wJ49e/Dqq6+iZcuW5mNeeuklzJkzB/PmzcPmzZvRrFkz9OvXD7W1teZj8vPzsXv3bqxZswYrV67Ehg0b8NBDD2lxSUREFMS+/PJLhIWFYfHixeayRx99FEIIZGdnA3A/2SBpTyeEvSTY/vHkk0/i22+/xUYHo7iEEMjIyMDjjz+OCRMmAACqq6uRmpqK999/H0OGDMHevXvRsWNHbN26Fd26dQMArF69GnfccQdOnDhhE5kDQF1dHerq6sy/19TUQK/Xu1winojIWwaDbb4W3hS1V11djYSEBBiNRln52bNnZV/ALRUVAePGyVdG1+ulQIfTzv2jpqYGcXFxLu/fmrbsfPrpp+jWrRvuvvtupKSkoEuXLnj33XfN+w8fPoyKigrk5uaay+Li4tC9e3eUlpYCAEpLSxEfH28OdAAgNzcXYWFh2Lx5s93nnTFjBuLi4sybXq/30RUSETUoKgJatwZ69waGDZN+tm4tlQcigwFYvx5YtEj6aTBoXSPfmDBhAuLj42WBzsqVKyGEcBjoAFJAc+QIUFICFBZKPw8fZqATiDQNdg4dOoS5c+eibdu2+PLLL/Hwww/j0UcfxQcffAAAqKioAACkpqbKHpeammreV1FRgZSUFNn+Jk2aICEhwXyMtUmTJqG6utq8HT9+XO1LIyKSKSoCBg+WtwIA0iKTgwcHXsATbIGZJ7Zu3QqdTodXX33VXDZo0CAYjUYMGDBA0TlMyQaHDpV+spUuMGk6G8toNKJbt2544YUXAABdunTBrl27MG/ePAwfPtxnzxsVFYWoqCifnZ+IyJLBIHV32Bs0EIhJ6EyBmXV9TYHZsmXB3XpRW1uLdu3a4dixY7Ly48ePIzOTyzyEIk1bdtLT09GxY0dZWYcOHcwfwLS0NABAZWWl7JjKykrzvrS0NJw6dUq2v76+HmfPnjUfQ0SkpY0bbVt0LAVSEjpXgRkgBWbB2qX16quvIjo6WhbozJ8/H0IIBjohTNNg5+abb8b+/ftlZQcOHMAVV1wBAGjTpg3S0tJQXFxs3l9TU4PNmzebR8VnZ2ejqqoK27dvNx+zbt06GI1GdO/e3Q9XQUTknNLkcoGQhC6YAjN3HDhwADqdzjzZBQBuuukmXL58GSNGjNCuYuQXmnZjjR8/Hj179sQLL7yAe+65B1u2bME777yDd955BwCg0+lQUFCA5557Dm3btkWbNm0wZcoUZGRk4M477wQgtQTdfvvtePDBBzFv3jxcvnwZY8eOxZAhQ+zOxCIi8jelyeUCIQldMAVmShgMBvTq1QvffvutrHzPnj3o0MFx9mMKMUJjn332mejUqZOIiooS7du3F++8845sv9FoFFOmTBGpqakiKipK9OnTR+zfv192zJkzZ8TQoUNF8+bNRWxsrLj//vvFuXPnFNehurpaABDV1dWqXBMRkaX6eiEyM4XQ6YSQ2kbkm04nhF4vHae1khL7dbTeSkq0rqlr//3vfwWkNR3M28yZM7WuFqlI6f1b0zw7gULpPH0iIk+ZBv0C8vEwpiR0gTLo12CQZl2Vldkft6PTAZmZ0hTrQBhMbc/JkyfRqlUrWVlGRgZ+/vlnREe7XuaBgkdQ5NkhIvc0lrwnoSgvTwporO7ByMwMnEAHCO7swEIIDBkyxCbQKS0tRVlZGQOdRozBDlGQaAx5T0JdsCShC5bAzNLq1asRFhaGjz76yFw2btw4CCHQo0cPDWtGgYDdWGA3FgU+R3lPAq0LhEJLMCxtUVVVhYSEBFjfypwt80Chg91YRCEi1POeUOAK9OzAjz/+OFq2bCkLdD7//HOXyzxQ46Pp1HMics2dvCe33uq3ahFpZsuWLTZ51AYPHowlS5ZAZz3QiAgMdogCXqjlPSHyVG1tLdq2bYsTVtH/iRMnbAYlE1liNxZRgAumhHREvvLKK68gOjpaFuh8+OGHEEIw0CGX2LJDFOBycqRZMK7ynuTk+L9uRL62f/9+tG/fXlaWnZ2NjRs3IjzQBhFRwGLLDlGAC+a8J0SeMhgMyM7Otgl09u3bh02bNjHQIbcw2CEKAsGY94TIU//973/RpEkTfPfdd+ayl156CUIItGvXTsOaUbBiNxZRkMjLAwYODPy8J0SesrfMg16vx4EDB9C0aVONakWhgMEOURAx5T0hCiVCCNxzzz1YtmyZrPy7776zmWJO5Al2YxERkWa++OILhIWFyQKdgoICCCEY6JBq2LJDRER+V1VVZZPlWKfT4ezZs4iPj9emUhSy2LJDRER+NX78eJtAZ9WqVTAajQx0yCfYskNERH6xefNmmxXI77nnHixevJjLPJBPMdghIiKfunjxItq2bYuysjJZeVlZGTIyMjSqFTUm7MYiIiKfeemllxATEyMLdEzLPDDQIX9hyw4REalu37596NChg6ysZ8+e2LBhA7Mfk98x2CEiItXU19fjlltuwebNm2Xl+/btY/Zj0gy7sYiISBUffvghIiIiZIHOyy+/zGUeSHNs2SEiIq+UlZUhMzNTVpaVlYX9+/dzmQcKCGzZIfKSwQCsXw8sWiT9NBi0rhEFgsbwuRBCYPDgwTaBzubNm3H06FEGOhQwGOwQeaGoCGjdGujdGxg2TPrZurVUTo1XY/hcrFq1CmFhYVi+fLm57PHHH4cQAjfddJOGNSOypRNCCK0robWamhrExcWhuroasbGxWleHgkRRETB4MGD9P8iUG23ZMmmlcmpcQv1z8dtvvyEhIUFWFhYWhrNnzyIuLk6jWlFjpfT+zZYdIg8YDMC4cbY3NKChrKAgNLsuyLFQ/1yMGzfOJtBZvXo1DAYDAx0KaAx2iDywcSNw4oTj/UIAx49Lx1HjEaqfi++++w46nQ5z5swxlw0ZMgRGoxH9+vXTsGZEynA2FpEHysvVPY58y2CQAozyciA9HcjJAXyR1y7UPhcXL17ElVdeiYqKCln5yZMnkZ6erlGtiNzHlh0iDyj9O8/7gfb8OVg4lD4XL774ImJiYmSBzoIFCyCEYKBDQYcDlMEByuQ+g0G6YZaV2R+fodMBmZnA4cO+aUEgZfw9WDgUPhd79+5Fx44dZWU5OTkoKSnhMg8UcDhAmciHwsOB11+X/m26cZqYfp89O3BvaI2BFoOFg/lzUV9fj5tuuskm0Nm/fz/Xs6Kgp2mw8/TTT0On08m29u3bm/fX1tZizJgxSExMRPPmzTFo0CBUVlbKznHs2DEMGDAAMTExSElJwcSJE1FfX+/vS6FGKC9Pahlo1UpenpkZ/NOLQ4FWg4WD8XPx/vvvIyIiAlu3bjWXvfrqqxBC4JprrtGwZkTq0HyA8rXXXou1a9eaf2/SpKFK48ePx+eff46lS5ciLi4OY8eORV5eHr799lsAgMFgwIABA5CWloZNmzahvLwcf/3rXxEREYEXXnjB79dCjU9eHjBwoH8Gv5J7tBwsHCyfixMnTkCv18vKWrdujb179zL7MYUUzYOdJk2aIC0tzaa8uroa//73v1FYWIjbbrsNADB//nx06NAB3333HXr06IGvvvoKe/bswdq1a5GamoobbrgBzz77LP7xj3/g6aefRmRkpL8vhxqh8HDg1lu1rgVZ83SwsFoztwL5cyGEwKBBg/Dxxx/Lyrds2YIbb7xRo1oR+Y7mY3YOHjyIjIwMXHnllcjPz8exY8cAANu3b8fly5eRm5trPrZ9+/bIyspCaWkpAKC0tBSdO3dGamqq+Zh+/fqhpqYGu3fvdvicdXV1qKmpkW1EFFpycqSuI+uxMyY6HaDXS8eZNIZlHlauXImwsDBZoDNhwgQIIRjoUMjStGWne/fueP/999GuXTuUl5dj+vTpyMnJwa5du1BRUYHIyEjEx8fLHpOammqeCllRUSELdEz7TfscmTFjBqZPn67uxRBRQDENFh48WApsLAcq2xss7GjmVlmZVB6o420sOWuVOnv2LBITE2XHN2nSBKdPn2b2Ywp5mrbs9O/fH3fffTeuu+469OvXD6tWrUJVVRWWLFni0+edNGkSqqurzdvx48d9+nxEpA2lg4VDYZkHZ61Sjz76qE2g8+WXX+Ly5csMdKhR0HzMjqX4+Hhcc801+Pnnn/GHP/wBly5dQlVVlax1p7Ky0jzGJy0tDVu2bJGdwzRby944IJOoqChERUWpfwFEFHCUDBZ2Z+ZWII7DcdQqdeLEJgwadLOsbNiwYViwYAF0jvr3iEKQ5mN2LJ0/fx6//PIL0tPT0bVrV0RERKC4uNi8f//+/Th27Biys7MBANnZ2fjpp59w6tQp8zFr1qxBbGysTa4IImq8TIOFhw6VfloPOA7mZR7st0pdAJAGQB7onDx5EgsXLmSgQ42OpsHOhAkT8PXXX+PIkSPYtGkT7rrrLoSHh2Po0KGIi4vDyJEj8dhjj6GkpATbt2/H/fffj+zsbPTo0QMA0LdvX3Ts2BH33Xcfdu7ciS+//BKTJ0/GmDFj2HJDRIoF8zIPtq1SMwE0A2CZk2whSkq4zAM1Xpp2Y504cQJDhw7FmTNnkJycjFtuuQXfffcdkpOTAQCzZs1CWFgYBg0ahLq6OvTr1w9vvfWW+fHh4eFYuXIlHn74YWRnZ6NZs2YYPnw4nnnmGa0uiYiCkGnmlqtlHixnbgWKhtamPQCutdr7ewDrAIQHZKsUkb8oXhsrz41pCEVBNk+Ta2MRkWncC2B/5lagzsYqLq5Hbm4PANut9hwA0Nb8W0lJYI43IvKG6mtjxcXFmbfY2FgUFxdj27Zt5v3bt29HcXExR/YTUVAKxmUe5s+fj9zcCMgDnVkABEyBjr18QkSNjUernv/jH//A2bNnMW/ePPPicAaDAaNHj0ZsbCxefvll1SvqS2zZISITtTIo+5K9ZR6AKyF1ZTWMVwz0Vikibym9f3sU7CQnJ+Obb75Bu3btZOX79+9Hz549cebMGfdrrCEGO0QUDIQQuOuuu7BixQpZ+bZt23D0aFeMGycfrKzXS4kTGehQqFK9G8tSfX099u3bZ1O+b98+GI1GT05JREROfPbZZwgLC5MFOk888QSEEOjatSvy8oAjR6SxOYWF0s/DhxnoEAEezsa6//77MXLkSPzyyy+46aabAACbN2/GzJkzcf/996taQSKixszeMg+RkZH49ddfbb7JBvLio0Ra8ijYeeWVV5CWloZXX30V5f8/nzE9PR0TJ07E448/rmoFiYgaqzFjxsjSbQDAV199hT/84Q8a1YgoOHk0ZseSacXwYB7rwjE7RBRIvv32W9xyyy2ysvz8fPz3v/9l9mMiC0rv3x4nFayvr8f69evxyy+/YNiwYQCkVOSxsbFo3ry5p6clImq0Lly4gNatW+PXX3+VlZeXlztd74+InPNogPLRo0fRuXNnDBw4EGPGjDH/x3zxxRcxYcIEVStIRNQYvPDCC2jWrJks0Fm0aBGEEAx0iLzkUcvOuHHj0K1bN+zcuVM2cO6uu+7Cgw8+qFrliIhC3e7du9GpUydZ2a233ori4mKEhQXUWs1EQcujYGfjxo3YtGkTIiMjZeWtW7dGWVmZKhUjIgpl9fX1uOmmm/DDDz/Iyg8ePIirr75ao1oRhSaPvjYYjUYYDAab8hMnTqBFixZeV4qIKJT9+9//RkREhCzQmT17NoQQDHSIfMCjlp2+ffti9uzZeOeddwAAOp0O58+fx7Rp03DHHXeoWkEiolBx/PhxZGVlycquvvpq7Nq1C1FRUQ4eRUTe8qhl55VXXsG3336Ljh07ora2FsOGDTN3Yb344otq15GIKKgJIfDnP//ZJtDZvn07Dh48yECHyMc8zrNTX1+Pjz76CDt37sT58+fxu9/9Dvn5+YiOjla7jj7HPDtE5CuffvopBg4cKCt78sknMWPGDI1qRBQ6fLYQ6OXLl9G+fXusXLkSHTp08LqigYDBDhGp7cyZM0hKSpKVNW3aFJWVlfw7Q6QSny0EGhERgdraWq8qR0QUykaPHm0T6KxduxYXL15koEOkAY/G7IwZMwYvvvgi6uvr1a4PEVHQ+vbbb6HT6TB37lxz2X333Qej0Yg+ffpoWDOixs2j2Vhbt25FcXExvvrqK3Tu3BnNmjWT7S8qKlKlckT+YjAAGzcC5eVAejqQkyOtIE2kxIULF5CVlYUzZ87IyisqKpCamqpRrUhL/JsSWDwKduLj4zFo0CC160KkiaIiYNw44MSJhrLMTOD114G8PO3qRcHhueeew5QpU2Rlixcvxl/+8heNakRa49+UwOP1quehgAOUG6+iImDwYMD6f4FpYelly/jHieyzt8zDbbfdhjVr1nCZh0aMf1P8y2ezsSydOnUK+/fvBwC0a9cOKSkpnp5KUwx2HFPSFBuszbUGA9C6tfzblyWdTvo2dvhwcFwP+cfly5dx4403YufOnbLyn3/+GVdddZVGtaJAwL8p/uez2Vimk993331o1aoVevXqhV69eqFVq1a49957UV1d7XGlKbAUFUn/cXv3BoYNk362bi2Vu3NMoNq40fEfJUD6Znb8uHQcec5gANavBxYtkn7aWWkmaLz33nuIjIyUBTpz5syBEIKBDvFvSgDzaMzOgw8+iB9++AErV65EdnY2AKC0tBTjxo3D3//+dyxevFjVSpL/OWqKLSuTypctk353dUwgN9eWl6t7nFYCsWXNVKcVK4AFC4DTpxv2BePYhWPHjuGKK66QlV1zzTX48ccfmf2YzELlb0pIEh6IiYkRGzdutCnfsGGDiImJ8eSUmqqurhYARHV1tdZVCQj19UJkZgohhTG2m04n7Xd1jF4vnStQlZQ4rr/lVlIiXUdJiRCFhQ2/B4Lly23fh8xMqTyQ6mT92dDptK2jUkajUQwYMEAAkG3ff/+91lWjAOTO3xRSh9L7t0fdWImJiYiLi7Mpj4uLQ8uWLb0IvSgQKGmKPXEi+Jtrc3KkVgbTwEFrOh2g10utEoHYVWdqfbN+H0wta1rUz1GdLJlaAgsK5F1agdbd9cknnyAsLAyff/65uWzSpEkQQqBLly4a1owCldK/KTk5/q0XwbOWnbffflvk5uaK8vJyc1l5ebno27evmDdvnien1BRbduQKC5V9O1GyFRb6p86etrwsX97Q0mCv9WHiRNt9gdA6oaT1zd8ta67q5Owbrj9aqJR+Rk6fPm3TkhMdHS1qamrUqwyFLFd/U4KhRTOYKL1/exTs3HDDDaJ58+YiIiJCXHXVVeKqq64SERERonnz5qJLly6yLRgw2JFT2hTr6+ZapTcnb2+U9h6v1wuxZEngBRQmgdhc7snnprCw4ebgy4BS6Wfk73//u02gs3btWu8rQI2Ko78pDHTUp/T+7dEA5TvvvFOFNiUKVKam2LKyhi4HSzod0KqV9G9nx2Rmet5cqzQpl5KB1K4GwublAQMH2g7ydWdmxa23un2JXtF6IKS9QdGePFdKCjBihP3PkBDS56igQHp/7A26VjI4W8lnJDl5I37/+9/L9g8fPhzz58+HzlGfBJEDjv6maD1xoFHzZcRVWFgozp8/78unUAVbdmwpaYr1VXOt0m/6vu7KUdqd56+uOktatuw4aiWZPt29Vp3kZCG++srz61DSWuO6a+28CAtradOaU1FRof4LR0Sq82k3llItWrQQv/zyiy+fQhUMduxT0hSrdnOtOwGMr2/4gdhVZGJ6newFhWoEeo44C0QBIRITHdfJ3paQ4FlAqTQgdv4ePmMT5Hz00UfqvmBE5FM+7cZyo9XIl6cnH1PSFOtpc62j7gd3uo583ZWjpDvPm646b4SHS116gwdL9bCsn6nXZfZsdZvNDQapa9HeayGEfAaKdZ0cOXtW2XOnp7tXD1PXl/33/icA18lKOnXKxc6dX3KZB6IQFVD/s2fOnAmdToeCggJzWW1tLcaMGYPExEQ0b94cgwYNQmVlpexxx44dw4ABAxATE4OUlBRMnDgR9fX1fq59aAoPl8ajDB0q/bR381RyjCVnWZfdCWAsb4DOKD3OmimgAGynkvoqoHBHXp403sQ0fsokM9M3CR2VBKJnzgBPP21bJ09jCHtTdZUGxOPGAbt2We65DCnIuc7qEb/gjTe4nhVRKAuY/91bt27F22+/jeuuk/8hGj9+PD777DMsXboUX3/9NU6ePIk8i7/iBoMBAwYMwKVLl7Bp0yZ88MEHeP/99zF16lR/XwIp4Co3zMGDys5jag3ydU4LfwcU7srLA44cAUpKgMJC6efhw76pl9JAtG1beZ1mzQKMRs+f1zqgVFqPN98EXnjB9Ns7ACIhteqY/As6nYBefyXznhCFOl/2pTVv3lzRmJ1z586Jtm3bijVr1ohevXqJcePGCSGEqKqqEhEREWLp0qXmY/fu3SsAiNLSUiGEEKtWrRJhYWGyAYVz584VsbGxoq6uzu7z1dbWiurqavN2/PhxjtlRibPp4kozM7dqpXwsir9yWgRqBmV/8nQMk6d5m8LChBg3TjpfXV3D6z9ihDvnOWIzLgdoL4A65j0hCgEBMUBZabDz17/+VRQUFAghhCzYKS4uFgDEb7/9Jjs+KytLvPbaa0IIIaZMmSKuv/562f5Dhw4JwHFK92nTptn5A8hgx1uuZscovVlOn+5eAMOcFv7h6aBoNfI2hYe7+xiDAPrb+X/+Az8jdjCYp2Dl0+Uihg8fjg0bNrg87oorrkBERITTYxYvXozvv/8eM2bMsNlXUVGByMhIxMfHy8pTU1NRUVFhPiY1NdVmv2mfPZMmTUJ1dbV5O378uMtrIeeULF3gTjeIO11H/uzKacw8HcOUk2P7XrrLvaUjPgYQDuALi7KnIMU7N2DyZH5GLDkbQ0cUKjyajVVdXY3c3FxcccUVuP/++zF8+HC0svPXbJd8dKCN48ePY9y4cVizZg2aNm3qSVU8EhUVxZWK7bCcIZWSIpWdOuV6hpXS2THz5yurR3q6NNDZnVlepkHS5FumMUz2Ej7Ont0QPFjPtvvb34Dp031du9MAkq3KmgM4CaCFuaRjR3U+K1qtNq/m86qRlJMoKHjadHTq1Cnx6quviuuuu040adJE3H777WLp0qXi0qVLis/x8ccfCwAiPDzcvAEQOp1OhIeHi7Vr1/qkG8sa8+y4Xqna2fILSrsp1q7VJjcMqc9Zt4e9z5LSfDqebw/a6bJaZ/dYNfIiabXavJrPG4jrqxG5y69jdrZv3y7Gjh0rmjZtKpKSkkRBQYE4cOCAy8fV1NSIn376SbZ169ZN3HvvveKnn34yD1BetmyZ+TH79u0TgO0A5crKSvMxb7/9toiNjRW1tbWK6t/Ygx1HCdqs//A5GszpTqZhLpIX2pR8ltTdvrYT5NwvAKPPbt7+WMvLH88byEkziZTyW7Bz8uRJMXPmTNGuXTvRrFkz8de//lX06dNHNGnSxNz64g7LAcpCCDFq1CiRlZUl1q1bJ7Zt2yays7NFdna2eX99fb3o1KmT6Nu3r9ixY4dYvXq1SE5OFpMmTVL8nI052HFnpWpvB6A6W+Gag0WDnyernnu+nRdAvJ1Ap9Lp59fbz5hWrSG+eN5AXg6FSCmfBjuXLl0Sy5YtEwMGDBARERGia9euYu7cubInKyoqEvHx8W6f2zrYuXjxohg9erRo2bKliImJEXfddZcoLy+XPebIkSOif//+Ijo6WiQlJYnHH39cXL58WfFzNuZgx5OZMtbf9DyZpaPF7I/GOuPEX9etxqwrZdvTdoKcpU4fo1YwrVVriC+ely075A++/vvj02AnMTFRtGzZUowePVr88MMPdo/57bffROvWrT05vd815mDHkxwo9r7pBXr3lFZjLLTmz+v2NJ+O8u1HO0HOH4Q0zVx+7OjRQsyaJcSCBer+gdWqNcQXz6vV+mrUePjj749Pg50PP/xQXLx40aOKBaLGHOx48m187Vr7kXqgdk9pNcZCa/6+bt+17FwSQCc7gc4hh4/xVWuEmq0h7nzj9VUrTKB/SaHg5a+/PwGRVDBYNOZgx9W3O+sPaWKi80g90LqKGuuMEy2u253PkvJtnp0g503N3k+1WkPc/cbry1aYQP2SQsHLn39/GOy4oTEHO0I4/nZn/eF0ti9QvwU21nEJWl23erOxDtsJcjoIoE7zz6G3rSGefuP1ZStMoH1JoeDmz78/Ps2gTKHF0WKXllq1AhIT7e8TQvpZUOBuplvfc2cV9VCi1XXn5QFLlniTXM8I4HYAbazKdwDYA2kxT/v8tTirN4vDukrACTj+f+TLRWlNSTmHDpV++iM5IoWuQPy761EGZQo9eXnyjMXWGZQNBiA31/HjhQCOH5ceH0iZjNPT1T0uWGh53UlJnga9RQAGWZVNAfCM00eNHQsMGuS/DMaA7f8XpZmMN260XVLFkqv/R54+L5E/BeLfXQY7ZOZsyYVFi5SdI9BaSHJypG++ZWX2v03rdNL+nBz/182X/Hnd1ssXlJW5e4ZfAaRYlbWAtMxDc5ePHjTIvwG2wQCsXy9tgPTcSgMONb7xcmkUCnSB+HeX3VikSCBG6kp4unhlsPPXddtbRHL8eGWPTU4Gbrvtb7ANdEoA1MBVoKPTAXq99AfTFIAsWiT99FV3alERkJoqtXI+95y05eZKZUoWzgzW/0dE7gjIv7veDw8Kfo19gLISwZ6To7HOOPH2ul2tgeVooK2rgYlxcevtDEB+QPEAZstBuf7KJbR8uet6uXrOYP9/ROQOf/zdVXr/1glhr5GpcampqUFcXByqq6sRGxurdXUClmmFZEDeNGmK1AN9hWStVqlWgzd19/SxRUX2Vzd/7TUgIQG45x7g7Fl3r+Q8gFaQWm4snYLtiuUNkpKA06cbftfrpW+GgP1Vu9X+TBoMwBVXuO6iy8wEjhxx/voG+/8jInf4+u+u4vu3evFV8GLLjnKNtYVES1pkf1ZrCnlSkuXvU+205ixTdB5TJmTLFiZ/5vJwJ2Gikum0/H9EpA6l928OUCa3mGaDWA/Q5IBJz7j61mNqBbBuuSgrk8p90QrgbHq0J+cCfgRwvdWefgBWQemwwVatbD9j69d7N7PJHe4MvFdyLGdVEfkXgx1y24oV8u6N556TBpvm50t/wPlHWxlH3USvvy7dDF3lZNHppJwsAweq+3q7mh6t3CX89lsXSPlxLB0G0FrRGZzN2vBnLg93BgwrPZazqoj8h7OxyC2mlgbrm+Gvv0pjKHr3lmbnKJmZ0lgZDMAzz0hTpq1fR1OLTVGRezlZ1KRO+oC5AKIgD3TmQuq9aq3oDK5mbfhzZlNOjvOkmyahmMaAKBQw2CHFlHZvnDjRcMMmuaIiaaDrtGn291tm0VWar0bt3EYp1jPB3XIYgA7AaIuyawHUARjl1plcZQY25fKwntpqYjk13Vvh4cCcOa6Pe/11tmoSBSIGO6SYu90bgbh8hJZMrWKughhTi82vvyo7r5o5WYqKgBEjPHmkEdI4nCutyncC2AVnyzxYSk4GFiwASkqAw4edj0fydy6PvDxg+XL7y6YkJkr7OIuKKDBxzA4p5k4LgrPBoY4G5Qbz1HBXPBn0m5zs3yykjgZDu7YcwGCrsmkAnlZ8BlNwMm+eewGDab0oe2OfZs9WP/hwNkA/VD6rRKGIwQ4p5kkLgnWA5GhQ7tChUvZbR4N1g50ng35btZKuf/BgKRiwl5NFrZYLz2Zg2S7zEBcXh6NHT6BTp+YOgzSgIbg1cTc4sQ6Mf/kF2LTJP4FyeDjQp4+0EVFwYLBDirla78QeywDJUcvBiRPAyy/bPtaX06v9zd1xNXFxQM+eQGSkf1ou3A/GRgL4j6xk/fr16NWrFwDXQdqiRVLLlSfBibNZbEOHunMNRNRYMIMymEHZHY6yv1ozdbEcPtzwLb51a/dbN6zPE6zWr5dmqrnDehq6L7v4Fi2S1rZybT0A+YU0a/Y3VFe/a1Mfe0GJKfOxoyDNdJ1lZdKYpeRkqYXLdL2OAmZmHyZqnJTevxnsgMGOu+zdxCxZ3nhMidOKi6V8PJ4qKQnunCSeBHv+vIG7DsbOA0j//5+WfsXy5UkugxclQZqzz1VmJjBrlrTIqLPPXSgExkSknNL7N2djkdsrRuflSev/lJRIM66SkuT7TVOGgYYVsb0JdAD1p1dr4cEH3Tvechq6r2e1OZ/GPQVAC8gDneXQ64XTQAdoSJw3dKjzQbyO8jeZnDgB3H23NnmHiCj4Mdhp5IqKGgKSYcOUJwU03cRmzQIqKqTAp7CwYcow4Pzm5S41p1f7m+k1dpRbxxl/3cDtT+PeASlnTkOk2r17fyxYYEBJSZ7LqeFKqbk8BRAagTERqYsDlBsxZwOGBw1qWIrA1fgQ67T3at681J5e7W+eT+eW88cN3DSN+9FHL6Gs7DoA+2X7Dx8+jNatW6v+vOotTyEJ5sCYiHyDLTuNlJKAxNPlH9S6eakxvdrdLjo1qRn0+esGXl7+JsrKomAZ6Lz11jzU1wscOdLaJ6+jWoGcmhmTg5WWn3eiQMaWnUbKnYDE3Sng7t68wsOlVqSPPlJ3erWrhTbtUXPWkxpBny9btiyvVYhDyM+/Sra/c+fO2L59Oz77LMJmcLWz19Hd19CTQM7XeYeCkSefd6JGQ5Corq4WAER1dbXWVfGbwkIhpNuFsk2nE0KvF6K+3vW5S0rcOzcgPaa+XvpZWNjwu70yJZYvl+ps7zp0Omm/vcdkZsqPz8y0f6wS7r7G7tTVWw3XahBAHwFphU7z9uOPP5qPs/c6mraCAvn74slrWF8vHePseSzPtXixEMnJ8nK93jevU7Dw5PNOFAqU3r8Z7IjGGex4EpCYghJX3Ll5mbbCQtvzeBp8mJ7fncBN6c3CWfBlvW/tWu+CHWc3cE+DQPm1LrEJcoCnZdfq7HW0fl8mTvT8husqqDJtzZsLkZgoL0tKEmLJEuXXH2o8+bwThQoGO25ojMGOOzcyV0GJPUpvXo6CKG++qSoN5EzPqfRmsWSJ4+DLUWCWmOje6zB5susAxlkQ6CoIqq8XIj290k6Q01IA52U3Rk8DYmcBkbMbrr3rUrI19tYLdz/vRKGEwY4bGmOwI4R0c3D3xuLOH0wlNy973zq9/aaqtPvIFLh5c1N3Fsi4E+QofX2dBYGAbauHZUuY0WgU/foNtxPofG23Ht52w9nbpk93fn319VKLWMuW7r8PjbX1wt3PO1EoUXr/5mysRiwvTxoYrJS7M11MyQenT7e/39GgUlcDe4VwnntG6YBX03HezAYSwvk+nQ5ITAQyMpyfR8lMImezu0xlZ87Iy02Dy6dPL0FYWBi+/PIDi70PQYp3fm9zPtPgYrVNm+Z8Zl94uLT99pt753X1mQhl7n7eiRojBjuNXMuWyo/1ZKZLeDgwdSqwfLk0M8SSKdOy9UwRpcGHo+OcZwO2DSx8eRMQQgpAPvzQ/aDPmiezu4Q4ByGa4emnb7Pa8yuAtx0+zjSLytnr6ClXGaG9CT4bY0JBdz/vRI2RpsHO3Llzcd111yE2NhaxsbHIzs7GF198Yd5fW1uLMWPGIDExEc2bN8egQYNQWVkpO8exY8cwYMAAxMTEICUlBRMnTkR9fb2/LyUoGQzAu++6Pi4sDFiyxLvpq5ZLTFhmWrZ3Tm+/qdrPBiz/3TKw8NVN3dKpU+4Hfdbcv5FPBhAL4IK5ZPnyj5GZKaDTJTl8VFiYtAins9fRG65aYLwJPhtj64W7n3eiRslP3Wp2ffrpp+Lzzz8XBw4cEPv37xf//Oc/RUREhNi1a5cQQohRo0YJvV4viouLxbZt20SPHj1Ez549zY+vr68XnTp1Erm5ueKHH34Qq1atEklJSWLSpElu1aOxjtlROlbl6af9Wy9Xs7mUjs+wN2bI0Qwn01gY6+f0ZNyNq7E4ns6kUj626Hs743IGiIULjeZrVXIe0+vk6cBhT8ePeDKbrzGP2TFx5/NOFCqCdoByy5YtxXvvvSeqqqpERESEWLp0qXnf3r17BQBRWloqhBBi1apVIiwsTFRUVJiPmTt3roiNjRV1dXWKnzOUgh13bqSBPLDRWfDhzswbd14PRzeLpUvdv/labomJ9p/X3aDHdRBQJ4Br7AQ6R2QBV3297UBme5vl7ClTXQsK7AeBpvflL39xP/hz9F7Ye/8dBTqNeTaWJW9SEhAFo6ALdurr68WiRYtEZGSk2L17tyguLhYAxG+//SY7LisrS7z22mtCCCGmTJkirr/+etn+Q4cOCQDi+++/d/hctbW1orq62rwdP348IIIdb/9QuZuXJtCnrGrxTdXRe+DOzdd6szcDydMcQo7r8S87Qc47dgMud2af2Xvvnb0v3syks37t7U31T0y0DdTYekHUeAVNsPPjjz+KZs2aifDwcBEXFyc+//xzIYQQCxcuFJGRkTbH33jjjeKJJ54QQgjx4IMPir59+8r2/+9//xMAxKpVqxw+57Rp0+zcGLQNdty9+dm7Mbibl0at7iJf0uqbqr3n9aQ7x16rjqscRK4S5Mnr8Yudz/L1Arhkc17TZ8CdKeULFth/TdaulTZ774snrXKOPv9Ll6qXVdtXAq0+RI1J0AQ7dXV14uDBg2Lbtm3iySefFElJSWL37t0+DXYCrWXH3QR69m4M4eGefZtWq7soFFh21VgvR5CQILXQXLggRIsWyoMF69dPSTLH8HDpJu/MpUsG0aXLbXYCnR9dfgbcadmZNUt6PneDcU/GS7kTqAcKtZcYISL3BE2wY61Pnz7ioYce8mk3ljUtx+y42+zvbmZiy81Rd1RjH9hYXy8FMgkJrl/D2Fjlr7e97it3Ag1Hr/9HH31kE+Tcf/8zij8D9fXKrhWQWnY8DUaUtHgE81IHwRykEYWKoA12evfuLYYPH24eoLxs2TLzvn379gl7A5QrKyvNx7z99tsiNjZW1NbWKn5OLYMdd8bNeLrEg2lzNQOmMTbFL1+ubLCuu1tCgv3X0J0uJOubfEVFhU2Qk5iYKM6fP+/2YPPp05Udv3atb4ORQB835kgwB2lEoUTp/buJmtPY3TVp0iT0798fWVlZOHfuHAoLC7F+/Xp8+eWXiIuLw8iRI/HYY48hISEBsbGxeOSRR5CdnY0ePXoAAPr27YuOHTvivvvuw0svvYSKigpMnjwZY8aMQVRUlJaXppg7CfQ8SSpnyVkOkvBw4NZbPT+3MwaDVHdTVt6cnMDI+VFUJGUXFkL9c48b13CNlte/Zo3yc5jy0fTqJTBixAh8+OGHsv0bN27ELbfcAoMBsEo/5ZDpM/DUU8CcObYZly3p9dJPpdmsPfn8eJtAUivuZPn21f8rInKDn4Ivux544AFxxRVXiMjISJGcnCz69OkjvvrqK/P+ixcvitGjR4uWLVuKmJgYcdddd4ny8nLZOY4cOSL69+8voqOjRVJSknj88cfF5cuX3apHsLTseLpWkZbfMgN1TIO3rWTONstByd7mqPnnP9fatOaMGjXKfB1Kz+9opXdnxy9f3jDVXGmLkbuCtWUnkNM2EDUmQduNpYVAGLOjZEaUJwtWajl+IFDGNNjrolN7RW/rIEEIaZCx5+eqEUBTm0Dn9OnTLl9fd15vZ+O13Fko1jKHj5q5gwK1OyhYgzSiUMNgxw1aJxVUOiNKSWZZ61lZWg00DpQxDY5alpS2WLizWb7WS5Y4nyHnfJtkE+R88sknstd27Vrlg4xdfQbsBShKW74s30d7r3VSkvRaOwt8gmVGoPXU+2AM0ohCDYMdN2gd7AihfEaUqxuDvbwkWgiEb77OWpbUCnDCwoQYN842AaFn59tuE+R06/YnYTQaZdfkTrfYrFmefQbcnTWmpJVJranqWrBXP9PA9kAP0ohCWVAMUKYGeXnAwIGuB/Lm5UmLRo4bJx8gmZkpLfZnWkzSNCh2yRJlg4LVHkSs9cBTg0F6jYSw3WcqCw93vvq2EkajtAjj73/fcL5x49w9Sx2ATgB+tio/isrKLBiN0rk9GVCdmqr8fbT8DOzapewxjz4qfW5bt3Zdr7Iyqf72Fj1V+vnXgqPX/exZ6WdCgnygt/X/RSLSHoOdAKJ0RpSrG0NRkf1g6PXX7f8Bdvd4JbxdudyS6SZcViatxp2cDLRq5fxmqGTmmreBjqWCgob3xL0Zc3MAWEdH7wL4G4CGGT05OY6DN2eUvg/2PgNKtGmj/JqFkFbhNr1W1u+dL2cEespV0KzTAdHRwNq10sr2gRSkEVEDBjtBytGNwdG3UEffqt09XqmcHClgKiuzf6PQ6aT9OTnOz+PsJpyQIO176inbm4u/pyqbghLlz/sLgKutym4AsAVAhKzUk7QDSl9fwLsp+MnJ7r3WQgTXlGwlU8xPnJA+f0OH+q9eROSeMK0rQOpR0nVTUNDQouHu8e4ID5dahgDpxmvJ9Pvs2fa/ARsMwPr1wPjxwKBBjm82Z88C06ZJXTVFRQ2PW7RIed4ZNZla2ZwzAugN20BnF4AfYB3oANI53QkoXL2+lpx9BpRo1Up565GlQMub44jW3bFEpA4GOyHEnURnnhzvLtP4olat5OWZmY5bjIqKpPEfvXtLN2slzpyRgqLUVOlxw4ZJgZKzG71OJ7VKqMnUhZGZaRvgSRYDCAew3qLsWUhjka+1e86EBOmc7gQUzZoBTz8tdRW54k2iSr1eqpvza7bPkwBJC2p2xxKRdhjshBB3v4X641trXh5w5AhQUgIUFko/Dx92HOgMHuz5zdc6G7CjFinTTfnNN92/STs6n+nGb79FqxKADoBlP0cSgP8BmOz03KZMzO4EFOfPSy1erVtLr6kznry3Op20mVqOLK9ZyWNNr1UwcPW6B9v1EDVWDHZ8xLJLZf16dQfDOuLut1B/fWs1jS8aOlT66ajrypvuFHckJEgtS3ffrfwm7Yi9LiNTi1ZGhgBwH4A02WO+/vobrF37KxISYpyeOzFRGo8EuBdQmJw4IQWPpoDH3mfSk/fWXsuc6ZozMx0/zp3utUDhTXcsEQUQP02FD2hq59nRaomEujohkpNd50VZskQ6PpCy1ypdmFKt3Dim18Db59br7ec2WrNmjQCsl3l4WHbNjnImmV57RxmPk5KU18/0Hi5ZYv8zuXSp689AZqaURE9J7iZT4r2CAtvPYiDlzXFXoOcBImqsmFTQDWoGO1otkeBOsjnLAEat7LXerJrueRI+77bly6V6Tp7s2eMHDbIXRFQLINIm0LFc5sHV++bqJrpggTrXb3qPJ070TQZjbz4TgSjUrocoFDDYcYNawY5WSyQoXSPJcrPMXOztt1ZvWrJ8uSCnqy0xUe3nftImyFmxYoWi18Cdm6ia63o5a/lhywURBTql92+dEEL4u+ss0NTU1CAuLg7V1dWIjY31+Dzr10uzgVwpKVEvx4jBIA1EdXdQb2GhPC+IswzKzvY5ytGi00llpgRyjhKtKX3NAtv3ALpalf0ZmZmf4MgRnerjOUzvuaMcRp4oKZHeo0DMYExE5IjS+zeTCqpIi5wcnk4dth6Y6ixJoaPsygMHus7TM3u2tDnKyBzc+UnqAHQEcMiq/BgAPU6c8E3yPNOg2cGDG4JKb5WXB2YG42Ci9pIrRKQezsZSkRY5OdwNFtyZKutoKrgpu/LzzysPtEyPsZ4KHbz5SV4H0BTyQOc9SL1XenOJr4I5RzmMLIVi3ptAZZkfatgw6aeSqf9E5B8MdlSkRU4OT25S3mbWNZW5MxXa9JiCAuDSJfkU6ODyM6ScOQUWZV0BXAYw0uZoXwYRljmMCgqApCT5/sxMYOlS5onxNVdfChjwEGmPY3ag3pgdoOEPHyAPFEw3G0/XmnLk0iUgJkZ5Hp/EROCdd1zXwZdjaeLigOpq35zbRK3unQYGALcB2GBVvguOsh8nJ0s3wMhINevhmKNuFGefSSGA6dOBtm3Z9eIJV2PmTGuUHT7M15XIF5Tev9myozJPlkjwxqZN7iUsPHtW2bdNpd0vCQnKn9vEF4GOdctFZiawfLm0WSe6y8yUgj5n3TzyG9NiSMPbLAOd54H/X+