diff --git a/Bearing Classification/Dataset/Faulty-bearing.csv b/Bearing Classification/Dataset/Faulty-bearing.csv
new file mode 100644
index 000000000..97576be85
--- /dev/null
+++ b/Bearing Classification/Dataset/Faulty-bearing.csv
@@ -0,0 +1,1000 @@
+Case_No;Measurements
+1;-0,004725455
+2;-0,106630909
+3;-0,074169091
+4;0,208947273
+5;-0,056705455
+6;-0,175458182
+7;0,051774545
+8;0,041501818
+9;-0,024449091
+10;0,167445455
+11;-0,165185455
+12;0,022805455
+13;0,468641818
+14;0,242230909
+15;0,019723636
+16;-0,010889091
+17;-0,125943636
+18;-0,041501818
+19;0,267090909
+20;-0,074169091
+21;0,008629091
+22;-0,081565455
+23;-0,410292727
+24;0,092043636
+25;0,046227273
+26;0,137243636
+27;0,380707273
+28;0,223945455
+29;0,032872727
+30;-0,231752727
+31;-0,08588
+32;0,2486
+33;0,457341818
+34;0,12882
+35;-0,058349091
+36;-0,041912727
+37;-0,281883636
+38;0,01582
+39;0,064101818
+40;-0,339616364
+41;-0,114027273
+42;0,086907273
+43;-0,154912727
+44;0,116903636
+45;-0,016847273
+46;-0,249421818
+47;0,358518182
+48;0,03164
+49;-0,118958182
+50;0,556576364
+51;0,391596364
+52;0,252503636
+53;0,156145455
+54;-0,217370909
+55;-0,140736364
+56;0,048281818
+57;0,059170909
+58;0,194565455
+59;0,041501818
+60;-0,219425455
+61;-0,126149091
+62;-0,13334
+63;0,032872727
+64;0,234834545
+65;0,308798182
+66;0,146078182
+67;0,018901818
+68;0,058349091
+69;-0,143612727
+70;-0,007396364
+71;0,064718182
+72;0,075401818
+73;0,211823636
+74;0,130258182
+75;0,231752727
+76;0,156967273
+77;-0,243463636
+78;-0,355847273
+79;-0,237916364
+80;-0,206276364
+81;0,024243636
+82;0,113205455
+83;0,041707273
+84;0,1695
+85;-0,033078182
+86;-0,166007273
+87;0,061430909
+88;0,180389091
+89;0,154501818
+90;0,1808
+91;0,263803636
+92;0,27346
+93;0,106836364
+94;-0,185114545
+95;-0,455287273
+96;-0,159432727
+97;0,3164
+98;0,165596364
+99;0,269145455
+100;0,05198
+101;-0,443370909
+102;-0,347218182
+103;-0,27798
+104;0,114643636
+105;0,439056364
+106;0,23956
+107;-0,025887273
+108;0,120396364
+109;-0,009861818
+110;-0,365914545
+111;-0,18306
+112;-0,119369091
+113;0,364887273
+114;0,405361818
+115;0,068621818
+116;0,47234
+117;0,591709091
+118;-0,072936364
+119;-0,755867273
+120;-0,42262
+121;-0,041090909
+122;0,161281818
+123;0,246750909
+124;0,132518182
+125;0,228054545
+126;-0,027325455
+127;-0,270172727
+128;-0,074990909
+129;0,240587273
+130;0,16046
+131;0,113
+132;0,188196364
+133;0,176690909
+134;0,331398182
+135;0,113
+136;-0,090605455
+137;-0,052185455
+138;0,07232
+139;0,019518182
+140;0,003287273
+141;0,198469091
+142;-0,040063636
+143;-0,048692727
+144;-0,201550909
+145;-0,209563636
+146;0,346807273
+147;0,225589091
+148;0,047870909
+149;0,207509091
+150;-0,080332727
+151;-0,287636364
+152;-0,058965455
+153;-0,113
+154;-0,059992727
+155;0,134572727
+156;0,067594545
+157;0,276336364
+158;0,242230909
+159;-0,047254545
+160;-0,179567273
+161;-0,328932727
+162;-0,195592727
+163;0,042323636
+164;0,177718182
+165;0,207303636
+166;0,375776364
+167;0,37968
+168;-0,058965455
+169;-0,514458182
+170;-0,465970909
+171;0,261954545
+172;0,631978182
+173;0,339821818
+174;0,179156364
+175;-0,193743636
+176;-0,65314
+177;-0,404129091
+178;0,142996364
+179;0,345163636
+180;0,200523636
+181;0,094303636
+182;-0,394061818
+183;-0,385843636
+184;-0,134161818
+185;-0,182032727
+186;0,228054545
+187;0,307565455
+188;0,211823636
+189;0,237505455
+190;0,496378182
+191;0,452821818
+192;0,223123636
+193;-0,344136364
+194;-0,734294545
+195;0,010272727
+196;0,079510909
+197;0,196414545
+198;0,449945455
+199;-0,106014545
+200;-0,114232727
+201;-0,120601818
+202;-0,311263636
+203;0,224561818
+204;0,574656364
+205;0,212645455
+206;0,067183636
+207;-0,133545455
+208;-0,108685455
+209;0,42714
+210;0,229903636
+211;-0,052390909
+212;-0,092043636
+213;-0,189223636
+214;-0,305510909
+215;-0,019312727
+216;0,026298182
+217;-0,204016364
+218;0,245929091
+219;0,049514545
+220;0,014381818
+221;0,270789091
+222;0,161898182
+223;0,161692727
+224;0,019929091
+225;-0,156967273
+226;-0,136216364
+227;0,294827273
+228;0,32318
+229;0,17628
+230;0,103138182
+231;-0,064101818
+232;-0,017463636
+233;0,158610909
+234;0,145050909
+235;-0,317427273
+236;-0,247367273
+237;-0,172581818
+238;-0,145461818
+239;0,156556364
+240;0,037392727
+241;0,176690909
+242;0,195387273
+243;-0,003081818
+244;-0,196209091
+245;-0,160665455
+246;0,143818182
+247;0,267501818
+248;0,16724
+249;-0,218603636
+250;0,012738182
+251;0,142585455
+252;0,206481818
+253;0,382556364
+254;-0,015614545
+255;-0,091016364
+256;-0,199701818
+257;-0,321330909
+258;-0,258872727
+259;0,044994545
+260;0,258667273
+261;0,290718182
+262;0,260516364
+263;-0,131901818
+264;0,1469
+265;0,156145455
+266;-0,313729091
+267;-0,191894545
+268;-0,055267273
+269;0,142174545
+270;0,33448
+271;0,134778182
+272;-0,070676364
+273;0,078894545
+274;-0,043350909
+275;-0,078689091
+276;-0,055472727
+277;-0,168061818
+278;0,159021818
+279;0,055061818
+280;-0,110945455
+281;-0,221069091
+282;-0,095536364
+283;0,258461818
+284;0,262776364
+285;0,473778182
+286;0,223123636
+287;-0,003903636
+288;0,052801818
+289;-0,145256364
+290;-0,254352727
+291;-0,167856364
+292;0,093687273
+293;0,380090909
+294;0,416867273
+295;-0,04972
+296;-0,03164
+297;-0,023421818
+298;-0,419127273
+299;-0,122861818
+300;0,03164
+301;0,07232
+302;0,463505455
+303;0,404334545
+304;0,033283636
+305;-0,032050909
+306;-0,148954545
+307;-0,007807273
+308;0,386870909
+309;-0,108890909
+310;-0,272227273
+311;0,057732727
+312;-0,160254545
+313;-0,057732727
+314;0,028969091
+315;-0,282910909
+316;-0,127176364
+317;0,385227273
+318;0,352970909
+319;0,379885455
+320;0,231958182
+321;-0,411525455
+322;-0,43844
+323;-0,252298182
+324;0,195387273
+325;0,50624
+326;0,595612727
+327;0,457547273
+328;-0,071498182
+329;-0,371872727
+330;-0,564383636
+331;0,080743636
+332;0,288869091
+333;-0,052596364
+334;-0,113821818
+335;-0,042118182
+336;0,242230909
+337;0,010889091
+338;-0,080127273
+339;-0,613487273
+340;-0,553289091
+341;0,101905455
+342;0,260516364
+343;0,641429091
+344;0,442343636
+345;0,247572727
+346;-0,125327273
+347;-0,220863636
+348;0,152447273
+349;0,292567273
+350;0,316605455
+351;-0,018285455
+352;-0,138065455
+353;-0,373310909
+354;-0,289485455
+355;-0,022805455
+356;0,095330909
+357;0,130463636
+358;-0,047870909
+359;-0,002876364
+360;0,083209091
+361;0,283732727
+362;0,105398182
+363;0,085674545
+364;-0,035543636
+365;-0,0904
+366;0,395089091
+367;0,340643636
+368;0,450561818
+369;0,100467273
+370;-0,270583636
+371;-0,110123636
+372;-0,364270909
+373;-0,253736364
+374;0,055883636
+375;0,050130909
+376;0,07232
+377;0,150392727
+378;-0,116492727
+379;-0,122450909
+380;0,087523636
+381;0,020750909
+382;0,023010909
+383;0,036776364
+384;0,137654545
+385;0,256407273
+386;0,43618
+387;0,217781818
+388;-0,117109091
+389;-0,146078182
+390;-0,108069091
+391;0,115876364
+392;0,242230909
+393;0,144845455
+394;-0,263187273
+395;-0,260105455
+396;-0,259078182
+397;-0,248189091
+398;0,419949091
+399;0,240587273
+400;0,192305455
+401;0,371461818
+402;-0,411525455
+403;-0,38194
+404;0,188196364
+405;0,278801818
+406;0,280034545
+407;0,088961818
+408;-0,222507273
+409;0,057116364
+410;0,236478182
+411;-0,246750909
+412;-0,271405455
+413;-0,333863636
+414;-0,371667273
+415;-0,010272727
+416;0,141147273
+417;0,147721818
+418;0,165801818
+419;0,123272727
+420;-0,079716364
+421;0,081154545
+422;0,290307273
+423;0,411936364
+424;0,552878182
+425;0,03842
+426;-0,159227273
+427;0,01582
+428;-0,139092727
+429;0,079305455
+430;0,237916364
+431;-0,055472727
+432;-0,118341818
+433;-0,144023636
+434;-0,22374
+435;0,159843636
+436;0,103138182
+437;-0,077250909
+438;0,159843636
+439;-0,067389091
+440;-0,04294
+441;0,242230909
+442;0,232369091
+443;-0,038214545
+444;-0,016025455
+445;0,170321818
+446;-0,012327273
+447;0,208741818
+448;0,218809091
+449;-0,072730909
+450;-0,004314545
+451;-0,046432727
+452;-0,0904
+453;0,060198182
+454;0,068005455
+455;0,005341818
+456;0,137654545
+457;-0,046021818
+458;-0,157994545
+459;0,136010909
+460;0,125738182
+461;0,120601818
+462;0,050747273
+463;0,124916364
+464;0,283938182
+465;0,052390909
+466;-0,095947273
+467;-0,237505455
+468;-0,179156364