bB0Xl+/RW46iqpdcUfCSYdJW909JlMSJBeh2nT2PXiKV8vuUJE6uAAZR/Iy5MG7/pjsKK7Y0KEkG7ypllSjuqktPvlkUeklgEt6XTAkiVSN46919vee7Fihf0BvqbAZfFiICysAoMGWb8QqQAOQa+PMa/d5WhVdkAqv+ceeZmjwdq+ZP2ZPHhQWj/LuvXL29XuGxsuFEoUJPwwDT7gqZ1B2Z+8ybkya5bjnC5K8t/o9VJmXS1y5Ji25GTPc8E4yi+0bJlRDBs2zCZnzhtvfGs3F05dnftZjX2ZYNIVrfJBhSKl//8s81oRkXqYZ8cNao7Z8Tdvc65YTiO3bv2YNAl4+WXHj504Ebh8Wfnq5GpTY0yM9TiX2to16N+/r+yYMWPG4F//+pfDc3gyvknLsRxa5IMKVa7+/3HMDpFvMc9OI+FtzpWyMmDQIGnshuWq4a1aAbW1zh+7aJHrY3xp3jzvB/+axrlUV1cjKSkJ9fX1sv1nzpxBgouBSZ50UZjGcqxfL9XBn7lZAqnrJdhz0zj7/8eFQokCBwcohwAlOVccMf1xtgx0ACkIsi6zduIEcPq0+8+phoQEqTVKDU888QTi4+Nlgc5nn30GIYTLQAfwbnr5Pff4PzeLFvmg7K24Hiq5afw9KYGI3MduLAR3N5Yly2/JBw5IA1BD2axZ0gBpT781b9u2DTfeeKOs7M4770RRURF0CjPymW7i99wjzXTzlq9SFFjyd9eLvSzc1i2Jls8NBGeQEOytVETBSOn9m8EOQifYMbF3cwlVnsxsqqurQ/v27XHkyBFZ+fHjx5FpPU/dCV+9zv4Y56E0H5T1DbxnTyndgdIbuqO105zhOBciUkrx/dvXI6WDQTDPxrLmyQrowby5O7Pptddes5ll9d57/wnI19nXM3hcrXZvb394uPx3Z6vbe7uiPWcwEZErnI3lhlBp2fF0BfRgp6Ql4ODBg7jmmmusSrsBKEVmZhO3WoeUvM6JicBHHwGrV0vdbZaJBJUOJF+wQBoH4qoVxZvuE1dZl13V01m3k7dZuAsLpQSJRESOsGXHDb5u2amvl76l2svRoiZvcu6EwmZ6bS1f67q6enHLLbfYtOYAuz1uHVL6Oo8Y4d31JCe7bkVZssQ2x4+z1hZX6uul3EkJCcrr6SgvT2Gh9+8nEZEzSu/fDHaEb4Mde10B3tyMnFmwQPuAQ8utoMD6tV4obIOcGW7dsE0sg6jJk7W5PuugbOJE58e6+xmz91n1JjjxNPhmUkMiUorBjht8Few4Gtfhiwy6y5fbtgR4e2PVMnDxbjsprIOc5s3TBHDB7Ru26bX1JghQczMFAh995PpYpQFDfb0Q06d7X7fCQtvzZma691nSOrs0EQUXpfdv5tnxEYNBmqkjhO0+U9m4cUBxcUPukUuXPFsw0jS+4tdf1al7VBTQt6/r4wKFTmcaoyIADAWQYXXEJkRGlgOIdnku60R6ptfWV+OgrNP4JCc7P14IKRnhQw+5PreSBShNuW6mTXN9Ples8/KYEu4Btouumn5PTJSXMzcNEfmEn4Ivu1544QXRrVs30bx5c5GcnCwGDhwo9u3bJzvm4sWLYvTo0SIhIUE0a9ZM5OXliYqKCtkxR48eFXfccYeIjo4WycnJYsKECeLy5cuK6+GLlh1PmvDdmeli4u2Ml2DfGloNvhSAdZfVI26f75VXpG6qyZOF+PJL37+2a9fKxxip3RVp3dpiSa0ZZa66ney1jCUnS+ON/DWejYhCU1B0Y/Xr10/Mnz9f7Nq1S+zYsUPccccdIisrS5w/f958zKhRo4RerxfFxcVi27ZtokePHqJnz57m/fX19aJTp04iNzdX/PDDD2LVqlUiKSlJTJo0SXE9fBHseDs403QTcdWkrzSoSkwM9q4paWveXP57q1ZVQqcLE7aBzlmbxyYkOH8NwsL8dx2OAgS1B5k7GuSrVpCs5DNaXy/EtGlCtGghf6yvxq4RUeMRFMGOtVOnTgkA4uuvvxZCCFFVVSUiIiLE0qVLzcfs3btXABClpaVCCCFWrVolwsLCZK09c+fOFbGxsaKurk7R8wZKy447N0UTpUFVfr7/buS+3qZNk1peevSYIGyDnJUOHzd9esPNWcv6OwsQXI1z0emUj81KTnb8ufH082nd+miZl8fyGkytNdOnO57ZxfE5ROStoByzU11dDQDm9Yi2b9+Oy5cvIzc313xM+/btkZWVhdLSUgBAaWkpOnfujNTUVPMx/fr1Q01NDXbv3m33eerq6lBTUyPb1JaTI40/8JYQzsdeKF2/aN8+7+viC02buv+YZ5/diuee0+G7714xl4WH5wEwAhhg9zHJycBVV0lLaFivYeTvLL1JSY7HpSgZ5/Lmm8o+W2++6fja3F3kMzERWLsWuHBBWg29sFD6ff58oK7O8XpX06Y5XkZDCOlnQYHy8WlERJ4ImFXPjUYjCgoKcPPNN6NTp04AgIqKCkRGRiI+Pl52bGpqKioqKszHWAY6pv2mffbMmDED06dPV/kK5MLDpYRoL7+szvnKyqQbSnk5kJIilZ06Jf07IwM4edL547dvV6ceaqutlW7+Z8403PycHA2gPYzGo1blx2EwOL/7//orcO+90r9btQKmTwfatgUqK4Hx4z2sPIAWLYBz59x7zKxZzgfgmhaWtF6KIjNTWkE7L0/6fDlL+jdxInD33Y6fw91FPh99VPq8bdokBfIrVgAjRihb78oZy2D+1lvdeywRkVIBE+yMGTMGu3btwjfffOPz55o0aRIee+wx8+81NTXQ6/WqPofBIM2qUsv48Y5nWylcszJg5ecDc+a4yiz8GoDHrcrmAxjh9vOVlUktDsuXA1ZxstvcDXQA6X1ctMh5tuO8PGlVd0eZkR0FRMnJwFtvNax75Yip5dHRYqAmptlSlrO1HAU17gY6ltxtaSIickdABDtjx47FypUrsWHDBtlCjGlpabh06RKqqqpkrTuVlZVIS0szH7NlyxbZ+SorK8377ImKikJUVJTKVyG3caO605WdTSt33SIS2BYuBCZMAN5+G7DtUTwAoJ1V2U0AvoW3H9+HHpKWdPCnsDB5S5KzhUzDw523drgKiJwxdZcNHuw4yPzLX4AlS2z3eRPUOOJuSxMRkTs0HbMjhMDYsWPx8ccfY926dWjTpo1sf9euXREREYHi4mJz2f79+3Hs2DFkZ2cDALKzs/HTTz/h1KlT5mPWrFmD2NhYdOzY0T8XYge/qSp3+jTwyivW4zYMAG6BbaCzF8BmqBGnnzkjPaeS8S8ZGVJ3m7eMRvnvZWXAoEHAM8+4n18JaAiIhg6Vfroz/sjUOmQ9hik5GVi8GPj2W/8E0nq9FKQREfmMf8ZL2/fwww+LuLg4sX79elFeXm7eLly4YD5m1KhRIisrS6xbt05s27ZNZGdni+zsbPN+09Tzvn37ih07dojVq1eL5ORkzaeeqzEbS82MyMG1LRCA9SyrF33yXJMnS7OBXB2nRoZhpZuvp2Rb57ZZvNh2fa3YWP9cK2djEZE3gmLque0NTdrmz59vPsaUVLBly5YiJiZG3HXXXaK8vFx2niNHjoj+/fuL6OhokZSUJB5//HHNkwp6kirftCUkSMnmGt9aV2V2Pg8ZQskyD55ukydL79fy5VIuIuv9iYnSPjXyJindfDklO5CWvjC9tkREnlJ6/9YJIYS/W5MCjeIl4t1kWmoAkP68u6OkRPrZu7dq1QlgAsAQAEusyksB9PDpM69dC/TpI/3bYJC6kdatA44dA7KygNtuk7qHNm5U9l5MmyZN+T59uqEsIcHx9GtHdDqpe+3wYfWmxps+j1r/j09IkAZWP/WU/6f9E1FoUXr/ZrAD3wU7gHSDsZ4xo0RhIXDPPVLOElczZoLbagD9rcrGAZjt82cOCwMuXgQiIxvK7L1fmZnAa68Bjz3m+L2wDE4A+aBhgwGwSBXllpISdaZkGwzSZ8lXa3wBDQOdrWdrZWYCDz4oTfV3ZxA1EZErSu/fATEbK5RZz5hRmtclPV0+Yyb0VAFoaaf8rINy9RmNUt4YUzDhqOWjrEyamTRhgjSQ2nr2kmnq/+zZDTdxywDFNAjak6BVrYHuzz+vXqDjLKiZPdvzGWJERL4SUBmUQ5XljJlHHpFuCs5y4yQkSDdIg8HxjJng9jhsA5rPIXVn+SfQMTEFE0pWqV+8WJqKbf1euFqp2zIrsrvUmJK9dKk6q5qbZGZKOYoqKxuyKZeUSK1apoSHns4QIyLyBQY7fuZsOQCTs2elbo+0NOlGlZcHHD0qtS4Ety0AdJASBJoMhrTMwx2qPUtBgZSlWAlTMOEqL5IQUqbfpCTgyBH7N3lnTEFrcrKyegHqTMletkwKOtQyaxaDGiIKPuzG0oCj7LfWTp+Wxu1MnAh07er/BHjqqQXQFoD1xZ4AoG6T1bRp0o23rEwKTCwHClsyjbExBRNKu4vKy10n+3MkLw/44x+lliFH9bKsn2W3mCeKipwvGeEO0+v1yCMMaogo+LBlx49Ms30WLZK6qg4ckMaANGvm/HEvvwwMGeKXKvrAKwCiIQ90PoDUZaV+39wbb0izpu6913mgA8iDiYMHlZ3fVbeS5XtsL0FgZKSUKVqnc9yyl5jovFtMCVO3nBrsvV5EREHFD9PgA54v8uxYs5ffJDxc+1wnvtv2CcA6Z04PAdRrXje9Xp7fxZQTydXjMjOlY915jx0lCLR3bEKClLzQ2XMo5W5Sy2nTpMcUFNgms7R+vYiIAgXz7LjBl1PPgcDJb+IfpmUevrMq3wugvUdnfOUVafzS6NH21s5y35Il8u6d9euV5dCZPh2YOtX+PkfvsalVxF5LjcHgetaSkmPsWbQIGDbM9XGA1D115EjDeT19TiIif1N6/2Y3lo85m+UTev4LaRiYZaDzEqSGHc8CHUBal2rIECAiwrvamYwZA1y61PB7WZmyx1VW2u+acjWTSwhpv/XjXA3wLSqScuP07i0FLr17S78XFbmuqzuzuF5/Xf7cHHhMRKGGwY6Pqb36eWA6CWmW1V8tyjIBXAAw0euzp6dLr6Naq23/+qvUmmEKGpytKG/prbekgCM9XcqVZAp8lLzHJ05IuW6UMrUUWZ+3rEwqdxXw5OS4TnEQFia1cnkzNoiIKBgw2PGx0F79XAC4G7YDjb8DcBzSwGTP6XQN06/Vfh1//VVabfzuu4FTp9x/7OzZDS0tK1Yoe9y0acpWN1eS86egwPnq6KYUB85aFI1GttoQUePAMTvw7ZgdpeNBgs8XsM2NUwBglqrPsmSJlJumuBh47jlVT625zEwpILFuWVH6mXG1lITBAKSmOm4R88X6W0RE/sTlIgKEqTshdNa3qoL9LMe/AYhX/dkefli97itfsV4+QilTl5T14GV3cv4446rrTwgpUeLGjeqsv0VEFKjYjeVjSjImB4/xsA10VkHqzor3yTMGeqADeB7EOuqSUjq42NVxagVNRETBjsGOHwT/+labIQ1Anm1RdjekZR6sVywnd1i2rpi4GlxsOZbJGbWCJiKiYMdgx0/y8uRrKk2erHWNlKiFNKuqh1V5GYAlkAKg0DN5MrBggTRWyF+tcZatK85aA93JZqxW0EREFOwY7PiRZf6SPn20ro0rL0OaTWWZhOa/kLqsMjSpkb/06QPk5wPz5km/uwp4dDrvB/hat644ag10tcK6JbWCJiKiYMdgx89Mayd98onWNXFkH6QWmycsynoCqAdwryY18ifLxUGVdD+agobHHnO+3pWzxztqXbFuDVS6wrr1ObwNmoiIgh2nnsN3U8+t0+6fPi0lowvMJIOXAUTaKd8P4Bo/10U7y5c7XtZhxQqpe8tygVG9XmodycuTEv1Zr2SfkAD84Q/2V6x3tpSE2rgEBBGFIqX3bwY78E2wY+/GF7geB/CaVdkr/1/eOCQmAu+84zrocBU02Nu/YgXw0EO2M8uUPicREdnHPDsaKiqSsvMGvn0AOtgpPweguZ/roo3Bg4FRo5SvAWUad6V0v7NFYF1Nq2drDBGROtiyA3VbdlxlrQ0MAvaHaxUBuMvPddFGeLi0bIPl6udqMxik5SQcte45y2Bsr2XQUcZlIqLGiquea+T55wM90Hkdtm97Z0gBUOMIdAApEElO9u1zuFog1F6OHcD7RUCJiEiOwY6KDIaGqb6BpxzSLKsCq/IKAD/6vTaBwNeZgz3JYKzGIqBERCTHYEdFGzcCZ89qXQt72sE2N86/ILXmpPq/OgHC15mDPclg7GlrEBEROcYByioKvDWGlkFa1sFSEwCXEKrZj5UwjZXxdeZgV4vA2qtHMK1nxQHURBQs2LKjosBZY+gcpGDGOtDZDymfTuMNdEz8kTnYkwzGwbKeVVGRNPi6d29g2DDpZ+vWHE9ERIGJwY6KcnKA5prP2P4zAOsR6U9A6rJqPMkBHUlI8G/mYHczGAfDelYcQE1EwYZTz6He1HODAWjRArh4UcXKKbYRwO/tlF9GsPdWhofLB+QmJno+423tWm3WJXOny8cUTADy7i9/Zlx2xJvp9EREauPUcw1s3KhFoGPqlrIOdEohteYEZ6ATGQk8+qi0HtSFC/L1oSorpRlJ7jC1iDhLCOhLlovAukpgGMjrWXEANREFo+C8EwYo/w8aHQ9gtlXZYABL/V0R1eh0wD33AAsXygMC6yBl4EBpvIvScwLBtcJ3Xp50jYE2ADiYBlATEZkw2FGR/waN7gXQ0U75eQDN/FUJ1cXFSTfJ6GjXx7qa6WQpM7Nhsc5g4mppCi0EywBqIiJLmnZjbdiwAX/605+QkZEBnU6HTz75RLZfCIGpU6ciPT0d0dHRyM3NxcGDB2XHnD17Fvn5+YiNjUV8fDxGjhyJ8+fP+/EqGvh+gLKA1GVlHeh88v/7gjfQAYD//EdZoAM4n+lkUlAgdXsdPhx8gU6gCoYB1ERE1jQNdv73v//h+uuvx5tvvml3/0svvYQ5c+Zg3rx52Lx5M5o1a4Z+/fqhtrbWfEx+fj52796NNWvWYOXKldiwYQMeeughf12CDd+N2ZkN27frOkhBzkBfPanfTJ/ufkDiaGyLXg8sXw7MmqV8gU9SxpPp9EREmhMBAoD4+OOPzb8bjUaRlpYmXn75ZXNZVVWViIqKEosWLRJCCLFnzx4BQGzdutV8zBdffCF0Op0oKytz+Fy1tbWiurravB0/flwAENXV1V5dQ0mJEFKnippbmYAU0VhtlT54Lm22zEwh6us9f93r66XXvrBQ+unNuUiZ5cul983yfdTrpXIiIn+prq5WdP8O2NlYhw8fRkVFBXJzc81lcXFx6N69O0pLSwEApaWliI+PR7du3czH5ObmIiwsDJs3b3Z47hkzZiAuLs686fV6Veqs/qDMvgCsmi3wJqR4J0XtJ9OETie1FHjTEuDOTCdSR14ecOSIfJYcuwuJKFAF7ADliooKAEBqqnztptTUVPO+iooKpKTIb/pNmjRBQkKC+Rh7Jk2ahMcee8z8e01NjSoBT2Ki16f4f6UAelqVRQG4iFDKfqzXB+fAYZIE4gBqIiJ7AjbY8aWoqChERUWpft533/X2DBcBXAlpJXJLBwC09fbkAWXyZODpp9kKQ0REvhew3VhpaWkAgMrKSll5ZWWleV9aWhpOnTol219fX4+zZ8+aj/GnZcu8efRMADGQBzoLIHVZBWagk5jofnI/kz59GOgQEZF/BGyw06ZNG6SlpaG4uNhcVlNTg82bNyM7OxsAkJ2djaqqKmzfvt18zLp162A0GtG9e3e/19kzeyF1TU2yKMsBUA8gX5MaKfXRR1LiO3dwajIREfmbpt1Y58+fx88//2z+/fDhw9ixYwcSEhKQlZWFgoICPPfcc2jbti3atGmDKVOmICMjA3feeScAoEOHDrj99tvx4IMPYt68ebh8+TLGjh2LIUOGICMjQ6OrUqoeQDaAbVblwdFllZnZMF5DaXI/Tk0mIiJN+Gl2mF0lJSV2p1UPHz5cCCFNP58yZYpITU0VUVFRok+fPmL//v2yc5w5c0YMHTpUNG/eXMTGxor7779fnDt3zq16KJ265ory6db/sXPdszSfAu7OZjnFePlyIXQ6aXP2GE5NJiIiNSm9f3PVc6i36rmjrLINTgCwnvV1JYA9kGZbBYfp04GpU+VlRUXAuHHyRSIzM4EHHwTatg2ctZ2IiCh0KL1/M9iBP4IdAeAuACusyrcC6GZ7eADLzJTyq9gLWgyGwFu4koiIQpfS+3ejnHruXysB/Mmq7AkAL2pQF8+ZAjlnCQCZd4WIiAIRgx2f+gDACIvfIwD8CiBOk9p4I1hXDiciImKw41M/Wvz7KwB/0KoibtPppGHFBQXS9HJ2SRERUbBisONTLwJ4CMA1CLZlHtiSQ0REoYLBjk81AdBO60ooNm0a0K4dBxcTEVFoYbBDXJCTiIhCGoOdRiYxEZg3D0hK4hRxIiJqHBjshJhmzYCJE4H6esBoBOLjgaoqICxMmhZ+660MbIiIqHFhsBNiVqyQVhQnIiIiScCuek7u0+uZ1I+IiMgag50QodNxNXEiIiJ7GOyEAL0eWLaMs6mIiIjs4ZidINOtG3DNNcANNwAZGUCrVpxNRURE5AyDnSCyZAlw991a14KIiCi4sBsrCCQmAsuXM9AhIiLyBFt2AkzTpsA990hrUzE3DhERkfcY7ASI+HhpkDEDGyIiInUx2AkAf/oT8OmnWteCiIgoNHHMjoree8+946+7DrhwgYEOERGRLzHYUdHIkcqO69ULqKsDdu4EoqN9WyciIqLGjt1YKhNCymbsSF0dEBnpv/oQERE1dmzZ8QEhbLu03ntPKmegQ0RE5F86IYTQuhJaq6mpQVxcHKqrqxEbG6t1dYiIiEgBpfdvtuwQERFRSGOwQ0RERCGNwQ4RERGFNAY7REREFNIY7BAREVFIY7BDREREIY3BDhEREYU0BjtEREQU0hjsEBERUUjj2lgATEmka2pqNK4JERERKWW6b7taDILBDoBz584BAPR6vcY1ISIiInedO3cOcXFxDvdzbSwARqMRJ0+eRIsWLaBztmS5m2pqaqDX63H8+HGuuRUg+J4EFr4fgYfvSWDh++GcEALnzp1DRkYGwsIcj8xhyw6AsLAwZGZm+uz8sbGx/JAGGL4ngYXvR+DhexJY+H445qxFx4QDlImIiCikMdghIiKikMZgx4eioqIwbdo0REVFaV0V+n98TwIL34/Aw/cksPD9UAcHKBMREVFIY8sOERERhTQGO0RERBTSGOwQERFRSGOwQ0RERCGNwY4Pvfnmm2jdujWaNm2K7t27Y8uWLVpXKejNmDEDN954I1q0aIGUlBTceeed2L9/v+yY2tpajBkzBomJiWjevDkGDRqEyspK2THHjh3DgAEDEBMTg5SUFEycOBH19fWyY9avX4/f/e53iIqKwtVXX43333/f15cX9GbOnAmdToeCggJzGd8P/ysrK8O9996LxMREREdHo3Pnzti2bZt5vxACU6dORXp6OqKjo5Gbm4uDBw/KznH27Fnk5+cjNjYW8fHxGDlyJM6fPy875scff0ROTg6aNm0KvV6Pl156yS/XF2wMBgOmTJmCNm3aIDo6GldddRWeffZZ2XpOfE98TJBPLF68WERGRor//Oc/Yvfu3eLBBx8U8fHxorKyUuuqBbV+/fqJ+fPni127dokdO3aIO+64Q2RlZYnz58+bjxk1apTQ6/WiuLhYbNu2TfTo0UP07NnTvL++vl506tRJ5Obmih9++EGsWrVKJCUliUmTJpmPOXTokIiJiRGPPfaY2LNnj3jjjTdEeHi4WL16tV+vN5hs2bJFtG7dWlx33XVi3Lhx5nK+H/519uxZccUVV4gRI0aIzZs3i0OHDokvv/xS/Pzzz+ZjZs6cKeLi4sQnn3widu7cKf785z+LNm3aiIsXL5qPuf3228X1118vvvvuO7Fx40Zx9dVXi6FDh5r3V1dXi9TUVJGfny927dolFi1aJKKjo8Xbb7/t1+sNBs8//7xITEwUK1euFIcPHxZLly4VzZs3F6+//rr5GL4nvsVgx0duuukmMWbMGPPvBoNBZGRkiBkzZmhYq9Bz6tQpAUB8/fXXQgghqqqqREREhFi6dKn5mL179woAorS0VAghxKpVq0RYWJioqKgwHzN37lwRGxsr6urqhBBCPPHEE+Laa6+VPddf/vIX0a9fP19fUlA6d+6caNu2rVizZo3o1auXOdjh++F///jHP8Qtt9zicL/RaBRpaWni5ZdfNpdVVVWJqKgosWjRIiGEEHv27BEAxNatW83HfPHFF0Kn04mysjIhhBBvvfWWaNmypfk9Mj13u3bt1L6koDdgwADxwAMPyMry8vJEfn6+EILviT+wG8sHLl26hO3btyM3N9dcFhYWhtzcXJSWlmpYs9BTXV0NAEhISAAAbN++HZcvX5a99u3bt0dWVpb5tS8tLUXnzp2RmppqPqZfv36oqanB7t27zcdYnsN0DN8/+8aMGYMBAwbYvGZ8P/zv008/Rbdu3XD33XcjJSUFXbp0wbvvvmvef/jwYVRUVMhez7i4OHTv3l32nsTHx6Nbt27mY3JzcxEWFobNmzebj/n973+PyMhI8zH9+vXD/v378dtvv/n6MoNKz549UVxcjAMHDgAAdu7ciW+++Qb9+/cHwPfEH7gQqA+cPn0aBoNB9scbAFJTU7Fv3z6NahV6jEYjCgoKcPPNN6NTp04AgIqKCkRGRiI+Pl52bGpqKioqKszH2HtvTPucHVNTU4OLFy8iOjraF5cUlBYvXozvv/8eW7dutdnH98P/Dh06hLlz5+Kxxx7DP//5T2zduhWPPvooIiMjMXz4cPNrau/1tHy9U1JSZPubNGmChIQE2TFt2rSxOYdpX8uWLX1yfcHoySefRE1NDdq3b4/w8HAYDAY8//zzyM/PBwC+J37AYIeC1pgxY7Br1y588803Wlel0Tp+/DjGjRuHNWvWoGnTplpXhyB9CejWrRteeOEFAECXLl2wa9cuzJs3D8OHD9e4do3TkiVLsHDhQhQWFuLaa6/Fjh07UFBQgIyMDL4nfsJuLB9ISkpCeHi4zYyTyspKpKWlaVSr0DJ27FisXLkSJSUlyMzMNJenpaXh0qVLqKqqkh1v+dqnpaXZfW9M+5wdExsby1YEC9u3b8epU6fwu9/9Dk2aNEGTJk3w9ddfY86cOWjSpAlSU1P5fvhZeno6OnbsKCvr0KEDjh07BqDhNXX29yktLQ2nTp2S7a+vr8fZs2fdet9IMnHiRDz55JMYMmQIOnfujPvuuw/jx4/HjBkzAPA98QcGOz4QGRmJrl27ori42FxmNBpRXFyM7OxsDWsW/IQQGDt2LD7++GOsW7fOpsm2a9euiIiIkL32+/fvx7Fjx8yvfXZ2Nn766SfZH441a9YgNjbWfJPIzs6WncN0DN8/uT59+uCnn37Cjh07zFu3bt2Qn59v/jffD/+6+eabbdIxHDhwAFdccQUAoE2bNkhLS5O9njU1Ndi8ebPsPamqqsL27dvNx6xbtw5GoxHdu3c3H7NhwwZcvnzZfMyaNWvQrl27Rt1dYs+FCxcQFia/3YaHh8NoNALge+IXWo+QDlWLFy8WUVFR4v333xd79uwRDz30kIiPj5fNOCH3PfzwwyIuLk6sX79elJeXm7cLFy6Yjxk1apTIysoS69atE9u2bRPZ2dkiOzvbvN801blv375ix44dYvXq1SI5OdnuVOeJEyeKvXv3ijfffJNTnRWynI0lBN8Pf9uyZYto0qSJeP7558XBgwfFwoULRUxMjFiwYIH5mJkzZ4r4+HixYsUK8eOPP4qBAwfanebcpUsXsXnzZvHNN9+Itm3byqY5V1VVidTUVHHfffeJXbt2icWLF4uYmBhOc7Zj+PDholWrVuap50VFRSIpKUk88cQT5mP4nvgWgx0feuONN0RWVpaIjIwUN910k/juu++0rlLQA2B3mz9/vvmYixcvitGjR4uWLVuKmJgYcdddd4ny8nLZeY4cOSL69+8voqOjRVJSknj88cfF5cuXZceUlJSIG264QURGRoorr7xS9hzkmHWww/fD/z777DPRqVMnERUVJdq3by/eeecd2X6j0SimTJkiUlNTRVRUlOjTp4/Yv3+/7JgzZ86IoUOHiubNm4vY2Fhx//33i3PnzsmO2blzp7jllltEVFSUaNWqlZg5c6bPry0Y1dTUiHHjxomsrCzRtGlTceWVV4qnnnpKNkWc74lv6YSwSOFIREREFGI4ZoeIiIhCGoMdIiIiCmkMdoiIiCikMdghIiKikMZgh4iIiEIagx0iIiIKaQx2iIiIKKQx2CEiIqKQxmCHiIiIQhqDHSIKKAaDAT179kReXp6svLq6Gnq9Hk899ZTTx69fvx46nc5mpXVvHDlyBDqdDjt27FDtnETkPwx2iCighIeH4/3338fq1auxcOFCc/kjjzyChIQETJs2TcPaEVEwYrBDRAHnmmuuwcyZM/HII4+gvLwcK1aswOLFi/Hhhx8iMjLS4eOOHDmC3r17AwBatmwJnU6HESNGAACMRiNmzJiBNm3aIDo6Gtdffz2WLVtmfuxvv/2G/Px8JCcnIzo6Gm3btsX8+fMBAG3atAEAdOnSBTqdDrfeeqtvLpyIfKKJ1hUgIrLnkUcewccff4z77rsPP/30E6ZOnYrrr7/e6WP0ej2WL1+OQYMGYf/+/YiNjUV0dDQAYMaMGViwYAHmzZuHtm3bYsOGDbj33nuRnJyMXr16YcqUKdizZw+++OILJCUl4eeff8bFixcBAFu2bMFNN92EtWvX4tprr3UacBFR4OGq50QUsPbt24cOHTqgc+fO+P7779GkievvZ+vXr0fv3r3x22+/IT4+HgBQV1eHhIQErF27FtnZ2eZj//a3v+HChQsoLCzEn//8ZyQlJeE///mPzTmPHDmCNm3a4IcffsANN9yg1uURkZ+wZYeIAtZ//vMfxMTE4PDhwzhx4gRat27t0Xl+/vlnXLhwAX/4wx9k5ZcuXUKXLl0AAA8//DAGDRqE77//Hn379sWdd96Jnj17ensJRBQAOGaHiALSpk2bMGvWLKxcuRI33XQTRo4cCU8bos+fPw8A+Pzzz7Fjxw7ztmfPHvO4nf79++Po0aMYP348Tp48iT59+mDChAmqXQ8RaYfBDhEFnAsXLmDEiBF4+OGH0bt3b/z73//Gli1bMG/ePJePNY2nMRgM5rKOHTsiKioKx44dw9VXXy3b9Hq9+bjk5GQMHz4cCxYswOzZs/HOO+84PCcRBQ92YxFRwJk0aRKEEJg5cyYAoHXr1njllVcwYcIE9O/f32l31hVXXAGdToeVK1fijjvuQHR0NFq0aIEJEyZg/PjxMBqNuOWWW1BdXY1vv/0WsbGxGD58OKZOnYquXbvi2muvRV1dHVauXIkOHToAAFJSUhAdHY3Vq1cjMzMTTZs2RVxcnD9eCiJSgyAiCiDr168X4eHhYuPGjTb7+vbtK2677TZhNBqdnuOZZ54RaWlpQqfTieHDhwshhDAajWL27NmiXbt2IiIiQiQnJ4t+/fqJr7/+WgghxLPPPis6dOggoqOjRUJCghg4cKA4dOiQ+Zzvvvuu0Ov1IiwsTPTq1Uu16yUi3+NsLCIiIgppHLNDREREIY3BDhEFlVGjRqF58+Z2t1GjRmldPSIKQOzGIqKgcurUKdTU1NjdFxsbi5SUFD/XiIgCHYMdIiIiCmnsxiIiIqKQxmCHiIiIQhqDHSIiIgppDHaIiIgopDHYISIiopDGYIeIiIhCGoMdIiIiCmn/B3x8YW/bQaOnAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABivklEQVR4nO3de3gTVd4H8G9aaCmWtrT0ArS1qLwgwiqCIiogaxUU30ULuCIoKquIoBSU3WUFXESBVVZwVxbEC+hy8YVS1wXRFWqLuHa5o1wEFVoutS0ItAWE0ibn/WM2aSbXSTLJTCbfz/PkCZycTE4maefXc37nHJMQQoCIiIjIoKK0bgARERFRMDHYISIiIkNjsENERESGxmCHiIiIDI3BDhERERkagx0iIiIyNAY7REREZGjNtG6AHlgsFvz4449o1aoVTCaT1s0hIiIiBYQQOHv2LNq1a4eoKPf9Nwx2APz444/IysrSuhlERETkh2PHjiEzM9Pt4wx2ALRq1QqAdLISEhI0bg0REREpUVdXh6ysLNt13B0GO4Bt6CohIYHBDhERUZjxloLCBGUiIiIyNAY7REREZGgMdoiIiMjQGOwQERGRoTHYISIiIkNjsENERESGxmCHiIiIDI3BDhERERkagx0iIiIyNK6gTEREREFhNgObNwOVlUDbtkCfPkB0dOjbwWCHiIiIVFdYCEyYABw/3lSWmQm8/jqQlxfatnAYi4iIiFRVWAgMHSoPdACgokIqLywMbXsY7BAREZFqzGapR0cI58esZfn5Ur1QYbBDREREqtm82blHx54QwLFjUr1QYbBDREREqqmsVLeeGhjsEBERkWratlW3nhoY7BAREZFq+vSRZl2ZTK4fN5mArCypXqgw2CEiIiLVREdL08sB54DH+v/580O73g6DHSIiIlJVXh5QUAC0by8vz8yUykO9zg4XFSQiIiLV5eUBgwdzBWUiIiIysOho4LbbtG4Fh7GIiIjI4BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZWjOtG0BERBQKZjOweTNQWQm0bQv06QNER2vdKgoFBjtERGR4hYXAhAnA8eNNZZmZwOuvA3l52rWLQoPDWEREZGiFhcDQofJABwAqKqTywkJt2kWhw2CHiIgMy2yWenSEcH7MWpafL9Uj42KwQ0REhrV5s3OPjj0hgGPHpHpkXAx2iIjIsCor1a1H4YnBDhERGVbbturWI9/U1dUhMTERJpMJP/74o2btYLBDRESG1aePNOvKZHL9uMkEZGVJ9Uhd06ZNQ2JiIurq6gAAW7Zs0awtnHpORESGFR0tTS8fOlQKbOwTla0B0Pz5wV1vJ9LW99m7dy+6desmK7v//vtx3333adQi9uwQEZHB5eUBBQVA+/by8sxMqTyY6+wUFgI5OUD//sCDD0r3OTnGnO5uNpvRq1cvp0DnyJEj+L//+z+NWiVhsENERIaXlweUlwPFxcCKFdJ9WVnwA51IWd/ngw8+QLNmzbB161Zb2RtvvAEhBLKzszVsmcQkhKvVByKLNYGqtrYWCQkJWjeHiIjCnNks9eC4m/ZuMkk9S2Vl4T2kdfLkSaSlpcnKcnJycODAAcTGxgb99ZVev9mzQ0REpLJIWN/nqaeecgp0SktLUVZWFpJAxxdMUCYiIlKZkdf32bJlC2666SZZ2ZgxY7Bo0SKNWuSdpj07ZrMZ06ZNQ4cOHRAXF4crr7wSM2fOhP3ImhAC06dPR9u2bREXF4fc3Fx8//33suOcPn0aI0aMQEJCApKSkjB69GicO3cu1G+HiIgIgDHX96mvr8eVV17pFOhUV1frOtABNA52/vSnP2HhwoV444038O233+JPf/oTXnnlFfz1r3+11XnllVfwl7/8BYsWLcKWLVtw2WWXYcCAAbh48aKtzogRI7Bv3z5s2LAB69atwxdffIEnnnhCi7dERERkuPV9Fi5ciBYtWuDw4cO2smXLlkEI4TSUpUeaJijfc889SE9PxzvvvGMrGzJkCOLi4mwnsV27dnj22Wfx3HPPAQBqa2uRnp6OpUuX4oEHHsC3336LLl26YNu2bejZsycA4NNPP8Xdd9+N48ePo127dl7bwQRlIiJSm3U2FuB6fZ9gT3tXw7Fjx5xmU/Xs2ROlpaVo1kz7TJiwSFC++eabUVRUhO+++w4A8PXXX+PLL7/EXXfdBQAoKytDVVUVcnNzbc9JTExEr169UFpaCkBKhkpKSrIFOgCQm5uLqKgot6s11tfXo66uTnYjIiJSk5br+wRKCIFhw4Y5BTrffPMNtm3bpotAxxeatvb3v/896urq0LlzZ0RHR8NsNuPll1/GiBEjAABVVVUAgPT0dNnz0tPTbY9VVVU5daE1a9YMycnJtjqOZs+ejRkzZqj9doiIiGTy8oDBg8NrBeWioiJZJwMATJkyBbNmzdKoRYHTNNhZtWoVli9fjhUrVuCaa67B7t27kZ+fj3bt2mHUqFFBe90pU6Zg0qRJtv/X1dUhKysraK9HRESRKzoauO02rVvh3fnz55GRkeE0waempgaJiYkatUodmg5jTZ48Gb///e/xwAMPoFu3bnjooYcwceJEzJ49GwCQkZEBQMr0tlddXW17LCMjAydOnJA93tjYiNOnT9vqOIqNjUVCQoLsRkREFKlmzZqF+Ph4WaCzdu1aCCHCPtABNA52fv75Z0RFyZsQHR0Ni8UCAOjQoQMyMjJQVFRke7yurg5btmxB7969AQC9e/dGTU0NduzYYavz+eefw2KxoFevXiF4F0REROHpu+++g8lkwvPPP28rGzhwICwWC+655x4NW6YuTYex/vd//xcvv/wysrOzcc0112DXrl147bXX8NhjjwEATCYT8vPz8dJLL6Fjx47o0KEDpk2bhnbt2uHee+8FAFx99dUYOHAgHn/8cSxatAgNDQ0YP348HnjgAUUzsYiIiCKNxWLB7bffjpKSEln5oUOHcMUVV2jTqGASGqqrqxMTJkwQ2dnZokWLFuKKK64Qzz//vKivr7fVsVgsYtq0aSI9PV3ExsaK22+/XRw8eFB2nFOnTonhw4eL+Ph4kZCQIB599FFx9uxZxe2ora0VAERtba1q742IiEiPCgsLBQDZbe7cuVo3yy9Kr9/cCBRcZ4eIiIzvzJkzSE5OlpW1adMGR44cQcuWLTVqVWDCYp0dIiIiCr7nnnvOKdApKSnByZMnwzbQ8UV4rQpEREREiu3atQvXX3+9rGzkyJF4//33YXK3l4UBMdghIiIymIaGBnTv3h379u2TlVdUVETk5B0OYxERERnIkiVLEBMTIwt03n77bdt+k5GIPTtEREQGUFlZ6RTMdOnSBbt370bz5s01apU+sGeHiIgojAkhMGrUKKdAZ/v27di3b1/EBzoAgx0iIqKwtXnzZkRFReH999+3leXn50MIgR49emjYMn3hMBYREVGYuXDhAnJycpz2hjx16pTTFHNizw4REVFYmTdvHlq2bCkLdAoKCiCEYKDjBnt2iIiIwkBZWZnTvlV9+/ZFcXGx06baJMdgh4iIDM1sBjZvBiorgbZtgT59gOhorVulnBAC99xzD9avXy8r//bbb9G5c2eNWhVeGAoSEZFhFRYCOTlA//7Agw9K9zk5Unk4WL9+PaKiomSBzosvvgghBAMdH7Bnh4iIDKmwEBg6FHDc7rqiQiovKADy8rRpmzd1dXVo3bo1LBaLraxly5aorq5GfHy8hi0LT+zZISIiwzGbgQkTnAMdoKksP1+qpzfTpk1DYmKiLND57LPPcP78eQY6fmLPDhERGc7mzcDx4+4fFwI4dkyqd9ttIWuWR3v37kW3bt1kZXl5eSgoKIioTTuDgcEOEREZTmWluvWCyWw2o3fv3ti2bZus/MiRI8jOztaoVcbCYSwiIjKctm3VrRcsK1euRLNmzWSBzhtvvAEhBAMdFbFnh4iIDKdPHyAzU0pGdpW3YzJJj/fpE/q2AcDJkyeRlpYmK8vJycGBAwcQGxurTaMMjD07RERkONHRwOuvS/92THex/n/+fG3W2xk7dqxToFNaWoqysjIGOkHCYIeIiAwpL0+aXt6+vbw8M1ObaedbtmyByWTCokWLbGVjxoyBEAI33XRTaBsTYTiMRUREhpWXBwwerO0KyvX19ejSpQsOHz4sK6+urnbq4aHgYM8OEREZWnS0NL18+HDpPpSBzsKFC9GiRQtZoLNs2TIIIRjohBB7doiISPfCbX+rY8eOOc2m6tmzJ0pLS9GsGS+9ocaeHSIi0rVw2t9KCIFhw4Y5BTrffPMNtm3bxkBHIwx2iIhIt6z7Wzmuhmzd30pPAU9RURGioqJQUFBgK5syZQqEEE4rI1NomYRwtQJBZKmrq0NiYiJqa2uRkJCgdXOIiAjS0FVOjvttH6xr5ZSVaTukdf78eWRkZODcuXOy8pqaGiQmJmrUqsig9PrNnh0iItIlX/a30sqsWbMQHx8vC3TWrl0LIQQDHR3h4CEZVrglNBKRnJ73tzp48CA6d+4sKxs4cCDWr1/PTTt1iMEOGVJhITBhgvyvwsxMaUXVUC8kRkT+0eP+VhaLBb/85S+xadMmWfmhQ4dwxRVXhK4h5BMOY5HhhFNCIxG5Z93fyl1HickEZGWFbn+rwsJCREdHywKduXPnQgjBQEfn2LNDhmI2Sz06rtLuhZB+OebnSyuqckiLSN+s+1sNHSr97Nr/XIdyf6szZ84gOTlZVpaWloby8nLExcUF98VJFezZIUMJh4RGIlJO6/2tnnvuOadAp6SkBNXV1Qx0wgh7dshQ9JzQSET+0WJ/q127duH666+XlY0cORLvv/8+E5DDEIMdMhQ9JjQSUeCs+1sFW0NDA7p37459+/bJyisqKtCuXbvgN4CCgsNYZCh6S2gkovCxZMkSxMTEyAKdt99+G0IIBjphjj07ZCh6SWgkovBRWVnpFMx06dIFu3fvRvPmzTVqFamJPTtBUlsL3HorkJ0t3dfWat2iyKF1QiMRhQchBEaNGuUU6Gzfvh379u1joGMg3BsL6u+NddVVwKFDzuVXXgn88EPAhyeFuIIyEbmzefNm9O3bV1aWn5+PefPmadQi8ofS6zeHsVTmLtABpPKrrmLAEyqhSmgkovBx4cIF5OTk4MSJE7LyU6dOOU0xJ+PgMJaKamvdBzpWhw5xSIuISAuvvfYaWrZsKQt0CgoKIIRgoGNw7NlR0aBByut9+WVw20JERJLDhw/jyiuvlJX17dsXxcXFiIri3/yRgJ+yio4eVbceERH5TwiBQYMGOQU6Bw4cwKZNmxjoRBB+0irKzla3HhER+Wf9+vWIiorC+vXrbWUvvvgihBDo1KmThi0jLXAYS0UffwwkJSmrR0RE6qurq0Pr1q1hsVhsZS1btkR1dTXi4+M1bBlpiT07KkpMlKaXe3LllVI9IqJIYzYDJSXAypXSvdms7vGnTZuGxMREWaDz2Wef4fz58wx0Ihx7dlT2ww9cZ4eIyFFhITBhAnD8eFNZZqa04nmgC33u3bsX3bp1k5Xl5eWhoKCAm3YSAPbsBMUPPwA1NcAtt0j7MN1yi/R/BjpEFIkKC6UtXOwDHQCoqJDKCwv9O67ZbMaNN97oFOgcOXIEa9asYaBDNgx2giQxUZpefvSodM+hKyKKRGaz1KPjaq1+a1l+vu9DWitXrkSzZs2wbds2W9kbb7wBIQSyOQuEHHAYi4iIgmbzZuceHXtCAMeOSfWUrHh+8uRJpKWlycpycnJw4MABxMbGBtZYMiz27BARUdBUVqpXb+zYsU6BTmlpKcrKyhjokEfs2SEioqBp2zbwelu2bMFNN90kKxszZgwWLVoUQMsokjDYISKioOnTR5p1VVHhOm/HZJIe79PH+bH6+np07twZ5eXlsvLq6mqnHh4iTziMRUREQRMdLU0vB6TAxp71//PnS/XsLVy4EC1atJAFOsuXL4cQgoEO+Yw9O0REFFR5eUBBget1dubPl6+zc+zYMafZVD179kRpaSmaNeMli/zDbw4REQVdXh4weLA066qyUsrR6dOnqUdHCIH7778fBQUFsud98803TuvoEPmKwQ4REYVEdLTr6eVFRUXIzc2VlU2ZMgWzZs0KTcPI8BjsEBGRJs6fP4+MjAycO3dOVl5TU4NErsRKKmKCMhERhdysWbMQHx8vC3TWrl0LIQQDHVIde3aIiChkDh48iM6dO8vKBg4ciPXr13MvKwoaBjtERBR0FosFv/zlL7Fp0yZZ+aFDh3DFFVdo1CqKFBzGIiKioCosLER0dLQs0Jk7dy6EEAx0KCTYs0NEREFx+vRppKSkyMrS0tJQXl6OuLg4jVpFkYg9O0REpLpJkyY5BTqbNm1CdXU1Ax0KOc2DnYqKCowcORIpKSmIi4tDt27dsH37dtvjQghMnz4dbdu2RVxcHHJzc/H999/LjnH69GmMGDECCQkJSEpKwujRo52mMhIRBZPZDJSUACtXSvdms9Yt0sbOnTthMpkwb948W9nDDz8Mi8WCvn37atgyimSaBjtnzpzBLbfcgubNm+OTTz7B/v378ec//xmtW7e21XnllVfwl7/8BYsWLcKWLVtw2WWXYcCAAbh48aKtzogRI7Bv3z5s2LAB69atwxdffIEnnnhCi7dERBGosBDIyQH69wcefFC6z8mRyiNFQ0MDrrnmGvTo0UNWXlFRgffee48zrUhbQkO/+93vxK233ur2cYvFIjIyMsSrr75qK6upqRGxsbFi5cqVQggh9u/fLwCIbdu22ep88sknwmQyiYqKCkXtqK2tFQBEbW2tn++EiPSksVGI4mIhVqyQ7hsbg/daa9YIYTIJIe3p3XQzmaTbmjXBe229ePfddwUA2e3tt9/WulkUAZRevzXt2fnnP/+Jnj17YtiwYUhLS0P37t3x1ltv2R4vKytDVVWVbBnxxMRE9OrVC6WlpQCA0tJSJCUloWfPnrY6ubm5iIqKwpYtW1y+bn19Perq6mQ3IjKGUPaymM3S5pZCOD9mLcvPN+6QVmVlJUwmEx577DFbWZcuXXDp0iWMHj1aw5YRyWka7Bw+fBgLFy5Ex44d8a9//Qtjx47FM888g/feew8AUFVVBQBIT0+XPS89Pd32WFVVFdLS0mSPN2vWDMnJybY6jmbPno3ExETbLSsrS+23RkQaKCwEhg6V76wNABUVUrnaAc/mzc6vZU8I4NgxqZ6RCCEwatQotGvXTla+fft27Nu3D82bN9eoZUSuaRrsWCwWXH/99Zg1axa6d++OJ554Ao8//jgWLVoU1NedMmUKamtrbbdjx44F9fWIKPi06GWprFS3XjjYvHkzoqKi8P7779vK8vPzIYRwytch0gtN19lp27YtunTpIiu7+uqrsWbNGgBARkYGAKC6uhpt27a11amursZ1111nq3PixAnZMRobG3H69Gnb8x3FxsYiNjZWrbdBRDrgSy+Lq523/WH3a0mVenp24cIF5OTkOP2+PXXqFJKTkzVqFZEymvbs3HLLLTh48KCs7LvvvsPll18OAOjQoQMyMjJQVFRke7yurg5btmxB7969AQC9e/dGTU0NduzYYavz+eefw2KxoFevXiF4F0SkB1r0svTpA2RmAu4mGplMQFaWVC+cvfbaa2jZsqUs0CkoKIAQgoEOhQVNe3YmTpyIm2++GbNmzcL999+PrVu3YvHixVi8eDEAwGQyIT8/Hy+99BI6duyIDh06YNq0aWjXrh3uvfdeAFJP0MCBA23DXw0NDRg/fjweeOABp/FkIjIuLXpZoqOB11+X8oFMJvkQmjUAmj9fqheODh8+jCuvvFJW1rdvXxQXFyMqSvNl2oiUC8XUME/Wrl0runbtKmJjY0Xnzp3F4sWLZY9bLBYxbdo0kZ6eLmJjY8Xtt98uDh48KKtz6tQpMXz4cBEfHy8SEhLEo48+Ks6ePau4DZx6rr5QTv0lEkL6jmVmup4Gbp0KnpUVnO/imjXSa9u/XlZW+E47t1gs4q677nKaTn7gwAGtm0Yko/T6bRLCVTpfZKmrq0NiYiJqa2uRkJCgdXPCXmGhlChqnz+RmSn9BZyXp127yPiss7EA170sBQXB+w6azVI+UGWl1HvUp0949uh8/PHHuOeee2RlM2fOxNSpUzVqEZF7Sq/fDHbAYEdN1ouN47cqFBcbIsB1sJ2VJQ0nRdp3z5cArLa2Fq1bt4b9JaFly5aorq5GfHx8iFpM5Bul128OupJqIn2BNdKHvDygvBwoLgZWrJDuy8oiL9DxZXHFqVOnIikpSRbofPbZZzh//jwDHTIETROUyVi0mPpL5Ep0dNN3zCjDS75w18NqXVzR2sO6d+9edOvWTVYnLy8PBQUF3MuKDIXBDqkmEhdYI32LxPwxbz2sJhMwYYIZs2f3xvbt22SPHzlyBNnZ2SFqKVHocBiLVBNJC6yR/oV66wi98N7DuhLHjzeTBTpvvPEGhBAMdMiw2LNDqrEusFZR4fqvSpNJejzcF1gj/VPSu5GfDwwebLwhLfc9pycByPcRzMnJwYEDB7iiPBkee3ZINdYF1gDnFWWNsMAahY9I3aATcNdzOhaOgc6CBaUoKytjoEMRgcEOqSovT0p+bN9eXp6ZyWnnFDqRnD8m38JiCwATAPvNlccgK0tgzJibNGkfkRY4jEWqy8uThgcibQYM6Uck549FRwNz59bjgQc6Ayh3eLQaJlMae1gp4jDYoaCwn/obLiJxirJRRXL+2MKFC/HUU085lC4H8GDELq5IxGCHCJE5RdnIjL5BpyvHjh1zmk3Vs2dPzJlTihMnmjGAp4jGnB2KeJE6RdnoIiV/TAiBoUOHOgU633zzDbZt24bbb2+G4cOlnlYGOhSpFO+NlefDb4bCMLs6cG+syGU2S0vou5u5Yx3uKCvjhcIq3Ib7wq29vti4cSPuuOMOWdmUKVMwa9YsjVpEFFpKr9+Kh7ESExNt/xZC4MMPP0RiYiJ69uwJANixYwdqamp8CoqItMYtLnwTjsN94Zg/5s358+eRkZGBc+fOycprampkv6uJSKI42FmyZInt37/73e9w//33Y9GiRYj+759IZrMZTz31FHtGKKxE8hRlXyndb4mCa9asWXj++edlZWvXrsU999yjUYuI9E/xMJa91NRUfPnll+jUqZOs/ODBg7j55ptx6tQp1RoYChzGilwlJdJu0N4UFxuvd8AXHO7T3sGDB9G5c2dZ2cCBA7F+/Xpu2kkRS+n1268E5cbGRhw4cMCp/MCBA7BYLP4ckkgT8gXYnJlMQFaWMaco+yKSVyTWmsViwW233eYU6Bw6dAiffPIJAx0iBfyaev7oo49i9OjROHToEG688UYAwJYtWzBnzhw8+uijqjaQKJgicYqyPzjcp43CwkIMGTJEVjZ37lw8++yzGrWIKDz5FezMnTsXGRkZ+POf/4zK//52a9u2LSZPnswfQgo71inKrhJvuQCbJJJXJNbC6dOnkZKSIitLS0tDeXk54uLiNGoVUfjyK2fHXl1dHQCEda4Lc3YIMPYU5UBZc3a8rUjMnJ3ATZo0CfPmzZOVbdq0CX379tWoRUT6pfrUc0eNjY0oKSnBoUOH8OCDDwIAfvzxRyQkJCA+Pt7fwxJpxohTlNXC4b7g27lzJ3r06CEre/jhh7F06VLm5RAFyK9g58iRIxg4cCCOHj2K+vp63HHHHWjVqhX+9Kc/ob6+HosWLfJ+ECIKKxzuC46GhgZcd9112L9/v6y8oqIC7dq106hVRMbi12ysCRMmoGfPnjhz5oxs/Pi+++5DUVGRao0jIn3JywPKy6Wp+CtWSPdlZQx0/LVkyRLExMTIAp23334bQggGOkQq8qtnZ/Pmzfjqq68QExMjK8/JyUFFRYUqDSMifeJwX+AqKyudgpkuXbpg9+7daN68uUatIjIuv3p2LBYLzGazU/nx48fRqlWrgBtFRGREQgiMGjXKKdDZvn079u3bx0CHKEj8CnbuvPNOzJ8/3/Z/k8mEc+fO4YUXXsDdd9+tVtuIiAxj8+bNiIqKwvvvv28ry8/PhxDCKTGZiNTl19TzY8eOYeDAgRBC4Pvvv0fPnj3x/fffo02bNvjiiy+QlpYWjLYGDaeeE1GwXLhwATk5OThx4oSs/NSpU0hOTtaoVUTGENTtIrKysvD111/j+eefx8SJE9G9e3fMmTMHu3btCrtAh4goWF577TW0bNlSFugUFBRACMFAhyiEfO7ZaWhoQOfOnbFu3TpcffXVwWpXSLFnh4jUdPjwYVx55ZWysr59+6K4uBhRUX79jUlELgRtUcHmzZvj4sWLATWOiChc+LKythACgwYNwieffCIrP3DgADp16hSC1hKRK379iTFu3Dj86U9/QmNjo9rtISLSjcJCaZuM/v2BBx+U7nNypHJHH3/8MaKiomSBzsyZMyGEYKBDpDG/1tnZtm0bioqK8Nlnn6Fbt2647LLLZI8XuvpNQEQURgoLpe0xHAf6Kyqk8oICaTHF2tpatG7dGvYZAfHx8aisrOTWOUQ64Vewk5SUhCFDhqjdFiIiXTCbpW0xXGU0CiHtB5afD2zfPhWzZ78se/yzzz7DHXfcEZqGEpEiAe96bgRMUCYieyUl0pCVe3sBdJOV5OXloaCggJt2EoVQ0Hc9B4ATJ07g4MGDAIBOnTpx2jkRGUJlpbtHGgH0BrBdVnrkyBFkZ2cHuVVE5C+/EpTr6urw0EMPoX379ujXrx/69euH9u3bY+TIkaitrVW7jUREIdW2ravSFQCawz7QeeaZNyCEYKBDpHN+BTuPP/44tmzZgnXr1qGmpgY1NTVYt24dtm/fjjFjxqjdRiKikOrTB8jMlHJzgJMATABG2NXIQWbmRbz22jhN2kdEvvErZ+eyyy7Dv/71L9x6662y8s2bN2PgwIE4f/68ag0MBebsEJGjwkJgyJCxABY5PFIKk+km22wsItJOUHN2UlJSkJiY6FSemJiI1q1b+3NIIlX5shAckaMtW7ZgyJCbHErHAFiErCxg/nwGOkThxK9gZ+rUqZg0aRL+/ve/IyMjAwBQVVWFyZMnY9q0aao2kMhXhYXStOHjx5vKMjOB11/nBYo8q6+vR+fOnVFeXi4rLyysxsWLaQycicKUX8NY3bt3xw8//ID6+npbYt7Ro0cRGxuLjh07yuru3LlTnZYGEYexjMPdQnDW2cAcelCfUXrRFi5ciKeeekpWtnz5cjz44IMatYiIvAnqMNa9997rb7uIVON4kb35ZmULwQ0eHJ4XYz0yQi/asWPHnGZT3XDDDfjqq6/QrFlAq3MQkU4EdVHBlStX4le/+pXTdhJ6w56d8OPqIpuaCpw86f25xcXAbbcFrWkRI9x70YQQGDZsGNasWSMr37NnD7p27apRq4jIF0qv335NPVdqzJgxqK6uDuZLUASyXmTtAx1AWaADeFowjpTytp0CIPWimc0hbZZiGzduRFRUlCzQmTJlCoQQDHSIDCiofbTciYLUYh2yqqgAJk50fZFVyvWCceSLzZudg017QgDHjkn19NSLdu7cOWRkZDgtj1FTU+NyhikRGUNQe3aI1FBYCOTkSHsVjRypvAfHkckEZGVJCbQUGKW9Y3rqRXvppZfQqlUrWaCzdu1aCCEY6BAZHLPvSNfc5YX4yppHMn8+k5PVoLR3TA+9aAcPHkTnzp1lZQMHDsT69eu5aSdRhGDPDumWp7wQb9q0kf8/M1P/CbPhRL6dgjM99KJZLBb069fPKdA5dOgQPvnkEwY6RBGEwQ7plre8EFesF9mKCmnW1YoV0n1ZGQMdNUVHS9PLAeeARw+9aIWFhYiOjsYXX3xhK5s7dy6EELjiiiu0aRQRacavYaxRo0Zh9OjR6Nu3r8d6l19+OZo3b+5Xw4h8zfewv8jGxOgrMdaI8vKk3jJX6+xotZ3C6dOnkZKSIitLS0tDeXk54uLiQt8gItIFv3p2amtrkZubi44dO2LWrFmoqKhwWW/v3r3IysoKqIEUuXzN9+BQVejl5QHl5froRZs0aZJToLNp0yZUV1cz0CGKcH4vKnjy5En8/e9/x3vvvYf9+/cjNzcXo0ePxuDBg8OuN4eLCuqT2SzNwqqocJ+3k5oKzJsHtG8fvtsUaC3ct3vYuXMnevToISt7+OGHsXTp0ojMywn3z5PIF0qv36qsoLxz504sWbIEb7/9NuLj4zFy5Eg89dRTTvtk6RWDHf2yzsYC5AFPuKzSq3fhvN1DQ0MDrrvuOuzfv19WXlFRgXbt2mnUKm2Fw+fJYIzUFLIVlCsrK7FhwwZs2LAB0dHRuPvuu7Fnzx506dIF8+bNC/TwFOGseSHt28vLOWQVOHcrUVdUSOWFhdq0S4klS5YgJiZGFui88847EEJEdKCj98/Tfs2sBx+U7nNy9NE2Mja/enYaGhrwz3/+E0uWLMFnn32GX/ziF/jNb36DBx980BZZffjhh3jsscdw5swZ1RutNvbs6B//GlSXdYjQ3Ww3k0kKKMvK9HWeKysrnYKZLl26YPfu3WE3fK6mcPg8w30vNdKnoO563rZtW1gsFgwfPhxbt27Fdddd51Snf//+SEpK8ufwRE6iozm7Sg3WoLGoKLy2exBCYNSoUfj73/8uK9++fbtTvk4k0vv2Hd72UjOZpL3UBg/WV3BNxuFXsDNv3jwMGzYMLVq0cFsnKSkJZWVlfjeMiNTlKp/DGz1s9/DFF1+gX79+srL8/HwOk9vR+/Ydeg/GyPj8CnYeeughtdtBBsdhKG35u+1GsLZ7UPJ9uHDhAi6//HKcdNgM7dSpU0hOTlb99cKZ3rfv0HswRsbHFZQp6JiUqC1/tt1Qc7sHsxkoKQFWrpTuV6/2/n147bXX0LJlS1mgU1BQACGEz4FOJHz/9L59h96DMYoAgkRtba0AIGpra7VuiuGsWSOEySSEdKltuplM0m3NGq1baHzFxc7n39NNzc9mzRohMjOVv+aCBYcEANmtb9++wmw2+/36kfL9s75Xx/erh/fa2Ch9D1x9FtY2ZmVJ9Yh8ofT6rco6O+GOs7GCw9sMEYCLAqrJOlRTUQGcPCmd2/btpf+PHKn8OFlZyrd7cPeaffoAH33ky9CZADAIwCey0gMHDqBTp07KG+/QNr3PUFKbq7wsXz7PYOKaWRQMIV1UMNwx2AmOkhJpyEApvS1+5oneckA8JR+npkqBiFKrVgHDhrl+zP59f/898NZbrl+zfXvg4kXg1Cklr/gxgHtkJTNnzsTUqVOVN9oFpd+/4mJjJcXq7btpT8/BGIWnoE49J1LC12RD6+Jnev8LT2+r1HpLPvYl0DGZgGefld6H4wXSl9lcbrbLc1ALoDWkXh2reLz7biUefTRecZvdidSkWD0v05CXJ00v12swRsbFBGUKGl+TDa0X6/x86a9TPdLbKrX+JB97Yj8F2F5hITBkiG/T1j2bCiAJ8kDnMwBn0aFD4IEOwKRYvbIGY8OHS/cMdCgUdBXszJkzByaTCfn5+bayixcvYty4cUhJSUF8fDyGDBmC6upq2fOOHj2KQYMGoWXLlkhLS8PkyZPR2NgY4taTI28zRFxxd7HVA28LowGhD9S8rV/iL/veDrMZeOIJtY68F4AJwMt2ZUMBWGAy3aHqjCG9z1AiotDRTbCzbds2vPnmm/jFL34hK584cSLWrl2L1atXY9OmTfjxxx+RZzdWYDabMWjQIFy6dAlfffUV3nvvPSxduhTTp08P9VsgB9HR0tAO4FvAA+hzaMGXhdHU4Dhl21UQFazzZN/bUVKiNPfGk0YANwDo5lB+BMBq2+7k8+er95e+p++f9f9qvh4R6VgIZoZ5dfbsWdGxY0exYcMG0a9fPzFhwgQhhBA1NTWiefPmYvXq1ba63377rQAgSktLhRBCrF+/XkRFRYmqqipbnYULF4qEhARRX1/v8vUuXrwoamtrbbdjx45x6rkXjY3SFOYVK6R7X6aIKp1+bH8rLg7SGwnAihXK2r5iReCv5eqcZWY6Tx/2dVq5klt8vPzznTo10GMud5pODrwhq5OVFbyp0a7OZTBfj4hCR+nUc1307IwbNw6DBg1Cbm6urHzHjh1oaGiQlXfu3BnZ2dkoLS0FAJSWlqJbt25IT0+31RkwYADq6uqwb98+l683e/ZsJCYm2m5ZWVlBeFfGEeiibHl5QHm5NOtl2TJpdpAehhaU9JzYC1UOiKe8oCFDgBdfbGrzzTcrHypMTVX2+ufOSdPGA3cC0pDVCLuyHGRmXsTq1eNQXAysWCF9L8rKgpfcbf/9C8XrEZH+aD4b64MPPsDOnTuxbds2p8eqqqoQExPjtKFoeno6qqqqbHXsAx3r49bHXJkyZQomTZpk+39dXV3EBDy+Tkt1N9PH15lT9jNE4uKk55pMrtfbCMXQgj8zqqw5IBUVrvN2rOu2BBKoKckLeuEFeZuHDwfmzvV+7AcflC72SmZnPfkkcOFC05o5vnsSwJuykj/+sRT9+t2kyewbJTOU9Dxlm4gCo2nPzrFjxzBhwgQsX77c46aiaouNjUVCQoLspjZfew1CwdceGrUSch3PxeDBUpDUvr28XmZmaKad+zujKhQ5IL4mHB8/Drz6KnD//dL5c8XantdfVz4N/eRJaSHC/v2B0aOBeMUTpP4DqTfHPtAZA0Dg7bdvwunT+gwgImFLCaKIFqJhNZc+/PBDAUBER0fbbgCEyWQS0dHRYuPGjQKAOHPmjOx52dnZ4rXXXhNCCDFt2jRx7bXXyh4/fPiwACB27typqB1qbxehNN8ilPxZNl9pPoin/BpP5yKQPCB/WZetd/delCxbH8wcEKV5Qa5u7doJMWOGEMuWCTFvnhDPPKNODo+7Jf7lt4sCyHGRm1PtdCy95cpE0pYSREaj9PqtabBTV1cn9uzZI7v17NlTjBw5UuzZs8eWoFxQUGB7zoEDBwTgnKBcXV1tq/Pmm2+KhIQEcfHiRUXtUDPY0eMvTn8v8IEm5OrxXKgRwAkRvEAt0IRj63n19pn7c9yUFCmgsi9v316Iyy77m4sgZ7nbY+lpDyQ1gl8i0o7S67emOTutWrVC165dZWWXXXYZUlJSbOWjR4/GpEmTkJycjISEBDz99NPo3bs3brrpJgDAnXfeiS5duuChhx7CK6+8gqqqKkydOhXjxo1DbGxsSN+Pt2Efk0ka9hk8OLRd+b5MmbbPawgkIVev50KtVXXVXKXWPlckLc1zXpAS+flAYqK66+8IIU0/37hReu+VlUB09DH8+tfZDjVvAPAVPKUDuvquacXfnw0iCi+aJyh7M2/ePERFRWHIkCGor6/HgAED8Le//c32eHR0NNatW4exY8eid+/euOyyyzBq1Ci8+OKLIW+rXn5xOiZaKlu6HygqkidnBpKQq5dz4UjNGVVqJLS6SpROSWkKCH0NeKzntaTEt+cpdeIE8MADAsOGDcOaNWtkj7VuvQdnznR180w5vayjFKlbShBFGt0FOyUOv6VbtGiBBQsWYMGCBW6fc/nll2P9+vVBbpl3evjF6eriqXTK8UsvNf3bOjPp9df9mzmlh3PhilozqpTO5vIUELmb6Xb6tHSfnKzGYn6e+bpJ6I8/bkRU1B2ysj/84Q94+eWXsXy58t3VPQWTas6K8nYsbilBFCFCNKyma2rl7KiVD+IvTzky/uRoWPM//EnI1fpceGI9T+7Oi90alh6f7y0XyVtytrdckcxMITZulPKCZszw7XPcuFF6vrvnWHNR6uulZGbvxzwrgMuccnNqamps50XpZ56a6j4HRs3kfiXHsn4O3s4Tc3aI9CksEpT1Qq1gR8tfnGonpDq219eEXL1fRDyt6uzp4qo0oXXVKs8B0YwZvgeDSlaitj+v7oI6x6DMeyL6TKcgZ+3atT6fG+tt1Sr3n4laCe2+HEvpeSIi/WGw44NgzMYK9S9OpX9Vt2nje9Djb++L3i8iq1a5DxgCnY7v6TybTEIkJys7juNMt8ZG94GSuwu5t1459+/pgFOQM3DgQGGxWNyeU3dBhvU2ebLr56k5K8qfY3FLCaLwxGDHB6FYZyfYvziVThNftqyph0bpnkeB7PWk14tIsKfjq3VzF2j6cl699co598KZBdDXKdD57rtDis6tq7alpnoeHlQaRG7c6P31/R1C1WLdJyIKTFhMPTeqvDxpSnUol55XmkDZvn3T7KeSEnlScqDHdkWLc6GE0tlif/wjcPvtTW1WM1E1ORk4c0Z6LUfeEqV9Oa/epslbV4YeOhQA1gAY6lBjLtaseRYdOyp6W3595koT1e+/H3jrLc+rbCs9luMsRTWXEyAinQlR8KVravfsaMGfHBm959UEk689NI6JxZ7OWWqqsmNak471MMx36tQpp54cIE20b/9zSNrhy2KK3s6NL4nSWvcwElFgwmrXcwqcP/s2hWKvJ73ytYfGum/WRx95P2d/+5vnncitO7s//7w6e4Qp3YfNXb1JkyYhJSVFVnfatE0oLq7GkSNxIdkd3LokgJLd2wHPe7IpPdZPP3neC42IDCREwZeuGaFnx8qfHBm95tUIEbw8Cm89NN56urydM1+SswN5j0qnaruql5a2w6k35+GHH/aYgBxMa9aok89kPZaSz9bIvZdEkUDp9dskhKuMgchSV1eHxMRE1NbWBmUH9FDzZ1E2NRdyU4vShfsCOf7Q/6an+PJTUFwsnZ+SkqaVim+7TbrZnzNX7c/KknrL1Gy/Y9utPRrW3iHneg0ArgOwX/a8iooKtGvXLvCG+clsBtLTlS+kuGIFMHy4+8cLC4ExY6QeHG+Ki5mvQxSOFF+/QxJ66ZyRenaMIlSbiCpZu8bxlp+vfOG7YPdMeeuxqK93rPeuU2/OZZe9IzZu1L53w9dNUJUsibBsmbJjBTLjkIi0w54dHxitZyfcmc1ATo772VLWmUplZer0Pll7tYqKlM1Oc9cmwLdcG1/Z975VVwMTJ3p/zrx51nqVABx7bboA2A2gOQB1e838sXIl8OCDyupmZSn7/EtKgP79vR+PPTtE4Unp9ZsJyqQKpUmySviyiagarFOO//hH35JkHdsEeE6cDURhoRQA9u8vBQRKAh0A+OEHAeBhOAc62wHsgzXQAZqSsLVK2PUlaVxp4ry3ZGVrsri3vdAocGr+jiDyFYMdCpjjhbh/f+n//l40tdpE1NPsNCXUDsKsrDk3ngJA177AggVRAP5uV5YPafSqh1PtYAds3vTpI+347kl0NLBqlfLep0iecagnav+OIPIVgx0KiLsLcSC9BFruRJ2X53o6uC/UDMLMZinJ2bfB5gsA0gD0cyg/BWCex2cGK2BT4qOPvCcnf/ABMGyYb8d195n6OsWf/BOM3xFEvmLODpiz469g5dZYj1tR4foir3bOjrs2/PWvyoeL7KmZ/6E056TJnwE851BWAGCIT687dSrQuTNw8iSQmioFCsGcoeftuwRIvT7V1f63QY8zDo0u1Pl3FHmUXr+5XQT5zZfcGl8u/vbbF5hM8oBHzaEHTxe/6GhpGrSvUlLUzf9Q3kt0CMBVDmV9ARTDnw5cV4nawUxg9vZdAqReH1+/S/a4HUToBet3BJGvOIxFfgtmbo23oYfBgwNLdlSSQxDIMJlayZje2yAA3AXnQOcAgE1w9SPuTz4SIF20gjXsoFWeFgUXP1fSCwY75Ldg59bk5QHl5dKw0IoV0n1ZmfRYIMmOSnMIfN3CAJB6H15+Wb1kzJMnPT26DtKP8Ke2kscemwkpAOrk9lmBDlwHI4FZyzwtCh5+rqQXzNkBc3b8pWTF29RUKaiIiXH9fF9zKJSuGuypzb7kEPi7yrKr4yppn7K21gJIkpXEx8ejsrISa9fGK16rJhBqr0ujhzwtUh8/Vwo2rrNDQadk9szJk8CVVzr3avgzFdXTzCRr2YQJ0uKA7oaPfF3DR43ZWfbtU9IrYh0C++MfXbV1KhwDnVdf/Qxnz55FfHx8yP5CDuW0f04RD1/8XEkvGOyQX6yBhxKOw0P+TkVVEqgcPw7k5roPoHzJITCbpcBp1y7g4YeBV14BWrdW9nx37fM2rds+CJQnCe8FYALwsl3ZUAAWtG9/hy1AqqiQetP8zctRKpTT/jlFPLzxcyU94Gws8ouS2TNWQkgX3/x84J57PPfOWOsNHuz8154/vQnWAMr6S1XpRfr7710P0cXHS/euZokpHeZy9z5cD9E1AugNacVje0cAZNva6m3atq9t9HSMzMzgrTiclyd99pwibiz8XElrzNkBc3b84cs+RvZGjgSWLfNez1VOiO9rzkjs8wIA7zkEycneh+dSUuR1srKA3/wGeOEF7+2ZN08KpOx/4bvOz1kBYITDs98AMM6ntlqlpnpLePbOZOJf40SkH1xnh1xSa2E1f4cxlAQ6gOveD+vsKHeBijuOa3l4WsNH6XFbtAA2bgROnGg6jwDw1lue2xcdLV+o0Lp2TXKyfaBzAoDjIj85kKaTx9raqkRCAvC3v0lDCBUVUrDpTXw8cO6cc3lWlpRfwUCHCxQShRvm7EQQNfen8Wdati9cBVOB7l1VUSH1Dl24AIwaBSQlyR/PzARmzFDWU1JRIbVn+HApgIqOVtY+x+Rk6zDbRx9ZS56Ec6BTCqAM1kDH2tY//tF7W+vqgEOHpDZmZHh/XwCwZo3Us7ZsmdQLtWxZ07R/Bjrc54koLAkStbW1AoCora3Vuil+aWwUorhYiBUrpPvGRuc6a9YIYTIJIfU5NN1MJum2Zo3vr2s9pqvj+nszmYTIynL9HuxfNzPT92OnprouT04WYsYM6TVXrFB+vGXLlLcvOtrze05KKhWQFsixu41xqjt1atNnrLStKSlS/Y0bldXfuNG374GS759RBOPniIj8p/T6zWBHhHew4+rCmpkp/6Xb2Og5OHAXYCgNovwJPNy1Q+kFw75tGzcK0b59YEGX9XWLi5U/Z948Ze2bN8/TcS4K4HIXgU6118/I17aOH6+s7ooV3s+/p8/f8ftnFP7+HBFR8DDY8UG4BjtK/8pUelEsLpYfW+lFzP7CPmOG/8FPVpb/F0k1epmSk4X47DMhWrdWVv/995W1zX0PzBsugpzlTu/BXRDY2Ci12d/3q+R7oOSce/v+GYU/P0dEFFwMdnwQjsGOL39lKh3usP5FH+hFzBr8TJ2q7HXth2YC4SpAczd05emWkKCsXps2yi7ozhfJIy6CnBvExo0NLt+DpyBwxgz1ghxfeiYisZfD158jIgo+pddvTj1HeE49VzoNu7hYuldat08f37ZT8ESLpeLtZ8mkpUkzpubM8e0YvszKUjIVu2lauYC0EKBjJuseZGV1tZ0HX2b6KNmyQ+n7AJRPK/fl+2eU3awj8T0T6R23izA4X1YC9jZzymSSphX36eP7dgqeqL1UvJKdxKOjpQtNbCzw61/7HugAygMdK29bQERHA489thHSj5t9oPMHmEwCJlNX2Xmwvgf7mV6ejr14ceCz4nxdzTYSd7P25eeIiPSFwU6Y8mU3YV+CDrUvYmotFe/LdN/CQmDIkMB7O5SwBn9//avrgOfcuXOIj4/Hiy/eYVcaBaAGwMuqLJlvPceZmb4/d/x4/6aVR+Ju1tzniSiMhWRQTefCOWfHXUKuq5wJJfkgwUrC9GV6smPd1auV5xA1Nkozs9TKY/Hl5pjAPXPmTKfcnH/8Y23Qpmk3Nvqew+NvMq0/3z+j8DWvioiChzk7PgjHnB2gaS8lQD704in/wls+iBZ5NvYKC6W9s+yH0qx5LK44tsffLSXUYD3vr79+EM8801n22IABA/G7361HVZUpaCvuut5ywn1bA/0c/fn+GQVXUCbSB+bsRABfh4iU/IIORp5NUREwbZp0KypyH7i42w3dUz6MYw6RLzkisbHe6/hCCAuE6OcU6CxYcAj79n2CX/7SpNqKu67yl3zZnBUIfMglknez9iWvioh0ICT9TDoXjsNY9vxd/M/T4m9qdNWvWSOt3us4xJGS4nrNmEAWJ7RO9/Vlob0hQ9RcAbrAachq7ty5QVu52tVnmZ+vrK2uzn8gImkFZSLSFw5j+SBch7GUsvaYOH7S3oYbAumqtyYJezJjBvD88+oMP82YAUyfLrU5IwP46Sfvz9m4EaitdR42881pACkOZWlYurQcI0fGqTaN38rTZ6n0J/mFF6R9tfSOQ0VE5I3S6zeDHRg72PGWxxGstW6U5o5Yd/2ur5dmWfkrORlYtUoaUvjwQ2DYMM/1U1KA6uqmfKA//hF46SVfX3UigPkOZZsA9PV5fSMl67Io+SxNJsBi8XyczEygvFzfgYOr3C3rd8XIw2NE5Bvm7BAAddfNUes17R0/LvUAffttYK95+jSQmysFA1FRwOTJnusvXuy8ro1yOwGYIA90HgZggcnU17bWitrT+JV8lt4CHUA6hpqft9rc5W5Zd4jn7uJE5CsGOwanxeJv/hxr5kx1XtsaPDU0SMM1KQ4jTJmZwOrVUk+QNbm3oAB45BElR28A0AVAD4fyCgDvwfTfcUFr4q/aa9Fo/RkppWTxR0/PnTDB9ZCctczbIo5ERI6aad0ACi4tFn/Tw0Jy8+dL9+3bS0GP9eIYHS1dLCsqfD3iuwBGO5S9A+Ax2/8yM6XXtQ6zWFfc9TaNX+mKu+HwGQU6/ORLTyS3ZCAipRjsGJzaF1xfXtP/pF/1VFRIycv+qwTQzqHsGgC7kJnZHI8/DnTs6DqB1jqNf+hQ5wRif6bxK/ksrdPAQ/l5W7lLnrYOPymZjh6J21AQUfBxGCuMKd0rSsm6OYD/Qw+eXjN8CUh5OPJA5803d2DFir0oLm6O8nJpBtj990uPrVrlfO7UXItGyWf5+uvabGmg1vBTJG5DQUQhEIJp8LoXjuvsrFnjvC1C+/a+rZuTmSltL5CfL0SbNsrX4PGlja7W2dH/bZPTmjn5+fmKz2tysnRe7debUXMtGiVrIIV6SwO1thmJ5G0oiMh3XGfHB+E29dzbGjZr1nhfN+f774G33vI8jRkIfCXcS5ekTTJXrQK2bvX/OKFxAcDlAE7KSj/66BR+9atkp9ruhm2sUlKkWV/+rGTtjZJjhHKdmpUrlS0dsGKFtOqwJ5G8DQUR+Ubx9TskoZfOhVPPTmOj996SlBTPf/m6W9XX1S01VYj6ev/a6qp3Qb+3uU69OUCB214EX1Z89tbjokYvmtbU3kCWm20SkRLs2fFBOPXsFBVJ68l4s3EjcPvtzuW+LPhnlZoKLFrk21/T3no99OMQgKscyvoCKIbJFOW2F8GXFZ+zsqRFGz/6yL+VrMNBMDaQ5QrKROQNFxU0qEWLlNUrKXFd7utmkQBw8qRvi7l5SlbVDwHgLjgHOgcAbEJWlvtAB/BtNtCxY9LnYeT1YwLZQNZdoj032yQitTDYCSNmM/CvfwV2jECm7Hq7GFt3OH/kEX1MO3dvHaSv/qe2kl//eiaKiwVWrOiE4mKpB8JTL4uvs4FKSkK/knWo+TPzrLBQ6hHq3x+q7QhPROSI6+yEAWt3flERcPassue4W3DN3ym71otxSYnr4bHCQuCJJ4BTp/w7vlqse125VgsgyaEsHkAl8vLifXqdYK0lFO7rx+TlAYMHKxt+UmNdHiIiJZizA33n7Lhakdab+Higpsb1BebSJekiffKk82NKjz15ctNu5dY2etvhXHt/ADDboewzAHcAkPbTst9XSsmqv0rykqy5KkuWKMu1ctwU1Kh5K1psUEtExsOcHQNwtyGiN5Mnu/9L+sor/Q90AODcOWn7hfR06XhmM/D44/4fL/j2QNq00z7QGQrAAmugAzhvoKlk08m8POC556RAyRX7XJXbbpMu3o75LPZ1rRuIWq1eDWRkyId4MjKk8nCnxQa1RBS5GOzolL9JvlFRQKdOzgmf/gZO7pw6JfXmzJgh7TiuP40AbgDwC4fyIwBWQwqA3FOSNFxYCMyd636n8eTkpqEYXxN4f/tbaWXmn36S1/3pJ6n8t7/12Hzd47YQRBRKHMaCPoexfJna7E1mJnDhgvb5NKGzAsAIh7IFAJ7y62iOQ0uAsin8mZlAebm8l83VsGRWlnwD0YICYNgw7+1avbpp8b1wo/T77ercExFZKb1+M0FZp9T8i1bfM6PUdAJAukNZDqTp5LF+H9XVZ6FkCv/x4867c3tL4DWbgacUxmRPPQXcd19wVl8ONi02qCWiyMVhLJ3iRoe+ehLOgU4pgDIEEugArj+LQIZhPK0fs3mz8pyqkyd9z2kpKJDej9ZTvQNZl4eIyFcMdnTIbJZuyc7bMZGT/0DKv3nTrmwMpEUDbwroyK6Shq2CtTu3rz16vtT/7W+l4THHYOr4cd8WjVSLmjvCExF5wmEsDbkaTvjoI9+nmkemegCdICUc26sGkKbKKwgB/OY3rh9TexjG+l3Yv9+3Nu7fL+W/eBuKWr0aePVV948LISVjDx4c2t4UX9blISLyFxOUoU2CsqtE1ZSUSEoiDsQCAOMdypYDULDtth/crbmj1u7c/qylpLSNgBRIZWQ4z+xyxZoQrIe8HiIib7jOjo65mwbOQMebo5CGrOwDnRsANCBYgQ4gfU5DhjgP87hbZycqSipXGuiosSSAp3WBNm9WFugAUnDDLRyIyGgY7IRYeGySqTcCwBAAlzuU7wGwFe5GY1u1UrcVTzwhX3PHus6O4zo8ZrNU7i04UPO74GldIF/yer7/3nXwpWSRRSIivWKwE2L+7DpuL/KSljdA+po2XWXj4v6AvDyBVq26ympmZkqLHK5YIQ3HfPihui05dappN3klgYq3jVN9/S7Ee9m+y92qw0qTpKOipKEwo+7MTkSRi8FOiFVUBPb8KVPUaYf+nQNwGYA77cqiANTgwoWXUVgobYqamipdgIuLgUOHgL59m2orHbrxhTXYUWO7A19nXp07p6ye43GtydTeWCyeV8PmFg5EFK40DXZmz56NG264Aa1atUJaWhruvfdeHDx4UFbn4sWLGDduHFJSUhAfH48hQ4agurpaVufo0aMYNGgQWrZsibS0NEyePBmNjY2hfCuKFBZKF2Z/WKdBnzmjapN06iUArQD8bFe2DoAZQKKs5k8/Sb0R69dL+37Z55mMcFxEWUVqbHfw/ffqtMWRdYaWtQfGuqaNu325fMUtHIgo3Gga7GzatAnjxo3Df/7zH2zYsAENDQ248847cf78eVudiRMnYu3atVi9ejU2bdqEH3/8EXl2mZ9msxmDBg3CpUuX8NVXX+G9997D0qVLMX36dC3eklvWRFR/ehvsF1lzt+mkMRyElIA8za5sIKRNOwe5fIYQ0u3VV517WoIx3GJdDTnQdXbMZmDxYlWa5OSll5yTiq1r2qSmBn58LnhJRGFH6MiJEycEALFp0yYhhBA1NTWiefPmYvXq1bY63377rQAgSktLhRBCrF+/XkRFRYmqqipbnYULF4qEhARRX1/v8nUuXrwoamtrbbdjx44JAKK2tjYo76uxUYjMTOtl2fdbVpYQa9ZIx9q40f/j6PdmFkBfASkT2e52KOivbTIpr5uSIn2W1s+0fXvPx83KaqrvqLg4+OfVZJJu1u+OEEIsWxbY8Ty9JyKiUKutrRVKrt+66ieora0FACT/Nwt3x44daGhoQG5urq1O586dkZ2djdLSUgBAaWkpunXrhvT0pq0CBgwYgLq6Ouzbt8/l68yePRuJiYm2W1ZWVrDeEoDAkpKnTgXKypqmMd92m7Qej3GsARAN4Au7srmQ4p0rgv7qn34q5fusWCElN3uyeHHTWjMffQRcvOi6npLtDgIdClKyHJQQ0r19UrHjasVKcQsHIgpnullB2WKxID8/H7fccgu6dpVm2VRVVSEmJgZJSUmyuunp6aiqqrLVsQ90rI9bH3NlypQpmDRpku3/dXV1QQ14Armw3X67fJPIkhKgY0cjrMlzGoBj1JYGoBxAXNBf3brCsf35BYCuXYGnnwZ+/LGpLCUFeOghaSac2SwFOkOHNgUTjpKTpcDI0zo7/g4FmUzS8ZV+/kI0JRXfdpuylZ+Tk4G4OHmAnpkp35mdiCic6CbYGTduHPbu3Ysvv/wy6K8VGxuL2NjANof0RSA5DtZc7MJCaZ2X8A9yAGAigPkOZZsA9HWuGgTeeikc86JOnZLqzp8v9YxcuOA+0AGkQGHwYM9t8BZ0uGu30rqOrAG3NVl56FDn41nPy+LF3MKBiIxFF8NY48ePx7p161BcXIxMuzmyGRkZuHTpEmpqamT1q6urkZGRYavjODvL+n9rHa1ZL2z+zIYZMQKYPFlawTf8A52dkBKQ59uVPQwpATl4gY7jRdrdRpNKVjOuqPA8PRuQnu9teranXb+tHIeqrOsI+fM9sA+4lWzA6WlndiKicKNpsCOEwPjx4/Hhhx/i888/R4cOHWSP9+jRA82bN0dRUZGt7ODBgzh69Ch69+4NAOjduzf27NmDEydO2Ops2LABCQkJ6NKlS2jeiBdKLmzuWFfjDW8NALoA6OFQXgHgPUgBkPpMJum2cmVTXk5xsTwHykrtla2VDF26Czqs6urk6wiVlUlDmL5wt3N7Xh5QXu79vBARGUJo8qVdGzt2rEhMTBQlJSWisrLSdvv5559tdZ588kmRnZ0tPv/8c7F9+3bRu3dv0bt3b9vjjY2NomvXruLOO+8Uu3fvFp9++qlITU0VU6ZMUdwOpdncgVqzJrBZWeF5e1sAjrOs3gnJa6emCrFqlevPorFRmhG1YoV0r/Yst+Ji5d+LxkYhZszwfLwZM5rarLQNrmZjEREZidLrt6bBjvNFULotWbLEVufChQviqaeeEq1btxYtW7YU9913n6isrJQdp7y8XNx1110iLi5OtGnTRjz77LOioaFBcTtCFewI0XTBys/XOggJ9q3CxWd7jQAuhbQdmZnOF3tXQWdysnqvGR0thJtVD9x+J5QEwe3bS8FbZqayKfP2SxYQERmR0uu3SQghQt2bpDdKt4hXi9ksLfgW6E7X+iQg5eEscyjfAeD6kLfGOmxozUWx5uUE+1tfXNy0AKE3JSXSIoBKmEzSjurWoU1X7yM/X0owZlIxERmd0uu3LhKUI02gm4Hq1yZIXyn7QGcipAAo9IEO0BQM5OcDly6Fbsd5X5Yb8HW/tA8+AFatcs71ycoC1qwB5s1jUjERkT3dTD2PJIFuBqo/FwBkA3DcC+MUgOBs0968OdDQoKyuENJaM2+8EbogU+lyA77ul2Z9L23aSAnGnB5OROQdg50QMpuBl182wuwqe38G8JxDWQGAIUF9VaWBjr0XXlC/HY6sixU6zn5yJZAhtcrKpunhRETkGYOdEDHWooAAcAjAVQ5lfQEUQ6+jo+fOBff4vmypEOhUd27GSUSkHIOdECgslBYFNAYB4G4AnzqUHwDQKfTN0ZE2baRFIK3bSngKePzN2/Kl54iIiCT6/BPcQKx/wRvDOkhfGftAZyakACgyA50ZM6Scm9RU4ORJqVenf39ptl1hofvn+bNfGjfjJCLyD3t2gswYM69qASQ5lMUDqPzvfeTJzGxaFdtV3k1FhVTualsKwL9hKG7GSUTkHwY7QRbIjuf68AcAsx3KPgNwhwZt0Y933pF2TM/JcZ13I4TUE2Nd88axJ0bJ7uPt2wNLlwInTnC2FRFRIBjsBFn4JpLuAfALh7KhAFYhWHtZhZPNm4GYGM+9dtZp4ps3O8+aUrL7+OuvSwEVEREFhjk7Qdanj/uNHvWpEUBPOAc6RwCsBgOdJkp77dzVU7L7OBERBY49O0H20UfAxYtat0Kp5QBGOpQtAPCUBm3RN19WKPbUu5eXJw1zcXFAIqLgYbATRKHahylwJwCkO5TlQJpOHhvy1uhdSkrTsJS3vBsl08S5OCARUXBxGCtIAl00LnTGwDnQKQVQBgY6ri1eLAUo1rwboCnPxorTxImI9IPBTpDof8r5fyDl3yy2KxsDac2cmzRpkd5lZkobbdrn0jDvhohI/ziMFST6nXJeD2kBwCMO5dUA0kLfHJ175BEgN1cKZtzl0jDvhohI3xjsBIk+p5wvADDeoWw5gAc1aIu+ZWX5toAf826IiPSLwU6QWBeN08dQ1lEAlzuU3QDgK0TaV8BxTRtHycnAqlW+zbYiIiJ9Y85OkERHA48/rnUrBIAhcA509gDYinAMdNq3l2ZDOSYEezN+PFBcLAUyJpPrhGKTCXjrLWkhPwY6RETGwWAniDp21PLVN0D6eO13o/wDpACoqyYtCtSMGcCRI9JsKMC3gGfIEKm3xrpflbeEYrMZKCkBVq6U7s1mFd4AERFpIvz+tA8jBw9q8arnIE0l/9muLArAaQCJWjRIFTNmANOnS/+2zoCaMMH7MKGrtW68JRQXFjof27rxJ2dXERGFH/bsBElBgXSBDq2ZAFpBHuisA2BGOAc6gHMvWV4eUF4uDU3l57t+jqe1bqwJxcOHy/NzrAtBOgZR1l3MCwtBRERhhsFOEKxeDfz616F8xQOQ1syZbld2NwALgEGhbEjQuJrdZg1Y5s2T1r/JzJQ/7utaN54WgrSW5edzSIuIKNxwGEtlhYXA/feH6tUsAPoB+NKh/BCAK0LViKBSuuWCGmvdeFsI0tMu5kREpF8MdlRkNgPPPBOqV1sDYKhD2VwAz4aqAUHn65YLga51E+gu5kREpE8MdlS0ebOU2xFcpwGkOJSlASgHEBfsFw/YuHFA797SbKiffgImTnTfm5KZ6dvCfoFSuhCkPheMJCIidxjsqCj4f/FPBDDfoWwTgL7BfmFVZGVJM5rse2nuu69p6Cntv7tVnDgR3C0XzGbXw13WhSAD3cWciIj0hcGOioL3F/9OAD0cyh4GsBRSYrL+mUyeZ0WFirdp5a+/Ls26clxpmbuYExGFL87GUtHNN6t9xAYAXeAc6FQAeA/hEuikpupjB3Al08q5izkRkfGYhPC0U1BkqKurQ2JiImpra5GQkOD3cUpKgP791WrVOwB+46LsMbVeIGSWLQNGjNC2DWYzkJPjPj/IOkRVVib13Lgb6iIiIv1Qev3mMJaK1MnZ+RGAQ7cCrgGwC0BzNV4g5Bx7SbTg67Ry7mJORGQcHMZSUWB9ZALAQ3AOdHYA2ItwDXT0ktDLaeVERJGLwY6K/B+q2QTpo1hmVzYRUgB0fYCtCtwNNwB//jPw/vtAmza+Pffxx/Ux/MNp5UREkYvDWJr6GcDlAH5yKD8FIDn0zXHjlVeahnQuu0xK5lXai6Xtzu9NOK2ciChysWdHM3MBXAZ5oFMAqTdHP4FOaqrzjuEFBVK5EnrpKYmOlqaVA03TyK04rZyIyNgY7ITcIUhTxifblfWFtDP5EE1a5MmCBc4BQF6elOzraUjLZJIWEdRTTwmnlRMRRSYOY4WMgLQT+acO5QcAdAp9cxSYPBkYNsz1YzExwJtvSkNaQPgswKfGhqFERBRe2LMTEusgnWr7QGcmpABIf4FOaiqwerWUq+NJuPaUWKeVDx/eNM2ciIiMiz07QVULIMmhLB5A5X/v9SM1VZpNNniwbz0d7CkhIiK9Y7ATNJfgHOh8BuCO0DfFi/XrgTvv9D9A4QJ8RESkZxzGCpoYAK3++++hACzQY6DTowdw113siSEiIuNiz05QVUJaMydb64a4NXeu1i0gIiIKLgY7QXXZf2/6pLep4URERMHAYCcC6XlqOBERkdqYsxMBUlLk/9f71HAiIiI1sWfHwNq3B/7yF04NJyKiyMZgx2BMJmDQIODZZ+VBDaeGExFRpGKwYwB9+khDVbfeCjz9tLSVAxEREUkY7IS51aub9qciIiIiZ0xQDlNZWcCaNQx0iIiIvGHPThh45hngV7+S/n3iBJOMiYiIfMFgR8dSUoDFizlFnIiIKBAMdnQiKQkYNgxo06ZpY83bbmPvDRERUaAY7OjA4MHAP/6hdSuIiIiMiQnKKvrb33yrn5sL/PwzAx0iIqJgMgkhhNaN0FpdXR0SExNRW1uLhISEgI5l3XfKW52GBg5RERERBULp9Zs9OyrzFjrGxAAWCwMdIiKiUGGwEwRCOA9pRUUBx48D9fXatImIiChSMdgJkrFjpaDHejObpY05iYiIKLQY7BAREZGhMdghIiIiQ2OwQ0RERIbGYIeIiIgMjcEOERERGZphgp0FCxYgJycHLVq0QK9evbB161atm0REREQ6YIhg5//+7/8wadIkvPDCC9i5cyeuvfZaDBgwACdOnNC6aURERKQxQ2wX0atXL9xwww144403AAAWiwVZWVl4+umn8fvf/96pfn19PertVverq6tDVlaWKttFEBERUWhEzHYRly5dwo4dO5Cbm2sri4qKQm5uLkpLS10+Z/bs2UhMTLTdsrKyQtVcIiIiCrFmWjcgUD/99BPMZjPS09Nl5enp6Thw4IDL50yZMgWTJk2y/b+2thbZ2dmoq6sLaluJiIhIPdbrtrdBqrAPdvwRGxuL2NhY2/+tJ4s9PEREROHn7NmzSExMdPt42Ac7bdq0QXR0NKqrq2Xl1dXVyMjIUHSMdu3a4dixY2jVqhVMJpNqbbPmAh07doy5QCrieVUfz2lw8Lyqj+c0OML1vAohcPbsWbRr185jvbAPdmJiYtCjRw8UFRXh3nvvBSAlKBcVFWH8+PGKjhEVFYXMzMygtTEhISGsvjzhgudVfTynwcHzqj6e0+AIx/PqqUfHKuyDHQCYNGkSRo0ahZ49e+LGG2/E/Pnzcf78eTz66KNaN42IiIg0Zohg59e//jVOnjyJ6dOno6qqCtdddx0+/fRTp6RlIiIiijyGCHYAYPz48YqHrUIlNjYWL7zwgiwZmgLH86o+ntPg4HlVH89pcBj9vBpiUUEiIiIid8J+UUEiIiIiTxjsEBERkaEx2CEiIiJDY7BDREREhsZgJ4gWLFiAnJwctGjRAr169cLWrVu1bpIuzJ49GzfccANatWqFtLQ03HvvvTh48KCszsWLFzFu3DikpKQgPj4eQ4YMcVol++jRoxg0aBBatmyJtLQ0TJ48GY2NjbI6JSUluP766xEbG4urrroKS5cuDfbb04U5c+bAZDIhPz/fVsZz6p+KigqMHDkSKSkpiIuLQ7du3bB9+3bb40IITJ8+HW3btkVcXBxyc3Px/fffy45x+vRpjBgxAgkJCUhKSsLo0aNx7tw5WZ1vvvkGffr0QYsWLZCVlYVXXnklJO9PC2azGdOmTUOHDh0QFxeHK6+8EjNnzpTtb8Tz6tkXX3yB//3f/0W7du1gMpnwj3/8Q/Z4KM/f6tWr0blzZ7Ro0QLdunXD+vXrVX+/ARMUFB988IGIiYkR7777rti3b594/PHHRVJSkqiurta6aZobMGCAWLJkidi7d6/YvXu3uPvuu0V2drY4d+6crc6TTz4psrKyRFFRkdi+fbu46aabxM0332x7vLGxUXTt2lXk5uaKXbt2ifXr14s2bdqIKVOm2OocPnxYtGzZUkyaNEns379f/PWvfxXR0dHi008/Den7DbWtW7eKnJwc8Ytf/EJMmDDBVs5z6rvTp0+Lyy+/XDzyyCNiy5Yt4vDhw+Jf//qX+OGHH2x15syZIxITE8U//vEP8fXXX4tf/epXokOHDuLChQu2OgMHDhTXXnut+M9//iM2b94srrrqKjF8+HDb47W1tSI9PV2MGDFC7N27V6xcuVLExcWJN998M6TvN1RefvllkZKSItatWyfKysrE6tWrRXx8vHj99ddtdXhePVu/fr14/vnnRWFhoQAgPvzwQ9njoTp///73v0V0dLR45ZVXxP79+8XUqVNF8+bNxZ49e4J+DnzBYCdIbrzxRjFu3Djb/81ms2jXrp2YPXu2hq3SpxMnTggAYtOmTUIIIWpqakTz5s3F6tWrbXW+/fZbAUCUlpYKIaQf9KioKFFVVWWrs3DhQpGQkCDq6+uFEEL89re/Fddcc43stX7961+LAQMGBPstaebs2bOiY8eOYsOGDaJfv362YIfn1D+/+93vxK233ur2cYvFIjIyMsSrr75qK6upqRGxsbFi5cqVQggh9u/fLwCIbdu22ep88sknwmQyiYqKCiGEEH/7299E69atbefZ+tqdOnVS+y3pwqBBg8Rjjz0mK8vLyxMjRowQQvC8+sox2Anl+bv//vvFoEGDZO3p1auXGDNmjKrvMVAcxgqCS5cuYceOHcjNzbWVRUVFITc3F6WlpRq2TJ9qa2sBAMnJyQCAHTt2oKGhQXb+OnfujOzsbNv5Ky0tRbdu3WSrZA8YMAB1dXXYt2+frY79Max1jPwZjBs3DoMGDXJ63zyn/vnnP/+Jnj17YtiwYUhLS0P37t3x1ltv2R4vKytDVVWV7JwkJiaiV69esvOalJSEnj172urk5uYiKioKW7ZssdXp27cvYmJibHUGDBiAgwcP4syZM8F+myF38803o6ioCN999x0A4Ouvv8aXX36Ju+66CwDPa6BCef7C5XcCg50g+Omnn2A2m522q0hPT0dVVZVGrdIni8WC/Px83HLLLejatSsAoKqqCjExMUhKSpLVtT9/VVVVLs+v9TFPderq6nDhwoVgvB1NffDBB9i5cydmz57t9BjPqX8OHz6MhQsXomPHjvjXv/6FsWPH4plnnsF7770HoOm8ePpZr6qqQlpamuzxZs2aITk52adzbyS///3v8cADD6Bz585o3rw5unfvjvz8fIwYMQIAz2ugQnn+3NXR2/k1zHYRFJ7GjRuHvXv34ssvv9S6KWHt2LFjmDBhAjZs2IAWLVpo3RzDsFgs6NmzJ2bNmgUA6N69O/bu3YtFixZh1KhRGrcufK1atQrLly/HihUrcM0112D37t3Iz89Hu3bteF4pKNizEwRt2rRBdHS000yX6upqZGRkaNQq/Rk/fjzWrVuH4uJiZGZm2sozMjJw6dIl1NTUyOrbn7+MjAyX59f6mKc6CQkJiIuLU/vtaGrHjh04ceIErr/+ejRr1gzNmjXDpk2b8Je//AXNmjVDeno6z6kf2rZtiy5dusjKrr76ahw9ehRA03nx9LOekZGBEydOyB5vbGzE6dOnfTr3RjJ58mRb7063bt3w0EMPYeLEibZeSZ7XwITy/Lmro7fzy2AnCGJiYtCjRw8UFRXZyiwWC4qKitC7d28NW6YPQgiMHz8eH374IT7//HN06NBB9niPHj3QvHlz2fk7ePAgjh49ajt/vXv3xp49e2Q/rBs2bEBCQoLt4tS7d2/ZMax1jPgZ3H777dizZw92795tu/Xs2RMjRoyw/Zvn1He33HKL07II3333HS6//HIAQIcOHZCRkSE7J3V1ddiyZYvsvNbU1GDHjh22Op9//jksFgt69eplq/PFF1+goaHBVmfDhg3o1KkTWrduHbT3p5Wff/4ZUVHyy090dDQsFgsAntdAhfL8hc3vBK0zpI3qgw8+ELGxsWLp0qVi//794oknnhBJSUmymS6RauzYsSIxMVGUlJSIyspK2+3nn3+21XnyySdFdna2+Pzzz8X27dtF7969Re/evW2PW6dJ33nnnWL37t3i008/FampqS6nSU+ePFl8++23YsGCBYaeJu3IfjaWEDyn/ti6dato1qyZePnll8X3338vli9fLlq2bCmWLVtmqzNnzhyRlJQkPvroI/HNN9+IwYMHu5zi2717d7Flyxbx5Zdfio4dO8qm+NbU1Ij09HTx0EMPib1794oPPvhAtGzZ0hBTpF0ZNWqUaN++vW3qeWFhoWjTpo347W9/a6vD8+rZ2bNnxa5du8SuXbsEAPHaa6+JXbt2iSNHjgghQnf+/v3vf4tmzZqJuXPnim+//Va88MILnHoeaf7617+K7OxsERMTI2688Ubxn//8R+sm6QIAl7clS5bY6ly4cEE89dRTonXr1qJly5bivvvuE5WVlbLjlJeXi7vuukvExcWJNm3aiGeffVY0NDTI6hQXF4vrrrtOxMTEiCuuuEL2GkbnGOzwnPpn7dq1omvXriI2NlZ07txZLF68WPa4xWIR06ZNE+np6SI2Nlbcfvvt4uDBg7I6p06dEsOHDxfx8fEiISFBPProo+Ls2bOyOl9//bW49dZbRWxsrGjfvr2YM2dO0N+bVurq6sSECRNEdna2aNGihbjiiivE888/L5vizPPqWXFxscvfo6NGjRJChPb8rVq1SvzP//yPiImJEddcc434+OOPg/a+/WUSwm7JSiIiIiKDYc4OERERGRqDHSIiIjI0BjtERERkaAx2iIiIyNAY7BAREZGhMdghIiIiQ2OwQ0RERIbGYIeIiIgMjcEOERERGRqDHSLSFbPZjJtvvhl5eXmy8traWmRlZeH555/3+PySkhKYTCanHd4DUV5eDpPJhN27d6t2TCIKHQY7RKQr0dHRWLp0KT799FMsX77cVv70008jOTkZL7zwgoatI6JwxGCHiHTnf/7nfzBnzhw8/fTTqKysxEcffYQPPvgA77//PmJiYtw+r7y8HP379wcAtG7dGiaTCY888ggAwGKxYPbs2ejQoQPi4uJw7bXXoqCgwPbcM2fOYMSIEUhNTUVcXBw6duyIJUuWAAA6dOgAAOjevTtMJhNuu+224LxxIgqKZlo3gIjIlaeffhoffvghHnroIezZswfTp0/Htdde6/E5WVlZWLNmDYYMGYKDBw8iISEBcXFxAIDZs2dj2bJlWLRoETp27IgvvvgCI0eORGpqKvr164dp06Zh//79+OSTT9CmTRv88MMPuHDhAgBg69atuPHGG7Fx40Zcc801HgMuItIf7npORLp14MABXH311ejWrRt27tyJZs28/31WUlKC/v3748yZM0hKSgIA1NfXIzk5GRs3bkTv3r1tdX/zm9/g559/xooVK/CrX/0Kbdq0wbvvvut0zPLycnTo0AG7du3Cddddp9bbI6IQYc8OEenWu+++i5YtW6KsrAzHjx9HTk6OX8f54Ycf8PPPP+OOO+6QlV+6dAndu3cHAIwdOxZDhgzBzp07ceedd+Lee+/FzTffHOhbICIdYM4OEenSV199hXnz5mHdunW48cYbMXr0aPjbEX3u3DkAwMcff4zdu3fbbvv377fl7dx11104cuQIJk6ciB9//BG33347nnvuOdXeDxFph8EOEenOzz//jEceeQRjx45F//798c4772Dr1q1YtGiR1+da82nMZrOtrEuXLoiNjcXRo0dx1VVXyW5ZWVm2eqmpqRg1ahSWLVuG+fPnY/HixW6PSUThg8NYRKQ7U6ZMgRACc+bMAQDk5ORg7ty5eO6553DXXXd5HM66/PLLYTKZsG7dOtx9992Ii4tDq1at8Nxzz2HixImwWCy49dZbUVtbi3//+99ISEjAqFGjMH36dPTo0QPXXHMN6uvrsW7dOlx99dUAgLS0NMTFxeHTTz9FZmYmWrRogcTExFCcCiJSgyAi0pGSkhIRHR0tNm/e7PTYnXfeKX75y18Ki8Xi8RgvvviiyMjIECaTSYwaNUoIIYTFYhHz588XnTp1Es2bNxepqaliwIABYtOmTUIIIWbOnCmuvvpqERcXJ5KTk8XgwYPF4cOHbcd86623RFZWloiKihL9+vVT7f0SUfBxNhYREREZGnN2iIiIyNAY7BBRWHnyyScRHx/v8vbkk09q3Twi0iEOYxFRWDlx4gTq6upcPpaQkIC0tLQQt4iI9I7BDhERERkah7GIiIjI0BjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMrT/B0wJtjRaqLK4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -4370,8 +4386,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "MAE: 19.841335062456068\n", - "RMSE: 33.01564591768491\n" + "MAE: 20.72540497281495\n", + "RMSE: 35.59781358312404\n" ] } ], @@ -4446,7 +4462,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.8783710407239819\n" + "0.8747511312217194\n" ] } ], @@ -4467,7 +4483,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 87.84%\n" + "Accuracy: 87.48%\n" ] } ], @@ -4488,18 +4504,18 @@ "output_type": "stream", "text": [ "Confusion Matrix:\n", - " [[3674 190]\n", - " [ 482 1179]]\n", + " [[3634 207]\n", + " [ 485 1199]]\n", "\n", "Classification Report:\n", " precision recall f1-score support\n", "\n", - " 0 0.88 0.95 0.92 3864\n", - " 1 0.86 0.71 0.78 1661\n", + " 0 0.88 0.95 0.91 3841\n", + " 1 0.85 0.71 0.78 1684\n", "\n", - " accuracy 0.88 5525\n", - " macro avg 0.87 0.83 0.85 5525\n", - "weighted avg 0.88 0.88 0.87 5525\n", + " accuracy 0.87 5525\n", + " macro avg 0.87 0.83 0.84 5525\n", + "weighted avg 0.87 0.87 0.87 5525\n", "\n" ] } @@ -4527,7 +4543,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.8776470588235294\n" + "0.875475113122172\n" ] } ], @@ -4549,7 +4565,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 87.76%\n" + "Accuracy: 87.55%\n" ] } ], @@ -4569,16 +4585,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[3653 211]\n", - " [ 465 1196]]\n", + "[[3621 220]\n", + " [ 468 1216]]\n", " precision recall f1-score support\n", "\n", - " 0 0.89 0.95 0.92 3864\n", - " 1 0.85 0.72 0.78 1661\n", + " 0 0.89 0.94 0.91 3841\n", + " 1 0.85 0.72 0.78 1684\n", "\n", " accuracy 0.88 5525\n", " macro avg 0.87 0.83 0.85 5525\n", - "weighted avg 0.88 0.88 0.87 5525\n", + "weighted avg 0.87 0.88 0.87 5525\n", "\n" ] } @@ -4628,15 +4644,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[3446 418]\n", - " [ 457 1204]]\n", + "[[3454 387]\n", + " [ 481 1203]]\n", " precision recall f1-score support\n", "\n", - " 0 0.88 0.89 0.89 3864\n", - " 1 0.74 0.72 0.73 1661\n", + " 0 0.88 0.90 0.89 3841\n", + " 1 0.76 0.71 0.73 1684\n", "\n", " accuracy 0.84 5525\n", - " macro avg 0.81 0.81 0.81 5525\n", + " macro avg 0.82 0.81 0.81 5525\n", "weighted avg 0.84 0.84 0.84 5525\n", "\n" ] @@ -4657,7 +4673,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.8416289592760181\n" + "0.84289592760181\n" ] } ], @@ -4675,7 +4691,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 84.16%\n" + "Accuracy: 84.29%\n" ] } ], @@ -4700,6 +4716,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Create a new DataFrame 'steps_vs_active_mins' with selected columns from 'daily_activity'\n", "steps_vs_active_mins = daily_activity[['TotalSteps', 'TotalActiveMinutes']].copy()" ] }, @@ -5020,7 +5037,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.5896958198161879\n" + "0.5919799262433367\n" ] } ], @@ -5046,7 +5063,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABonElEQVR4nO3de3wU1f0//tcmkBCEBHIHEgQFVC6CN2ioqEhKRGzRoCCg4gWVCmpAUflKRaotilSxlqL2AvqzAUGCfIqK5ZIgQpSLoCBKBYNESACBJMglIZv374/pLtnd2d0zu7PXvJ6Pxz4gO2dnzs4uzDtn3ud9LCIiICIiIiKPYkLdASIiIqJIwKCJiIiISAGDJiIiIiIFDJqIiIiIFDBoIiIiIlLAoImIiIhIAYMmIiIiIgXNQt2BaNHQ0ICDBw+idevWsFgsoe4OERERKRARnDhxAu3bt0dMjOexJAZNJjl48CCys7ND3Q0iIiLyQXl5ObKysjy2YdBkktatWwPQTnpiYmKIe0NEREQqampqkJ2dbb+Oe8KgySS2W3KJiYkMmoiIiCKMSmoNE8GJiIiIFDBoIiIiIlLAoImIiIhIAYMmIiIiIgUMmoiIiIgUMGgiIiIiUsCgiYiIiEgBgyYiIiIiBQyaiIiIiBSwIjgREYU9qxVYvx6oqADatQMGDABiY0PdK2pqGDQREVFYKyoCHn0U+PHHc89lZQGvvgrk54euX9T08PYcERGFraIi4NZbHQMmADhwQHu+qCg0/aKmiUETERGFJatVG2EScd1me66gQGtHFAwMmoiIKCytX+86wtSYCFBerrUjCgYGTUREFJYqKsxtR+QvBk1ERBSW2rUztx2Rvxg0ERFRWBowQJslZ7Hob7dYgOxsrR1RMDBoIiKisBQbq5UVAFwDJ9vPc+awXhMFD4MmIiIKW/n5wHvvAR06OD6flaU9zzpNFEwsbklERGEtPx8YNowVwSn0GDQREVHYi40Frrsu1L2gpo6354iIiIgUMGgiIiIiUsCgiYiIiEgBgyYiIiIiBQyaiIiIiBQwaCIiIiJSwKCJiIiISAGDJiIiIiIFDJqIiIiIFDBoIiIiIlLAoImIiIhIAYMmIiIiIgUMmoiIiIgUMGgiIiIiUsCgiYiIiEgBgyYiIiIiBQyaiIiIiBQwaCIiIiJSwKCJiIiISAGDJiIiIiIFDJqIiIiIFDBoIiIiIlLAoImIiIhIQUiDppkzZ+Kqq65C69atkZ6ejptvvhm7d+92aHPdddfBYrE4PMaPH+/QZv/+/Rg6dChatmyJ9PR0TJkyBfX19Q5tSkpKcPnllyM+Ph5dunTBggULXPozd+5cdOrUCS1atEC/fv2wadMm098zERERRaaQBk3r1q3DhAkT8Nlnn2HVqlU4e/YsBg8ejJMnTzq0u//++1FRUWF/zJo1y77NarVi6NChqKurw8aNG/HWW29hwYIFeOaZZ+xtysrKMHToUAwcOBDbt29HQUEBxo0bh48//tje5t1338XkyZMxffp0fPHFF+jduzfy8vJw+PDhwJ8IIiIiCnsWEZFQd8LmyJEjSE9Px7p163DNNdcA0Eaa+vTpgzlz5ui+5qOPPsJNN92EgwcPIiMjAwDw+uuv48knn8SRI0cQFxeHJ598Eh988AF27txpf93tt9+OqqoqrFy5EgDQr18/XHXVVfjLX/4CAGhoaEB2djYefvhhPPXUUy7Hra2tRW1trf3nmpoaZGdno7q6GomJiaacDyIiIgqsmpoaJCUlKV2/wyqnqbq6GgCQnJzs8Py//vUvpKamomfPnpg6dSpOnTpl31ZaWopevXrZAyYAyMvLQ01NDb7++mt7m9zcXId95uXlobS0FABQV1eHrVu3OrSJiYlBbm6uvY2zmTNnIikpyf7Izs72450TERFRuGsW6g7YNDQ0oKCgAL/85S/Rs2dP+/OjR4/G+eefj/bt2+Orr77Ck08+id27d6OoqAgAUFlZ6RAwAbD/XFlZ6bFNTU0NTp8+jePHj8Nqteq2+fbbb3X7O3XqVEyePNn+s22kiYiIiKJT2ARNEyZMwM6dO/Hpp586PP/AAw/Y/96rVy+0a9cOgwYNwt69e3HhhRcGu5t28fHxiI+PD9nxiYiIKLjC4vbcxIkTsWLFChQXFyMrK8tj2379+gEA9uzZAwDIzMzEoUOHHNrYfs7MzPTYJjExEQkJCUhNTUVsbKxuG9s+iIiIqGkLadAkIpg4cSKWLVuGtWvXonPnzl5fs337dgBAu3btAAA5OTnYsWOHwyy3VatWITExEd27d7e3WbNmjcN+Vq1ahZycHABAXFwcrrjiCoc2DQ0NWLNmjb0NERERNW0hvT03YcIEFBYWYvny5WjdurU9BykpKQkJCQnYu3cvCgsLceONNyIlJQVfffUVJk2ahGuuuQaXXnopAGDw4MHo3r077rzzTsyaNQuVlZWYNm0aJkyYYL99Nn78ePzlL3/BE088gXvvvRdr167F4sWL8cEHH9j7MnnyZIwdOxZXXnkl+vbtizlz5uDkyZO45557gn9iiIiIKPxICAHQfcyfP19ERPbv3y/XXHONJCcnS3x8vHTp0kWmTJki1dXVDvvZt2+fDBkyRBISEiQ1NVUee+wxOXv2rEOb4uJi6dOnj8TFxckFF1xgP0Zjr732mnTs2FHi4uKkb9++8tlnnym/l+rqagHg0jciIiIKX0au32FVpymSGanzQEREROEhYus0EREREYUrBk1EREREChg0ERERESlg0ERERESkgEETERERkQIGTUREREQKGDQRERERKWDQRERERKSAQRMRERGRAgZNRERERAoYNBEREREpYNBEREREpIBBExEREZECBk1ERERECpqFugNEREQUGFYrsH49UFEBtGsHDBgAxMaGuleRi0ETERFRFCoqAh59FPjxx3PPZWUBr74K5OeHrl+RjLfniIiIokxREXDrrY4BEwAcOKA9X1QUmn5FOgZNREREUcRq1UaYRFy32Z4rKNDakTEMmoiIiKLI+vWuI0yNiQDl5Vo7MoZBExERURSpqDC3HZ3DoImIiCiKtGtnbjs6h0ETERFRFBkwQJslZ7Hob7dYgOxsrR0Zw6CJiIgoisTGamUFANfAyfbznDms1+QLBk1ERERRJj8feO89oEMHx+ezsrTnWafJNyxuSUREFIXy84Fhw1gR3EwMmoiIiKJUbCxw3XWh7kX04O05IiIiIgUcaSIiorDBBWYpnDFoIiKisMAFZinc8fYcERGFHBeYpUjAoImIiEKKC8xSpGDQREREIcUFZilSMGgiIqKQ4gKzFCkYNBERUUhxgVmKFAyaiIgopLjALEUKBk1ERBRSXGCWIgWDJiIiCjkuMEuRgMUtiYgoLHCBWQp3DJqIiChscIFZCme8PUdERESkgCNNRERRjovgEpmDQRMRURTjIrhE5uHtOSKiKMVFcInMxaCJiCgKcRFcIvMxaCIiikJcBJfIfAyaiIiiEBfBJTIfgyYioijERXCJzMegiYgoCnERXCLzMWgiIopCXASXyHwhDZpmzpyJq666Cq1bt0Z6ejpuvvlm7N6926HNmTNnMGHCBKSkpKBVq1YYPnw4Dh065NBm//79GDp0KFq2bIn09