+469;-0,011710909
+470;0,256407273
+471;0,104781818
+472;-0,127587273
+473;-0,014998182
+474;-0,417483636
+475;-0,040063636
+476;0,291745455
+477;-0,042118182
+478;0,201345455
+479;0,173198182
+480;-0,047254545
+481;-0,104576364
+482;-0,274281818
+483;-0,559658182
+484;0,116287273
+485;0,611227273
+486;-0,172992727
+487;0,274898182
+488;0,659303636
+489;0,167445455
+490;-0,117725455
+491;-0,453849091
+492;-0,432070909
+493;0,11526
+494;0,283321818
+495;-0,068416364
+496;0,386665455
+497;0,195592727
+498;-0,18306
+499;0,005958182
+500;-0,097590909
+501;-0,056089091
+502;0,017463636
+503;0,127998182
+504;0,087729091
+505;0,336534545
+506;0,072114545
+507;-0,118958182
+508;0,145050909
+509;-0,068005455
+510;0,190250909
+511;0,086085455
+512;-0,058965455
+513;0,017669091
+514;-0,192510909
+515;-0,278185455
+516;-0,179567273
+517;0,256818182
+518;0,250243636
+519;0,320509091
+520;0,420565455
+521;0,214494545
+522;0,045816364
+523;-0,199496364
+524;-0,208125455
+525;-0,087934545
+526;0,093481818
+527;-0,065129091
+528;0,121012727
+529;0,345574545
+530;0,062458182
+531;0,009450909
+532;-0,278596364
+533;-0,312290909
+534;-0,091221818
+535;0,148132727
+536;0,168472727
+537;0,32318
+538;0,516718182
+539;0,01356
+540;-0,279007273
+541;-0,62602
+542;-0,037392727
+543;0,624992727
+544;0,335096364
+545;0,322152727
+546;-0,171349091
+547;-0,484461818
+548;-0,370229091
+549;0,092043636
+550;0,452
+551;0,27572
+552;0,167445455
+553;-0,241614545
+554;-0,242230909
+555;-0,451794545
+556;-0,484256364
+557;-0,062869091
+558;0,136216364
+559;0,521443636
+560;0,266474545
+561;0,335096364
+562;0,758538182
+563;0,563767273
+564;-0,425907273
+565;-0,841747273
+566;-0,162103636
+567;0,053418182
+568;0,339616364
+569;0,21922
+570;0,02712
+571;0,10622
+572;-0,363449091
+573;-0,333247273
+574;0,192510909
+575;0,353381818
+576;0,14464
+577;0,153269091
+578;-0,132723636
+579;-0,005752727
+580;0,439672727
+581;-0,073758182
+582;-0,15594
+583;-0,075607273
+584;-0,135189091
+585;-0,157994545
+586;0,052185455
+587;0,087729091
+588;-0,197030909
+589;0,035954545
+590;-0,110945455
+591;0,21696
+592;0,526990909
+593;0,159227273
+594;0,191894545
+595;0,103343636
+596;-0,222712727
+597;-0,241203636
+598;0,05198
+599;0,093070909
+600;0,18306
+601;0,152241818
+602;0,023832727
+603;0,19436
+604;0,186758182
+605;0,065950909
+606;-0,155323636
+607;-0,329343636
+608;-0,324001818
+609;-0,015203636
+610;0,179567273
+611;0,144845455
+612;0,151625455
+613;-0,099850909
+614;-0,271405455
+615;-0,318865455
+616;-0,05424
+617;0,446247273
+618;0,520416364
+619;0,191072727
+620;-0,094714545
+621;-0,08588
+622;-0,083825455
+623;0,22374
+624;0,434125455
+625;0,070881818
+626;-0,117314545
+627;-0,365298182
+628;-0,4181
+629;-0,103343636
+630;0,167034545
+631;0,142790909
+632;0,239354545
+633;0,380912727
+634;0,116081818
+635;0,337767273
+636;0,203194545
+637;-0,234834545
+638;-0,106836364
+639;0,015203636
+640;-0,089167273
+641;-0,093070909
+642;0,236478182
+643;0,203194545
+644;-0,038214545
+645;-0,218398182
+646;-0,383172727
+647;-0,060198182
+648;0,241614545
+649;0,148749091
+650;0,183676364
+651;0,037598182
+652;-0,295854545
+653;0,09718
+654;0,315578182
+655;0,135189091
+656;0,276130909
+657;0,114438182
+658;0,072936364
+659;-0,106014545
+660;-0,243052727
+661;0,043556364
+662;0,044172727
+663;0,172992727
+664;0,186347273
+665;0,002465455
+666;0,003903636
+667;0,105603636
+668;-0,123889091
+669;-0,395294545
+670;-0,246750909
+671;-0,060403636
+672;0,284554545
+673;0,30058
+674;0,0791
+675;0,035954545
+676;-0,006369091
+677;0,028558182
+678;0,091632727
+679;0,168678182
+680;-0,072525455
+681;-0,112383636
+682;-0,006574545
+683;-0,170732727
+684;-0,09718
+685;-0,057116364
+686;-0,166007273
+687;0,087112727
+688;0,326467273
+689;0,154707273
+690;0,2147
+691;0,100878182
+692;-0,166623636
+693;0,02486
+694;0,082592727
+695;0,119163636
+696;0,523292727
+697;0,387076364
+698;-0,060814545
+699;-0,04294
+700;-0,340027273
+701;-0,26442
+702;0,03164
+703;-0,066361818
+704;0,053418182
+705;0,194770909
+706;0,139298182
+707;-0,027941818
+708;0,084647273
+709;-0,400636364
+710;-0,545481818
+711;-0,009450909
+712;0,072114545
+713;0,36386
+714;0,326467273
+715;0,09718
+716;0,067389091
+717;0,17402
+718;0,099850909
+719;0,028969091
+720;0,245107273
+721;0,011710909
+722;-0,023421818
+723;0,063896364
+724;-0,110945455
+725;-0,073758182
+726;0,097590909
+727;-0,087934545
+728;-0,060609091
+729;0,26668
+730;-0,026503636
+731;0,098001818
+732;0,123889091
+733;-0,189223636
+734;-0,061841818
+735;-0,036570909
+736;0,161692727
+737;0,373310909
+738;0,280034545
+739;-0,034721818
+740;-0,015409091
+741;-0,088961818
+742;-0,284554545
+743;-0,13334
+744;-0,145461818
+745;0,080949091
+746;0,278185455
+747;0,15594
+748;0,124916364
+749;0,002670909
+750;-0,106630909
+751;0,127381818
+752;0,090194545
+753;-0,142174545
+754;0,1356
+755;0,204632727
+756;0,076223636
+757;0,17628
+758;0,020750909
+759;-0,251887273
+760;-0,06102
+761;0,140325455
+762;0,128409091
+763;0,3503
+764;-0,079510909
+765;-0,365503636
+766;-0,206276364
+767;-0,192510909
+768;0,359545455
+769;0,299758182
+770;0,270172727
+771;0,308181818
+772;-0,300374545
+773;-0,450972727
+774;-0,212234545
+775;0,242641818
+776;0,422003636
+777;0,154090909
+778;-0,152241818
+779;0,193743636
+780;0,261749091
+781;-0,277363636
+782;-0,266269091
+783;-0,356669091
+784;-0,353176364
+785;-0,124505455
+786;0,309003636
+787;0,398581818
+788;0,185730909
+789;0,299347273
+790;-0,157172727
+791;-0,072525455
+792;0,337356364
+793;0,237916364
+794;0,334274545
+795;0,125532727
+796;-0,177101818
+797;-0,085058182
+798;-0,110123636
+799;-0,186141818
+800;0,249421818
+801;0,144434545
+802;-0,278801818
+803;-0,230725455
+804;-0,180183636
+805;0,087934545
+806;0,109301818
+807;0,225589091
+808;0,165801818
+809;0,023627273
+810;0,241614545
+811;0,124710909
+812;0,304483636
+813;-0,048898182
+814;-0,398992727
+815;-0,018285455
+816;-0,134778182
+817;-0,120190909
+818;0,144229091
+819;0,091016364
+820;0,103343636
+821;0,134983636
+822;-0,088345455
+823;0,115054545
+824;0,238738182
+825;0,019518182
+826;0,202783636
+827;0,060814545
+828;-0,142174545
+829;0,206687273
+830;0,401252727
+831;-0,000616364
+832;-0,071087273
+833;0,143407273
+834;-0,118752727
+835;-0,019929091
+836;-0,052596364
+837;-0,204427273
+838;-0,07232
+839;-0,213467273
+840;-0,130874545
+841;0,199701818
+842;0,127792727
+843;0,07006
+844;0,187169091
+845;-0,130258182
+846;-0,228054545
+847;-0,102521818
+848;0,106014545
+849;0,409265455
+850;0,353998182
+851;0,162309091
+852;0,025887273
+853;-0,184498182
+854;-0,31414
+855;0,219836364
+856;0,124916364
+857;-0,290718182
+858;0,336123636
+859;0,19888
+860;-0,196414545
+861;-0,073758182
+862;-0,395910909
+863;-0,07232
+864;0,518772727
+865;-0,008012727
+866;0,222507273
+867;0,748676364
+868;0,073758182
+869;0,054856364
+870;-0,201756364
+871;-0,471107273
+872;-0,014587273
+873;0,069032727
+874;0,178950909
+875;0,130258182
+876;-0,035543636
+877;-0,134778182
+878;-0,247367273
+879;-0,222712727
+880;0,139709091
+881;0,328521818
+882;0,185525455
+883;0,070676364
+884;0,027530909
+885;-0,060609091
+886;-0,19888
+887;0,03616
+888;0,337767273
+889;0,2712
+890;0,201961818
+891;0,364476364
+892;0,335918182
+893;-0,060403636
+894;-0,418510909
+895;-0,416661818
+896;-0,162309091
+897;0,063074545
+898;0,070881818
+899;0,182032727
+900;0,236889091
+901;0,057732727
+902;-0,146489091
+903;-0,422003636
+904;-0,17854
+905;0,211001818
+906;0,165185455
+907;0,172581818
+908;0,353381818
+909;0,402074545
+910;0,108685455
+911;-0,328727273
+912;-0,597461818
+913;-0,331192727
+914;0,332014545
+915;0,269145455
+916;0,195181818
+917;0,30962
+918;-0,395089091
+919;-0,522470909
+920;-0,265241818
+921;0,26668
+922;0,727309091
+923;0,402896364
+924;0,078483636
+925;0,049925455
+926;0,008629091
+927;-0,57856
+928;-0,340027273
+929;0,004930909
+930;0,213672727
+931;0,478092727
+932;-0,036365455
+933;0,30058
+934;0,779494545
+935;0,033283636
+936;-0,844212727
+937;-0,620267273
+938;0,035338182
+939;0,315167273
+940;0,396321818
+941;0,122861818
+942;0,311263636
+943;0,139298182
+944;-0,614309091
+945;-0,308592727
+946;0,237505455
+947;0,382761818