HRMmTIF9fX1Dm1KSkpw+eWXIz4+Hl26dMGCBQtc+jN37lx06tQJLVq0QL9+/bBp0ybT3zMRUbBwEVwic4U0aFq3bh0mTJiAzz77DKtWrcLZs2cxePBgnDx50t5m0qRJ+Pe//40lS5Zg3bp1OHjwIPIb/Uu3Wq0YOnQo6urqsHHjRrz11ltYsGABnnnmGXubsrIyDB06FAMHDsT27dtRUFCAcePG4eOPP7a3effddzF58mRMnz4dX3zxBXr37o28vDwcPnw4OCeDiCgA8vOBffuA4mKgsFD7s6yMARORTySMHD58WADIunXrRESkqqpKmjdvLkuWLLG3+eabbwSAlJaWiojIhx9+KDExMVJZWWlvM2/ePElMTJTa2loREXniiSekR48eDscaOXKk5OXl2X/u27evTJgwwf6z1WqV9u3by8yZM5X6Xl1dLQCkurra4LsmIiKiUDFy/Q6rnKbq6moAQHJyMgBg69atOHv2LHJzc+1tLr74YnTs2BGlpaUAgNLSUvTq1QsZGRn2Nnl5eaipqcHXX39tb9N4H7Y2tn3U1dVh69atDm1iYmKQm5trb+OstrYWNTU1Dg8iIiKKXmETNDU0NKCgoAC//OUv0bNnTwBAZWUl4uLi0KZNG4e2GRkZqKystLdpHDDZttu2eWpTU1OD06dP46effoLVatVtY9uHs5kzZyIpKcn+yM7O9u2NExERUUQIm6BpwoQJ2LlzJxYtWhTqriiZOnUqqqur7Y/y8vJQd4mIiIgCqFmoOwAAEydOxIoVK/DJJ58gKyvL/nxmZibq6upQVVXlMNp06NAhZGZm2ts4z3Kzza5r3MZ5xt2hQ4eQmJiIhIQExMbGIjY2VreNbR/O4uPjER8f79sbJiKKcFartgRLRYVWIHPAAJYvoOgX0pEmEcHEiROxbNkyrF27Fp07d3bYfsUVV6B58+ZYs2aN/bndu3dj//79yMnJAQDk5ORgx44dDrPcVq1ahcTERHTv3t3epvE+bG1s+4iLi8MVV1zh0KahoQFr1qyxtyEiIk1REdCpEzBwIDB6tPZnp07a80RRLfB56e799re/laSkJCkpKZGKigr749SpU/Y248ePl44dO8ratWtly5YtkpOTIzk5Ofbt9fX10rNnTxk8eLBs375dVq5cKWlpaTJ16lR7m++//15atmwpU6ZMkW+++Ubmzp0rsbGxsnLlSnubRYsWSXx8vCxYsEB27dolDzzwgLRp08ZhVp4nnD1HRE3B0qUiFouItuTvuYfFoj2WLg11D4mMMXL9DmnQBED3MX/+fHub06dPy0MPPSRt27aVli1byi233CIVFRUO+9m3b58MGTJEEhISJDU1VR577DE5e/asQ5vi4mLp06ePxMXFyQUXXOBwDJvXXntNOnbsKHFxcdK3b1/57LPPlN8LgyYiinb19SJZWa4BU+PAKTtba0cUKYxcvy0iIqEa5YomNTU1SEpKQnV1NRITE0PdHSIi05WUaLfivCkuBq67LtC9ITKHket32MyeIyKi8FZRYW47okjDoImIiJS0a2duO6JIw6CJiIiUDBigLfZrsehvt1i07VYrsHChdjvPag1qF4kCikETEREpiY0FXn1V+7tz4GSxaOngp08DubksRUDRiUETEREpy88H3nsP6NDB8fn/LRmKo0cdnz9wALj1VgZOFB0YNBERkSH5+cC+fdosucJCYPVqICFBv61tfnZBAW/VUeRj0ERERIbFxmplBUaN0v7+44/u24oA5eXasitEkYxBExER+YWlCKipYNBERER+YSkCaiqahboDREQUeFardnusokILXgYM0G6rmcFWiuDAgXM5TI3ZShEMGGDO8YhChSNNRERRrqhIm/o/cGBgSgF4K0UAAHPmmBekEYUKgyYioihWVKRN+XdO1Da7FIC7UgRZWdrz+fnmHIcolLhgr0m4YC8RhRurVRtRcjezzXbbrKzMvFGgQN4GJAoEI9dv5jQREUWp9evVSwFcd505x7SVIiCKRrw9R0QUpVgKgMhcDJqIiKIUSwEQmYtBExFRlLKVAnCe0WZjsQDZ2SwFQKSKQRMRUZRiKQAiczFoIiKKYiwFQGQezp4jIopy+fnAsGEsBUDkLwZNRERNAEsBEPmPt+eIiIiIFDBoIiIiIlLAoImIiIhIAYMmIiIiIgUMmoiIiIgUMGgiIiIiUsCgiYiIiEgBgyYiIiIiBQyaiIiIiBQwaCIiIiJSwKCJiIiISAGDJiIiIiIFDJqIiIiIFDBoIiIiIlLAoImIiIhIAYMmIiIiIgUMmoiIiIgUMGgiIiKisPbll19i0qRJ+Pbbb0Paj2YhPToRERGRG3/+85/x6KOP2n/+7rvvsGLFipD1h0ETERERhY2amhrcdttt+M9//uOy7cknnwxBj85h0ERERNREWK3A+vVARQXQrh0wYAAQGxvqXmk2b96Mvn376m6bN28exo8fH+QeuWLQREQUJsL5ghZMPA+BUVQEPPoo8OOP557LygJefRXIzw9Nn0QEs2bNwlNPPeWyrWXLlti0aRN69OgRgp7pYyI4EVEYKCoCOnUCBg4ERo/W/uzUSXu+KeF5CIyiIuDWWx0DJgA4cEB7Ptjn9/jx4xgwYABiYmJcAqYRI0bg1KlTOHnyZFgFTABgEREJdSeiQU1NDZKSklBdXY3ExMRQd4eIIojtgub8v7HFov353nuhGwkIJp6HwLBatcDTOWCysVi0EaeyssCP6H366acYMGCA7ra33noLd911V2A7oMPI9ZsjTUREIWS1ardM9H59tT1XUKC1i2ahOg9WK1BSAixcqP0Zjed5/Xr3AROgnd/ycq1dIIgIpk+fDovF4hIwpaam4r///S9EJCQBk1HMaSIiCiEjF7Trrgtat4IuWOehcb7Ud98Bf/tbeOX4BEJFhbntVB05cgQ33HADvvjiC5dtd999N9544w3ExcWZe9AAUw6a8g18g4p485mISEmoLmiB5EsidzDOg14itDNbjo+7W4GRmKTerp257RrTOx/Fxavxq1/9Srf94sWLcdtttynvK9zOrXLQlJSUZP+7iGDZsmVISkrClVdeCQDYunUrqqqqDAVXRERNXSAvaKHg6wytQJ8Hd/lSzkS0HJ+CAmDYMMeLdjjOPlMxYIDWzwMH9N+/LafJTaqRW47nowHAkwBmu7Tr2LEj1q1bh06dOinuSxOW51Z88MQTT8i4ceOkvr7e/lx9fb088MAD8vjjj/uyy4hXXV0tAKS6ujrUXSGiCFJfL5KVJWKxiGiXNMeHxSKSna21C3dLl+q/D4tFeyxd6v61gTwPtn3r7dfTo7jYnPcWDmz9d34Pvvb/3Pk4KMAlAsDl8dBDD8nZs2cN7Cs059bI9dunoCk1NVW+/fZbl+e//fZbSU5OVt7PunXr5KabbpJ27doJAFm2bJnD9rFjx7p8CHl5eQ5tjh49KqNHj5bWrVtLUlKS3HvvvXLixAmHNl9++aVcffXVEh8fL1lZWfLiiy+69GXx4sVy0UUXSXx8vPTs2VM++OAD5fchwqCJiHxn9gUtFLwFJipBj1nnob5eC3gKC7U/V682HjAB2uvNem/hYOlS1/eRnW38+1VfL5KSskI3UNIe/6d8PsLh3Bq5fvs0e66+vl530bxvv/0WDQ0Nyvs5efIkevfujblz57ptc8MNN6CiosL+WLhwocP2MWPG4Ouvv8aqVauwYsUKfPLJJ3jggQfs22tqajB48GCcf/752Lp1K1566SU8++yzePPNN+1tNm7ciFGjRuG+++7Dtm3bcPPNN+Pmm2/Gzp07ld8LEZGv8vO1HJoOHRyfz8qKnGn2ZszQMuM86NV5GjFC6S24sN0KDPXsM7Pk5wP79gHFxUBhofZnWZn696u+vh4PP/wwmjWz4OjRm5y2XgzgR2hx06+Vz0fEnVtforJJkyZJSkqK/OlPf5L169fL+vXrZfbs2ZKamiqTJk3yZZduR5qGDRvm9jW7du0SALJ582b7cx999JFYLBY5cOCAiIj89a9/lbZt20ptba29zZNPPikXXXSR/ecRI0bI0KFDHfbdr18/efDBB90e+8yZM1JdXW1/lJeXc6SJiPziPEIS7iMXjRUWGhu98cTX8+DuNo/Rh/PohpnvLRL98MMP0qlTJzejSo8LUO/z+QiHc2tkpMmnkgOzZ89GZmYm/vSnP6Hif1MZ2rVrhylTpuCxxx4zI5azKykpQXp6Otq2bYvrr78ezz//PFJSUgAApaWlaNOmjT0ZHQByc3MRExODzz//HLfccgtKS0txzTXXOExrzMvLw4svvojjx4+jbdu2KC0txeTJkx2Om5eXh/fff99tv2bOnIkZM2aY+l6JqGmLjY3csgJmJnL7ch481XkywlZIc86cc0ng0Zasr2rp0qW49dZb3Wz9DwD9GXI2Kucj0s6tT7fnYmJi8MQTT+DAgQOoqqpCVVUVDhw4gCeeeAKxJs4PvOGGG/D2229jzZo1ePHFF7Fu3ToMGTIE1v9VH6usrER6errDa5o1a4bk5GRUVlba22RkZDi0sf3srY1tu56pU6eiurra/igvL/fvzRIRRTDbDC1b0OHMYgGys43P0FLl7TaPKr1bgaF+b8FUV1eH++67DxaLxSVguuyyy3Do0CHU1wuysn5lyvmItHPrc3HL+vp6lJSUYO/evRg9ejQA4ODBg0hMTESrVq1M6dztt99u/3uvXr1w6aWX4sILL0RJSQkGDRpkyjF8FR8fj/j4+JD2gYgoXMTGatPDb71Vu9A1HvHRG70xm6/1m7KygPvvB7p2dV8bKNTvLRj27t2L/v374/Dhwy7bpk2bhhkzZiAm5tw4i1nnI9LOrU8jTT/88AN69eqFYcOGYcKECThy5AgA4MUXX8Tjjz9uagcbu+CCC5Camoo9e/YAADIzM10+4Pr6ehw7dgyZmZn2NocOHXJoY/vZWxvbdiIi8i6UCe2+3L6ZMUNLjH7mGWDUKO2WoLuLczQk6+t55513YLFY0KVLF5fr6bp16yAieO655xwCJsDc86Gyr7BZ7saXpKlhw4bJHXfcIbW1tdKqVSvZu3eviIgUFxdLly5dfNmlbiK4s/LycrFYLLJ8+XIROZcIvmXLFnubjz/+WDcRvK6uzt5m6tSpLongN910k8OxcnJyPCaCO2PJASIiTSgS2r3VeTJrKnskJ+vbnD59Wm6//XbdxO7+/fvL0aNHlfdl5vlwty+9UglZWeaV4gh4nabk5GR7nabGQVNZWZkkJCQo7+fEiROybds22bZtmwCQl19+WbZt2yY//PCDnDhxQh5//HEpLS2VsrIyWb16tVx++eXStWtXOXPmjH0fN9xwg1x22WXy+eefy6effipdu3aVUaNG2bdXVVVJRkaG3HnnnbJz505ZtGiRtGzZUt544w17mw0bNkizZs1k9uzZ8s0338j06dOlefPmsmPHDuX3wqCJiCi03NV58vRoXMAy2u3atUtatWqlGyz98Y9/lIaGhlB30UUwCl8GPGhq06aNfP311yLiGDStX79e0tPTlfdTXFys++GNHTtWTp06JYMHD5a0tDRp3ry5nH/++XL//fdLZWWlwz6OHj0qo0aNklatWkliYqLcc889HotbdujQQV544QWXvixevFi6desmcXFx0qNHDxa3JCKKQHqjEk2xTEBjf/vb39yUC4B89tlnoe6eW8EqfGnk+m0RMT5Bc+TIkUhKSsKbb76J1q1b46uvvkJaWhqGDRuGjh07Yv78+b7dK4xgNTU1SEpKQnV1NRITE0PdHSKiJstqBV57DZg0yXvb4uLILfPgyalTpzBmzBjd0jm5ubl47733HNaUDUclJVpxUm/8/QyNXL99SgSfPXs2NmzYgO7du+PMmTMYPXo0OnXqhAMHDuDFF1/0qdNERERmiI0FHn44sqaym+XLL79E8+bNcd5557kETHPmzEFDQwNWrVoV9gEToD4j0teZk77wqeRAdnY2vvzyS7z77rv48ssv8fPPP+O+++7DmDFjkJCQYHYfiYiIDIm0qez+eu211/DII4+4PB8TE4MtW7bgsssuC0Gv/BOOhS8N3547e/YsLr74YqxYsQKXXHJJoPoVcXh7jogo/BQVaZXCGxe+zM7WAqZILRNgU1NTg9tuuw3/+c9/XLb95je/QWFhIc4777wQ9MwcVqu2juCBA/qV3i0WbTSxrMy/4NfI9dvwSFPz5s1x5swZnztHREQULPn5wLBhWsXwigr3BSwjyebNm9G3b1/dbfPmzcP48eOD3KPACMfRQp9ymiZMmIAXX3wR9fX1ZveHiIjIVLa17LwVsAxnIoIXX3wRFovFJWBq2bIldu7cCRGJmoDJJtyKivo0e+6WW27BmjVr0KpVK/Tq1ctl+K+oqMi0DkYK3p4janqs1ugawaDwc/z4cfzmN7/Bp59+6rJtxIgRWLBgQZPIJQ7kv7WA3p4DgDZt2mD48OE+dY6IKBro5cpkZWm3EyI9V4bcC1ag/Omnn2KAm6l9b731Fu666y7zDxrGbKOFoebTSBO54kgTUdNRVKTlWTj/72nLs4jktcjIvUAHyiKCGTNmYMaMGS7bUlNTsXHjRnTt2tX/A5EDI9dvv4Kmw4cPY/fu3QCAiy66COnp6b7uKuIxaCJqGmwzehpfOBsza0YPhZdABspHjhzBkCFDsHXrVpdtd999N9544w3ExcX5tnPyKuDFLWtqanDnnXeiQ4cOuPbaa3HttdeiQ4cOuOOOO1BdXe1Tp4mIIsH69e4DJkC7qJaXa+38FTYruzdxVqs2wqQ3xGB7rqDA+OezZs0aWCwWpKenuwRM7777LkQE8+fPZ8AURnwKmu6//358/vnnWLFiBaqqqlBVVYUVK1Zgy5YtePDBB83uIxFR2AhWleKiIm1Ea+BAYPRo7c9OnbTnSZ0ZgaeZgXJDQwOeeOIJWCwW5ObmOmzr2LEjysrKICIYMWKE8Y5SwPmUCL5ixQp8/PHHuPrqq+3P5eXl4W9/+xtuuOEG0zpHRBRuglGl2N2toAMHtOeDkTMVDTMDzcpBMiNQrqiowKBBg/DNN9+4bHvooYfw6quvolkzny7JFEQ+jTSlpKTorluTlJSEtm3b+t0pIqJwNWBAYNc0C9StICMCNcrladTH7FuRtsDTeYTIFngaeS/+BMoffPABLBYL2rdv7xIwLV++HCKCuXPnMmCKFOKDN954Q3Jzc6WiosL+XEVFhQwePFhef/11X3YZ8aqrqwWAVFdXh7orRBRgS5eKWCzaQwtltIftuaVLfd93cbHjPt09iovNejeObO/N+Xje3lt9vcjq1SLTpmmP1au15xrvNyvLcZ9ZWdrznrb5or7edX/O7yU727F/KvvTOy96+zt79qxMnDhRALg8unXrJj/++KNvb4wCwsj126fZc5dddhn27NmD2tpadOzYEQCwf/9+xMfHu0yH/OKLL/wM6yIDZ88RhYdg3VYK1JpmCxdqozveFBZqFa7N5OvMwKIi4IEHgKNHHdunpABvvqn93d3MM3dXIG+z0jx9ziUl2uiYN8XF6rV/bCNXgP5yHu+9B1x55X5ce+212Ldvn8vrJ0+ejFmzZiE20u5xNgEBL2558803+/IyIqKACmbByUCtaRbKld2NJDzbgo2iIsBdreOjR7VtKSmebze6O5bFot2KHDbMNUjz9Dn7m4OkF5DZlvPQO+7IkUsxfPituvv6+OOPMXjwYLUOUfgL5JBXYWGh/Pzzz4E8RNjg7Tmi0PL1tlK4MXoryEyFhWq3BgsLz/W1Qwe11/jzaHwrUuVz9ucWp7dbhfX12uvefrtWhgy5V/cWXJ8+faSystL8D4gCwsj126dEcFUPPvggDh06FMhDEBEFJHk6VDWSbCu7A67J5oFe2d3oKNf69VpidaDZRoRUP+f+/X1L1ldJHt+3by9uvz0Td90Vj48++qdDu2nTpsFqtWLbtm3IyMgw/kYp7AU0aBKu0EJ+YnE/UmF2wclQ10gK1cruRmcG+luLSlXjIE3lc9640Xjg6S0gE/kXhg+3oEuXLi6DAevWrYOI4LnnnkNMjG+XVf5fFxkCGjQR+SPUFy6KHGYWnDRzqroe1Ytjfj6wb5+WrFxYqP1ZVhbY+kxGR7kCkVflfExfgrSKCuOBp35AdgbAaAAWAHc4bOnfvz+OHj0KEcE111yj1jE3+H9dBAnkfcJWrVrJ3r17A3mIsMGcJnNFS34KBYdZ0/TNnqruzOyp9YGi18/sbNd+mpnTpFK+wZfP2ZaDVFio/enus3PM59olQGvdfKWRI/8oDQ0Npp5r/l8XWkau3wyaTMKgyTyBvnBR9DEredrIRVn1YmwTaRdH1fe3dKn/AVNBgXqQFqgkee2z/7tuoKQ9PlMKvI3g/3XhIWwSwYl8EcwFUSk6mJU8rXr7Z/lyY7dTwqHKt1GxsVpZgVGjtD/dnbv8fGDpUq2sgDPVknXDhqndigxEkvypU6dwyy23YOBAC4BxTlsHAagCILBY+vlV6V0P/6+LPD4FTWPHjsUnn3zitd3555+P5s2b+3IIasKCtSAqRRczkqdVc3TmzDGW81RSEt0Xx/x84NAhYPVqYNo07bF6NXDkiHpiuZEgzejnrJdH9tVXX6F58+Y477zz8P777zu94hUADQBWA0gK2KxF/l8XeXwqblldXY3c3Fycf/75uOeeezB27Fh0cP4GA9i5c6ffHaSmJ5TF/Siy+Vtw0jZ77MAB/VEhiwWIidEfERLRL8ZYVATcf7/a8SP54hgbCwwapD0ae/VVLZh0rv7tTyBi5HN2LYT5GoBHXNpZLBZs3boVZWWX6Raw9LfSux7+XxeBfL0HePjwYfnTn/4kl156qTRr1kxuuOEGWbJkidTV1fm6y4jGnCbzhLK4H5GndeVUc3RseS/u8phUEpj1GM2jCheqieWBOK52/msEGKybq/TrX/9aTpw44fC6YJ1n/l8XHoKeCL5161aZOHGitGjRQlJTU6WgoED++9//mrHriMGgyVyBXBCVyBt3F/mCArXgp7DQe5Kv0YtjpMy8cyfYAV99vUh6+iYPid3zwiIg4f91oRfURPCKigqsWrUKq1atQmxsLG688Ubs2LED3bt3xyuvvOLv7qmJClVxPyLAfY2kYcPUXt+unfckX2eeblMFunZUMKjmLPlLRDBr1iw0a2bB4cN9nba2BLATWtw0PizyyPh/XWSxiOjduffs7Nmz+L//+z/Mnz8f//nPf3DppZdi3LhxGD16tH2F4GXLluHee+/F8ePHTe90ODKySjKpC9aK9UQqrFZtlpynnKesLC3AWrxYm1nnTUoK8Oab7i+OtmO6C8AaH9PffxvO/97699eqa/vz7y9Y/4aPHz+OYcOGYb1uFDQCwAIACS5bCgu1QC7U+H9d6Bi5fvuUCN6uXTs0NDRg1KhR2LRpE/r06ePSZuDAgWjTpo0vuyeys/12ShQObFPeVRKbVZN3333XNXm6MdVp6c8+q+3H14uta8K0tp/GSe9ZWdr7Vx390Nun0X14s2HDBlx99dVutr4F4C6Prw+XJGv+XxchfLn/9/bbb8vp06d9eWnUYk4TUdOhktismtO0ZInnYzlWqvb+8CXPSTVh3UieTSCLeTY0NMizzz6rm6uUmpoq//3vf5lkTcqMXL99uj1Hrnh7jqhpUbmdsmQJMGKE5/1kZ3u+tVZSohXPVGUbAbOVPvA28uTt9p/e/r3dDgzULcUjR47gxhtvxJYtW1y23X333XjjjTcQFxdnf86WCwbojwoyZ4gAY9dvVgQnIvKBSmJzWpr3/XhLRrbVjnJXINKZLTiYM0dt4VejCesqhTjNrnS9du1aWCwWpKenuwRM7777LkQE8+fPdwiYACZZk/kYNBFRVNOrBh0sZlR89rR0iApvM+x8Lajp6XXLl/u/j4aGBjz55JOwWCwY5JT01bFjR5SVlUFEMMLLUJ67mZAMmMgXDJqIKGoVFRlbI85sZlV8djdiosLb2na+JkK7e53VCvzrX77vo6KiAj169EBsbCxmzZrlsO2hhx7C2bNn8cMPP6BTp07KfQ1WuQOKfsxpMglzmojCiy2fxfl/uGDmsxgpUaByIbflUa1ZAzz/vPH+FBe7ztDy1kejfVbNwUpL00aabPv48MMPMXToUN22y5cvx29+8xvvOyXyAXOaiEhJMG5dheL2mNWqTXXXCwK8jbyYydOtNb2117ydK9uIybPPGstzstG7HWbk9p9Knw8cUOvLmDGASD0eeeQRWCwWl4CpW7du+PHHHyEiDJgofARyGl9TwpIDFGmCsSxHII6hshxHcbE5a72ZRaVEgdFz5W75DV/fr97xY2ON9zk1VaUvP0i7dp11SwZMnjxZ6lkHgIIo6GvPEYMmiiyBrKETyGOoBhaqtY0KC31/f0bXUvPU3tdzpXc+/KlJ5NzH2lrjffb8WKobKAGQjz/+2HPniAKEdZpCgDlNFCmCsSxHII5hJEdJNa9GL8dHtS/Ola6Tk7Xnnn76XCVtlWUx/D1XtuMsX67dNtN7PaCWw2VWnxsfW+QMgI4Ajrhs79OnD1auXImMjAzPOyIKIEPX74CHcE0ER5ooUgTj1pXZx/BWXdt5JCWQ1aC9jbCkpIhMmaJ+q83Mc6VyG9DIa/3r8xa3o0rTpk0Tq9XqvVMRwOiII4UfI9dvJoITNTFm1A4K9jGMFks0moDtSeNE5zVrgEcecR3tauzoUeCll1z7665ekpnnyteaRLZRPHP6PBWABcCVLlvmz38LIoLnnnsOMTGRf/kJdUkLCj6fFuwlosjlb+0glVs4ZtUnslENLA4c0AIcW98WLwYmTXJdMHbOHLVyA3q34XwlogVstuVNbOfM7HNldOHXujpg/Hj9QFC9zycBpACo1T1GeXk5srKy1DsVZvS+88uX698utgWarDgenZjTZBLmNFGk8Kd2kOqq9WbXJ1LNUUpNBX76ybFvL798riaQc5DnKQB0l0Nlhsa5VGafKyOKioAHH3Q8Z+7o9fnHHz8FMEC3fYsWN+DEiQ/RrJnF/hqVfKlwo/ed79ABOHNGG1XUE8jPjMzHnKYQYE4TRRJ309U9zdYyOsPLl2O44y1HyVOuk6f34y6Hx1sOlb8P51l7Zp4rVUZnvzXu84QJE9zmKwFLXPocjPIWgeDbDEFjeWgUeiw5EAIMmijSGEkaNpqI7csxVPrrLrDwFjg5981bADhjRuACJncXUzPPlTe+BIX//neVh0AJAlTq9tlb4LFkifnvzwxmBM7+lLSg4GHJgRDg7TmKRKq3TPyZwm/mbRm9WyVpacAR19nsbvumMsW/bVvg2DHf+uiJavkAlSn//pxT1c9TswrAYN0tt956GxYufBeffmpxe/vTW2mC2Fgtyf6229T7H4xbfcbOkT5fS1pQcBm5fjMRnKgJU00a9meGl+oxVC6E+flaQnLjdgcOAHfcod43lZl4gQqYAM+z9lTOlWpemSdqn+ddAP4/N9s+AHAjPvsM+L//c39cb+ca0D73ESOApUt9T843+v5V+DN71BYcD9BP96IIFvlzPoko4Mye4eXMyNRt5xXrO3Qw1jfVi2Fysvu12GwXxenTtXYqsrL8n1FltDSAO+4/p5+glQuwQD9gOgrtbtyNSsc1EniorAVo1vtX4et32WhJC4owAb9Z6MG6devkpptuknbt2gkAWbZsmcP2hoYG+d3vfieZmZnSokULGTRokPz3v/91aHP06FEZPXq0tG7dWpKSkuTee++VEydOOLT58ssv5eqrr5b4+HjJysqSF1980aUvixcvlosuukji4+OlZ8+e8sEHHxh6L8xpomgWimKRqknQRvumWkxyxgy15Oz6eu85UDNmqJ+b+nqR1atFpk3THqtXa8/5mlemds6Wu81Vuvfe+3w+ruq59pTr5dxnM96/CpXvVUpK8PLQKHAiJhH8ww8/lKefflqKiop0g6YXXnhBkpKS5P3335cvv/xSfvOb30jnzp3l9OnT9jY33HCD9O7dWz777DNZv369dOnSRUaNGmXfXl1dLRkZGTJmzBjZuXOnLFy4UBISEuSNN96wt9mwYYPExsbKrFmzZNeuXTJt2jRp3ry57NixQ/m9MGiiaLd0qecLni8XCrMuhEZmnxkJslSSs828mC9dql2InfeRkqKenP7KK2rVqd97r0GAYW6DpWefXSsi/lUsr69XXcBXe3hKnA7FIsyektht3ytWBI98ERM0NeYcNDU0NEhmZqa89NJL9ueqqqokPj5eFi5cKCIiu3btEgCyefNme5uPPvpILBaLHDhwQERE/vrXv0rbtm2ltrbW3ubJJ5+Uiy66yP7ziBEjZOjQoQ796devnzz44IPK/WfQRNEuEEFTqJYQMRpkeboo+htUFBeLvPOOyN13qwcXqg+9af0HDx50GygBkA4dahxe4+/ixwUF6v319DkHYxFmPVOmiMTGOh4jNlZ7nqJDVCyjUlZWhsrKSuTm5tqfS0pKQr9+/VBaWgoAKC0tRZs2bXDllefK9efm5iImJgaff/65vc0111yDuLg4e5u8vDzs3r0bx48ft7dpfBxbG9tx9NTW1qKmpsbhQRStrFYt+dYdW9VobzkpzkK1hEh+vpZf5JwPpZd35JxD5Zyn4ut7aJzHdccdwIIFavsxonGuz6JFi2CxWNC+fXuXdrfeOgmFhYLiYsEPP7R2eP/p6WrHctdu2DC116eleU6cDnRenZ6iImD2bNfvdUOD9jyXS2l6wnb2XGVlJQC4rH6dkZFh31ZZWYl0p3+pzZo1Q3JyskObzp07u+zDtq1t27aorKz0eBw9M2fOxIwZM3x4Z0SRx8jab0amWIdyCRG9mXi+TF335T0Estp4YyINAAZh+PAS3e2lpaX4xS9+EdA+DBigBaPeZtHNnev53Nv2461yulkz1my/KOgdS0R/eZmmJlKrvPsjbEeawt3UqVNRXV1tf5SXl4e6S0QBE6hFfm0XQk+z1LKzAzd129sokgpv7wEAUlK0C4zt4e5irMrTsTT7oc2AiwVQ4rAlKSkJJ0+ehIh4DZhsixWrOHxY//Xr12sBoidTpniv02TmIswqjC4S3dQ01cWKwzZoyszMBAAcOnTI4flDhw7Zt2VmZuKw07/U+vp6HDt2zKGN3j4aH8NdG9t2PfHx8UhMTHR4EEWrQN0aCfaFMBA8vQebo0eB3FztovKHP/i3APCMGZ7KLPwDWrB0vsuWW275HUQEVVVVaNmypdfj2C6Kzz+v1i/nz77xRXXOHO05588xLQ1YsgSYNUvtGEZuq/orUL8oRDqrFfj974Hhw4NT+iHsBDzDShHcJILPnj3b/lx1dbVuIviWLVvsbT7++GPdRPC6ujp7m6lTp7okgt90000O/cnJyWEiONH/BLLkgEhwlxAJFL33oHee/E3stpUfsCWn/+lP9QJc7iG5e5vXJGu996LaVyPL1NgeBQX+zTQLxoy1UMzWC3eq33EzSz8EQ8TMnjtx4oRs27ZNtm3bJgDk5Zdflm3btskPP/wgIlrJgTZt2sjy5cvlq6++kmHDhumWHLjsssvk888/l08//VS6du3qUHKgqqpKMjIy5M4775SdO3fKokWLpGXLli4lB5o1ayazZ8+Wb775RqZPn86SA9Sk6V2UAr2obLhP3VbpX22tyOzZIuedZ+4sONuj8Tn+73//6yFQyhbgjE8XMSNrrnkq6RDoi2qgvy+B/kUh0hhdvDiSgsmICZqKi4t1/8GPHTtWRM4Vt8zIyJD4+HgZNGiQ7N6922EfR48elVGjRkmrVq0kMTFR7rnnHo/FLTt06CAvvPCCS18WL14s3bp1k7i4OOnRoweLW1KT5WlF+mgYEfKFp3PiqY1Zj5SUc8d69dVXPQRLs3Qv7kY+HyMFKfU+e9XXT5vme7Cj8nmYIdC/KEQKXxYvjqTFiiMmaIomDJooGqhU5w73ESGjvL0flXNi9Ldw1cett2oVwU+frpMuXbq4DZYWLNglN90kEhPj+Hpf6gmp1kOaNk3/s1d9va/Bjr8V5I1qqr8oNGa0sjsQvSNNFhGRwGVMNR1GVkkmCkfeVqS3TekuKwvvxGwj3C3+ev/9QNeuWu2hu+/2fE5sScn+JHc7y87Wkqe7dduJXr166bbp0aMHpk/fjsmTm3nsH2AsSbqkREve9qa4+Fx5h8ZTzw8dAiZNUjuW0T6G6jvaFKfWN7ZwoTZDTkUk/j9h6Pod8BCuieBIE0W6ppb4GqjRIV8fSUkib7+tnd/nnvuD21Glv/71r4b672tOk2ouj95IjHMFbbP62NS+o+HCyEhTJN62NHL9DtvilkQUXE1pirUZtZLMVl19Bo880hFVVUd0t+/duxcXXHABAGP9FzFWeNRWQuHWW7VRg8bHcC4D4a5Ip9HK8Kp9bErf0XDirbCoTVaW9t0xs/RDuAnbOk1EFFyhWKYiWGxFGhcu1P4sKTH3dpp/tkKrrZTgEjD1798fVqsVImIPmADvhRf1GAkkVOohqQRuRm/PeOtjNH9Hw5lKLbIZM7RljKI5YALCeBkVIgquYC9TESx6eUvJyebsu3FOk7ffwl39PwAzdbcsWLAAY8eOdftKX0ZSjAYS3paZUQncrFbglVeADRu0YMvfPkbrdzQS2AJp539Ltvy7aA+WbBg0EREAY7dlIoW720fHjvm/b9s5sf0GrnfeXJ0EkArgjO7WffvKcf75WV6PbSQA8ieQ8LSWn2rgduQIsHat93YqfYzG72gkMWu9xkjG23Nhzvm2gtFcASIjgrlMRaAFOm+p8Tlxd97S0mx/2wDtFlwruAZMeQAasHSpKAVMgNp6d0BgAwnVwO2Pf1QLUu+/X62P0fQdjURmrNcYyVhywCSBKDngbjp0tCfaUehFwxRr1anzKmy34RYs0BamdXdOnM/bH//4MFat+oubvS4BoK1kW1AAzJ5t7JzbRtEA94FhIG+d2Kb/G78tqa+wULsQGzl+pH9HKTwYuX7z9lyYcndbwbYgIn+jokDydFsmUqjePkpO9jwS0vg23KBBnvcVGwtcemk1Bg5s46FVJYAMh2fatnWtP+TtFyR3OSZpacCYMdptlEAGEp5ulfnCl8WeI/07SpGHI00mMXOkqSkWGSQym+pI0+rV2r+jigrgu++AN94ADh48t91T8NJ4tOPgwdV4/PFfuTnKbQDehXaL7hyLRQvajh51fYVq0cdgjbi4O47eiLgR/P+MQo0jTRHO26wUo3VXKPrw1oR3qjOtGudlFBUBMU6ZnqdOATt3aiM3jc/xuWBhLIC33fTiAwA36m6xBUWnTum/UkRrU1DgeuzGgjHi4i1VoHFy8K5dwPPPq+03VMnb/PdDPgtsnc2mw8yK4KprN0XSgojkP9saaQUFIqmpjt+FQCxWGg2MLLjqrcJ240VzFyz4yW3Fbu1x1OX1zlWyU1JEWrQIfYVrM9bea8zfBX8DLViL/VLk4IK9IWBm0MSlAsiZ3n/0KhcwUltwVX0V9//zECjd5/X1r7yiBSczZqgHFoH8BclbAOHtvOgtf+JtGRZbwLh6dfAXew72Yr8UGbhgbwgEIqfJ220F5gA0De4mBTjj98I9b7djPOc/CYB8AO+72b4WgNo0vcJCYMQIzzmLehovjmsWd9+rxrlUycnGF+9tvG/Acf++LCBsFuaKkjtGrt+s0xSGPJWsZwG3psXXNcbCVajqjnmrLaM/064SWuJ2DPQDphpoAZV6XYN27YwvgZKcbH6Fa0/fK9tzBQXaL24qnM9fONZSMpIrSuQOg6YwFY7/6VDwBXqNsWAqKtJ+0x84EBg9WvuzUyft+VBznO5uK0SpNwe+AOfuyLVW3r/FotVMGjAAWL7cWN8efdT8X5BUA4jKSrX96ZULyM/X1iIrLtZG2IqLtVEcb/93BSqw5mK/ZAbOngtjLFlPwVhjLBjCve7Y1VcLEhN/j5qaZ920KAXwC/tPqalamQCVEcDGo8PLl2t/qkpJAZ5+Wr29KtXv1R/+oPXh2DHPqQLuRsKMzuwzq6Cv3u1YLvZLZmDQFOZYwK1pC9YaY4Hk7VaQp2n1gZ4a/tNPP2HIkCHYsmWLztY7AbwOoKXLlt/+VptWr1LUMStLC5SGDdNG1lRZLMCbbwbmlyTV79Xx44790ctPMitVQCWwVvkl0l3g9fLLXOyXTBDwtPQmwszZc0Q2KjORGs8ACsfZP77OBg3k1PA1a9Z4mAW3yGtfp01zPytvyRL9KfxGpuI3Lm8QCEa/Vykp3mcgmtEfo31w/j54mx03ZYp6CQpqOlhyIAQYNFGguKs1FKgLmNl8qTsWiKnhVqtVnnzySd1AKS0tS+6663vloGbaNG2f3moc+XIebr3Vv6n4qn3yVpfK+bF6tfp7NcpIQOnu+6ASeGVliUyfLpKcHDn/fijwGDSFAIMmCiS9UY20NK3QpdkXMLMZHWnypTaQJwcPHpQePXroBkuDB4+XDh3qDF+sV68O/HnwhdHRuaVLXQMIlaDWbKoBpafvw+rVxl+bnKzVzArnfz8UeKzTFAJm1mki0hOpSz8YrTumumact9pFH330EW68UX8Jk/fffx9W6zCl+lfOUlKAQ4eMn/tA119Tqbukl0y9Zg2Qm+t9/0ZqRRn9rqp+5p5Mm6a+fItNKOtGOYvUf9/RwND1O+AhXBPBkSYi94wsZ+LPMkL19fXyyCOP6I4qdevWTcrLy//XTrUCuOvDn9s4Rs6DEf6MznnLbzI6sudLLpqRHCt3j2nT/BupCuVoE5d2CS3engsBBk1kYyTPJVjCoU8qy5mI+HYba//+/XLBBRfoBkuTJk2Seqc37EsOjVnJ2arnwQh/b/2ZFcz5k4umkrvn6bF6tX+BV6iWpeLSLqHHoCkEGDSRSHj+xhhOfVIJ3oyMfBQVFekGSgBk5cqVbvuhOpp1883aCIbZ66SZHcSasci3v8Gcv7lo9fVafpFzjlVWlhawegqG0tJEamv9C7xCsQC62fl75BsGTSHAoInC8TfGcOyTCk8jH0Cd5OaO0w2U+vTpI5WVlV73H22LYpv1fvwJ5vzpg17A1jhJWyUYsv0i4G1x63D6rKPtexipGDSFAIOmpi0cf2MMxz4Z4Xrx2ysxMZm6wdK0adPEarUq79vsPB5/mDHqFA7vx9fRLtXA3lsw5Fx+wHZOV68W6dAhPD5rZ2aMEJL/GDSFAIOmpi0cf2MMxz4ZVV8v8vTT/9INlABISUmJz/sOVFK20T54u3VqtO6Su+BgyZLAvY/6epFXXjH+fTMa2NfWiqSmGv9FIBw+az3R8G80GjBoCgEGTU1bOP7GGI59ElELAs6cOSOjR4/WDZRycnLkp59+MqUvgUjKNnJsbyMsvtRdcheEBCqPzcjtsJQUx8/baNBg9i3AUBe1DIcRQjJ2/ebac0QmCMfFQMOxT94WZP3222/Rr18/1NTUuLz2D3/4A6ZOnQqLrbiOAe5q4IRqUWyV9fgeeEBbFNiZp0WO8/O1fY8YYex1vnJXG0qV6sLBtnZG2zcWjgugx8Zq3/1bbw382n5kkiAEcU0CR5qatnD8jTGUfdIbTfI0sgL8XXdUCYCUlpb61ZdwnD3oa00hb59dMPPYfK111XgUaMaM4I00hbNwHAVrSnh7LgQYNFE45k2Eok96F4AOHbRbM44Xt5MC5OsGStdff71UVVWZ0hcjswfNSsrW24evs7qMBAfBDCp8XS/OdjtYNejKyjp3DsPxlxOzhEMttaaKQVMIMGgikfD8jTGYfVJbBPYrAeJ0g6WHHnpZGhoaTOmL0VEXM0ak3O1jyhT/ql17C0BsgpnH5ut6cUZHjWbMcD3H4fbLCUU25jQRhUg45k0Eq0+e8nQ0cwFMdLNtK4DLcfXV53I5/LV+vWPulDMRoLxca3fsmH5ujpE8IHf5PT/+CLz0km/vwRvnfLRg5rEZ3Ydtbb0BA7SfVfOTunZ1/Dk/X/s89HLj5swJ/RpyFN0YNBGZLDZWfWHTYAlEn5yTq61WvSDlBIARAFbq7OEmAAsBtLI/Y2ZSuupF+cAB4Kmn9IM9Ee1iX1CgBZ7uAk3vAaM6W9CYnKwFc3r7dA5AbAYM0J73tiiw8+saU1041tux9N5T46RmfwK8cPzlhJoGBk1EpMvTxVNvFtx55zV+9RYAV7nZ8zwA4x2eUbmYG+1verra644cUR+RsgWeagGjb2wjJoDxWVX+zsbyNrtR9Vju3lPjffgb4IXjLyfUBAThdmGTwJwmiiae8nvc5y01CDBLN1cJSBBgh9vcIn9zUdz119OaZbacpnfeMZYH5G7JD3/zk6ZNc00A9jUfzZfX+brkjrtzP2OG7wU5mZ9EwWTk+m0RMWNAmWpqapCUlITq6mokJiaGujtEPnOXm2MbTUhJca4fVAVgGIBPdPZ2G4C3ACTAYtFuOSUkOI5kZGf7l4virb/Of7f9DGi5McnJwMCB3o9TXOw+98kfthGVsjL9ESDV22XeXte/P7Bxo/5+rFagUyf3o2WB6iOgP7rl73eCyAgj128GTSZh0ETRwNvF09EGAFe72bYAwFiXZ5cuNTcXReVin5wMtGih3QayaXxRVn3PixYBjz/u3204T8FbIAMEb7fdSkrUA8dA3BLzJ+gi8peR6zdzmojIztuMM+1u2+8BPKuzLQXARgDddF+ZkqL9aWYuisoMuaNHgdWrtePqXZRjY4GXX9avot3Yww9r+U9G2QKjxx8HFi4M/owvdyNxjWcG1taq7Us1ud4o5idRpGDQRNSEOf+G33g0xtFPAIZAS/B2dheANwHEezyW7daWmaMqqhfxw4eBUaPcb09L874P1YDJNuvNpnFgNHNmcEdUVJZrKSgA5s9X218wl9whCkcMmoiaKL1bNq7BQzGA693sYRGAkcrHU52+b4RZdYncB4vGLV7seVQrmCMqqrWqAP9LFRA1BTGh7gARBZ/tlo3zBfWnnwCgAcBUABa4BkxZaNPme2i36dQDJpvG0/fNYJu27q4gpsWi5S95utgXFQGTJqkdLy3Nv2MFm5GRuFdf1f7u/P64cKw2YldSot1eLSnRfqamiUETURPj/pZNJUR6AYgF8ILTtvEA6mCxlOMf/+iMpUvP5Sj5wqzcGFutIMC3i70tePR2680WEP31r56PdfvtwIUXaknVo0drf3bqpB0nFIyMxNkqbXfo4LgtKyvwierhrKhI+wzD5TOlEAtw+YMmg3WaKFK4rvn1oZvaShDgfbd1furrtVo8vtQoMnsVel/qEqkuGGurG2Tbl7tjuVtfLpQ1h3xZ4JYLx57ja+0qiiys0xQCLDlAkWLhQmD0aCuAyQD+rNOiG4A1eOedLHTo4L3OT+Nk8vR0YOxY4OBBz7kxzvV+zJhybnQfqtPs09KA1193HGnRq4F04YWe84eys93XOQok22gaEJpyB5HK39pVFDkMXb8DHsI1ERxpokAzYwRg//790r79BW5GlSYJUK87GuSpQrgzo1WejezbTIWFaqNM77zjfV+uo3fBGWFT5Wtl8aYs3D9TMo+R6zdzmogigL95FcuWLYPFYkHHjh1x8OD3TltXQoubXgYQ65LQ7C5p3Fbnx7kPRnJjjO7bTKr5Ps7vQ4/q7DszZ+kZkZ8P7NunFacsLNT+LCvjCJMnqnl3gapdReGJQRNRmPM1sDh79izuv/9+WCwW5DtdHTt37gOgEhaLAMizP++cPO2tzg+glRBwnk2kcpGuqwMefND4vs1ixsw7G9UaTr4UxzSLrdzBqFHan7yl5JlZ5SwoujBoIgpjRoIW27ToOXO+R0pKO8TFxeHvf/+7w2umTZsGq9WK77/fhqVLM7yOBqnW+dErIeDpIl1UpB1LK3FgfN9m8HfmXWMqxTGNtKPQMzOopugR9kHTs88+C4vF4vC4+OKL7dvPnDmDCRMmICUlBa1atcLw4cNx6NAhh33s378fQ4cORcuWLZGeno4pU6agvr7eoU1JSQkuv/xyxMfHo0uXLliwYEEw3h6RR6pByx/+AKSnL8TAgRZMmnQhjh2rdGhXXFwMEcFzzz2HmBjtn73KaFAgblGoTvP3Zd9GmTXNXuUWnpF2FHpmBtUUPSKiIniPHj2wevVq+8/Nmp3r9qRJk/DBBx9gyZIlSEpKwsSJE5Gfn48NGzYAAKxWK4YOHYrMzExs3LgRFRUVuOuuu9C8eXP88Y9/BACUlZVh6NChGD9+PP71r39hzZo1GDduHNq1a4e8vDwQhYr3gKEWwDhMn/6OzrZfAFiBpUtT3Fah9lah2uxbFJ5Gzvzdt23/Rmfh5ef7v4iwbVTC2+w5jkpEFltQrbfYcaDXDKQwFfi8dP9Mnz5devfurbutqqpKmjdvLkuWLLE/98033wgAKS0tFRGRDz/8UGJiYqSystLeZt68eZKYmCi1tbUiIvLEE09Ijx49HPY9cuRIycvLc9uvM2fOSHV1tf1RXl7O2XNkOvczeL4VoI2bWXDPC9Dgtg6PEb7U+fHt/fi/byOz8AJRi8hdTR/nOk8UeVi7KrpF3ey57777Du3bt8cFF1yAMWPGYP/+/QCArVu34uzZs8jNzbW3vfjii9GxY0eUlpYCAEpLS9GrVy9kZGTY2+Tl5aGmpgZff/21vU3jfdja2PahZ+bMmUhKSrI/srOzTXu/RDaueRXzoS1vcjGAKqfWG6HFTU//r43/eUFm36IweqtNdd8qyfK2nK9Jk4DMTPMrPNtGJbKyHJ/PzmYtpEjHJHqyCfugqV+/fliwYAFWrlyJefPmoaysDAMGDMCJEydQWVmJuLg4tGnTxuE1GRkZqKzUcjoqKysdAibbdts2T21qampw+vRp3X5NnToV1dXV9ke5bdVLIhPFxgKzZp2CyHBogdC9Ti2uhxY8CYAct/vxJy/IzOU1VG+1paWp71slWf6BB86VbJgzxzUB3awSB5zaTxTdwj6naciQIfa/X3rppejXrx/OP/98LF68GAkJCSHrV3x8POLj40N2fIp+O3bswJVXXom6ujqdrS8jK6sA999vwfTp3vfl77Rof/J+nCuGZ2VpQYq7vKa0NG3EKC5OrW8qyfJHj3reh4g2clZQoL1Pf0YSvOWJEVHkCvugyVmbNm3QrVs37NmzB7/61a9QV1eHqqoqh9GmQ4cOITMzEwCQmZmJTZs2OezDNruucRvnGXeHDh1CYmJiSAMzaprmzp2LiRMn6m57442taN36cnvQAgB/+5v7IMS21IMZCci+BANFRa5JtCkp54IUvT7/9a/qARNg3uy6xrcyGfQQkZ6wvz3n7Oeff8bevXvRrl07XHHFFWjevDnWrFlj3757927s378fOTnarYqcnBzs2LEDhw8ftrdZtWoVEhMT0b17d3ubxvuwtbHtgyjQTpw4gSFDhsBisbgETDfddBNOnDgBEcEDD1zukFcRztOi3eUZHTum/ZmcrP+6SZOM3SYzu7ggKzwTkVuBz0v3z2OPPSYlJSVSVlYmGzZskNzcXElNTZXDhw+LiMj48eOlY8eOsnbtWtmyZYvk5ORITk6O/fX19fXSs2dPGTx4sGzfvl1WrlwpaWlpMnXqVHub77//Xlq2bClTpkyRb775RubOnSuxsbGycuVK5X5y7TnyxebNm93MgIPMmzdPeT/htraYbdadp5lxycnutxmZbeZthp/RB9cSI2pajFy/wz5oGjlypLRr107i4uKkQ4cOMnLkSNmzZ499++nTp+Whhx6Stm3bSsuWLeWWW26RiooKh33s27dPhgwZIgkJCZKamiqPPfaYnD171qFNcXGx9OnTR+Li4uSCCy6Q+fPnG+ongyZS1dDQILNmzdINlBISEmTHjh0+7TecpkUbKS1gVrkBf4Mmf8sz+COcPjuipsbI9dsiYqTMHLlTU1ODpKQkVFdXIzExMdTdoTBUVVWFm2++GevWrXPZdtttt+Gtt96Kmhy6hQu16fz+Ki5Wzy9askSbEu7rWnUWS2hKA+jlfWVlabddOeuOKPCMXL8jLqeJKNJs3LgRFosFbdu2dQmYFixYABEJ+WxQs5mVZ2QkvygtzfeAKVS1lHxdjJmIQoNBE1EAiAh+//vfw2Kx4Je//KXDtpSUFOzevRsigrFjx4aoh8bYCkMuXKj96S04GTBAmyXnLyPBl9EE7rQ0rcRAqGopGVmMmYjCQ8SVHCAKZ4cO/YTrrrsR33672WXbXXfdhTfffDNo9b18WYdNjy+3j5Yv914bKSVFm0lnVqkE1QBr2jRg0CDfz4dZVBdjZgkEovDBkSZyy+joQlNWXFwMi8WCzMw0l4Bp8uRFEBG89dZbXgMmM8651Qr8/vdaIUl/lwrx5faRbQTFk5QU4PXXtb+bVSrBdckZ1/1mZwPPPhseS2GojoyxBAJRGAloSnoTEm2z54wsftpUWa1Weeqpp9yUDMgS4HtD0+fNOOdLl4qkpHieJVZQoDZDS6VsgN5sM9WZc8XF5pdKsM2ic55JZ7SMQTAYOU9EFDhRVXIgUkRT0ORu+nY4XnhCoaKiQnr27OkmWBovQJ1ucFFb635auRnn3Oi0e28Bma8X9cJCtdcVFmrtzZ5uH241q9zxVl8qlCUQiJoSlhwIgWgpOWC1ardx3OVa2HJNyspCf3sj2D766CPceOONbra+D2CYx9enpjouFGvLCxo2zP9z7u1zc7dfwP2sMdWyAYWF2lR/m5IS7XagN0bKCRhlVj5XoNlufwKOuV3ePhsiMg9LDpDPjCSnNgVWqxWPPvooLBaLS8DUrVs3lJeXo7BQ4C1gAhwDJuBcXtAf/qB2zktKnPt2Lv/ptdeMBUy2/QLuZ2ipJlanpzv+7G3mnC23yIz18NyxrZPXeMmZcJSfrwVGHTo4Pp+VxYCJKBwxaCIH0ZqcajTBury8HBdeeCGaNWuGP//5zw7bJk2ahPr6euzevRtZWVk+1ySyBS22teO8GTHiXOJ1UZE2smRL9J40yfc+uAuCvSVW24wd65gQ7m3mnAgwbhyweDEnGABaYLRvnzbyVlgYuhIIRKQg4DcLm4hoyWmKxuRUIwnWRUVFbnKV4HYtQrPXPvP0sFhEpkwx/1i2/CK9c6eXWO0u78pb8jggEhNjLLeKiCiQjFy/OdJEDlSnbQfy1oqZVKbMnz17Fvfffz8sFgvynX697927NyorKyEiyMvL0z1GbOy50SJvozLutGql1k4EePllx/wXM7gbLXN3+8i5T4B2m6+kxPttwoYGx59Z/ZqIIgWDpjAX7FpJngIAX+vnhIq3issi3+O229ohLi4Of//73x22T5s2DVarFdu3b0dGRobXY7kLLtLS1PuqyszvgLsguPH3LjkZ+Mc/PO/HXd6VCm+5VURE4YIVwcNYqBbytAUAeseeMydyci3cJ7UvBKBNC3Me9SguLsZ1OlO6VGZj5edrM+Eat+vfH7jwQm00RS94s1iA1q2Bmhpf3qGaVq2An3/WjqU3Q8s5CNb73iUnB65/gGNuFatfE1G4YtAUpmy3lZwvtLZbGYGeWaMXAITrtG13HJPVawGMA/COS7suXX6Bzz5bgRQ3U76MBK+2WVuNvfqq9pnpBS0iroGbGV55BcjIOPe5LV+uHwg98oj2Odu4+94dO6Z23OuuAxYscB8kehNpEwyIqGlhnSaTmFmnibWSzKHVC9oN4BcAqnRaPA/g/6G42OJ2dMNdEOGtjo7zyNSRI8DkyY6faXa2Nots+nSDb8wDT98Nq1Urb/Dqq45BkGq9KNXjLl+uX3tIRSBrNxER6TF0/Q50VnpTYebsuWicwWaUv1Wi//73f7qdBQdstM/68lRx2ddlRNzN1luyxPU9qVbPdnd8vefczUTzVnV8xgzf++F8XL1zEBtr/FwSEQUaZ89FuGitlaTKuQaR6mKzp06dwvDhw2GxWDBu3L1OW6+HNtokAHKUktp9KfTpabbeiBHaCE/jgou+1ngCgLg41+fc5R55S4oH1OtFOR9DrxCjXu2hRYu0EalIn2BARE0Xc5rCkOqF1J8LbrjyJZdrx44duPLKK1FXV6ezx5cBFABwvFKrJLUvX67WZ1vw6i0wsVi0GWLDhp0LDmwlHnzJAaqtdX3u2DH986QSAKrmLS1erPXfW66bXn5XNEwwIKKmizlNJglETpOnGVfRmNNkNJdr7ty5mDhxopu9bQVwucuzKSnayEdsLHD4sPuLflERMHy4Wr9teTi+rrnmbv0xX+l9P1TXkUtOBo4fD+z3LlLWhSOipoFrz0W4aKqVZITa7bAT6N9/CCwWi0vAlJNzE4AT0G7BuQZMgLa8x5gxQG6u+1t/thEjFY1rHPl6W1WlgKQRercNVUclbe87kN+7SFkXjojIGYOmMBUtC3kaKc7pOejYCu0WWyI2bVrpsGXevHkQETz88L8BeC+t7W7hXFvg5C14a2zOHO3PkhJg1y6119gCGOcCknv3nssBUhmx8qbx+VSt9P7009HxvSMiCgTmNIWxSK+VZLQ4p+toiAD4E4ApLm1btGiBzZs3o2fPnh5er8Y530h1xKigQPtTdZq+7fbWgAGez82oUVrSeJs2WlFKXzU+H7bRS3f1ooBzo0iR/r0jIgoU5jSZxMycpmjgS32jczlNVQBuAVDist+EhFtx+PDbaNUqwWWbt1wwFX/6E9C7t3b7zpsZM4Bnn1U7VuP3DaidG3fnUOVY7nKP9IK17GwmYhNR02Xk+s2gySQMms7xtTjnxo0b8ctf/tLNXufDYrnb6y0iM5Kqk5O1Ph475n4fqanalP+DB9X2mZICvPmm9wKSzufGXZBz++3A7Nnaz3qjRp7OExOxiYjOYdAUAgyazjEyi+zaawXPP/88nnnmGZ0WyQBKAXQzNBqiF2ikpWlVuY1yvpXlq6wsrW7R+vXGZ9i5C3I4akRE5D8j12/mNJHp1HKCfsK4cUOxd+8mly133XUX5s17E5s2xfs0GqKXk9Ovn7YwrqdEdGcpKUBCgm/Lijj78cdz/VHRuF1srPb+ba9fv177mblHRETBxaCJTOc5IbsYWnVubbZYY4sWLcLIkSPtP/uzBplzYUVvM/f0HD0KfPwxcMcdvo1SObMFNioat/OWUM+12oiIgoMlB8h0rtPbGwBMhVYy4HqHtllZWfj+++8hIg4Bky88lTfwdcmZ9evNCZiAcyNBKlP/bbWfPC3L0rhMAhERBR6DJjKdbXq7SCWAXgBiAbzg0Gbw4PGoq6tDeXk5Onfu7NfxrFbg978H0tPdr1cXyiVnGgdCRgqXqqwXV1BgfASNiIh8w6CJTLdy5UoMH24B0A7ATodtqanvY+lSwccfz0Pz5s19PoZtVGnSJG222/TprmunNR6N8TbCoycry/9bX3qVtFULl/qyYDAREQUOgyYyhdVqxaOPPgqLxYIhQ4Y4bMvO7obXXitHcbGgsnKY3zO7ioq0UaSBA7VgpKZGv13j0RjA/QiPO6++qgVNRoOtxtxV0s7P12bT2SqAFxdrZQYat/N1WRYiIgoMJoKTX3788UcMHDgQe/bscdk2adIkvPTSS4g1cTqX0YKPjUdjbCM8zknVzmw1lWwBjLtK2p5MmwYMGuR5NptzsrozX5LGiYgocFinySRNrU7T+++/j1tuuUV32wcfrETLlnmmT4P3VjTTk8JCbXkS235s0/TT08/9DGhBjN4isnoz2FSP5ytvFc49Vf4mIiI1rNNEAXHmzFncdttErFjxpsu23r174+OPP8aGDRl48EH19eb0uCvmaGQhXWfO67A5j/AMHuz59baaSK+9puVRGTmer4ysF0dERIHHnCbyqqysDCkpHZCQEOcSMA0f/jSsViu2b9+ODRsy/J4e3zhfyXkWnK+5O42n8PsjNhZ4+GFjJQP8pZo0TkREgcegidxatGgRLBYLLrjgAhw75rzIWjEsFkFR0fN4//0YU6bHe6tJ9N13xt+DxWLuaIyRkgFmUUkaJyKiwGNOk0miJaeptrYW48aNwzvvvKOz9RcAVgBIsT9jy6uZPx/IzfW+/8ZrqjWmsshvhw5aAHbwoHpC9owZgO6ydn7ium9ERNGBOU1k2O7du/GLX/wCVVVVOlufB/D/oFX0dmSbnVZSonYcd7fYVGoS/fijFgQ9+6zasQCga1f1tkZw3TcioqaHt+eauPnz58NiseDiiy92CZg2btyIwkIB8DT0AiZfuEuQVs1X6tpVy+VJS/PveGawJZSPGqU/446IiKILg6Ym6NSpUxg+fDgsFgvuvfdeh23XX389qqqqICLIyclRDjq8FYH0liBtpCZRfr426pSa6r6d2QnZREREDJqakB07diA+Ph7nnXceipymsr388stoaGjAmjVrkJSUZH/eyAKz99/vvp4QAIwbByxe7LqYrtHjAEBcHPDGG9rzwUrIJiKipo1BUxMwb948WCwWXHrppairq3PYtnXrVogIJk2aBItOxKIyW+z224ELL9TWf9OTnHxufTi9xXRVj+McBHE6PhERBRNnz5kk3GbP/fzzzxg5ciQ+/PBDl2033XQTFi5ciFatWinvz91ssdtvB2bPdj+bbeRI4N13XZ+3BULOwY0vs9LcFcMkIiLyxsj1m0GTScIlaNq6dSuuvPJK3W3z5s3D+PHjfd63c3DSv782wuRp1ltsrPvaTO6WAWEQREREwcKSA02MiODll1/G448/7rKtRYsW2Lx5M3r27On3cZyXHykp8b6siadilo0X0228X28L2RIREYUCc5oiWFVVFQYOHIiYmBiXgOnWW2/FiROn8NFHp7FjR0/d5Gt/+bqsSaD2Q0REFEgcaYpApaWl6N+/v+62+fPn4+6770ZREXDJJf4tnOuNWTWQAllLiYiIyCwcaYoQIoLnnnsOFovFJWBKTk7G7t27ISL2gMnfhXNVeCsTAGi32oK1uC0REVEgMWgKc3v2ADEx+YiJicEzTouo3XHHXThz5gyOHj2Kbt26AYApC+eq8lYmwGIBJk92vx1gLSUiIoocDJqczJ07F506dUKLFi3Qr18/bNq0KWR9iYkBunb9DCLLnLYsAiBYuPAt/O538Q5bVNZwsyVfm8FbraRZs1hLiYiIogNzmhp59913MXnyZLz++uvo168f5syZg7y8POzevRvp6elB7UtMjG1k6AoAbQG0AbAGQGd7G6sVeOkl7e+zZml/qiZVm5l87W3xWi5uS0RE0YB1mhrp168frrrqKvzlL38BADQ0NCA7OxsPP/wwnnrqKY+vNbNO05492sK0qmJjgVOntKVFSkq0itveFBdzWj8REZGR6zdvz/1PXV0dtm7ditzcXPtzMTExyM3NRWlpqUv72tpa1NTUODzM0r27sfZWK/DXv2p/N7qGGxEREalh0PQ/P/30E6xWKzIyMhyez8jIQGVlpUv7mTNnIikpyf7Izs42rS9nzxp/zd692p++rOFGRERE3jFo8tHUqVNRXV1tf5SXl5u27+bNjb/mwgvP/Z0L2RIREZmPieD/k5qaitjYWBw6dMjh+UOHDiEzM9OlfXx8POLj412eN8OuXcZzmh56yPE5Jl8TERGZiyNN/xMXF4crrrgCa9assT/X0NCANWvWICcnJ6h96dLFc8FIZ5Mna0ngzmxruI0apf3JgImIiMh3HGlqZPLkyRg7diyuvPJK9O3bF3PmzMHJkydxzz33BL0vDQ2Nyw7oi43VAiZbuQEiIiIKHAZNjYwcORJHjhzBM888g8rKSvTp0wcrV650SQ4PloYGrfxA9+5acnhsLDB8OJCaqt2+e+gh/REmIiIiMh/rNJnEzDpNREREFBys00RERERkMgZNRERERAoYNBEREREpYNBEREREpIBBExEREZECBk1EREREChg0ERERESlg0ERERESkgEETERERkQIuo2ISW2H1mpqaEPeEiIiIVNmu2yoLpDBoMsmJEycAANnZ2SHuCRERERl14sQJJCUleWzDtedM0tDQgIMHD6J169awWCym7rumpgbZ2dkoLy/nunZBwPMdXDzfwcXzHVw838Hly/kWEZw4cQLt27dHTIznrCWONJkkJiYGWVlZAT1GYmIi/9EFEc93cPF8BxfPd3DxfAeX0fPtbYTJhongRERERAoYNBEREREpYNAUAeLj4zF9+nTEx8eHuitNAs93cPF8BxfPd3DxfAdXoM83E8GJiIiIFHCkiYiIiEgBgyYiIiIiBQyaiIiIiBQwaCIiIiJSwKApzM2dOxedOnVCixYt0K9fP2zatCnUXYpIn3zyCX7961+jffv2sFgseP/99x22iwieeeYZtGvXDgkJCcjNzcV3333n0ObYsWMYM2YMEhMT0aZNG9x33334+eefg/guIsfMmTNx1VVXoXXr1khPT8fNN9+M3bt3O7Q5c+YMJkyYgJSUFLRq1QrDhw/HoUOHHNrs378fQ4cORcuWLZGeno4pU6agvr4+mG8lIsybNw+XXnqpvaBfTk4OPvroI/t2nuvAeeGFF2CxWFBQUGB/jufbXM8++ywsFovD4+KLL7ZvD+b5ZtAUxt59911MnjwZ06dPxxdffIHevXsjLy8Phw8fDnXXIs7JkyfRu3dvzJ07V3f7rFmz8Oc//xmvv/46Pv/8c5x33nnIy8vDmTNn7G3GjBmDr7/+GqtWrcKKFSvwySef4IEHHgjWW4go69atw4QJE/DZZ59h1apVOHv2LAYPHoyTJ0/a20yaNAn//ve/sWTJEqxbtw4HDx5Efn6+fbvVasXQoUNRV1eHjRs34q233sKCBQvwzDPPhOIthbWsrCy88MIL2Lp1K7Zs2YLrr78ew4YNw9dffw2A5zpQNm/ejDfeeAOXXnqpw/M83+br0aMHKioq7I9PP/3Uvi2o51sobPXt21cmTJhg/9lqtUr79u1l5syZIexV5AMgy5Yts//c0NAgmZmZ8tJLL9mfq6qqkvj4eFm4cKGIiOzatUsAyObNm+1tPvroI7FYLHLgwIGg9T1SHT58WADIunXrREQ7v82bN5clS5bY23zzzTcCQEpLS0VE5MMPP5SYmBiprKy0t5k3b54kJiZKbW1tcN9ABGrbtq38/e9/57kOkBMnTkjXrl1l1apVcu2118qjjz4qIvxuB8L06dOld+/eutuCfb450hSm6urqsHXrVuTm5tqfi4mJQW5uLkpLS0PYs+hTVlaGyspKh3OdlJSEfv362c91aWkp2rRpgyuvvNLeJjc3FzExMfj888+D3udIU11dDQBITk4GAGzduhVnz551OOcXX3wxOnbs6HDOe/XqhYyMDHubvLw81NTU2EdQyJXVasWiRYtw8uRJ5OTk8FwHyIQJEzB06FCH8wrwux0o3333Hdq3b48LLrgAY8aMwf79+wEE/3xzwd4w9dNPP8FqtTp8yACQkZGBb7/9NkS9ik6VlZUAoHuubdsqKyuRnp7usL1Zs2ZITk62tyF9DQ0NKCgowC9/+Uv07NkTgHY+4+Li0KZNG4e2zudc7zOxbSNHO3bsQE5ODs6cOYNWrVph2bJl6N69O7Zv385zbbJFixbhiy++wObNm1228bttvn79+mHBggW46KKLUFFRgRkzZmDAgAHYuXNn0M83gyYiCqgJEyZg586dDjkIZL6LLroI27dvR3V1Nd577z2MHTsW69atC3W3ok55eTkeffRRrFq1Ci1atAh1d5qEIUOG2P9+6aWXol+/fjj//POxePFiJCQkBLUvvD0XplJTUxEbG+syA+DQoUPIzMwMUa+ik+18ejrXmZmZLgn49fX1OHbsGD8PDyZOnIgVK1aguLgYWVlZ9uczMzNRV1eHqqoqh/bO51zvM7FtI0dxcXHo0qULrrjiCsycORO9e/fGq6++ynNtsq1bt+Lw4cO4/PLL0axZMzRr1gzr1q3Dn//8ZzRr1gwZGRk83wHWpk0bdOvWDXv27An695tBU5iKi4vDFVdcgTVr1tifa2howJo1a5CTkxPCnkWfzp07IzMz0+Fc19TU4PPPP7ef65ycHFRVVWHr1q32NmvXrkVDQwP69esX9D6HOxHBxIkTsWzZMqxduxadO3d22H7FFVegefPmDud89+7d2L9/v8M537Fjh0OwumrVKiQmJqJ79+7BeSMRrKGhAbW1tTzXJhs0aBB27NiB7du32x9XXnklxowZY/87z3dg/fzzz9i7dy/atWsX/O+34TR2CppFixZJfHy8LFiwQHbt2iUPPPCAtGnTxmEGAKk5ceKEbNu2TbZt2yYA5OWXX5Zt27bJDz/8ICIiL7zwgrRp00aWL18uX331lQwbNkw6d+4sp0+ftu/jhhtukMsuu0w+//xz+fTTT6Vr164yatSoUL2lsPbb3/5WkpKSpKSkRCoqKuyPU6dO2duMHz9eOnbsKGvXrpUtW7ZITk6O5OTk2LfX19dLz549ZfDgwbJ9+3ZZuXKlpKWlydSpU0PxlsLaU089JevWrZOysjL56quv5KmnnhKLxSL/+c9/RITnOtAaz54T4fk222OPPSYlJSVSVlYmGzZskNzcXElNTZXDhw+LSHDPN4OmMPfaa69Jx44dJS4uTvr27SufffZZqLsUkYqLiwWAy2Ps2LEiopUd+N3vficZGRkSHx8vgwYNkt27dzvs4+jRozJq1Chp1aqVJCYmyj333CMnTpwIwbsJf3rnGoDMnz/f3ub06dPy0EMPSdu2baVly5Zyyy23SEVFhcN+9u3bJ0OGDJGEhARJTU2Vxx57TM6ePRvkdxP+7r33Xjn//PMlLi5O0tLSZNCgQfaASYTnOtCcgyaeb3ONHDlS2rVrJ3FxcdKhQwcZOXKk7Nmzx749mOfbIiLi8xgZERERURPBnCYiIiIiBQyaiIiIiBQwaCIiIiJSwKCJiIiISAGDJiIiIiIFDJqIiIiIFDBoIiIiIlLAoImIiIhIAYMmIiIiIgUMmogo6litVvTv3x/5+fkOz1dXVyM7OxtPP/20x9eXlJTAYrG4rJzuj3379sFisWD79u2m7ZOIgotBExFFndjYWCxYsAArV67Ev/71L/vzDz/8MJKTkzF9+vQQ9o6IIhWDJiKKSt26dcMLL7yAhx9+GBUVFVi+fDkWLVqEt99+G3FxcW5ft2/fPgwcOBAA0LZtW1gsFtx9990AgIaGBsycOROdO3dGQkICevfujffee8/+2uPHj2PMmDFIS0tDQkICunbtivnz5wMAOnfuDAC47LLLYLFYcN111wXmjRNRwDQLdQeIiALl4YcfxrJly3DnnXdix44deOaZZ9C7d2+Pr8nOzsbSpUsxfPhw7N69G4mJiUhISAAAzJw5E++88w5ef/11dO3aFZ988gnuuOMOpKWl4dprr8Xvfvc77Nq1Cx999BFSU1OxZ88enD59GgCwadMm9O3bF6tXr0aPHj08Bm5EFJ4sIiKh7gQRUaB8++23uOSSS9CrVy988cUXaNbM+++KJSUlGDhwII4fP442bdoAAGpra5GcnIzVq1cjJyfH3nbcuHE4deoUCgsL8Zvf/Aapqan45z//6bLPffv2oXPnzti2bRv69Olj1tsjoiDiSBMRRbV//vOfaNmyJcrKyvDjjz+iU6dOPu1nz549OHXqFH71q185PF9XV4fLLrsMAPDb3/4Ww4cPxxdffIHBgwfj5ptvRv/+/f19C0QUJpjTRERRa+PGjXjllVewYsUK9O3bF/fddx98HVz/+eefAQAffPABtm/fbn/s2rXLntc0ZMgQ/PDDD5g0aRIOHjyIQYMG4fHHHzft/RBRaDFoIqKodOrUKdx999347W9/i4EDB+If//gHNm3ahNdff93ra235Rlar1f5c9+7dER8fj/3796NLly4Oj+zsbHu7tLQ0jB07Fu+88w7mzJmDN9980+0+iSiy8PYcEUWlqVOnQkTwwgsvAAA6deqE2bNn4/HHH8eQIUM83qY7//zzYbFYsGLFCtx4441ISEhA69at8fjjj2PSpEloaGjA1VdfjerqamzYsAGJiYkYO3YsnnnmGVxxxRXo0aMHamtrsWLFClxyySUAgPT0dCQkJGDlypXIyspCixYtkJSUFIxTQURmESKiKFNSUiKxsbGyfv16l22DBw+W66+/XhoaGjzu4/e//71kZmaKxWKRsWPHiohIQ0ODzJkzRy666CJp3ry5pKWlSV5enqxbt05ERJ577jm55JJLJCEhQZKTk2XYsGHy/fff2/f5t7/9TbKzsyUmJkauvfZa094vEQUHZ88RERERKWBOExEREZECBk1E1OSMHz8erVq10n2MHz8+1N0jojDF23NE1OQcPnwYNTU1utsSExORnp4e5B4RUSRg0ERERESkgLfniIiIiBQwaCIiIiJSwKCJiIiISAGDJiIiIiIFDJqIiIiIFDBoIiIiIlLAoImIiIhIwf8P7CuPhJNaTdgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtRklEQVR4nO3deVxVdf4/8NcBvYjpBREEFdzSscytLBkqS0dGNCwNKzXza7Za2oioqZNpznznq9miLU7O1JQt4paYv9QsFzAr0lxIzaU0zBU0FXAFuff9++PMvXLhLufcHXg9H4/zQM753HM/59xb581neX8UEREQERERkVMhga4AERERUXXAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpEGdQFegpjCbzThx4gQaNmwIRVECXR0iIiLSQERw/vx5NGvWDCEhztuSGDR5yYkTJ5CQkBDoahAREZEbjh49ivj4eKdlGDR5ScOGDQGoN91oNAa4NkRERKRFSUkJEhISrM9xZxg0eYmlS85oNDJoIiIiqma0DK3hQHAiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINmBGciIhqHZMJ2LwZOHkSaNoU6NEDCA0NdK0o2DFoIiKiWiUrCxg7Fjh27Nq++HjgjTeAtLTA1YuCH7vniIio1sjKAh54wDZgAoDjx9X9WVmBqRdVDwyaiIioVjCZ1BYmkarHLPvS09VyRPYwaCIiolph8+aqLUwViQBHj6rliOxh0ERERLXCyZPeLUe1D4MmIiKqFZo29W45qn0YNBERUa3Qo4c6S05R7B9XFCAhQS1HZA+DJiIiqhVCQ9W0AkDVwMny+9y5zNdEjjFoIiKiWiMtDfj0U6B5c9v98fHqfuZpImeY3JKIiGqVtDRgwABmBCf9AtrS9M4776Bz584wGo0wGo1ISkrCF198YT3es2dPKIpis40aNcrmHEeOHEFqairq16+PJk2aYOLEiSgvL7cpk5OTg1tuuQVhYWFo27YtFixYUKUu8+bNQ6tWrVCvXj0kJiZi69atPrlmIiIKvNBQoGdPYOhQ9ScDJtIioEFTfHw8Zs2ahe3bt2Pbtm3405/+hAEDBuCnn36ylnnyySdx8uRJ6zZ79mzrMZPJhNTUVJSVleG7777Dhx9+iAULFmDatGnWMvn5+UhNTUWvXr2Ql5eH9PR0PPHEE/jyyy+tZZYsWYKMjAxMnz4dO3bsQJcuXZCSkoJTp07550YQERFR0FNE7OVGDZyoqCi88sorePzxx9GzZ0907doVc+fOtVv2iy++QP/+/XHixAnExsYCAObPn49Jkybh9OnTMBgMmDRpElavXo09e/ZYXzdkyBAUFRVh7dq1AIDExETcdtttePvttwEAZrMZCQkJeO655zB58mS7711aWorS0lLr7yUlJUhISEBxcTGMRqM3bgURERH5WElJCSIiIjQ9v4NmILjJZMLixYtx8eJFJCUlWfcvXLgQ0dHR6NixI6ZMmYJLly5Zj+Xm5qJTp07WgAkAUlJSUFJSYm2tys3NRXJyss17paSkIDc3FwBQVlaG7du325QJCQlBcnKytYw9M2fOREREhHVLSEjw7AYQERFRUAv4QPDdu3cjKSkJV65cQYMGDbBixQp06NABAPDwww+jZcuWaNasGXbt2oVJkybhwIEDyPrviooFBQU2ARMA6+8FBQVOy5SUlODy5cs4d+4cTCaT3TL79+93WO8pU6YgIyPD+rulpYmIiIhqpoAHTe3bt0deXh6Ki4vx6aefYsSIEdi0aRM6dOiAp556ylquU6dOaNq0KXr37o1Dhw7h+uuvD2CtgbCwMISFhQW0DkREROQ/Ae+eMxgMaNu2Lbp164aZM2eiS5cueMOSfaySxMREAMDBgwcBAHFxcSgsLLQpY/k9Li7OaRmj0Yjw8HBER0cjNDTUbhnLOYiIiIgCHjRVZjabbQZYV5SXlwcAaPrfhYGSkpKwe/dum1lu69atg9FotHbxJSUlYcOGDTbnWbdunXXclMFgQLdu3WzKmM1mbNiwwWZsFREREdVuAe2emzJlCvr164cWLVrg/PnzyMzMRE5ODr788kscOnQImZmZuOeee9C4cWPs2rUL48aNw1133YXOnTsDAPr06YMOHTpg+PDhmD17NgoKCjB16lSMHj3a2nU2atQovP3223j++efx2GOPYePGjVi6dClWr15trUdGRgZGjBiBW2+9Fd27d8fcuXNx8eJFjBw5MiD3hYiIiIKQBNBjjz0mLVu2FIPBIDExMdK7d2/56quvRETkyJEjctddd0lUVJSEhYVJ27ZtZeLEiVJcXGxzjsOHD0u/fv0kPDxcoqOjZfz48XL16lWbMtnZ2dK1a1cxGAzSpk0b+eCDD6rU5a233pIWLVqIwWCQ7t27y/fff6/rWoqLiwVAlfoRERFR8NLz/A66PE3VlZ48D0RERBQcqmWeJiIiIqJgxqCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAQRMRERGRBgyaiIiIiDRg0ERERESkAYMmIiIiIg0YNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBoENGh655130LlzZxiNRhiNRiQlJeGLL76wHr9y5QpGjx6Nxo0bo0GDBhg0aBAKCwttznHkyBGkpqaifv36aNKkCSZOnIjy8nKbMjk5ObjlllsQFhaGtm3bYsGCBVXqMm/ePLRq1Qr16tVDYmIitm7d6pNrJiIiouopoEFTfHw8Zs2ahe3bt2Pbtm3405/+hAEDBuCnn34CAIwbNw6ff/45li1bhk2bNuHEiRNIS0uzvt5kMiE1NRVlZWX47rvv8OGHH2LBggWYNm2atUx+fj5SU1PRq1cv5OXlIT09HU888QS+/PJLa5klS5YgIyMD06dPx44dO9ClSxekpKTg1KlT/rsZREREFNwkyDRq1Ejee+89KSoqkrp168qyZcusx/bt2ycAJDc3V0RE1qxZIyEhIVJQUGAt884774jRaJTS0lIREXn++eflpptusnmPwYMHS0pKivX37t27y+jRo62/m0wmadasmcycOVNzvYuLiwWAFBcX67tgIiIiChg9z++gGdNkMpmwePFiXLx4EUlJSdi+fTuuXr2K5ORka5kbbrgBLVq0QG5uLgAgNzcXnTp1QmxsrLVMSkoKSkpKrK1Vubm5NuewlLGco6ysDNu3b7cpExISguTkZGsZe0pLS1FSUmKzERERUc0V8KBp9+7daNCgAcLCwjBq1CisWLECHTp0QEFBAQwGAyIjI23Kx8bGoqCgAABQUFBgEzBZjluOOStTUlKCy5cv4/fff4fJZLJbxnIOe2bOnImIiAjrlpCQ4Nb1ExERUfUQ8KCpffv2yMvLw5YtW/DMM89gxIgR2Lt3b6Cr5dKUKVNQXFxs3Y4ePRroKhEREdVIJhOQkwMsWqT+NJkCU486gXnbawwGA9q2bQsA6NatG3744Qe88cYbGDx4MMrKylBUVGTT2lRYWIi4uDgAQFxcXJVZbpbZdRXLVJ5xV1hYCKPRiPDwcISGhiI0NNRuGcs57AkLC0NYWJh7F01ERESaZGUBY8cCx45d2xcfD7zxBlBhbphfBLylqTKz2YzS0lJ069YNdevWxYYNG6zHDhw4gCNHjiApKQkAkJSUhN27d9vMclu3bh2MRiM6dOhgLVPxHJYylnMYDAZ069bNpozZbMaGDRusZYiIiMj/srKABx6wDZgA4PhxdX9Wlp8r5IeB6Q5NnjxZNm3aJPn5+bJr1y6ZPHmyKIoiX331lYiIjBo1Slq0aCEbN26Ubdu2SVJSkiQlJVlfX15eLh07dpQ+ffpIXl6erF27VmJiYmTKlCnWMr/++qvUr19fJk6cKPv27ZN58+ZJaGiorF271lpm8eLFEhYWJgsWLJC9e/fKU089JZGRkTaz8lzh7DkiIiLvKS8XiY8XAexviiKSkKCW84Se53dAg6bHHntMWrZsKQaDQWJiYqR3797WgElE5PLly/Lss89Ko0aNpH79+nL//ffLyZMnbc5x+PBh6devn4SHh0t0dLSMHz9erl69alMmOztbunbtKgaDQdq0aSMffPBBlbq89dZb0qJFCzEYDNK9e3f5/vvvdV0LgyYiIiLvyc52HDBV3LKzPXsfPc9vRUTEz41bNVJJSQkiIiJQXFwMo9EY6OoQERFVa4sWAQ8/7LpcZiYwdKj776Pn+R10Y5qIiIiImjb1bjlvYNBEREREQadHD3WWnKLYP64oQEKCWs5fGDQRERFR0AkNVdMKAFUDJ8vvc+eq5fyFQRMREREFpbQ04NNPgebNbffHx6v7/Z2nKeDJLYmIiIgcSUsDBgwANm8GTp5UxzD16OHfFiYLBk1EREQU1EJDgZ49A10Lds8RERERacKgiYiIiEgDBk1EREREGnBMExERVWEyBcfAW6JgwqCJiIhsZGUBY8fariwfH6/mzPH3FG+iYMLuOSIissrKAh54wDZgAoDjx9X9WVmBqRdRMGDQREREANQuubFj1bXjK7PsS09XyxHVRgyaiIgIgDqGqXILU0UiwNGjajmi2ohBExERAVAHfXuzHFFNw6CJiIgAqLPkvFmOqKZh0ERERADUtALx8VVXlLdQFCAhQS1HVBsxaCIiIgBqHqY33lD/XTlwsvw+dy7zNVHtxaCJiIis0tKATz8Fmje33R8fr+5nniaqzZjckoiIbKSlAQMGMCM4UWUMmoiIqIrQUKBnz0DXgii4sHuOiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINAho0zZw5E7fddhsaNmyIJk2aYODAgThw4IBNmZ49e0JRFJtt1KhRNmWOHDmC1NRU1K9fH02aNMHEiRNRXl5uUyYnJwe33HILwsLC0LZtWyxYsKBKfebNm4dWrVqhXr16SExMxNatW71+zURERFQ9BTRo2rRpE0aPHo3vv/8e69atw9WrV9GnTx9cvHjRptyTTz6JkydPWrfZs2dbj5lMJqSmpqKsrAzfffcdPvzwQyxYsADTpk2zlsnPz0dqaip69eqFvLw8pKen44knnsCXX35pLbNkyRJkZGRg+vTp2LFjB7p06YKUlBScOnXK9zeCiIiIgp4iIhLoSlicPn0aTZo0waZNm3DXXXcBUFuaunbtirlz59p9zRdffIH+/fvjxIkTiI2NBQDMnz8fkyZNwunTp2EwGDBp0iSsXr0ae/bssb5uyJAhKCoqwtq1awEAiYmJuO222/D2228DAMxmMxISEvDcc89h8uTJLuteUlKCiIgIFBcXw2g0enIbiIiIyE/0PL+DakxTcXExACAqKspm/8KFCxEdHY2OHTtiypQpuHTpkvVYbm4uOnXqZA2YACAlJQUlJSX46aefrGWSk5NtzpmSkoLc3FwAQFlZGbZv325TJiQkBMnJydYylZWWlqKkpMRmIyIiopqrTqArYGE2m5Geno477rgDHTt2tO5/+OGH0bJlSzRr1gy7du3CpEmTcODAAWRlZQEACgoKbAImANbfCwoKnJYpKSnB5cuXce7cOZhMJrtl9u/fb7e+M2fOxIwZMzy7aCIiIqo2giZoGj16NPbs2YNvvvnGZv9TTz1l/XenTp3QtGlT9O7dG4cOHcL111/v72paTZkyBRkZGdbfS0pKkJCQELD6EBERkW8FRdA0ZswYrFq1Cl9//TXi4+Odlk1MTAQAHDx4ENdffz3i4uKqzHIrLCwEAMTFxVl/WvZVLGM0GhEeHo7Q0FCEhobaLWM5R2VhYWEICwvTfpFERERUrQV0TJOIYMyYMVixYgU2btyI1q1bu3xNXl4eAKBp06YAgKSkJOzevdtmltu6detgNBrRoUMHa5kNGzbYnGfdunVISkoCABgMBnTr1s2mjNlsxoYNG6xliIiIqHYLaEvT6NGjkZmZiZUrV6Jhw4bWMUgREREIDw/HoUOHkJmZiXvuuQeNGzfGrl27MG7cONx1113o3LkzAKBPnz7o0KEDhg8fjtmzZ6OgoABTp07F6NGjrS1Bo0aNwttvv43nn38ejz32GDZu3IilS5di9erV1rpkZGRgxIgRuPXWW9G9e3fMnTsXFy9exMiRI/1/Y4iIiCj4SAABsLt98MEHIiJy5MgRueuuuyQqKkrCwsKkbdu2MnHiRCkuLrY5z+HDh6Vfv34SHh4u0dHRMn78eLl69apNmezsbOnatasYDAZp06aN9T0qeuutt6RFixZiMBike/fu8v3332u+luLiYgFQpW5EREQUvPQ8v4MqT1N1xjxNRERE1U+1zdNEREREFKwYNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAQRMRERGRBgyaiIiIiDRg0ERERESkQZ1AV4CIiGoPkwnYvBk4eRJo2hTo0QMIDQ10rYi0YdBERER+kZUFjB0LHDt2bV98PPDGG0BaWuDqRaQVu+eIiMjnsrKABx6wDZgA4PhxdX9WVmDqRaQHgyYiIvIpk0ltYRKpesyyLz1dLUcUzBg0ERH5gckE5OQAixapP2tTgLB5c9UWpopEgKNH1XJEwYxjmoiIfKy2j+U5edK75YgChS1NREQ+xLE86iw5b5YjChQGTUREPsKxPKoePdSWNUWxf1xRgIQEtRxRMGPQRETkIxzLowoNVbsigaqBk+X3uXOZr4mCH4MmIiIf4Viea9LSgE8/BZo3t90fH6/urw1ju6j640BwIiIf4VgeW2lpwIABzAhO1ReDJiIiH7GM5Tl+3P64JkVRj9emsTyhoUDPnoGuBZF7Ato9N3PmTNx2221o2LAhmjRpgoEDB+LAgQM2Za5cuYLRo0ejcePGaNCgAQYNGoTCwkKbMkeOHEFqairq16+PJk2aYOLEiSgvL7cpk5OTg1tuuQVhYWFo27YtFixYUKU+8+bNQ6tWrVCvXj0kJiZi69atXr9mIqo9OJaHqGYJaNC0adMmjB49Gt9//z3WrVuHq1evok+fPrh48aK1zLhx4/D5559j2bJl2LRpE06cOIG0Cp3fJpMJqampKCsrw3fffYcPP/wQCxYswLRp06xl8vPzkZqail69eiEvLw/p6el44okn8OWXX1rLLFmyBBkZGZg+fTp27NiBLl26ICUlBadOnfLPzSCiGoljeYhqDkXEXqNxVWk6/svOcjPxyOnTp9GkSRNs2rQJd911F4qLixETE4PMzEw88MADAID9+/fjxhtvRG5uLv74xz/iiy++QP/+/XHixAnExsYCAObPn49Jkybh9OnTMBgMmDRpElavXo09e/ZY32vIkCEoKirC2rVrAQCJiYm47bbb8PbbbwMAzGYzEhIS8Nxzz2Hy5MlV6lpaWorS0lLr7yUlJUhISEBxcTGMRqNb109ENZfJxLE8RMGopKQEERERmp7fmluaIiIirJvRaMSGDRuwbds26/Ht27djw4YNiIiIcLvixcXFAICoqCjrOa9evYrk5GRrmRtuuAEtWrRAbm4uACA3NxedOnWyBkwAkJKSgpKSEvz000/WMhXPYSljOUdZWRm2b99uUyYkJATJycnWMpXNnDnT5p4kJCS4fd1EVPNZxvIMHar+ZMBEVP1oHgj+wQcfWP89adIkPPTQQ5g/fz5C//tfvslkwrPPPut2K4vZbEZ6ejruuOMOdOzYEQBQUFAAg8GAyMhIm7KxsbEoKCiwlqkYMFmOW445K1NSUoLLly/j3LlzMJlMdsvs37/fbn2nTJmCjIwM6++WliYiIiKqmdyaPff+++/jm2++sQZMABAaGoqMjAzcfvvteOWVV3Sfc/To0dizZw+++eYbd6rkd2FhYQgLCwt0NYiIiMhP3BoIXl5ebrcFZv/+/TCbzbrPN2bMGKxatQrZ2dmIj4+37o+Li0NZWRmKiopsyhcWFiIuLs5apvJsOsvvrsoYjUaEh4cjOjoaoaGhdstYzkFERES1m1tB08iRI/H444/j9ddfxzfffINvvvkGr732Gp544gmMHDlS83lEBGPGjMGKFSuwceNGtG7d2uZ4t27dULduXWzYsMG678CBAzhy5AiSkpIAAElJSdi9e7fNLLd169bBaDSiQ4cO1jIVz2EpYzmHwWBAt27dbMqYzWZs2LDBWoaIiIhqOXGDyWSSl19+WZo1ayaKooiiKNKsWTN5+eWXpby8XPN5nnnmGYmIiJCcnBw5efKkdbt06ZK1zKhRo6RFixayceNG2bZtmyQlJUlSUpL1eHl5uXTs2FH69OkjeXl5snbtWomJiZEpU6ZYy/z6669Sv359mThxouzbt0/mzZsnoaGhsnbtWmuZxYsXS1hYmCxYsED27t0rTz31lERGRkpBQYGmaykuLhYAUlxcrPn6iYiIKLD0PL/dCpoqv5m7gQIAu9sHH3xgLXP58mV59tlnpVGjRlK/fn25//775eTJkzbnOXz4sPTr10/Cw8MlOjpaxo8fL1evXrUpk52dLV27dhWDwSBt2rSxeQ+Lt956S1q0aCEGg0G6d+8u33//veZrYdBERERU/eh5fmvO01RZeXk5cnJycOjQITz88MNo2LAhTpw4AaPRiAYNGninGawa0ZPngYiIiIKDnue3W7PnfvvtN/Tt2xdHjhxBaWkp/vznP6Nhw4Z4+eWXUVpaivnz57tVcSIiIqJg5dZA8LFjx+LWW2/FuXPnEB4ebt1///33VxlwTURERFQTuNXStHnzZnz33XcwGAw2+1u1aoXjx497pWJEREREwcStliaz2QyTyVRl/7Fjx9CwYUOPK0VEREQUbNwKmvr06YO5c+daf1cUBRcuXMD06dNxzz33eKtuREREREHDrdlzR48eRd++fSEi+OWXX3Drrbfil19+QXR0NL7++ms0adLEF3UNapw9R0REVP3oeX57lHJgyZIl+PHHH3HhwgXccsstGDZsmM3A8NqEQRMREVH149Og6erVq7jhhhuwatUq3HjjjR5VtCZh0ERERFT96Hl+6x7TVLduXVy5csXtyhERERFVR24NBB89ejRefvlllJeXe7s+REREREHJrTxNP/zwAzZs2ICvvvoKnTp1wnXXXWdzPCsryyuVIyIiIgKA8+fPo379+ggNDQ1YHdxqaYqMjMSgQYOQkpKCZs2aISIiwmYjIiIi8tSRI0dwxx13QFEUGI1G/OUvfwlofdxqafrggw+8XQ8iIiIiXL58GRkZGXbXsW3WrFkAanSNW0GTxalTp3DgwAEAQPv27WtlfiYiIiLyjIhg/vz5ePbZZ+0eNxqNWL16Ne68804/18yWW91zJSUlGD58OJo3b467774bd999N5o3b45HHnkExcXF3q4jERER1UCbNm3Cddddh5CQELsB07///W+YzWYUFxcHPGAC3AyannzySWzZsgWrVq1CUVERioqKsGrVKmzbtg1PP/20t+tIRFTjmExATg6waJH6085ynkGnOtaZgs9vv/2GpKQkKIqCnj174tKlSzbHx4wZg0uXLkFE8OSTT0JRlADVtCq3MoJfd911+PLLL6tEfZs3b0bfvn1x8eJFr1WwumBySyLSKisLGDsWOHbs2r74eOCNN4C0tMDVy5nqWGcKHpcuXcK4cePw73//2+7xu+66CwsXLkR8fLyfa+bj5JYA0LhxY7uz5CIiItCoUSN3TklEVCtkZQEPPGAbfADA8ePq/mDM2FId60yBJyKYN28eFEXBddddVyVgioyMxLfffgsRwaZNmwISMOnlVtA0depUZGRkoKCgwLqvoKAAEydOxIsvvui1yhERVUeOurFMJrW1xl77vmVfenpwdXtVxzpTYOXk5CA8PBwhISEYM2ZMlePvvfcezGYzzp07h9tvvz0ANXSfW91zN998Mw4ePIjS0lK0aNECgJpLISwsDO3atbMpu2PHDu/UNMixe46IAOfdWFFRQK9ers+RnQ307Omd+phMwObNwMmTQNOmQI8egJ7cgDk5/q8zVT+HDx/G4MGDsXXrVrvH//KXv+Dll19GvXr1/Fwz1/Q8v91KOTBw4EB3XkZEVKNZurEq/ylq6cYaO1bbeU6e9F59nI1D0hJQaa2Lt+pM1cfFixeRnp6O9957z+7xnj174pNPPkHz5s39XDPfcStomj59uqZyixYtwsWLF6sss0JEVNO46sZSFGDhQm3natrU8/q4CuAmTFC7D10N7NZaF2/UmYKfiODtt992mJk7KioKq1atQlJSkp9r5h9udc9pZTQakZeXhzZt2vjqLYIGu+eIajet3VjR0cCZM/aDK0VRA5f8fH1daJWZTECrVlUHbrtimdn96afXAifLuY4f922dKbht3LgR/fr1Q1lZmd3j77//Ph599NGgSg+glc9nz2nlw3iMiCioaO2eeuQR9WflZ4vl97lzPQ8+Nm/WHzAB9gd2h4aqrU8V62jhzTpT8MnPz8dtt90GRVHQu3fvKgFTeno6rly5AhHByJEjq2XApJdPgyYiotpCa/fUgAFqS07lYR7x8bYtPJ7wZHyRCHD0qBp4WaSl+b7OFBwuXryIxx9/HIqioE2bNti2bZvN8T/96U84fvw4RARz5sxBWFhYgGoaGB6tPUdERKoePdQgwlU3lmWw9YABns1qc8Yb44sqB15pab6tMwWOiODNN99Eenq63ePR0dFYtWoVEhMT/VuxIMSgiYjICyzdWA88oAZIFQMne91YoaG+m6LvKoDTwl7g5cs6k/9t2LABffv2RXl5ud3jCxYswP/8z//Uim43rdg9R0TkJcHSjaVlHJIjigIkJKiBV03DtfOAX3/9Fd26dYOiKEhOTq4SMGVkZFjHKY0YMYIBUyVuBU0jRozA119/7bJcy5YtUbduXXfegoioWkpLAw4fVpM9ZmaqP/Pz/T/ux1kAN3GiGhzVpoHdWVnqLMBevYCHH1Z/tmpVO5aAuXDhgnWg9vXXX18l6XRycjJOnDgBEcFrr71W68Yp6eFWyoGBAwdizZo1aNmyJUaOHIkRI0bUqORV7mDKAaKax9Ns2sHA0TXYS3wZFaXue+GF6nedzjjKWWUvxUJNYTab8cYbbyAjI8Pu8SZNmuDzzz9H9+7d/Vyz4KPn+e12nqbTp0/j448/xocffoi9e/ciOTkZjz/+OAYMGFArW5cYNBHVLK6yadcEJhPwj3+o13T27LX9Nek6XeWsqml5ptatW4e+ffvCbDbbPf7RRx9h+PDhfq5VcPNLnqaYmBhkZGTgxx9/xJYtW9C2bVsMHz4czZo1w7hx4/DLL7+4e2oiooCytExUftBasml7o0snGMbXrFwJvPSSbcAEePc6A81Vzip7KRaqm0OHDuHmm2+Goijo06dPlYBpwoQJKC0thYgwYPKQxwPBT548iXXr1mHdunUIDQ3FPffcg927d6NDhw6YM2eON+pIROQ3rpZDAWyTP7ojGMbX+OM6g0FNXTvv/Pnz1oHabdu2RV5ens3xPn36oKCgACKCV155BQaDITAVrWHcCpquXr2K5cuXo3///mjZsiWWLVuG9PR0nDhxAh9++CHWr1+PpUuX4m9/+5u360tE5FO+bpnwZSuWntarYGyB8UXrW01aO89sNuO1116DoigwGo346KOPbI7HxcXhhx9+gIjgyy+/RGxsbIBqWnO5laepadOmMJvNGDp0KLZu3YquXbtWKdOrVy9ERkZ6WD0iIv/yZcuElkV909PVJJJ6x9foHYMVbC0wvhpDpifpaLD68ssv0bdvX4fHP/74YzxiWZ+HfMqtlqY5c+bgxIkTmDdvnt2ACQAiIyORn5/v9Dxff/017r33XjRr1gyKouCzzz6zOW5Z/K/iVvmLc/bsWQwbNgxGoxGRkZF4/PHHceHCBZsyu3btQo8ePVCvXj0kJCRg9uzZVeqybNky3HDDDahXrx46deqENWvWuL4RRFTj+KJlwtKC8tJLvmndcaf1KphaYHzZ+lZd1847ePAgunTpYve5BwDPP/+8dZwSAyY/kgBas2aNvPDCC5KVlSUAZMWKFTbHR4wYIX379pWTJ09at7Nnz9qU6du3r3Tp0kW+//572bx5s7Rt21aGDh1qPV5cXCyxsbEybNgw2bNnjyxatEjCw8PlX//6l7XMt99+K6GhoTJ79mzZu3evTJ06VerWrSu7d+/WfC3FxcUCQIqLi927GUQUFMrLReLjRRRFRA1jbDdFEUlIUMtpsXy5ej5753K0ZWbqr6+jczmqr7ev013u1l8ve59DQoK6P1gUFxfLI488IgDsbn379pXCwsJAV7PG0fP8DmjQVJGjoGnAgAEOX7N3714BID/88IN13xdffCGKosjx48dFROSf//ynNGrUSEpLS61lJk2aJO3bt7f+/tBDD0lqaqrNuRMTE+Xpp5/WXH8GTUQ1x/Ll6sO6ckBh2af1QWs5j56ACRDJztZe1+xs98/prev0hCf116u8XD1PZqb609cBoRYmk0lmz57tMFBq1qyZbNu2LdDVrNH0PL+DfhmVnJwcNGnSBO3bt8czzzyDM2fOWI/l5uYiMjISt956q3VfcnIyQkJCsGXLFmuZu+66y2bmQEpKCg4cOIBz585ZyyQnJ9u8b0pKCnJzcx3Wq7S0FCUlJTYbUXUSDFPeg5U3lkNxNn7JGb1LmHgyNikYln3x59gqy9p5Q4eqPwPZJbd27VooioLQ0FA8//zzVY4vXLgQIoLjx4+jW7duAagh2RPUC/b27dsXaWlpaN26NQ4dOoS//vWv6NevH3JzcxEaGoqCggI0adLE5jV16tRBVFQUCgoKAAAFBQVo3bq1TRnLjIKCggI0atQIBQUFVWYZxMbGWs9hz8yZMzFjxgxvXCaR39WGxI2eSktTB2S7mxHc1ew0R4YM0fcw93RskqfX6algGlvlaz///DMGDRqEPXv22D0+efJk/O1vf6uVCaKri6AOmoYMGWL9d6dOndC5c2dcf/31yMnJQe/evQNYM2DKlCk26elLSkqQkJAQwBoRaeNoSQnLoNvqtKSEr5c5sbRMuMPdlpHFi4GZM9X31nJ93pgd5sl1eqomzG5zpqSkBM888wwyMzPtHr/nnnvwwQcfVGkAoOAU9N1zFbVp0wbR0dE4ePAgADUnxalTp2zKlJeX4+zZs4iLi7OWKSwstClj+d1VGctxe8LCwmA0Gm02omBXkxIaBkOCSGfcbRmxzJ7Ten3VdXaYhd76V4duZbPZjJdffhmKoiAiIqJKwBQfH48dO3ZARLB69WoGTNVItQqajh07hjNnzqDpf/9vlJSUhKKiImzfvt1aZuPGjTCbzUhMTLSW+frrr3H16lVrmXXr1qF9+/Zo1KiRtcyGDRts3mvdunVISkry9SUR+VUwJjR0hz+WOfGUpQWlciCgxcqV+q4vGMYmeUJr/YM9UF6zZo11nNLkyZOrHF+0aBFEBEePHsXNN98cgBqSx3w9Kt2Z8+fPy86dO2Xnzp0CQF5//XXZuXOn/Pbbb3L+/HmZMGGC5ObmSn5+vqxfv15uueUWadeunVy5csV6jr59+8rNN98sW7ZskW+++UbatWtnk3KgqKhIYmNjZfjw4bJnzx5ZvHix1K9fv0rKgTp16sirr74q+/btk+nTpzPlANVImZnen/Lub76cou7t2VWOZqe52mJi3Lu+YJwdpoez+juaiejPmX727N+/Xzp06OBw9ttf//pXKSsrC0zlSJNqk3IgOzvb7pdsxIgRcunSJenTp4/ExMRI3bp1pWXLlvLkk09KQUGBzTnOnDkjQ4cOlQYNGojRaJSRI0fK+fPnbcr8+OOPcuedd0pYWJg0b95cZs2aVaUuS5culT/84Q9iMBjkpptuktWrV+u6FgZNVB34c3q3r/jqGuzl8YmP9/xhrCdPk6I4D5iqy2fkbf7K5aRVUVGRDBkyxGGg1L9/fzl16pR/KkMe0/P8VkT0Togle0pKShAREYHi4mKOb6KgZTKp3RmuBt3m5wfvGJhFi9SuGVcyM9Wp5Vo4Ghxv6VrztIur4oDuX34Bpk9Xz13x/SzvNXasOobHFT3XV93l5Khdca5kZ/tuQLvJZMLs2bPx17/+1e7xFi1aYOXKlQ5XyaDgpef5Xa3GNBGRZ6r7oGHA+1PU/TE4vmJ+oGnTgOXLHY/fGTBA2zlrwhR8rQK5Tt6qVaugKArq1KljN2BasmQJRAS//fYbA6ZagEETUS1T3QcNuxpgrSj6EkQGYnB8Whpw+LDaMpKZqf7Mz1f3e/v6agJ/53Lav38/brzxRiiKgnvvvbfK8alTp+Lq1asQETz00EPeeVOqFoI6TxMR+UagExp6wtJa9sADjru49LSWBaoVw1FuJG9fX03gj1xORUVFePrpp7F06VK7x++77z785z//QXR0tPtvQtUeW5qIaqlgWlJCL2+2lgUiI7WrXEPVvTXQ23zVrWwymfCPf/wDiqKgUaNGVQKmVq1a4ccff4SIYOXKlQyYCBwI7iUcCE7kf97ICK51cPzBg8B333neMqdnCRtfZzyvbuzdu4QENWDSE0h+/vnnuO+++xweX7ZsGR544AH3K0rVip7nN4MmL2HQRFT9WIKSlSvVB6+j7rAJE9RWIU/X6vP1LL3awN1Act++fRg4cCB+/vlnu8enTZuGF198EXXqcNRKbcOgKQAYNBFVL/ZaLSzrvVkkJKgL6L76qr5Ax96DHVBbtBwNOq8O6R6qm3PnzuGpp57Cp59+avf4wIED8d5776Fx48Z+rhkFEz3Pb4bURFTrOGrxsQRM6enqQPnbbweuv95xOgJFuVbWEug46n578knts/QCtXhuTWAymTBz5ky8+OKLdo+3adMGn332GTp16uTnmlFNwIHgRFSrOMvLBKiB0PLlauvQd9/pS0fgbE286dO11c8XuYZqg5UrV1rzKdkLmJYvXw4RwaFDhxgwkdsYNBFRraInL5OedARakmRqUZuSVnrqp59+Qrt27aAoCgYOHFjl+EsvvWTNp5TGwWLkBeyeI6JawTLOaPlybeUt45G0aNrUdTDmijdyDdUG586dw5NPPonlDj7ItLQ0vPvuu4iKivJzzag2YEsTEdV4WVnqIOxevYC339b2ml9+0ZedW0+3WnVdwiZQzGYz/u///g+KoiAqKqpKwNS2bVvs2bMHIoLly5czYCKfYUsTEXmN3ung/shD5GjQtysvvQR07Kg9O7fWVqkZM4B33606UPy114CoKDW1AXMyqfbt24ePP/4YCxcuxJEjR6ocX7Fihd1uOQvmuSKvE/KK4uJiASDFxcWBrgpRQCxfLhIfL6KGFuoWH6/u90Z5d5SXV30PrZuiiCQkqOewV9eEBNu6Wt5LURyfMyZGpLRULZudLZKZqf5ctsz396K6KCwslLlz50q3bt0EQJXtb3/7m5SXl9u8pvL9dPSZRUeLpKdfK6OFvXNTzaLn+c2gyUsYNFFttny5/WBBUdSt8sNfb3l3ZWe7FzBV3LKz1XNpeXg6ui5nwZCee1FTH+CXLl2SRYsWyT333COhoaHWAKlOnTrSv39/WbJkiVy6dMnua+0FR40bu/5ctQSl/gjsKfAYNAUAgyaqrVy15lRssXGnvCcyMz0PmjIz9b3nxIkioaHOr88SDOm5F756gHszENNzLpPJJBs3bpSRI0dKw4YNbVqTbrvtNnnzzTfl1KlTTt9PS5Cq5XPQc25vB/YUeAyaAoBBE9VWWltzLC02esv7o27eqofWh7glGFq/XlsdZszwzQPcm4GY1nP99NNPMnnyZElISLAJlFq2bCkvvPCC7Nu3T9P7edL1ai8o1XNubwb2FHh6nt8cCE5EHtGTy8id8p6wzH5zNxVATIz2FACukmZWJKLmgsrJ0XbuN96wf14R+1nJtXA0QP74cXW/nnXwXJ3rvfcKUVKyCB9//DF27NhhPR4REYEHH3wQw4cPx5133omQEO0Tuj1N8QBc+xwqZ2HXk8uL2dtrFwZNROQRPbmM3CnvidBQYOhQ4JVX3Hv9sGHaAxFvPMQdOXvW8TF3HuCuEnHqCcQcn+sSRFYC+BiPP/4VAHWNmjp16qBfv34YPnw47r33XtSrV09bpSvxZub0yufyZ2BP1QuDJiLyiKU15/hx+w/hykkb9Zb3hMmkTuF314AB2su68wANDXV9Lxo1ch40ufP+3mxJsT2XGUAOgI8BLAdw3lruhhu6Y/To4Rg8eDBiYmK0V9YBb2ZOr3wufwb2VL0wuSUReSQ0VO0+ArQlbdRb3hPutv5UTFqplTsP0P/8B3j99Wvvac/Ysd5/f2+2pKhlfgIwGUBLAL0BLIAaMLUCMBXAfkybtgVjxozxSsAEuE48qoWjz1lPUlOqXRg0EZHHBgxQk0E2amS7Pz7e/tiYtDR1f/Pm2sq7y53WH3cDN3ce4seOqa1MY8cCDRtWPR4VBdx4o/cf4N5oSSkoKMCcOXMwffotADoCeBnAMQARAJ4E8DWAQwD+DqC911tltATfjRs7fr2zz9mfgT1VM34YmF4rcPYc1Vb2Zk1FRakzvlzNLvJ13iF3Zs8lJKjJJt2plydT4B3N0lIUNY2B5d/emD3nKhGno9lhFy9elIULF0rfvn0lJCSkwuy3OgLcJ8AyAS77daaZs8Sjlu9XerqaWNReGXfPTTWHnue3IqJlrge5UlJSgoiICBQXF8NoNAa6OkR+4WjWlOWvcW+2GrnDZFLXnHM2Zqh5c2DBAuDUKbVl5fRpICOj6jInb7yh7Vo+/RQYMkR9b2+wjPF6/XVg3DjbeiUkqC0e7txjy2cH2N6byp+dyWRCTk4OPv74YyxfvhwXLlywlk1MTMTw4cNx3XWD8dhj0S7P5SsVl0tp0kTdZ/k8LUunuLukCpdiqfl0Pb99HsLVEmxpotqmuuSysbT+OGpVWbq0allP8iF5IzeUvc3S4uXNljlnuZV2794tzz//vDRv3rxCixKkdevW8uKLL8qBAwdcnsvfrTLM4E3uYJ4molrAV38Baz1vdcllYxk/NXas/fpmZKjXN2CAd6bh+2oa+smT6vt6+17aXm8BSkoyMWHCx8jPz7PujYyMxEMPPYThw4fjjjvugGJngFVamnpvAtUq4828U0SOMGgiqoaysqoGAXq6kLxx3uqUyyYtDTCbgQcfrHrM8lB96SXvBIG+mobu7fNeCzIuAvgMapqAdSgpMaOkBKhTpy5SU+/B8OHDkZqaqimfki+COi28mXeKyBkGTUTVjK/+otZ73mDNZWOvpQxQxwPZY3movvmmtvO7CgJd5aHSy5t5qyzKykx4+ulsiHwMIAvAhQpH/whgOJo0GYzlyxtXiyCjurR6UvXHlANE1Yirv6gB9S9qvYOQ3Tlvjx5VUwZUFIhcNllZ6sDvXr2Ahx9Wf7ZqBfz9764fqmfOaHsPV0FgaCgwZ47jgeeKok6F15KaQO/0dpNJXZpl0SL1Z+Xvwe7du/H888+jefMW+P33PwP4CGrA1AbANAA/A8gF8CxOnGiMzZtdv2cwqE6tnlS9saWJqBrx1V/U7px35UrgyhX75QORy8ZRS9mxY8CMGZ6fX0uLj8kE/OMf13L8VBYfr94TQK2rojhvjbKU19Jy6Khr9aWXTqKoKBMff/wxfvzxxwqvaATgIQDDAdwOoGoUV12CjGBt9aSah0ETUTXiq7+o9Z7XUYBiERUF/Pvfvh94a+mKO35c7X7zVQIVLUFgVhbw1FPOW6weewwoLVUf3kuW2E9t8OSTQLt2+gZSV/08LgJYgWPHPsYTT6yHurwJULduXaSmpqJLl+GYMSMVQJjT81aXIMOfS/NQ7cagiaga8dVf1HrO66wrzyI8XN+6be6w17LiK65afLKygEGDXJ+nYotXfLzajRcd7dlss2ufhwnARqgDurOgBk4qgyEJr78+HEOGPIRNmxq7XJol0EGG3pmhlgze9lrvmMGbvMoPKRBqBeZpIn9wN5OzN8+rNQ9RdrYv7oDK25m3HW1Tp7rOh+QqX5Wjzd1s3pW9996PAkwQoJlNPiXgegGmC/CL9fPQct+8VS93eZJrKRhyRVH1wzxNRDWUr/6i1nPelSu1ndNX42G0tHR5S4cOrseGubsosN6p8BVbX+rWPYFff83EwoUfY9euXRVKNQIwGOo4pSRUHKe0bh0wf77r+9a8ueepK9zl6czQQOeKolrAD0FcrcCWJvInX/1F7eq85eVV1/DydkuTq6zXvsq47e41ZGb6/n2WLxdp1uy8AB8J8GcBrq37VqdOXQHuFyBLgCse1+Wll7R9Ht7OTl5dMsxTzaPn+c2gyUsYNJG/+WqxW2fn1RqwxMS4Vx8tXTOffOL7YMnygC4tdX2PvRHEZWY6+izK5cUXvxTgEQGuswZK6na7AO/I+++fcat70NEWFXXtOh19HhMnen+5kmDo9qXaqdoETZs2bZL+/ftL06ZNBYCsWLHC5rjZbJYXX3xR4uLipF69etK7d2/5+eefbcqcOXNGHn74YWnYsKFERETIY489JufPn7cp8+OPP8qdd94pYWFhEh8fLy+//HKVuixdulTat28vYWFh0rFjR1m9erWua2HQRLWB1laV9HRt56sYoM2Y4TiAqTjGZs4c7wdI9t5Pa2DgajyYO4FAXl6ejB8/3vr/xmvb9QK8JMBBm+Bu+nTv3hOt45+cfU6++m45CjCJ3FVtgqY1a9bICy+8IFlZWXaDplmzZklERIR89tln8uOPP8p9990nrVu3lsuXL1vL9O3bV7p06SLff/+9bN68Wdq2bStDhw61Hi8uLpbY2FgZNmyY7NmzRxYtWiTh4eHyr3/9y1rm22+/ldDQUJk9e7bs3btXpk6dKnXr1pXdu3drvhYGTVQbeLM1wF4rhrMHsqVrxlstTdOn269DTIxI//76AgNXiwJrua5jx47J7NmzpVOnTpUCpSgBnhHgOwHMds8zdap3g6ZPPnF/cLu7XWjr13vvu1Xb+aoVuqaqNkFTRZWDJrPZLHFxcfLKK69Y9xUVFUlYWJgsWrRIRET27t0rAOSHH36wlvniiy9EURQ5fvy4iIj885//lEaNGklpaam1zKRJk6R9+/bW3x966CFJTU21qU9iYqI8/fTTmuvPoIlqA2/N3nN39lt2tvfGNEVFqfWwPGDS07WN13J0jcuXizRurLce5+W55z6U5ORkURTFGigZDAZJS0uTceNWCFDq8jzeDpo8bc3TG9gsXy7SvLnvArLaxJPZh7WVnud30C6jkp+fj4KCAiQnJ1v3RUREIDExEbm5uQCA3NxcREZG4tZbb7WWSU5ORkhICLZs2WItc9ddd8FgMFjLpKSk4MCBAzh37py1TMX3sZSxvI89paWlKCkpsdmIajrLLDug6jIgWmfveTL7beXKa4kMPXX2rDoja+VK9d9vvAGcPu36dSLXsqNXNGCAmp/KtXIAX6J+/UcQFhaLt94agfXr10NEcMcdd2D+/PkoKCjA8uXLcd99AwEYXJxPneHnjXtiWfomJsaz8+iZOWmZMXf8uPN6Acy15IrlXlaezWmZfZiVFZh61SRBGzQVFBQAAGJjY232x8bGWo8VFBSgSZMmNsfr1KmDqKgomzL2zlHxPRyVsRy3Z+bMmYiIiLBuCQkJei+RqFpKS1Onfldedy4+Xttiwe5O0QeAhQvVn2+8cW0dt4osv2td200E+Mtf3AviKgcGzq9LAOQBGA8gAUBfXLq0EKWll9C2bVvMmDEDhw4dwjfffIOnn34ajRo1AnAtQHR0LZYgp2dPYOhQffW3dy5ADUycrSmohdZkqVoD6ObN3V+Iurbw1bqUZCtog6ZgN2XKFBQXF1u3o0ePBrpKRH6TlgYcPgxkZwOZmerP/HxtDzVP8jedPq0GJ44Ct0aN1Kzb77yj/ZzHj7sXxFUODOznrzoOYDaAzgBuBvA6gAJERUXh2WefRW5uLn7++WdMmzYNbdq0qfJqrS17gLpIrycqBr2//+7eOfQu0qw1gF6wgAGTK3rWjyT3BW1yy7i4OABAYWEhmlb4v1NhYSG6du1qLXPq1Cmb15WXl+Ps2bPW18fFxaGwsNCmjOV3V2Usx+0JCwtDWJjzdZuIarLQUH2LAlt4up6ZJeiyJDK0LJB79qy6TZ+uBgATJgD/+Y+6z5vsLTGSlXUteAGKAXwGdTmTjVBbmQC1m+1e/P3vw/H88/1shgw4YwkQ7S3Ga1naJSdHX+CXkAC8/rr9JVxMJnUdP73c6ULTGkBX/N+8oyVW9C69UtP4al1KqsT3Q6y0gYOB4K+++qp1X3Fxsd2B4Nu2bbOW+fLLL+0OBC8rK7OWmTJlSpWB4P3797epT1JSEgeCE/mAp1P0LbOBLIO3HQ0aVhTvT8W3N3uuvFykefMrAqRbB3LbbncK8C8Bzno0kNnZjCit0/XHjHE9m0pPLq6Kv7uTXFXvbEx/5o2qbpjnyn3VZvbc+fPnZefOnbJz504BIK+//rrs3LlTfvvtNxFRUw5ERkbKypUrZdeuXTJgwAC7KQduvvlm2bJli3zzzTfSrl07m5QDRUVFEhsbK8OHD5c9e/bI4sWLpX79+lVSDtSpU0deffVV2bdvn0yfPp0pB4jEd1OX3Z2iHxMjsmyZtunwiqKWczUrS89WMTAwm83y/vvvOwiUIMDfBPjV5vW+eoh784GpNQD75BPPvxt6ZmP6O29UdeOrdSlrg2oTNGVnZ9v9n82IESNE5Fpyy9jYWAkLC5PevXvLgQMHbM5x5swZGTp0qDRo0ECMRqOMHDnSaXLL5s2by6xZs6rUZenSpfKHP/xBDAaD3HTTTUxuSbWer6cu68nTZNn699cfaDlKmqn1wQuoLVqWwCA3N1eioqKcBEtvib18SloTfrrDmw9MrQHYnDneCaaXLnUd9HiyKHJtChQc/TFS2wJIvapN0FSTMGiimsTRX/Xe/p+vpSVLa56h6Gj9D05n2cYrb0aj7e+WlqXjx49Lz549nQRKTwpwwem5fd0t4q0Hppbu09BQ29/dDaadBc4VW/U8zc1Vm7qkfLUuZU3GoCkAGDRRTRGIhVO1tJRoXSi48jZ1qpptWms33aOPqmN/Zs++LKNH/8VhoJSYmCiLFuVrOqe7a/Hp5a0Hpt7uU3eCaVfdbcuWXSvraOya1q22Lb3CjOD6MGgKAAZNVFP4e0Bp5UHdjlpKPH1wasvWbRbgPYeBUnh4uGT/98LLy7W3kPmya66y0lK162zMGPVnhcUQdLEXgFVuYar8OWkNpvUE5uXl7rUw+uK7SjWTnud30KYcIKLA8OfU5aysqlPpQ0JsE/BZptZHRVWc1q+f89QDuQDuAVBk9+iTT87Dv/71DJT/zqu3V29nBgzQUVEP2KvXa6+pKRn05jmypHSwTOMvLHSeikDkWh4gV6ko9OYU8iRvVOX0EESeYNBERDa05lHyNN+SZckHEdv9loApPV19aFfMwxMfryajrPwaLaq+5jiAhwF87eAVTwN4HYpSH2vXAmazWg9H9bbHnw9tR/WyLKHhTkbtirm4tCbP1BJM6wnMt27VVrYyLr1CvsCM4ERkQ+vSHZZAwGRSkysuWqT+1LJMg5blMxYuVB/4mzer5Z1lx7Z44AFX73wFwHMAFADxqBowJQH4DWpv3HwA9W1aPfSsm+fPh7arJTREgKeeAjZscH8ZDXeDaXvfD63natIE+OQTPbW8RuuyPkS6+KG7sFbgmCbSK5gHa2qdieVuWgK9s6EqntPZYGf7OYbMAvzb4Tgl4DoBNrmsg+Vz0lpnf85Y0lMvd2e6uZPWwNH3Y+lSbedav17/+KWoKPV1wfTfEwU3DgQPAAZNpEXFQc+VB7cGWwZjVzOxPElLoDWBoqNzOgo4bYOHbwQwOgmW3hF7+ZQcbZb301J26lT/PrT13E9P0kboSWvg6vsxcaLrc/nruqh20/P8ZvcckZ9kZQGtWgG9eqldNpUHt1rGnmRlBaJ2VaWlAYcOAXPmAGPGqD8PHlT3e7qiut7xUK7OaekC2rXrGOrU6QG1++1OACWVSj6D5s0vYdkyQXz8qP+Wc61xY7U7Umu9e/eu2iXnTjemVnrup5bPxxFHCyVX7grT8v1YvBhYutT+uZYsUQf+792rvW7sjiO/8EMQVyuwpYmc0boERDBlMHbW9eZpWgJP1p+bMaNyvS6JojzrpEXpDgGOOGyt+uSTqkktK2+NG1+b/u5O5m1fZ1d39366OxXfVdeynu9H5XNpXSbHsrE7jjzF7rkAYNBEjrizBESg88q46lrRmjPJWVJBd9efUzezAPOdBEoNBfja5jWOxhi5s2isnszb/squ7s799DTpo6PgSWu3WuX317O+HLvjyFvYPUcURFzlpLHHGzmQ3KWla2XhQm3nctZt5Kirx7nNABpCnfg7ys7xfwEwAyiBovRATIw6+yo7G8jPt991ozcvldYuKsDzbkw93Lmfzj4fV92JFbubH35Y/dmqlbrfnZl2emYmAtq643zZJUq1lB+CuFqBLU3kiN5Bz4FuadLa8hIT450FYit2k9k/5xEBbnfSqjRagEtu30t3uxq1zH70d3Z1S73Wr1e7rZy10jj7fFx1J7pqPdM6O67i+2u9V1Onaptt6usuUao5mBGcKIjoGaQbDBmMtba8DBum5k1SFNvWAWf5iUymaxmmmza9lrjSkkAxPNySa+kygAyouZLs6QEgE2quJc+uR2u26crlKtbb3ffWW87e/QOq7uvdG3j33Wt5q7R+PoDrJJlLlgAZGY5bzxQFGD9enTjw0EPavx9a70GHDq7vu6NrOHbM/USfRADY0uQtbGkiR/QM0g2GMRp6Wkf0LBDr6i9/s9ks//znPx22KNWrFyFqGgHvtdrpGW/mzgB9b7U0lZerA+Artx41blx1TT2tOa3cuR96Fk7W+/3w5r1y9ZkGy2QLCg56nt+KiL2/F0ivkpISREREoLi4GEajMdDVoSBj+csXsP8XOqBm2Z471/5fwI5aaLTS83qTSR2b4mi5EktrWH7+teVNXJ3b0V/+aivE1wgL64fS0kt26zNhwruYOfNxfPaZgiFDtI9LqVxPe3Jy1LE4WmVnu27lqEjvvbQnK0vN5n3mjLb3tLTszJgBtGunZtUGgFOnXH/2eu+HM5mZwNCh2r973rhXeq5B72dJNZeu57fPQ7hagi1N5Iq9v7pjYtSZaM7GaHg6NsOd1+udIVZZxfE+69eLNG9e+a/93wT4o8NWpeeee04uX75cpT5aW5e01lPveDN3Zpt5ci/1XrejTev3xZ3xd+62CHn7Xll88om2+n3yif76Uc3ElAMBwKCJtNC7dIqn09U9eb3erh1nr1O3iwI85TBQ6tLlbjl27Jjde6Y3ZYPWJUz0Lufi7oBtR4HrjBmOvwvuXLfeILLy91HrsiXemgSg9V7pWZJmzhxt1zBnjnv1o5qHQVMAMGgib9MyvsTZw8nT11vO4VmQZxbgbYeBEtBIgO8EcNyK4876Y8uWabnD+sabeToOpuK9nDGjautb5dYgvQGdlsCp4jU4CuQaN3YdEC1b5nmLkNZ7pXddRrY0kV7M00RUA7jK7yQCHD2qlvPF64FrM8SGDlV/OhtLYptnJwdAONR8SmPslP4P1HxKZwEkAbA/yzArS52BpYeiqLO7tIx9Cg1VZwBqOaej2WZaWe5lWBjw0kvq2J2KKi+j4+1cXRU/b8sYs8rfj+PH1bFTItdmuVlUnPVmmYGmJVeVv2nNU6UvPxiRikETUZDydLq6t6e7u7Js2WEcO5YIdT23XgCuVCoxFmoqAQHwGCzrvimKOgi+cpoFy4P97Fl99dASDFaUlgZMmOA4IEpI8F4goCfZpd71+bQ6ftx5HRRFXWuvWTPbY5UDorQ04PBhdUB1ZqbzBKJ6OEuaqUWPHmpdnbH3fSPSgnmaiIKUO1mV3X29u7PzLl68iPT0dLz33nsOSvQC8AmAZnaPOsrZozc7tD1ag8GsLODVVx2/1+uve6/lRE/rn+Xh72g2mbtOn3ZdhzNngPXr1c/E2XdCS64qPVzliNISvFpaD93JUUXkCluaiHzM3aUcLA/Nyt0kFo5aaPS+/vRpfX/ZiwjeeustKIqCBg0a2AmYGgPIhdqitBGOAibAcXeOO0vPVKYlaHQVnOnp6tNCT+tfxa5DR59hgwZqq5AWls87JkZb+VOntHfNeoM3l5zRs9QNkR4Mmoh8yJOuBmcPTS1/MWt5/ZAhwODB9se2VBxfAwDZ2dkICwtDSEgI/vKXv1R5v//85wM0b26GovwO4I9Vjlvy7Kxf77o7x5MuQ1fBZEXeGPelh97WQ1fryUVEAPPnX+simzHD8TlF1O+L1rE8vuoedMTbn4Wvug+plvP9uPTagbPnqDJvrW7v6RRsR69ftsz17LqmTX+VW2+9tdKMt2vbuHHj5MqVK1Wu2ZNZVeXl2qeNe3pvteYlcic/k6Nr07smm4i6lpuW612+3Pl1LF/ufh18zd+fBZEFUw4EAIMmqsgb0/0rn8/dKdiOXu94SvsFAR5zGCj17t1bTpw44fC9nAVp69erC65Onar+u/J1OM7xpG3TE0yKBGZBXb2BpdbvUmmp9u+cN4JbbwvEZ0EkwqApIBg0UUXV4QFg+5e9WYC5DgOlmJgY2bJli+ZzVw7Sli6tukYaoO5btkwtk57ufrBkCcLWr3ceWFaulyXQ8Heriy/WZNPaOmf5znnagultwdoCRjWfnuc3Z88R+YC/p/u7Qx2zsgFAXwDlDkp9iI0bh6NXLwcjkR2oOKvKWa6lM2eABx/UdWq7LlwAHn3UdkxMfLw6pssyhuXTT4Fnn1UHvltERwN//KP9sTS+nGmVlgYMGKBtxqLW78ihQ9rKWc6npw7+UHHWm2X9PAvOeqNgwaCJyAc8TRfgS7/++isefPBB7Nixw0GJ8QD+AUUJQ3w8cNdd7r+XyQTYGTPudXPnVt1XcZr6998Dr7xStczvvwOrVqn/tiw+bBEf73gBZW/QOl1f63fk+uu1lat4Pm+nDPCUZeD72LFVA2BffhZEWikiFeN5cpeuVZKpxvPWiu3ecuHCBTz33HNYsGCBgxJ/BvARgDhr/QDPp2drXXHeE5WDnYoUBYiKUlu0XLG0bqSnqy0wgWx1qUjrd+ngQTVwCpbvnCfczRtG5A49z2+mHCDyAU/TBXiDiGDOnDlQFAUNGza0EzDFAtiKxo0FjRt/BUvABHgvn40vux8t99FZ3h4RbQGTpayiAMuXB9dDWut3yWAI/HfOW/Qs30PkTwyaiHwkUAn21q1bh9DQUISEhCAjI8NOiY+gju8uAHAbzp5VA4sZM7yfz8ab3Y+VH5zx8WqrkDeJeDcvk7do/S4xqSORb7F7zkt81T3HZurqzx+f4aFDh/DAAw8gLy/P7vHx4ydi8eL/xfHjBrvHfdV1YzIBLVtWXZxWD0sryZIlajbrivdx82bfdP9lZqqtHMFG63eJ/98g0k7P85sDwYNYVpb9AZEVZwRR8PPVYNvz589jzJgx+Oijj+weT0lJwfvvf4iff47Fhg3OA5eKLSzerGtoKPDmm8CgQe6fw9kgYF+tz6anhcyfAYrW71KwDfAmqinYPRekLAtXalnegqoXd9eiA4CrV8149tnXoCgKjEZjlYCpadOm2LZtG0QETz21FomJsejVC/jf/9V2fl+MQUpLU8cJ6VkjDVC73lx1FWoZ76OHniVYAM+WySGi6ofdc17ize45y2wZR+swVadZMGTL3dbDr776CikpKQ6Pf/LJJxgyZJi1xeOXX4CXXtLf+pKdra2Fwp3WFUuwmJOj/t6zJ3D2rLogbsX7kZCgf3q5vfuakKC2cNlLR2CP3hmDlj9sKt9jb808JCL/0PP8ZtDkJd4MmrRO09b6gKPgoPche/DgQQwaNAi7du1ycMZJAP4GRTFgwgS15crZgqfO2AvEHQVG3u429lb3lr3z6BnzpCdY4x82RDWHrue3z/KSe8n06dOrLOnQvn176/HLly/Ls88+K1FRUXLddddJWlqaFBQU2Jzjt99+k3vuuUfCw8MlJiZGJkyYIFevXrUpk52dLTfffLMYDAa5/vrr5YMPPtBVT28uo8KFK33P07Xc3Hk/LeuCnTtXIo888ojD5UyAvgIUur3ciKP3rrzemL0lNuLjRSZO9HwR4or3XsvSJ964746W5rAs5WJvHTxnqsMyOUSkTY1ae2769Oly0003ycmTJ63b6dOnrcdHjRolCQkJsmHDBtm2bZv88Y9/lNtvv916vLy8XDp27CjJycmyc+dOWbNmjURHR8uUKVOsZX799VepX7++ZGRkyN69e+Wtt96S0NBQWbt2reZ6ejNoqqn/Q/Z3oOKIo4DAl2tuOf9MTQLMdhgoRUc3F2C7VwOlilvl9cYsi7naC4xcBV+u1gZztSCvLz4HXyxOyz9siGqOGhc0denSxe6xoqIiqVu3rixbtsy6b9++fQJAcnNzRURkzZo1EhISYtP69M4774jRaJTS0lIREXn++eflpptusjn34MGDJSUlxWG9rly5IsXFxdbt6NGjXguaauLClYEIVBzVQ2tLiTeDPPsP2S8cBkoAJPO/T1ytD2i929SpVa+rvNz+wrp6NkfBvKN7761AxhlvL05bU/+wIaqNalzQVL9+fWnatKm0bt1aHn74Yfntt99ERGTDhg0CQM6dO2fzmhYtWsjrr78uIiIvvvhilaDr119/FQCyY8cOERHp0aOHjB071qbM+++/L0aj0Wm97D3ovBE0ifjmr+NA0ROo+JLWLrLycu8HeTNmWM7zswAdHQZKDz88RcrKymxeq/UBrXVzFnRfq6f7m73WFVf3vvIWEyPy379pvMabQXBN/MOGqLbSEzQFfcqBxMRELFiwAGvXrsU777yD/Px89OjRA+fPn0dBQQEMBgMiIyNtXhMbG4uCggIAQEFBAWJjY6sctxxzVqakpASXL1+2W68pU6aguLjYuh09etQbl2tVUzL7mkzqoGGRqscs+9LT9U27d9fmzc4HSououYr+8Q/vpnv45JMSTJ8+DIAC4A8A9lQqkQrgFEJDBfff/3+oW7euzVFLLiJ3ptBX5mw5DZPp2vR9T9jLceTq3ld2+rT63ffm1H1vLs0RDMvkEJH/BX3Q1K9fPzz44IPo3LkzUlJSsGbNGhQVFWHp0qUBrVdYWBiMRqPN5m1pacDhw+osOW8vb+EvWgMVfyxboTUH0RtveB7kmc1mvPzyy1AUBcOHRwDIrFQiAcBOqA1MqwDEwGQCHnqoaqDgzVxEzoLuzZvVFADucpbjyJ38T7//Htw5yWrKHzZEpF3QB02VRUZG4g9/+AMOHjyIuLg4lJWVoaioyKZMYWEh4uLUxUfj4uJQWFhY5bjlmLMyRqMR4eHhProSbar7wpVaH5a+XNjVQmuWZ2eBg6sgb82aNVAUBaGhoZg8ebKdEouhBkpHAHS1ew57QZmzB/TEiWrA4iig0rqmnCefgavWFU/WoPNXS6Q7asIfNkSkXbULmi5cuIBDhw6hadOm6NatG+rWrYsNGzZYjx84cABHjhxBUlISACApKQm7d+/GqVOnrGXWrVsHo9GIDh06WMtUPIeljOUc5D6tD0tvLuzqiKtuLkXRnrW6YoBx4MAB3HTTTVAUBampqXZKvwCgDGqwNNjpeZ0FZY4e0LNnOw6oli8Hpk3TFnR78hm4al1xt4vRny2R7qruf9gQkQ5+GGPlkfHjx0tOTo7k5+fLt99+K8nJyRIdHS2nTp0SETXlQIsWLWTjxo2ybds2SUpKkqSkJOvrLSkH+vTpI3l5ebJ27VqJiYmxm3Jg4sSJsm/fPpk3b15AUw7UJME2YNbVAHutA6E//7xIhgwZ4nBA97333iunT592exC3O1PVPR3orCWnkb1tzhxt77V8uXcHlxMReUONmj03ePBgadq0qRgMBmnevLkMHjxYDh48aD1uSW7ZqFEjqV+/vtx///1y8uRJm3McPnxY+vXrJ+Hh4RIdHS3jx4+3m9yya9euYjAYpE2bNgFNblnTBNtMQGfTz50HDiYB/s9hoNSyZUvJy8uzeS93A5FATVV39Fl5K+B1d3Yep+4Tka/oeX5zGRUv8eYyKjWRo7XB9K4x5i3Olu6wLHcCWAZ/rwJwr8NzLV26FA8++KDD81vWgbt2PscqLr8BeGd5Eb3sfVb26gkAS5cC0dHa67hokbqwrVZcjoSIfI1rzwUAgybXvLXGmD+8+eZ+jB9/P8rL99s9/uKLL2LatGmoU6dOlWP2gg7LWKkzZxy/Z8U16ADvru+mleUzOn5cnfYfEwMcOgS8+27VgHfIkKrr3bmqo9Z1FS0UhTPRiMi3GDQFAIOm6q+oqAhPP/20w3QW9903AO+//x80djJa3NmivCLqTLZ27dTWp3//Ww1OLCwtb4C+hX29xdlCvAMG2Aa8p08Dgwfrr6PJdO31rsTEAPPnOz5PdQnAiSi4MWgKAAZN2gXTA89kMmHWrFmYOnWq3eOtW7fGZ599hs6dO2s4l/OV7wE1EDh2DDAY1PI5OeoGqDOvbr8daNnScVDhbneVq3vuLNgDbIMgV9fpqo7jxl0LDp355BNg2LCq+50Fd2yRIiK9dD2/fTi2qlbhQHBtgmUNupUrVzoc0A1APv30U93n1DpTLiZGvV579yIkxPsDo13dc1frzVUe8O3pumuevD5YluQhopqjRi2jQjWHpTXDW8uT6LVv3z60b98eiqJgwIABVY5Pnz4dV69ehYhg0KBBus+vNTnk6dPAoEHqVvlemM3efS8t9/wf/3A+1krENleSpwlLLTmbHHGUWTyYluQhotqJQRP5RaAeeEVFRXjwwQehKAo6dOiAn3/+2eb4/fffj99//x0igpdeesnuwG6t/JGgU897abnnY8dq6yoDrgVBniYstSwL4yyLub3M4sG0JA8R1U4Mmsgv/PnAM5lM+Pvf/w5FUdCoUSN8apmO9l/XX389du/eDRFBVlaW04HdenhzYV1HnK3vVpmWe37sGHDunLb3tgRBWjKru6qjO+u2BdOSPERUO7n/ZzWRDv544K1cuRIDBw50eDwrKwv333+/+2/ggqUFxZLjyVccre9WmTeDh8aNrwVBFa/TMivQwtUadBWlpVWdledsUkAwLclDRLUTW5rIL3z1wPvpp5/Qrl07KIpiN2B66aWXrOOUPAmYLDPdFi1SfzrqRrS0oERHu/1WDsXE6Es34M3g4S9/sQ1m3GkpskfPum3eaOEiIvIEUw54CVMOOGeZpn78uOOs2KGhalBSKbl2FefOncMTTzyBLAcjxwcNGoR3330XjRo18qzS/+XOFPeyMrWMlnxEWlRMVaCVq3uuKGrQIwKcOOH4c2ncGCgstB/Q+Dt9RNVs7Spf57AiopqLKQcCgCkHXHM0Xbzy1HF708bLy8tl2rSXHKYIaNu2rezZs8dvddYyxV3L9braPJ1Kr2XdP1frzQXbNH5nawcSEelVoxbsrS4YNGmzbJlIaKj2nEBZWVkOAyUA8vzzK3xWV8tiu1rrao+7C9R6MxjQEmRUt0CkvFzN45SZqf7Us2gwEVFFXLA3ANg9p422tcf2oFmzAThx4lcHx/8OYAoURe0H8lWXjNZ10rKz1fE49uhdoLZ5c+DDD4FTp7zb3aWlGy2YMrUTEfmLnuc3Z8+RXzme0XUWwOMAPgOgjrGx9SCAfwG4Nk5JRB3Lkp6uzsLy9gNe6+yz48fVAMtesKFnMLaiAG++CfTurbuqLlkGXHtahoioNmPQRH5lG0SUQ201+pvdsu3bt8eUKSvw6KM3OjxfxfxOPXteay05flwdvHzmDBASoh5zNTvLeV0dGzfOdsB3xUHilhlfzgbAV36Nr7FFiYjIPeye8xJ2z2ljMgFNmizH2bOOkxlFR/8/FBTca51Np6V7a+pUoHNnICPDcULHxo2Bf/9be2CiZcafPZVncjma8WUxYwbwwgv+CVy42C0RkS09z2/maSK/2L17N1q3bo06dRQHAdM/AJRDUQT/+te9uru3/vd/gYcecp4B+8wZdb03rWvcWZI4AvqyfFdeFsZRTqOEBGD5cmDaNP8FTIFc+4+IqLpjS5OXsKWpqjNnzuCxxx7D//t//8/u8fDwwbh8eT6ASABqEDF3rm2Lh7utPc7ExwMLFmgfbG2vdSYmRlsOpoqDxAPZLWa5j46CSkVR70t+PrvqiKh20fP8ZtDkJQyaVOXl5ZgxYwb+93//1+7xG2+8EcuXL8eNN96oOYhw1b3lKS3dU5Xrevw48Mgjrs+dmalmuw40b8wEJCKqiTh7jvxu2bJleOihhxwe//zzz9G/f3+bfVpna1m6tyq39niLpXvKWeqCynXNydF27mBZB42L3RIReY5jmshtP/74I1q2bAlFUewGTDNnzkR5eTlEpErApFdaGnD4sDrg29sqj0HSorqtg8bFbomIPMegiXT5/fffce+990JRFHTt2hVHjhyxOT506FAUFRVBRDB58mSEenGATGiob3IYAbapC7TWxdEgccvvc+cGz/ig6hbkEREFIwZN5NLVq1fxwgsvQFEUxMTEYNWqVTbHb7rpJuzfvx8igszMTERERABQW21yctS0ATk5VVtxXB23V85kUmeh6ZnNpoee7ilHs+Li44Nv4djqFuQREQUjjmkih5YsWYIhQ4Y4PL569Wrcc889do+5ygekNV+QvXKNG1/LBu7tgeF6u6fS0tRs5NUhWaSjsWHx8VVnLRIRUVWcPeclNWX2XF5eHu69914cczDietasWZg4cSJCQhw3Ulpmu1X+ZllaNCZMAF591fHxykkh7ZUTUYOnM2f0XJ1zCQm1Y8o9M4ITEV3DlAMBUJ2DptOnT+PRRx/FmjVr7B5/5JFHMG/ePIfXVfEh3KQJMGKEOiPNHkVRlzVx1BVnyRd08CBw/fXO8wo1b34t35LlfU+ccK/1SVGCr0uNiIh8jykHyKWrV69i2rRpmDVrlt3jnTp1wvLly9GuXTun57HXfeaMiPMZapYB2f/8p/NziqjHQ0Ov5UF68021ZUpvt53e5VWIiKh24kDwWmbRokVQFAUGg8FuwPT552sgIti1a5emgMneshzecOiQtnIVB247W65k4kS1BauiqCh13bfCQgZMRETkGluaaoEdO3bg3nvvxYkTJxyUeBXAOAAheOYZoKzMdRBhMqktTL7q3L3+em3lKg/cdjYwe+ZMjuUhIiL3cUyTlwTbmKZTp05hxIgRWLt2rd3jd989HJs2zQPQ0GZ/5cHYFpUHD5tMQHKy/nrpHdPkaM05rpVGRETeoOf5ze65GuTq1auYNGkSFEVBbGxslYCpc+fO+Pnnn1FeLjh06CNUDpgA+9mxs7LUxV579QIeflj96WTFFIcsAVlGhvpvZ/mCDAbmFSIiouDCoKkGWLhwoXWc0uzZs22OhYSE4Msvv4SI4Mcff0S7du2webPrQdaW7NiOxi2dPau/npakj7Nna0sKWZ2SRxIRUc3HMU3V1Pbt29G/f38UFBTYPf7aa68hPT3dbj4lrVmvV6xQgyZ3p/BXTAlQeQyR1qSQ1Sl5JBER1WwMmqqRwsJC/M///A+++uorByX+B82avY233mrotBVGa9brN9/UXUUA17rP3njD+VpxoaFAz56uz6e1HBERkS+xey7IrV4NKMq7UBQFcXFxdgKmmwEcBCAAPsTJkw3xwANqC5EjrhZv1SsqyvZ3dp8REVFNxKCpknnz5qFVq1aoV68eEhMTsXXr1oDVRVGA/v1PAniq0pE6qFdvHdRAaQeAa/Pz7Q3krsyyeKu35k0uXQpkZwOZmerP/HwGTEREVPMwaKpgyZIlyMjIwPTp07Fjxw506dIFKSkpOHXqlN/rcq0VqDGAZ/777zkAzACu4soVx/P9Kw7kdiQtTQ2sPK1jQoLaddazp5qZu2dPjjciIqKaiUFTBa+//jqefPJJjBw5Eh06dMD8+fNRv359vP/++36tx+rVFX8zAPgn1FaldADa+9RcDfgeMEB7nTjtn4iIajsGTf9VVlaG7du3I7lCxsaQkBAkJycjNze3SvnS0lKUlJTYbN7Sv793zuNqwLersU2WlqRlyzjtn4iIiEHTf/3+++8wmUyIjY212R8bG2t3Wv/MmTMRERFh3RISEvxVVZcswU6PHs7LWcY2WV5T+RyA2pL0wAPA4cMct0RERLUbgyY3TZkyBcXFxdbt6NGjga4SAP3dZloTSFqm/XPcEhER1VbM0/Rf0dHRCA0NRWFhoc3+wsJCxMXFVSkfFhaGsLAwn9Rl1SrtXXTNmgEV1+GNj1cDJj2tQEwgSURE5BqDpv8yGAzo1q0bNmzYgIEDBwIAzGYzNmzYgDFjxvi1Lqmp2spNnAjMnOmdYIcJJImIiJxj0FRBRkYGRowYgVtvvRXdu3fH3LlzcfHiRYwcOdLvdRFxnnxy4kR1DTeAwQ4REZE/MGiqYPDgwTh9+jSmTZuGgoICdO3aFWvXrq0yONxfRNT0AxW76p54Apg3DzAYAlIlIiKiWksR8VZe6NqtpKQEERERKC4uhtFoDHR1iIiISAM9z2/OniMiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAy6h4iSWxeklJSYBrQkRERFpZnttaFkhh0OQl58+fBwAkJCQEuCZERESk1/nz5xEREeG0DNee8xKz2YwTJ06gYcOGUBTFq+cuKSlBQkICjh49ynXtPMD76DneQ+/gffQO3kfP8R6qLUznz59Hs2bNEBLifNQSW5q8JCQkBPHx8T59D6PRWGu/1N7E++g53kPv4H30Dt5Hz9X2e+iqhcmCA8GJiIiINGDQRERERKQBg6ZqICwsDNOnT0dYWFigq1Kt8T56jvfQO3gfvYP30XO8h/pwIDgRERGRBmxpIiIiItKAQRMRERGRBgyaiIiIiDRg0ERERESkAYOmIDdv3jy0atUK9erVQ2JiIrZu3RroKgWVr7/+Gvfeey+aNWsGRVHw2Wef2RwXEUybNg1NmzZFeHg4kpOT8csvv9iUOXv2LIYNGwaj0YjIyEg8/vjjuHDhgh+vIrBmzpyJ2267DQ0bNkSTJk0wcOBAHDhwwKbMlStXMHr0aDRu3BgNGjTAoEGDUFhYaFPmyJEjSE1NRf369dGkSRNMnDgR5eXl/ryUgHrnnXfQuXNna5LApKQkfPHFF9bjvIf6zZo1C4qiID093bqP99G1l156CYqi2Gw33HCD9TjvofsYNAWxJUuWICMjA9OnT8eOHTvQpUsXpKSk4NSpU4GuWtC4ePEiunTpgnnz5tk9Pnv2bLz55puYP38+tmzZguuuuw4pKSm4cuWKtcywYcPw008/Yd26dVi1ahW+/vprPPXUU/66hIDbtGkTRo8eje+//x7r1q3D1atX0adPH1y8eNFaZty4cfj888+xbNkybNq0CSdOnEBaWpr1uMlkQmpqKsrKyvDdd9/hww8/xIIFCzBt2rRAXFJAxMfHY9asWdi+fTu2bduGP/3pTxgwYAB++uknALyHev3www/417/+hc6dO9vs533U5qabbsLJkyet2zfffGM9xnvoAaGg1b17dxk9erT1d5PJJM2aNZOZM2cGsFbBC4CsWLHC+rvZbJa4uDh55ZVXrPuKiookLCxMFi1aJCIie/fuFQDyww8/WMt88cUXoiiKHD9+3G91DyanTp0SALJp0yYRUe9Z3bp1ZdmyZdYy+/btEwCSm5srIiJr1qyRkJAQKSgosJZ55513xGg0SmlpqX8vIIg0atRI3nvvPd5Dnc6fPy/t2rWTdevWyd133y1jx44VEX4XtZo+fbp06dLF7jHeQ8+wpSlIlZWVYfv27UhOTrbuCwkJQXJyMnJzcwNYs+ojPz8fBQUFNvcwIiICiYmJ1nuYm5uLyMhI3HrrrdYyycnJCAkJwZYtW/xe52BQXFwMAIiKigIAbN++HVevXrW5jzfccANatGhhcx87deqE2NhYa5mUlBSUlJRYW1pqE5PJhMWLF+PixYtISkriPdRp9OjRSE1NtblfAL+Levzyyy9o1qwZ2rRpg2HDhuHIkSMAeA89xQV7g9Tvv/8Ok8lk86UFgNjYWOzfvz9AtapeCgoKAMDuPbQcKygoQJMmTWyO16lTB1FRUdYytYnZbEZ6ejruuOMOdOzYEYB6jwwGAyIjI23KVr6P9u6z5VhtsXv3biQlJeHKlSto0KABVqxYgQ4dOiAvL4/3UKPFixdjx44d+OGHH6oc43dRm8TERCxYsADt27fHyZMnMWPGDPTo0QN79uzhPfQQgyYisho9ejT27NljM/6BtGvfvj3y8vJQXFyMTz/9FCNGjMCmTZsCXa1q4+jRoxg7dizWrVuHevXqBbo61Va/fv2s/+7cuTMSExPRsmVLLF26FOHh4QGsWfXH7rkgFR0djdDQ0CozGgoLCxEXFxegWlUvlvvk7B7GxcVVGVhfXl6Os2fP1rr7PGbMGKxatQrZ2dmIj4+37o+Li0NZWRmKiopsyle+j/bus+VYbWEwGNC2bVt069YNM2fORJcuXfDGG2/wHmq0fft2nDp1Crfccgvq1KmDOnXqYNOmTXjzzTdRp04dxMbG8j66ITIyEn/4wx9w8OBBfhc9xKApSBkMBnTr1g0bNmyw7jObzdiwYQOSkpICWLPqo3Xr1oiLi7O5hyUlJdiyZYv1HiYlJaGoqAjbt2+3ltm4cSPMZjMSExP9XudAEBGMGTMGK1aswMaNG9G6dWub4926dUPdunVt7uOBAwdw5MgRm/u4e/dumwB03bp1MBqN6NChg38uJAiZzWaUlpbyHmrUu3dv7N69G3l5edbt1ltvxbBhw6z/5n3U78KFCzh06BCaNm3K76KnAj0SnRxbvHixhIWFyYIFC2Tv3r3y1FNPSWRkpM2Mhtru/PnzsnPnTtm5c6cAkNdff1127twpv/32m4iIzJo1SyIjI2XlypWya9cuGTBggLRu3VouX75sPUffvn3l5ptvli1btsg333wj7dq1k6FDhwbqkvzumWeekYiICMnJyZGTJ09at0uXLlnLjBo1Slq0aCEbN26Ubdu2SVJSkiQlJVmPl5eXS8eOHaVPnz6Sl5cna9eulZiYGJkyZUogLikgJk+eLJs2bZL8/HzZtWuXTJ48WRRFka+++kpEeA/dVXH2nAjvoxbjx4+XnJwcyc/Pl2+//VaSk5MlOjpaTp06JSK8h55g0BTk3nrrLWnRooUYDAbp3r27fP/994GuUlDJzs4WAFW2ESNGiIiaduDFF1+U2NhYCQsLk969e8uBAwdsznHmzBkZOnSoNGjQQIxGo4wcOVLOnz8fgKsJDHv3D4B88MEH1jKXL1+WZ599Vho1aiT169eX+++/X06ePGlznsOHD0u/fv0kPDxcoqOjZfz48XL16lU/X03gPPbYY9KyZUsxGAwSExMjvXv3tgZMIryH7qocNPE+ujZ48GBp2rSpGAwGad68uQwePFgOHjxoPc576D5FRCQwbVxERERE1QfHNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIahyTyYTbb78daWlpNvuLi4uRkJCAF154wenrc3JyoChKlZXgPXH48GEoioK8vDyvnZOI/ItBExHVOKGhoViwYAHWrl2LhQsXWvc/99xziIqKwvTp0wNYOyKqrhg0EVGN9Ic//AGzZs3Cc889h5MnT2LlypVYvHgxPvroIxgMBoevO3z4MHr16gUAaNSoERRFwaOPPgoAMJvNmDlzJlq3bo3w8HB06dIFn376qfW1586dw7BhwxATE4Pw8HC0a9cOH3zwAQCgdevWAICbb74ZiqKgZ8+evrlwIvKZOoGuABGRrzz33HNYsWIFhg8fjt27d2PatGno0qWL09ckJCRg+fLlGDRoEA4cOACj0Yjw8HAAwMyZM/HJJ59g/vz5aNeuHb7++ms88sgjiImJwd13340XX3wRe/fuxRdffIHo6GgcPHgQly9fBgBs3boV3bt3x/r163HTTTc5DdyIKDgpIiKBrgQRka/s378fN954Izp16oQdO3agTh3Xfyvm5OSgV69eOHfuHCIjIwEApaWliIqKwvr165GUlGQt+8QTT+DSpUvIzMzEfffdh+joaLz//vtVznn48GG0bt0aO3fuRNeuXb11eUTkR2xpIqIa7f3330f9+vWRn5+PY8eOoVWrVm6d5+DBg7h06RL+/Oc/2+wvKyvDzTffDAB45plnMGjQIOzYsQN9+vTBwIEDcfvtt3t6CUQUJDimiYhqrO+++w5z5szBqlWr0L17dzz++ONwt3H9woULAIDVq1cjLy/Puu3du9c6rqlfv3747bffMG7cOJw4cQK9e/fGhAkTvHY9RBRYDJqIqEa6dOkSHn30UTzzzDPo1asX/vOf/2Dr1q2YP3++y9daxhuZTCbrvg4dOiAsLAxHjhxB27ZtbbaEhARruZiYGIwYMQKffPIJ5s6di3//+98Oz0lE1Qu754ioRpoyZQpEBLNmzQIAtGrVCq+++iomTJiAfv36Oe2ma9myJRRFwapVq3DPPfcgPDwcDRs2xIQJEzBu3DiYzWbceeedKC4uxrfffguj0YgRI0Zg2rRp6NatG2666SaUlpZi1apVuPHGGwEATZo0QXh4ONauXYv4+HjUq1cPERER/rgVROQtQkRUw+Tk5EhoaKhs3ry5yrE+ffrIn/70JzGbzU7P8be//U3i4uJEURQZMWKEiIiYzWaZO3eutG/fXurWrSsxMTGSkpIimzZtEhGRv//973LjjTdKeHi4REVFyYABA+TXX3+1nvPdd9+VhIQECQkJkbvvvttr10tE/sHZc0REREQacEwTERERkQYMmoio1hk1ahQaNGhgdxs1alSgq0dEQYrdc0RU65w6dQolJSV2jxmNRjRp0sTPNSKi6oBBExEREZEG7J4jIiIi0oBBExEREZEGDJqIiIiINGDQRERERKQBgyYiIiIiDRg0EREREWnAoImIiIhIg/8Ptdifjdcg3LwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -5077,8 +5094,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "MAE: 2167.0737844419123\n", - "RMSE: 3057.133601713671\n" + "MAE: 2352.7343172904784\n", + "RMSE: 3434.275227263764\n" ] } ], @@ -5261,7 +5278,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.7957446808510639\n" + "0.7787234042553192\n" ] } ], @@ -5282,7 +5299,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 79.57%\n" + "Accuracy: 77.87%\n" ] } ], @@ -5303,18 +5320,18 @@ "output_type": "stream", "text": [ "Confusion Matrix:\n", - " [[90 25]\n", - " [23 97]]\n", + " [[99 26]\n", + " [26 84]]\n", "\n", "Classification Report:\n", " precision recall f1-score support\n", "\n", - " 0 0.80 0.78 0.79 115\n", - " 1 0.80 0.81 0.80 120\n", + " 0 0.79 0.79 0.79 125\n", + " 1 0.76 0.76 0.76 110\n", "\n", - " accuracy 0.80 235\n", - " macro avg 0.80 0.80 0.80 235\n", - "weighted avg 0.80 0.80 0.80 235\n", + " accuracy 0.78 235\n", + " macro avg 0.78 0.78 0.78 235\n", + "weighted avg 0.78 0.78 0.78 235\n", "\n" ] } @@ -5342,7 +5359,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.8\n" + "0.7787234042553192\n" ] } ], @@ -5364,7 +5381,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 80.00%\n" + "Accuracy: 77.87%\n" ] } ], @@ -5384,16 +5401,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[ 84 31]\n", - " [ 16 104]]\n", + "[[93 32]\n", + " [20 90]]\n", " precision recall f1-score support\n", "\n", - " 0 0.84 0.73 0.78 115\n", - " 1 0.77 0.87 0.82 120\n", + " 0 0.82 0.74 0.78 125\n", + " 1 0.74 0.82 0.78 110\n", "\n", - " accuracy 0.80 235\n", - " macro avg 0.81 0.80 0.80 235\n", - "weighted avg 0.80 0.80 0.80 235\n", + " accuracy 0.78 235\n", + " macro avg 0.78 0.78 0.78 235\n", + "weighted avg 0.78 0.78 0.78 235\n", "\n" ] } @@ -5433,7 +5450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.6936170212765957\n" + "0.7361702127659574\n" ] } ], @@ -5451,7 +5468,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 69.36%\n" + "Accuracy: 73.62%\n" ] } ], @@ -5471,16 +5488,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[83 32]\n", - " [40 80]]\n", + "[[99 26]\n", + " [36 74]]\n", " precision recall f1-score support\n", "\n", - " 0 0.67 0.72 0.70 115\n", - " 1 0.71 0.67 0.69 120\n", + " 0 0.73 0.79 0.76 125\n", + " 1 0.74 0.67 0.70 110\n", "\n", - " accuracy 0.69 235\n", - " macro avg 0.69 0.69 0.69 235\n", - "weighted avg 0.69 0.69 0.69 235\n", + " accuracy 0.74 235\n", + " macro avg 0.74 0.73 0.73 235\n", + "weighted avg 0.74 0.74 0.73 235\n", "\n" ] }