+948;0,379269091
+949;0,205249091
+950;-0,039036364
+951;0,29154
+952;0,293183636
+953;-0,143612727
+954;-0,136216364
+955;-0,240176364
+956;-0,039652727
+957;-0,167445455
+958;-0,101289091
+959;0,210796364
+960;-0,148338182
+961;-0,272021818
+962;-0,097796364
+963;0,279623636
+964;0,471518182
+965;0,364681818
+966;0,237505455
+967;0,179772727
+968;-0,053418182
+969;-0,372694545
+970;-0,167856364
+971;0,107247273
+972;0,121629091
+973;0,060814545
+974;0,149776364
+975;0,032667273
+976;-0,061430909
+977;0,041912727
+978;-0,342081818
+979;-0,446658182
+980;-0,038625455
+981;0,171554545
+982;0,200934545
+983;0,369612727
+984;0,242025455
+985;-0,168267273
+986;-0,448301818
+987;-0,601365455
+988;0,138887273
+989;0,775796364
+990;0,31414
+991;0,130874545
+992;0,012327273
+993;-0,460834545
+994;-0,23052
+995;0,435974545
+996;0,469669091
+997;0,195592727
+998;-0,120807273
+999;-0,577738182
diff --git a/Bearing Classification/Dataset/Healthy-bearing.csv b/Bearing Classification/Dataset/Healthy-bearing.csv
new file mode 100644
index 000000000..0d537bf9f
--- /dev/null
+++ b/Bearing Classification/Dataset/Healthy-bearing.csv
@@ -0,0 +1,1000 @@
+Case_No;Measurement
+1;0,097796364
+2;0,054856364
+3;0,036981818
+4;0,054445455
+5;0,021161818
+6;-0,003698182
+7;-0,010683636
+8;0,02938
+9;0,104576364
+10;0,135805455
+11;0,124505455
+12;0,06102
+13;-0,003698182
+14;-0,027736364
+15;-0,004930909
+16;0,004930909
+17;-0,005547273
+18;-0,013149091
+19;-0,003492727
+20;0,048281818
+21;0,091427273
+22;0,09266
+23;0,042529091
+24;-0,012738182
+25;-0,063896364
+26;-0,061430909
+27;-0,054445455
+28;-0,081565455
+29;-0,078483636
+30;-0,076429091
+31;-0,005341818
+32;0,072525455
+33;0,107452727
+34;0,088345455
+35;-0,009656364
+36;-0,076634545
+37;-0,098823636
+38;-0,103754545
+39;-0,100467273
+40;-0,082387273
+41;-0,062869091
+42;-0,004725455
+43;0,092249091
+44;0,1582
+45;0,171143636
+46;0,10848
+47;0,008834545
+48;-0,063485455
+49;-0,098207273
+50;-0,121012727
+51;-0,118136364
+52;-0,107452727
+53;-0,07458
+54;0,02712
+55;0,12882
+56;0,183676364
+57;0,161692727
+58;0,09492
+59;0,026914545
+60;-0,02034
+61;-0,016230909
+62;-0,010683636
+63;-0,014381818
+64;-0,004725455
+65;0,059170909
+66;0,153885455
+67;0,23052
+68;0,258872727
+69;0,213467273
+70;0,160049091
+71;0,125532727
+72;0,107863636
+73;0,113
+74;0,101083636
+75;0,084647273
+76;0,11752
+77;0,175869091
+78;0,245723636
+79;0,280856364
+80;0,241203636
+81;0,186552727
+82;0,125121818
+83;0,082181818
+84;0,080332727
+85;0,070470909
+86;0,060814545
+87;0,071087273
+88;0,109507273
+89;0,189018182
+90;0,238121818
+91;0,234012727
+92;0,184087273
+93;0,099234545
+94;0,032050909
+95;-0,010683636
+96;-0,04068
+97;-0,086907273
+98;-0,104987273
+99;-0,083825455
+100;-0,03616
+101;0,044994545
+102;0,078689091
+103;0,059376364
+104;0,017669091
+105;-0,029585455
+106;-0,069854545
+107;-0,103754545
+108;-0,150598182
+109;-0,193538182
+110;-0,196825455
+111;-0,16272
+112;-0,061430909
+113;0,036365455
+114;0,087318182
+115;0,095741818
+116;0,056089091
+117;0,012532727
+118;-0,023627273
+119;-0,059376364
+120;-0,105603636
+121;-0,12204
+122;-0,093481818
+123;-0,008012727
+124;0,094098182
+125;0,135805455
+126;0,1356
+127;0,100056364
+128;0,067594545
+129;0,057116364
+130;0,052801818
+131;0,031229091
+132;-0,004725455
+133;-0,026298182
+134;-0,010067273
+135;0,039036364
+136;0,076018182
+137;0,10396
+138;0,089578182
+139;0,075607273
+140;0,07684
+141;0,061636364
+142;0,035749091
+143;-0,028763636
+144;-0,065745455
+145;-0,070265455
+146;-0,047254545
+147;-0,016847273
+148;-0,003698182
+149;-0,002465455
+150;-0,028558182
+151;-0,025887273
+152;-0,022394545
+153;-0,033489091
+154;-0,066567273
+155;-0,098412727
+156;-0,095947273
+157;-0,071909091
+158;-0,012327273
+159;0,027530909
+160;0,062458182
+161;0,076429091
+162;0,086701818
+163;0,108274545
+164;0,090194545
+165;0,065334545
+166;0,0113
+167;-0,041501818
+168;-0,044994545
+169;-0,008012727
+170;0,044378182
+171;0,09492
+172;0,123478182
+173;0,131490909
+174;0,151214545
+175;0,1469
+176;0,118136364
+177;0,071087273
+178;0,015203636
+179;-0,009245455
+180;-0,004109091
+181;0,018696364
+182;0,0452
+183;0,064307273
+184;0,064923636
+185;0,091016364
+186;0,130052727
+187;0,132312727
+188;0,111767273
+189;0,039858182
+190;-0,036776364
+191;-0,073758182
+192;-0,084852727
+193;-0,072730909
+194;-0,059170909
+195;-0,03842
+196;-0,002054545
+197;0,025065455
+198;0,036365455
+199;0,023832727
+200;-0,037392727
+201;-0,087729091
+202;-0,102727273
+203;-0,091221818
+204;-0,056705455
+205;-0,04068
+206;-0,026503636
+207;0,005752727
+208;0,039036364
+209;0,069443636
+210;0,087934545
+211;0,051158182
+212;-0,014792727
+213;-0,038625455
+214;-0,046227273
+215;-0,024243636
+216;0,009450909
+217;0,021778182
+218;0,058965455
+219;0,113821818
+220;0,162514545
+221;0,181416364
+222;0,151214545
+223;0,08362
+224;0,032050909
+225;0,00904
+226;0,012327273
+227;0,038830909
+228;0,071292727
+229;0,105809091
+230;0,141147273
+231;0,180594545
+232;0,179361818
+233;0,133750909
+234;0,049514545
+235;-0,026092727
+236;-0,052185455
+237;-0,0339
+238;0,024449091
+239;0,069032727
+240;0,100878182
+241;0,112178182
+242;0,130874545
+243;0,138887273
+244;0,094509091
+245;0,033694545
+246;-0,047254545
+247;-0,087729091
+248;-0,084236364
+249;-0,057938182
+250;-0,031229091
+251;-0,029174545
+252;-0,02486
+253;0,009450909
+254;0,068827273
+255;0,094098182
+256;0,103138182
+257;0,066978182
+258;0,027736364
+259;0,01808
+260;0,019518182
+261;0,031229091
+262;-0,005752727
+263;-0,032667273
+264;-0,050541818
+265;-0,037598182
+266;-0,011916364
+267;-0,010478182
+268;-0,015203636
+269;-0,041912727
+270;-0,039447273
+271;-0,037803636
+272;-0,016641818
+273;-0,021161818
+274;-0,076429091
+275;-0,093687273
+276;-0,091221818
+277;-0,059170909
+278;-0,036981818
+279;-0,06102
+280;-0,108685455
+281;-0,134367273
+282;-0,11074
+283;-0,062252727
+284;-0,02034
+285;-0,021572727
+286;-0,041090909
+287;-0,056910909
+288;-0,046432727
+289;-0,038009091
+290;-0,052390909
+291;-0,066156364
+292;-0,074990909
+293;-0,040269091
+294;0,016847273
+295;0,084647273
+296;0,113205455
+297;0,104370909
+298;0,084852727
+299;0,070676364
+300;0,094509091
+301;0,084236364
+302;0,071703636
+303;0,064512727
+304;0,071292727
+305;0,124916364
+306;0,169910909
+307;0,189223636
+308;0,171349091
+309;0,128614545
+310;0,106836364
+311;0,114438182
+312;0,114849091
+313;0,113616364
+314;0,090810909
+315;0,071498182
+316;0,101083636
+317;0,151214545
+318;0,199496364
+319;0,191483636
+320;0,143407273
+321;0,095125455
+322;0,063690909
+323;0,055472727
+324;0,039241818
+325;0,01582
+326;-0,000205455
+327;0,020545455
+328;0,087523636
+329;0,157172727
+330;0,187785455
+331;0,152652727
+332;0,083414545
+333;0,044378182
+334;0,017258182
+335;-0,005752727
+336;-0,02486
+337;-0,043556364
+338;-0,028969091
+339;0,030818182
+340;0,12204
+341;0,183265455
+342;0,179156364
+343;0,115876364
+344;0,044994545
+345;0,012327273
+346;-0,018696364
+347;-0,053418182
+348;-0,07684
+349;-0,09266
+350;-0,044583636
+351;0,041912727
+352;0,109712727
+353;0,141763636
+354;0,100878182
+355;0,057527273
+356;0,035132727
+357;0,013765455
+358;0,008218182
+359;-0,027325455
+360;-0,066772727
+361;-0,076634545
+362;-0,054034545
+363;0,006985455
+364;0,043350909
+365;0,037803636
+366;0,010889091
+367;-0,007396364
+368;0,002670909
+369;0,020545455
+370;0,021778182
+371;-0,021778182
+372;-0,069443636
+373;-0,079305455
+374;-0,050336364
+375;-0,004725455
+376;-0,002670909
+377;-0,023832727
+378;-0,02712
+379;-0,008012727
+380;0,0339
+381;0,053418182
+382;0,031434545
+383;-0,004314545
+384;-0,035338182
+385;-0,012943636
+386;0,042118182
+387;0,052801818
+388;0,044789091
+389;0,042529091
+390;0,058349091
+391;0,098618182
+392;0,132107273
+393;0,130052727
+394;0,068210909
+395;-0,003492727
+396;-0,032872727
+397;-0,017258182
+398;0,021161818
+399;0,030407273
+400;0,024243636
+401;0,025681818
+402;0,06328
+403;0,115876364
+404;0,118547273
+405;0,062663636
+406;-0,021367273
+407;-0,076634545
+408;-0,093276364
+409;-0,06554
+410;-0,046638182
+411;-0,037392727
+412;-0,020545455
+413;0,017463636
+414;0,08136
+415;0,111150909
+416;0,089783636
+417;-0,002670909
+418;-0,082592727
+419;-0,137038182
+420;-0,131696364
+421;-0,078689091
+422;-0,061636364
+423;-0,029585455
+424;0,009245455
+425;0,088550909
+426;0,167650909
+427;0,195181818
+428;0,150187273
+429;0,05424
+430;-0,012121818
+431;-0,049925455
+432;-0,028763636
+433;-0,025065455
+434;-0,046227273
+435;-0,020134545
+436;0,021983636
+437;0,091838182
+438;0,13786
+439;0,132929091
+440;0,1017
+441;0,03842
+442;-0,000410909
+443;0,001643636
+444;-0,005136364
+445;-0,034105455
+446;-0,066772727
+447;-0,061636364
+448;0,019107273
+449;0,104781818
+450;0,141558182
+451;0,107452727
+452;0,021983636
+453;-0,034105455
+454;-0,063485455
+455;-0,058349091
+456;-0,064718182
+457;-0,066567273
+458;-0,033489091
+459;0,031229091
+460;0,127792727
+461;0,176485455
+462;0,189634545
+463;0,135394545
+464;0,053829091
+465;0,024038182
+466;-0,011094545
+467;-0,031845455
+468;-0,033078182
+469;-0,036981818
+470;0,008423636
+471;0,090810909
+472;0,157994545
+473;0,182443636
+474;0,132518182
+475;0,046021818
+476;-0,009245455
+477;-0,044378182
+478;-0,062252727
+479;-0,066156364
+480;-0,074169091
+481;-0,052596364
+482;0,001643636
+483;0,088961818
+484;0,161692727
+485;0,162309091
+486;0,112383636
+487;0,057527273
+488;0,013765455
+489;-0,029790909
+490;-0,056294545
+491;-0,106014545
+492;-0,139503636
+493;-0,088550909
+494;-0,001232727
+495;0,088961818
+496;0,138887273
+497;0,111150909
+498;0,053418182
+499;0,00452
+500;-0,037803636
+501;-0,059376364
+502;-0,100672727
+503;-0,139298182
+504;-0,116903636
+505;-0,051774545
+506;0,050336364
+507;0,13334
+508;0,151214545
+509;0,111561818
+510;0,06328
+511;0,016025455
+512;-0,028147273
+513;-0,047665455
+514;-0,096769091
+515;-0,099234545
+516;-0,053212727
+517;0,007190909
+518;0,095330909
+519;0,116903636
+520;0,104576364
+521;0,076429091
+522;0,050541818
+523;0,050541818
+524;0,032461818
+525;-0,013765455
+526;-0,067594545
+527;-0,081154545
+528;-0,0452
+529;0,037392727
+530;0,098207273
+531;0,099234545
+532;0,079921818
+533;0,047049091
+534;0,026503636
+535;0,013149091
+536;-0,036365455
+537;-0,08362
+538;-0,092043636
+539;-0,075607273
+540;0,003903636
+541;0,080538182
+542;0,094509091
+543;0,093276364
+544;0,064512727
+545;0,048281818
+546;0,050952727
+547;0,0113
+548;-0,046021818
+549;-0,097590909
+550;-0,111561818
+551;-0,055883636
+552;0,019518182
+553;0,068827273
+554;0,09266
+555;0,107041818
+556;0,121012727
+557;0,136627273
+558;0,134367273
+559;0,092249091
+560;0,04294
+561;0,006369091
+562;-0,007190909
+563;0,024654545
+564;0,057527273
+565;0,073963636
+566;0,09266
+567;0,111561818
+568;0,141969091
+569;0,162309091
+570;0,152447273
+571;0,093481818
+572;0,011505455
+573;-0,036570909
+574;-0,053212727
+575;-0,046021818
+576;-0,025681818
+577;0,005547273
+578;0,03616
+579;0,084647273
+580;0,142585455
+581;0,15142
+582;0,103549091
+583;0,007807273
+584;-0,078278182
+585;-0,109301818
+586;-0,095330909
+587;-0,059787273
+588;0,004314545
+589;0,063690909
+590;0,109918182
+591;0,162103636
+592;0,156761818
+593;0,120601818
+594;0,049309091
+595;-0,043556364
+596;-0,073347273
+597;-0,068210909
+598;-0,031845455
+599;0,020545455
+600;0,056910909
+601;0,103754545
+602;0,164363636
+603;0,190456364
+604;0,173814545
+605;0,116698182
+606;0,022189091
+607;-0,041707273
+608;-0,0565
+609;-0,031023636
+610;0,010067273
+611;0,054650909
+612;0,103549091
+613;0,16272
+614;0,205249091
+615;0,1808
+616;0,118136364
+617;0,018285455
+618;-0,041501818
+619;-0,061841818
+620;-0,071087273
+621;-0,02034
+622;0,012327273
+623;0,039241818
+624;0,087318182
+625;0,134572727
+626;0,145050909
+627;0,124094545
+628;0,058349091
+629;-0,016025455
+630;-0,030201818
+631;-0,053829091
+632;-0,025270909
+633;0,009861818
+634;0,026092727
+635;0,073963636
+636;0,103343636
+637;0,121012727
+638;0,09718
+639;0,041501818
+640;-0,033283636
+641;-0,056910909
+642;-0,063485455
+643;-0,04294
+644;0,003287273
+645;-0,022805455
+646;0,016847273
+647;0,050541818
+648;0,067594545
+649;0,097796364
+650;0,050952727
+651;-0,000205455
+652;-0,039241818
+653;-0,041090909
+654;-0,001027273
+655;0,060609091
+656;0,070470909
+657;0,086907273
+658;0,110945455
+659;0,095741818
+660;0,112178182
+661;0,069649091
+662;0,027941818
+663;-0,003698182
+664;-0,020545455
+665;0,009656364
+666;0,041912727
+667;0,056089091
+668;0,048076364
+669;0,067389091
+670;0,0565
+671;0,079716364
+672;0,057116364
+673;-0,028558182
+674;-0,071498182
+675;-0,125943636
+676;-0,098001818
+677;-0,029790909
+678;0,020134545
+679;0,058554545
+680;0,058965455
+681;0,049309091
+682;0,043350909
+683;0,025476364
+684;-0,027325455
+685;-0,079716364
+686;-0,130052727
+687;-0,127792727
+688;-0,064307273
+689;-0,014587273
+690;0,006574545
+691;0,015614545
+692;0,008629091
+693;-0,009245455
+694;0,006369091
+695;-0,02938
+696;-0,083825455
+697;-0,111767273
+698;-0,131285455
+699;-0,060403636
+700;0,011094545
+701;0,059992727
+702;0,083209091
+703;0,064718182
+704;0,066156364
+705;0,058554545
+706;0,043350909
+707;-0,003081818
+708;-0,061636364
+709;-0,092043636
+710;-0,05424
+711;0,026914545
+712;0,06554
+713;0,080332727
+714;0,048692727
+715;0,007190909
+716;0,002876364
+717;0,001027273
+718;-0,017463636
+719;-0,034516364
+720;-0,054650909
+721;-0,034516364
+722;0,047049091
+723;0,094303636
+724;0,130874545
+725;0,115054545
+726;0,072525455
+727;0,081770909
+728;0,069032727
+729;0,058143636
+730;0,022189091
+731;-0,022394545
+732;-0,019107273
+733;0,011710909
+734;0,069443636
+735;0,107863636
+736;0,103138182
+737;0,059787273
+738;0,048692727
+739;0,069854545
+740;0,087318182
+741;0,101083636
+742;0,057527273
+743;0,017258182
+744;0,00452
+745;0,02034
+746;0,065129091
+747;0,069238182
+748;0,038009091
+749;0,02938
+750;0,054445455
+751;0,079305455
+752;0,098823636
+753;0,050747273
+754;-0,010683636
+755;-0,02034
+756;0,001849091
+757;0,068005455
+758;0,081770909
+759;0,047665455
+760;0,018696364
+761;0,024243636
+762;0,052185455
+763;0,069649091
+764;0,069854545
+765;0,013765455
+766;-0,021572727
+767;-0,035749091
+768;-0,018490909
+769;0,020545455
+770;0,008629091
+771;-0,012943636
+772;-0,024449091
+773;0,001643636
+774;0,044789091
+775;0,062458182
+776;0,028763636
+777;-0,018490909
+778;-0,035338182
+779;-0,023832727
+780;0,013970909
+781;0,002670909
+782;-0,024038182
+783;-0,03164
+784;-0,016025455
+785;0,039652727
+786;0,072114545
+787;0,070676364
+788;0,032461818
+789;-0,000616364
+790;-0,012943636
+791;0,000821818
+792;0,016641818
+793;-0,001849091
+794;-0,01356
+795;-0,017874545
+796;0,033694545
+797;0,103343636
+798;0,129230909
+799;0,10622
+800;0,054034545
+801;0,005547273
+802;-0,001438182
+803;0,02034
+804;-0,014381818
+805;-0,024654545
+806;-0,037392727
+807;-0,018285455
+808;0,057527273
+809;0,079305455
+810;0,091016364
+811;0,04746
+812;-0,004725455
+813;-0,030201818
+814;-0,03616
+815;-0,03616
+816;-0,058554545
+817;-0,060403636
+818;-0,041296364
+819;0,034927273
+820;0,096358182
+821;0,124505455
+822;0,092249091
+823;0,005341818
+824;-0,042734545
+825;-0,062252727
+826;-0,056910909
+827;-0,073141818
+828;-0,077045455
+829;-0,068416364
+830;-0,014176364
+831;0,070470909
+832;0,106425455
+833;0,116698182
+834;0,050541818
+835;-0,009450909
+836;-0,039241818
+837;-0,055883636
+838;-0,044583636
+839;-0,046227273
+840;-0,037598182
+841;0,002465455
+842;0,083003636
+843;0,15368
+844;0,165185455
+845;0,09944
+846;0,027325455
+847;-0,028763636
+848;-0,060814545
+849;-0,045816364
+850;-0,041296364
+851;-0,023010909
+852;0,008012727
+853;0,077250909
+854;0,152858182
+855;0,18306
+856;0,186758182
+857;0,13108
+858;0,087318182
+859;0,060814545
+860;0,028763636
+861;0,015203636
+862;-0,007190909
+863;-0,010889091
+864;0,030818182
+865;0,099645455
+866;0,161281818
+867;0,182854545
+868;0,136421818
+869;0,078689091
+870;0,041090909
+871;0,014381818
+872;0,024038182
+873;0,014587273
+874;-0,001232727
+875;0,008218182
+876;0,050336364
+877;0,127176364
+878;0,169089091
+879;0,140736364
+880;0,072730909
+881;0,024038182
+882;-0,022189091
+883;-0,035954545
+884;-0,031229091
+885;-0,044583636
+886;-0,021778182
+887;0,013970909
+888;0,091838182
+889;0,158610909
+890;0,154912727
+891;0,109712727
+892;0,030818182
+893;-0,030818182
+894;-0,044994545
+895;-0,028147273
+896;-0,047254545
+897;-0,050541818
+898;-0,017463636
+899;0,037803636
+900;0,130669091
+901;0,146489091
+902;0,114438182
+903;0,062252727
+904;-0,021161818
+905;-0,048281818
+906;-0,051158182
+907;-0,070676364
+908;-0,073963636
+909;-0,058143636
+910;-0,011505455
+911;0,068005455
+912;0,11526
+913;0,103138182
+914;0,051774545
+915;-0,013149091
+916;-0,061430909
+917;-0,067594545
+918;-0,055678182
+919;-0,049103636
+920;-0,039858182
+921;-0,025065455
+922;0,041296364
+923;0,110945455
+924;0,130052727
+925;0,112794545
+926;0,05198
+927;-0,003287273
+928;-0,015409091
+929;-0,013970909
+930;-0,011505455
+931;-0,000205455
+932;-0,010067273
+933;0,016847273
+934;0,068416364
+935;0,078689091
+936;0,084441818
+937;0,035543636
+938;-0,003287273
+939;-0,000205455
+940;-0,012327273
+941;0,002465455
+942;0,001027273
+943;-0,013354545
+944;-0,012121818
+945;0,016847273
+946;0,046432727
+947;0,060814545
+948;0,053829091
+949;0,001849091
+950;-0,008218182
+951;-0,006369091
+952;-0,001438182
+953;0,00226
+954;-0,027736364
+955;-0,039036364
+956;-0,028969091
+957;-0,013354545
+958;0,009861818
+959;0,036776364
+960;0,028763636
+961;0,030201818
+962;0,02034
+963;0,010478182
+964;0,017463636
+965;-0,022805455
+966;-0,045816364
+967;-0,034721818
+968;0,011505455
+969;0,073141818
+970;0,115054545
+971;0,107041818
+972;0,081154545
+973;0,06328
+974;0,033283636
+975;0,046432727
+976;0,006985455
+977;-0,039447273
+978;-0,03164
+979;-0,037598182
+980;0,006369091
+981;0,047254545
+982;0,053829091
+983;0,073963636
+984;0,095125455
+985;0,108069091
+986;0,114232727
+987;0,080127273
+988;0,018901818
+989;-0,008423636
+990;-0,016641818
+991;0,016230909
+992;0,066772727
+993;0,083209091
+994;0,087729091
+995;0,089372727
+996;0,090810909
+997;0,086701818
+998;0,057116364
+999;-0,019723636
diff --git a/Bearing Classification/Images/EDA1.png b/Bearing Classification/Images/EDA1.png
new file mode 100644
index 000000000..6a8c3be77
Binary files /dev/null and b/Bearing Classification/Images/EDA1.png differ
diff --git a/Bearing Classification/Images/EDA2.png b/Bearing Classification/Images/EDA2.png
new file mode 100644
index 000000000..5169f083b
Binary files /dev/null and b/Bearing Classification/Images/EDA2.png differ
diff --git a/Bearing Classification/Images/EDA3.png b/Bearing Classification/Images/EDA3.png
new file mode 100644
index 000000000..3647cdee2
Binary files /dev/null and b/Bearing Classification/Images/EDA3.png differ
diff --git a/Bearing Classification/Images/Input_Dataset.png b/Bearing Classification/Images/Input_Dataset.png
new file mode 100644
index 000000000..abaf4a156
Binary files /dev/null and b/Bearing Classification/Images/Input_Dataset.png differ
diff --git a/Bearing Classification/Images/Metrics.png b/Bearing Classification/Images/Metrics.png
new file mode 100644
index 000000000..d78c9129d
Binary files /dev/null and b/Bearing Classification/Images/Metrics.png differ
diff --git a/Bearing Classification/Model/bearing_classification.ipynb b/Bearing Classification/Model/bearing_classification.ipynb
new file mode 100644
index 000000000..70a407d81
--- /dev/null
+++ b/Bearing Classification/Model/bearing_classification.ipynb
@@ -0,0 +1,1649 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import plotly.express as px\n",
+ "import plotly.graph_objects as go"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df1=pd.read_csv('Faulty-bearing.csv',delimiter=';')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Case_No | \n",
+ " Measurements | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " -0,004725455 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " -0,106630909 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " -0,074169091 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0,208947273 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " -0,056705455 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 6 | \n",
+ " -0,175458182 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 0,051774545 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 0,041501818 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 9 | \n",
+ " -0,024449091 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 10 | \n",
+ " 0,167445455 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 11 | \n",
+ " -0,165185455 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 12 | \n",
+ " 0,022805455 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 13 | \n",
+ " 0,468641818 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 14 | \n",
+ " 0,242230909 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 15 | \n",
+ " 0,019723636 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 16 | \n",
+ " -0,010889091 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 17 | \n",
+ " -0,125943636 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 18 | \n",
+ " -0,041501818 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 0,267090909 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 20 | \n",
+ " -0,074169091 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Case_No Measurements\n",
+ "0 1 -0,004725455\n",
+ "1 2 -0,106630909\n",
+ "2 3 -0,074169091\n",
+ "3 4 0,208947273\n",
+ "4 5 -0,056705455\n",
+ "5 6 -0,175458182\n",
+ "6 7 0,051774545\n",
+ "7 8 0,041501818\n",
+ "8 9 -0,024449091\n",
+ "9 10 0,167445455\n",
+ "10 11 -0,165185455\n",
+ "11 12 0,022805455\n",
+ "12 13 0,468641818\n",
+ "13 14 0,242230909\n",
+ "14 15 0,019723636\n",
+ "15 16 -0,010889091\n",
+ "16 17 -0,125943636\n",
+ "17 18 -0,041501818\n",
+ "18 19 0,267090909\n",
+ "19 20 -0,074169091"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df1.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(999, 2)"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df1.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df1=df1.drop(['Case_No'],axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df2=pd.read_csv('Healthy-bearing.csv',delimiter=';')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Case_No | \n",
+ " Measurement | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0,097796364 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0,054856364 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0,036981818 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0,054445455 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0,021161818 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 6 | \n",
+ " -0,003698182 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 7 | \n",
+ " -0,010683636 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 0,02938 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 9 | \n",
+ " 0,104576364 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 10 | \n",
+ " 0,135805455 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 11 | \n",
+ " 0,124505455 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 12 | \n",
+ " 0,06102 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 13 | \n",
+ " -0,003698182 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 14 | \n",
+ " -0,027736364 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 15 | \n",
+ " -0,004930909 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 16 | \n",
+ " 0,004930909 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 17 | \n",
+ " -0,005547273 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 18 | \n",
+ " -0,013149091 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 19 | \n",
+ " -0,003492727 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 0,048281818 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Case_No Measurement\n",
+ "0 1 0,097796364\n",
+ "1 2 0,054856364\n",
+ "2 3 0,036981818\n",
+ "3 4 0,054445455\n",
+ "4 5 0,021161818\n",
+ "5 6 -0,003698182\n",
+ "6 7 -0,010683636\n",
+ "7 8 0,02938\n",
+ "8 9 0,104576364\n",
+ "9 10 0,135805455\n",
+ "10 11 0,124505455\n",
+ "11 12 0,06102\n",
+ "12 13 -0,003698182\n",
+ "13 14 -0,027736364\n",
+ "14 15 -0,004930909\n",
+ "15 16 0,004930909\n",
+ "16 17 -0,005547273\n",
+ "17 18 -0,013149091\n",
+ "18 19 -0,003492727\n",
+ "19 20 0,048281818"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df2.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(999, 2)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df2.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhCElEQVR4nO3df1BVdf7H8deVH1dk4Cao98qEQsW0ulAatq70Q1oV2zRrnc020skVSxfTWHVNxm3DmgVjEyktWxsVVyRtZ9bW2d1csR8UaYokpbb9JsWCJYsuoAgK5/tH45nvBXPTLsEHn4+ZO+M9930Pn+PMgafn3isOy7IsAQAAGKZXVy8AAADgQhAxAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIwU2NUL6CxtbW36/PPPFRYWJofD0dXLAQAA34FlWWpoaFBUVJR69Tr3tZYeGzGff/65oqOju3oZAADgAlRVVenSSy8950yPjZiwsDBJ3/wlhIeHd/FqAADAd1FfX6/o6Gj75/i59NiIOfMSUnh4OBEDAIBhvstbQXhjLwAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIx03hHz2muv6dZbb1VUVJQcDodeeOEFn8cty1JWVpaioqIUEhKi5ORkHTp0yGemublZc+fOVb9+/RQaGqpJkybp6NGjPjN1dXWaNm2aXC6XXC6Xpk2bpq+//vq8DxAAAPRM5x0xx48f19VXX61Vq1ad9fHc3Fzl5eVp1apVKisrk8fj0bhx49TQ0GDPZGRkaOvWrdq8ebNKS0vV2NioiRMnqrW11Z5JTU1VRUWFtm/fru3bt6uiokLTpk27gEMEAAA9kvU9SLK2bt1q329ra7M8Ho+1bNkye9vJkyctl8tlPfPMM5ZlWdbXX39tBQUFWZs3b7ZnPvvsM6tXr17W9u3bLcuyrHfffdeSZL355pv2zO7duy1J1nvvvfed1ub1ei1Jltfr/T6HCAAAfkDn8/Pbr++JqaysVE1NjVJSUuxtTqdTo0eP1q5duyRJ5eXlOnXqlM9MVFSU4uPj7Zndu3fL5XJp5MiR9sxPf/pTuVwue6a95uZm1dfX+9wAAEDPFejPndXU1EiS3G63z3a3263Dhw/bM8HBwerbt2+HmTPPr6mp0YABAzrsf8CAAfZMezk5OVq6dOn3PobvKmbxP3+wrwWY5tNlE7p6CX7BeQ6cW1ef653y6SSHw+Fz37KsDtvaaz9ztvlz7SczM1Ner9e+VVVVXcDKAQCAKfwaMR6PR5I6XC2pra21r854PB61tLSorq7unDP//e9/O+z/iy++6HCV5wyn06nw8HCfGwAA6Ln8GjGxsbHyeDwqLi62t7W0tKikpERJSUmSpMTERAUFBfnMVFdX6+DBg/bMqFGj5PV6tXfvXntmz5498nq99gwAALi4nfd7YhobG/XRRx/Z9ysrK1VRUaGIiAgNGjRIGRkZys7OVlxcnOLi4pSdna0+ffooNTVVkuRyuZSWlqYFCxYoMjJSERERWrhwoRISEjR27FhJ0pAhQ3TzzTfr3nvv1Z///GdJ0n333aeJEyfqyiuv9MdxAwAAw513xOzbt0833XSTfX/+/PmSpHvuuUcFBQVatGiRmpqalJ6errq6Oo0cOVI7duxQWFiY/ZwVK1YoMDBQU6ZMUVNTk8aMGaOCggIFBATYM5s2bdK8efPsTzFNmjTpW/9vGgAAcPFxWJZldfUiOkN9fb1cLpe8Xm+nvD+GTy0A366rP7HgL5znwLl1xrl+Pj+/+d1JAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjOT3iDl9+rR+//vfKzY2ViEhIbrsssv0yCOPqK2tzZ6xLEtZWVmKiopSSEiIkpOTdejQIZ/9NDc3a+7cuerXr59CQ0M1adIkHT161N/LBQAAhvJ7xDz22GN65plntGrVKv3nP/9Rbm6u/vSnP2nlypX2TG5urvLy8rRq1SqVlZXJ4/Fo3LhxamhosGcyMjK0detWbd68WaWlpWpsbNTEiRPV2trq7yUDAAADBfp7h7t379Ztt92mCRMmSJJiYmL03HPPad++fZK+uQqTn5+vJUuWaPLkyZKkDRs2yO12q6ioSLNmzZLX69XatWu1ceNGjR07VpJUWFio6Oho7dy5U+PHj/f3sgEAgGH8fiXm+uuv10svvaQPPvhAkvT222+rtLRUt9xyiySpsrJSNTU1SklJsZ/jdDo1evRo7dq1S5JUXl6uU6dO+cxERUUpPj7enmmvublZ9fX1PjcAANBz+f1KzIMPPiiv16sf/ehHCggIUGtrq/74xz/qrrvukiTV1NRIktxut8/z3G63Dh8+bM8EBwerb9++HWbOPL+9nJwcLV261N+HAwAAuim/X4nZsmWLCgsLVVRUpLfeeksbNmzQ448/rg0bNvjMORwOn/uWZXXY1t65ZjIzM+X1eu1bVVXV9zsQAADQrfn9Sszvfvc7LV68WL/61a8kSQkJCTp8+LBycnJ0zz33yOPxSPrmasvAgQPt59XW1tpXZzwej1paWlRXV+dzNaa2tlZJSUln/bpOp1NOp9PfhwMAALopv1+JOXHihHr18t1tQECA/RHr2NhYeTweFRcX24+3tLSopKTEDpTExEQFBQX5zFRXV+vgwYPfGjEAAODi4vcrMbfeeqv++Mc/atCgQfrxj3+s/fv3Ky8vTzNmzJD0zctIGRkZys7OVlxcnOLi4pSdna0+ffooNTVVkuRyuZSWlqYFCxYoMjJSERERWrhwoRISEuxPKwEAgIub3yNm5cqVeuihh5Senq7a2lpFRUVp1qxZ+sMf/mDPLFq0SE1NTUpPT1ddXZ1GjhypHTt2KCwszJ5ZsWKFAgMDNWXKFDU1NWnMmDEqKChQQECAv5cMAAAM5LAsy+rqRXSG+vp6uVwueb1ehYeH+33/MYv/6fd9Aj3Fp8smdPUS/ILzHDi3zjjXz+fnN787CQAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYKROiZjPPvtMU6dOVWRkpPr06aNhw4apvLzcftyyLGVlZSkqKkohISFKTk7WoUOHfPbR3NysuXPnql+/fgoNDdWkSZN09OjRzlguAAAwkN8jpq6uTtddd52CgoL04osv6t1339Xy5ct1ySWX2DO5ubnKy8vTqlWrVFZWJo/Ho3HjxqmhocGeycjI0NatW7V582aVlpaqsbFREydOVGtrq7+XDAAADBTo7x0+9thjio6O1vr16+1tMTEx9p8ty1J+fr6WLFmiyZMnS5I2bNggt9utoqIizZo1S16vV2vXrtXGjRs1duxYSVJhYaGio6O1c+dOjR8/3t/LBgAAhvH7lZht27ZpxIgRuuOOOzRgwAANHz5czz77rP14ZWWlampqlJKSYm9zOp0aPXq0du3aJUkqLy/XqVOnfGaioqIUHx9vz7TX3Nys+vp6nxsAAOi5/B4xn3zyiVavXq24uDj9+9//1uzZszVv3jz95S9/kSTV1NRIktxut8/z3G63/VhNTY2Cg4PVt2/fb51pLycnRy6Xy75FR0f7+9AAAEA34veIaWtr0zXXXKPs7GwNHz5cs2bN0r333qvVq1f7zDkcDp/7lmV12NbeuWYyMzPl9XrtW1VV1fc7EAAA0K35PWIGDhyooUOH+mwbMmSIjhw5IknyeDyS1OGKSm1trX11xuPxqKWlRXV1dd86057T6VR4eLjPDQAA9Fx+j5jrrrtO77//vs+2Dz74QIMHD5YkxcbGyuPxqLi42H68paVFJSUlSkpKkiQlJiYqKCjIZ6a6uloHDx60ZwAAwMXN759O+u1vf6ukpCRlZ2drypQp2rt3r9asWaM1a9ZI+uZlpIyMDGVnZysuLk5xcXHKzs5Wnz59lJqaKklyuVxKS0vTggULFBkZqYiICC1cuFAJCQn2p5UAAMDFze8Rc+2112rr1q3KzMzUI488otjYWOXn5+vuu++2ZxYtWqSmpialp6errq5OI0eO1I4dOxQWFmbPrFixQoGBgZoyZYqampo0ZswYFRQUKCAgwN9LBgAABnJYlmV19SI6Q319vVwul7xeb6e8PyZm8T/9vk+gp/h02YSuXoJfcJ4D59YZ5/r5/PzmdycBAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwUqdHTE5OjhwOhzIyMuxtlmUpKytLUVFRCgkJUXJysg4dOuTzvObmZs2dO1f9+vVTaGioJk2apKNHj3b2cgEAgCE6NWLKysq0Zs0aXXXVVT7bc3NzlZeXp1WrVqmsrEwej0fjxo1TQ0ODPZORkaGtW7dq8+bNKi0tVWNjoyZOnKjW1tbOXDIAADBEp0VMY2Oj7r77bj377LPq27evvd2yLOXn52vJkiWaPHmy4uPjtWHDBp04cUJFRUWSJK/Xq7Vr12r58uUaO3ashg8frsLCQh04cEA7d+7srCUDAACDdFrEzJkzRxMmTNDYsWN9tldWVqqmpkYpKSn2NqfTqdGjR2vXrl2SpPLycp06dcpnJioqSvHx8fZMe83Nzaqvr/e5AQCAniuwM3a6efNmvfXWWyorK+vwWE1NjSTJ7Xb7bHe73Tp8+LA9Exwc7HMF58zMmee3l5OTo6VLl/pj+QAAwAB+vxJTVVWlBx54QIWFherdu/e3zjkcDp/7lmV12NbeuWYyMzPl9XrtW1VV1fkvHgAAGMPvEVNeXq7a2lolJiYqMDBQgYGBKikp0ZNPPqnAwED7Ckz7Kyq1tbX2Yx6PRy0tLaqrq/vWmfacTqfCw8N9bgAAoOfye8SMGTNGBw4cUEVFhX0bMWKE7r77blVUVOiyyy6Tx+NRcXGx/ZyWlhaVlJQoKSlJkpSYmKigoCCfmerqah08eNCeAQAAFze/vycmLCxM8fHxPttCQ0MVGRlpb8/IyFB2drbi4uIUFxen7Oxs9enTR6mpqZIkl8ultLQ0LViwQJGRkYqIiNDChQuVkJDQ4Y3CAADg4tQpb+z9XxYtWqSmpialp6errq5OI0eO1I4dOxQWFmbPrFixQoGBgZoyZYqampo0ZswYFRQUKCAgoCuWDAAAuhmHZVlWVy+iM9TX18vlcsnr9XbK+2NiFv/T7/sEeopPl03o6iX4Bec5cG6dca6fz89vfncSAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASH6PmJycHF177bUKCwvTgAEDdPvtt+v999/3mbEsS1lZWYqKilJISIiSk5N16NAhn5nm5mbNnTtX/fr1U2hoqCZNmqSjR4/6e7kAAMBQfo+YkpISzZkzR2+++aaKi4t1+vRppaSk6Pjx4/ZMbm6u8vLytGrVKpWVlcnj8WjcuHFqaGiwZzIyMrR161Zt3rxZpaWlamxs1MSJE9Xa2urvJQMAAAMF+nuH27dv97m/fv16DRgwQOXl5brxxhtlWZby8/O1ZMkSTZ48WZK0YcMGud1uFRUVadasWfJ6vVq7dq02btyosWPHSpIKCwsVHR2tnTt3avz48f5eNgAAMEynvyfG6/VKkiIiIiRJlZWVqqmpUUpKij3jdDo1evRo7dq1S5JUXl6uU6dO+cxERUUpPj7enmmvublZ9fX1PjcAANBzdWrEWJal+fPn6/rrr1d8fLwkqaamRpLkdrt9Zt1ut/1YTU2NgoOD1bdv32+daS8nJ0cul8u+RUdH+/twAABAN9KpEXP//ffrnXfe0XPPPdfhMYfD4XPfsqwO29o710xmZqa8Xq99q6qquvCFAwCAbq/TImbu3Lnatm2bXnnlFV166aX2do/HI0kdrqjU1tbaV2c8Ho9aWlpUV1f3rTPtOZ1OhYeH+9wAAEDP5feIsSxL999/v/72t7/p5ZdfVmxsrM/jsbGx8ng8Ki4utre1tLSopKRESUlJkqTExEQFBQX5zFRXV+vgwYP2DAAAuLj5/dNJc+bMUVFRkf7+978rLCzMvuLicrkUEhIih8OhjIwMZWdnKy4uTnFxccrOzlafPn2Umppqz6alpWnBggWKjIxURESEFi5cqISEBPvTSgAA4OLm94hZvXq1JCk5Odln+/r16zV9+nRJ0qJFi9TU1KT09HTV1dVp5MiR2rFjh8LCwuz5FStWKDAwUFOmTFFTU5PGjBmjgoICBQQE+HvJAADAQA7LsqyuXkRnqK+vl8vlktfr7ZT3x8Qs/qff9wn0FJ8um9DVS/ALznPg3DrjXD+fn9/87iQAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABG6vYR8/TTTys2Nla9e/dWYmKiXn/99a5eEgAA6Aa6dcRs2bJFGRkZWrJkifbv368bbrhBP//5z3XkyJGuXhoAAOhi3Tpi8vLylJaWppkzZ2rIkCHKz89XdHS0Vq9e3dVLAwAAXSywqxfwbVpaWlReXq7Fixf7bE9JSdGuXbs6zDc3N6u5udm+7/V6JUn19fWdsr625hOdsl+gJ+is8+6HxnkOnFtnnOtn9mlZ1v+c7bYRc+zYMbW2tsrtdvtsd7vdqqmp6TCfk5OjpUuXdtgeHR3daWsEcHau/K5eAYAfQmee6w0NDXK5XOec6bYRc4bD4fC5b1lWh22SlJmZqfnz59v329ra9NVXXykyMvKs8+g56uvrFR0draqqKoWHh3f1cgB0As7zi4dlWWpoaFBUVNT/nO22EdOvXz8FBAR0uOpSW1vb4eqMJDmdTjmdTp9tl1xySWcuEd1MeHg439yAHo7z/OLwv67AnNFt39gbHBysxMREFRcX+2wvLi5WUlJSF60KAAB0F932SowkzZ8/X9OmTdOIESM0atQorVmzRkeOHNHs2bO7emkAAKCLdeuIufPOO/Xll1/qkUceUXV1teLj4/Wvf/1LgwcP7uqloRtxOp16+OGHO7ycCKDn4DzH2Tis7/IZJgAAgG6m274nBgAA4FyIGAAAYCQiBgAAGImIQY/w6quvyuFw6Ouvvz7nXExMjPLz83+QNQHoXNOnT9ftt9/e1ctAFyJi0Km+7ZvMd42OC1VQUMB/dgh0A9OnT5fD4ehw++ijj/z+tZKTk5WRkeH3/aL76tYfsQYAmO/mm2/W+vXrfbb179+/i1aDnoQrMegWdu3apRtvvFEhISGKjo7WvHnzdPz4cfvxwsJCjRgxQmFhYfJ4PEpNTVVtbe1Z9/Xqq6/q17/+tbxer/2vvqysLPvxEydOaMaMGQoLC9OgQYO0Zs0a+7Gf/exnuv/++3329+WXX8rpdOrll1/270EDFwmn0ymPx+Nze+KJJ5SQkKDQ0FBFR0crPT1djY2N9nOysrI0bNgwn/3k5+crJibmrF9j+vTpKikp0RNPPGGf95WVlbriiiv0+OOP+8wePHhQvXr10scff+zvQ8UPjIhBlztw4IDGjx+vyZMn65133tGWLVtUWlrqExMtLS169NFH9fbbb+uFF15QZWWlpk+fftb9JSUlKT8/X+Hh4aqurlZ1dbUWLlxoP758+XKNGDFC+/fvV3p6un7zm9/ovffekyTNnDlTRUVFam5utuc3bdqkqKgo3XTTTZ3zFwBchHr16qUnn3xSBw8e1IYNG/Tyyy9r0aJFF7y/J554QqNGjdK9995rn/eDBg3SjBkzOlwFWrdunW644QZdfvnl3/cw0NUsoBPdc889VkBAgBUaGupz6927tyXJqqurs6ZNm2bdd999Ps97/fXXrV69ellNTU1n3e/evXstSVZDQ4NlWZb1yiuv2PuzLMtav3695XK5Ojxv8ODB1tSpU+37bW1t1oABA6zVq1dblmVZJ0+etCIiIqwtW7bYM8OGDbOysrK+z18DcNE62/eAX/7ylx3mnn/+eSsyMtK+//DDD1tXX321z8yKFSuswYMH++z7tttus++PHj3aeuCBB3ye8/nnn1sBAQHWnj17LMuyrJaWFqt///5WQUHB9z42dD3eE4NOd9NNN2n16tU+2/bs2aOpU6dKksrLy/XRRx9p06ZN9uOWZamtrU2VlZUaMmSI9u/fr6ysLFVUVOirr75SW1ubJOnIkSMaOnToea3nqquusv/scDjk8Xjsl6acTqemTp2qdevWacqUKaqoqLCv/gC4MO2/B4SGhuqVV15Rdna23n33XdXX1+v06dM6efKkjh8/rtDQUL997YEDB2rChAlat26dfvKTn+gf//iHTp48qTvuuMNvXwNdh4hBpwsNDdUVV1zhs+3o0aP2n9va2jRr1izNmzevw3MHDRqk48ePKyUlRSkpKSosLFT//v115MgRjR8/Xi0tLee9nqCgIJ/7DofDjiLpm5eUhg0bpqNHj2rdunUaM2YMv68L+B7afw84fPiwbrnlFs2ePVuPPvqoIiIiVFpaqrS0NJ06dUrSNy83We1+K86Zx87XzJkzNW3aNK1YsULr16/XnXfeqT59+lz4AaHbIGLQ5a655hodOnSoQ+icceDAAR07dkzLli1TdHS0JGnfvn3n3GdwcLBaW1svaD0JCQkaMWKEnn32WRUVFWnlypUXtB8AZ7dv3z6dPn1ay5cvV69e37w18/nnn/eZ6d+/v2pqamRZlhwOhySpoqLinPv9tvP+lltuUWhoqFavXq0XX3xRr732mn8OBF2ON/aiyz344IPavXu35syZo4qKCn344Yfatm2b5s6dK+mbqzHBwcFauXKlPvnkE23btk2PPvroOfcZExOjxsZGvfTSSzp27JhOnDhxXmuaOXOmli1bptbWVv3iF7+44GMD0NHll1+u06dP2+f0xo0b9cwzz/jMJCcn64svvlBubq4+/vhjPfXUU3rxxRfPud+YmBjt2bNHn376qY4dO2ZfYQ0ICND06dOVmZmpK664QqNGjeq0Y8MPi4hBl7vqqqtUUlKiDz/8UDfccIOGDx+uhx56SAMHDpT0zb/ICgoK9Ne//lVDhw7VsmXLOnxksr2kpCTNnj1bd955p/r376/c3NzzWtNdd92lwMBApaamqnfv3hd8bAA6GjZsmPLy8vTYY48pPj5emzZtUk5Ojs/MkCFD9PTTT+upp57S1Vdfrb179/p8yvBsFi5cqICAAA0dOtR+2fmMtLQ0tbS0aMaMGZ1yTOgaDqv9i44AVFVVpZiYGJWVlemaa67p6uUA+J7eeOMNJScn6+jRo3K73V29HPgJEQP8P6dOnVJ1dbUWL16sw4cP64033ujqJQH4Hpqbm1VVVaX77rtPAwcO9PkUJMzHy0nA//PGG29o8ODBKi8v7/AaPQDzPPfcc7ryyivl9XrP+2VldH9ciQEAAEbiSgwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAw0v8BMkKWp2+tn2IAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.bar(['Healthy','Faulty'],[999,999])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df2=df2.drop(['Case_No'],axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a=[]\n",
+ "a1=[]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(999):\n",
+ " i1=df1['Measurements'][i]\n",
+ " before_comma, after_comma = i1.split(',')\n",
+ " before_comma = int(before_comma)\n",
+ " after_comma = int(after_comma)\n",
+ " a.append(before_comma)\n",
+ " a1.append(after_comma)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df1['final']=a1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Measurements | \n",
+ " final | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -0,004725455 | \n",
+ " 4725455 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -0,106630909 | \n",
+ " 106630909 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -0,074169091 | \n",
+ " 74169091 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0,208947273 | \n",
+ " 208947273 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -0,056705455 | \n",
+ " 56705455 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " -0,175458182 | \n",
+ " 175458182 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 0,051774545 | \n",
+ " 51774545 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 0,041501818 | \n",
+ " 41501818 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " -0,024449091 | \n",
+ " 24449091 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 0,167445455 | \n",
+ " 167445455 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " -0,165185455 | \n",
+ " 165185455 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 0,022805455 | \n",
+ " 22805455 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 0,468641818 | \n",
+ " 468641818 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 0,242230909 | \n",
+ " 242230909 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 0,019723636 | \n",
+ " 19723636 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " -0,010889091 | \n",
+ " 10889091 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " -0,125943636 | \n",
+ " 125943636 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " -0,041501818 | \n",
+ " 41501818 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 0,267090909 | \n",
+ " 267090909 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " -0,074169091 | \n",
+ " 74169091 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Measurements final\n",
+ "0 -0,004725455 4725455\n",
+ "1 -0,106630909 106630909\n",
+ "2 -0,074169091 74169091\n",
+ "3 0,208947273 208947273\n",
+ "4 -0,056705455 56705455\n",
+ "5 -0,175458182 175458182\n",
+ "6 0,051774545 51774545\n",
+ "7 0,041501818 41501818\n",
+ "8 -0,024449091 24449091\n",
+ "9 0,167445455 167445455\n",
+ "10 -0,165185455 165185455\n",
+ "11 0,022805455 22805455\n",
+ "12 0,468641818 468641818\n",
+ "13 0,242230909 242230909\n",
+ "14 0,019723636 19723636\n",
+ "15 -0,010889091 10889091\n",
+ "16 -0,125943636 125943636\n",
+ "17 -0,041501818 41501818\n",
+ "18 0,267090909 267090909\n",
+ "19 -0,074169091 74169091"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df1.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df1['lable']=[0]*999"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df1=df1.drop('Measurements',axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " final | \n",
+ " lable | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4725455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 106630909 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 74169091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 208947273 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 56705455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 175458182 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 51774545 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 41501818 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 24449091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 167445455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 165185455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 22805455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 468641818 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 242230909 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 19723636 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 10889091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 125943636 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 41501818 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 267090909 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 74169091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " final lable\n",
+ "0 4725455 0\n",
+ "1 106630909 0\n",
+ "2 74169091 0\n",
+ "3 208947273 0\n",
+ "4 56705455 0\n",
+ "5 175458182 0\n",
+ "6 51774545 0\n",
+ "7 41501818 0\n",
+ "8 24449091 0\n",
+ "9 167445455 0\n",
+ "10 165185455 0\n",
+ "11 22805455 0\n",
+ "12 468641818 0\n",
+ "13 242230909 0\n",
+ "14 19723636 0\n",
+ "15 10889091 0\n",
+ "16 125943636 0\n",
+ "17 41501818 0\n",
+ "18 267090909 0\n",
+ "19 74169091 0"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df1.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a2=[]\n",
+ "a3=[]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(999):\n",
+ " i1=df2['Measurement'][i]\n",
+ " before_comma, after_comma = i1.split(',')\n",
+ " before_comma = int(before_comma)\n",
+ " after_comma = int(after_comma)\n",
+ " a2.append(before_comma)\n",
+ " a3.append(after_comma)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df2['final']=a3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df2['lable']=1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df2=df2.drop('Measurement',axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " final | \n",
+ " lable | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 97796364 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 54856364 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 36981818 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 54445455 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 21161818 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 3698182 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 10683636 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2938 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 104576364 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 135805455 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 124505455 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 6102 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 3698182 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 27736364 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 4930909 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 4930909 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 5547273 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 13149091 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 3492727 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 48281818 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " final lable\n",
+ "0 97796364 1\n",
+ "1 54856364 1\n",
+ "2 36981818 1\n",
+ "3 54445455 1\n",
+ "4 21161818 1\n",
+ "5 3698182 1\n",
+ "6 10683636 1\n",
+ "7 2938 1\n",
+ "8 104576364 1\n",
+ "9 135805455 1\n",
+ "10 124505455 1\n",
+ "11 6102 1\n",
+ "12 3698182 1\n",
+ "13 27736364 1\n",
+ "14 4930909 1\n",
+ "15 4930909 1\n",
+ "16 5547273 1\n",
+ "17 13149091 1\n",
+ "18 3492727 1\n",
+ "19 48281818 1"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df2.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.concat([df1, df2], axis=0)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1998, 2)"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " final | \n",
+ " lable | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4725455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 106630909 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 74169091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 208947273 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 56705455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 175458182 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 51774545 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 41501818 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 24449091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 167445455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 165185455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 22805455 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 468641818 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 242230909 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 19723636 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 10889091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 125943636 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 41501818 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 267090909 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 74169091 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " final lable\n",
+ "0 4725455 0\n",
+ "1 106630909 0\n",
+ "2 74169091 0\n",
+ "3 208947273 0\n",
+ "4 56705455 0\n",
+ "5 175458182 0\n",
+ "6 51774545 0\n",
+ "7 41501818 0\n",
+ "8 24449091 0\n",
+ "9 167445455 0\n",
+ "10 165185455 0\n",
+ "11 22805455 0\n",
+ "12 468641818 0\n",
+ "13 242230909 0\n",
+ "14 19723636 0\n",
+ "15 10889091 0\n",
+ "16 125943636 0\n",
+ "17 41501818 0\n",
+ "18 267090909 0\n",
+ "19 74169091 0"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 999\n",
+ "1 999\n",
+ "Name: lable, dtype: int64"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['lable'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " final | \n",
+ " lable | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 1.998000e+03 | \n",
+ " 1998.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 1.177357e+08 | \n",
+ " 0.500000 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 1.288797e+08 | \n",
+ " 0.500125 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 1.130000e+02 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 2.660636e+07 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 7.560727e+07 | \n",
+ " 0.500000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 1.611277e+08 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 8.442127e+08 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " final lable\n",
+ "count 1.998000e+03 1998.000000\n",
+ "mean 1.177357e+08 0.500000\n",
+ "std 1.288797e+08 0.500125\n",
+ "min 1.130000e+02 0.000000\n",
+ "25% 2.660636e+07 0.000000\n",
+ "50% 7.560727e+07 0.500000\n",
+ "75% 1.611277e+08 1.000000\n",
+ "max 8.442127e+08 1.000000"
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Int64Index: 1998 entries, 0 to 998\n",
+ "Data columns (total 2 columns):\n",
+ " # Column Non-Null Count Dtype\n",
+ "--- ------ -------------- -----\n",
+ " 0 final 1998 non-null int64\n",
+ " 1 lable 1998 non-null int64\n",
+ "dtypes: int64(2)\n",
+ "memory usage: 46.8 KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train,X_test,y_train,y_test=train_test_split(df['final'],df['lable'],test_size=0.15)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train1=np.array(X_train).reshape(-1,1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_test1=np.array(X_test).reshape(-1,1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.metrics import accuracy_score, f1_score"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def score(X_test,model):\n",
+ " model.fit(X_train1,y_train)\n",
+ " y_pred=model.predict(X_test)\n",
+ " a=accuracy_score(y_test,y_pred)*100\n",
+ " return a"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.naive_bayes import GaussianNB\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.neighbors import KNeighborsClassifier\n",
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "from sklearn.ensemble import AdaBoostClassifier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "52.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "model = LogisticRegression(random_state=0,solver='saga',penalty='l1',max_iter=10000)\n",
+ "v=score(X_test1,model)\n",
+ "print(v)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "75.66666666666667"
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "adaboost = AdaBoostClassifier(n_estimators=1000, random_state=0)\n",
+ "score(X_test1,adaboost)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "73.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "gnb = GaussianNB()\n",
+ "v=score(X_test1,gnb)\n",
+ "print(v)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "74.33333333333333\n"
+ ]
+ }
+ ],
+ "source": [
+ "random_forest = RandomForestClassifier(n_estimators=1000, max_depth=10, random_state=0)\n",
+ "v=score(X_test1,random_forest)\n",
+ "print(v)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: xgboost in c:\\users\\ysach\\anaconda3\\lib\\site-packages (2.0.3)\n",
+ "Requirement already satisfied: scipy in c:\\users\\ysach\\anaconda3\\lib\\site-packages (from xgboost) (1.10.0)\n",
+ "Requirement already satisfied: numpy in c:\\users\\ysach\\anaconda3\\lib\\site-packages (from xgboost) (1.23.5)\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install xgboost"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "from xgboost import XGBClassifier\n",
+ "model =XGBClassifier(\n",
+ " objective='binary:logistic',\n",
+ " eval_metric='auc',\n",
+ " learning_rate=0.05,\n",
+ " max_depth=10,\n",
+ " n_estimators=1000,\n",
+ " reg_alpha=3\n",
+ ")\n",
+ "model.fit(X_train1, y_train)\n",
+ "y_pred=model.predict(X_test1)\n",
+ "print(accuracy_score(y_test,y_pred))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGuCAYAAABC5ZNGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABG6klEQVR4nO3deVxWZeL///etwM2OSsoNioqCW66jZmKfoDEwK3NyWmlcymac1HLJJbSSaRLSGQ0/WZZ+zWUc00ptz8RKs3EJF0ZHzSVxqWAYHQW3QOX6/dGP8/EWEG4F7ejr+Xicx4P7uq77nOtwn/uc877Pfa7bYYwxAgAAAAAbq3G1OwAAAAAAl4tgAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbM/ranfgQsXFxfrxxx8VFBQkh8NxtbsDAAAA4Coxxuj48eOKiIhQjRoVXJMxHjhz5owZP368ady4sfH19TVRUVHmT3/6kzl37pzVpri42EyYMMGEh4cbX19fExcXZ/71r39VehmHDh0ykpiYmJiYmJiYmJiYmIwkc+jQoQpzhEdXbCZNmqTXX39d8+bN04033qiNGzfq0UcfVUhIiIYNGyZJmjx5sqZOnaq5c+eqWbNmevHFF5WQkKBdu3YpKCiowmWUtDl06JCCg4M96R4AAABQoTZt2ujgwYOlyh9//HFNmTJFISEhZT7vhRdesM55y/L+++9r4sSJys7OVlRUlJ577jn16tWryvp9PSooKFBkZGSlcoTDGGMqO+O7775bYWFhmj17tlX229/+Vv7+/vrb3/4mY4wiIiI0fPhwjR07VpJUWFiosLAwTZo0SYMGDapU50NCQpSfn0+wAQAAQJX7z3/+o3PnzlmP//WvfykhIUFffvml4uPjlZub69b+008/1cCBA7V37141adKkzHmuW7dO//M//6M///nPuvfee7Vs2TI9//zz+vrrr9WlS5dqXZ9rmSfZwKPBA2655RZ9/vnn2r17tyTpn//8p77++mvdeeedkqTs7Gzl5uYqMTHReo7T6VRcXJzWrl1b5jwLCwtVUFDgNgEAAADVpW7dunK5XNb00UcfqWnTpoqLi5MktzqXy6X3339ft912W7mhRpLS09OVkJCg5ORktWjRQsnJyerevbvS09Ov0FrBo2AzduxYPfzww2rRooW8vb3VoUMHDR8+XA8//LAkWek2LCzM7XlhYWGlkm+JtLQ0hYSEWFNkZOSlrAcAAADgsaKiIi1YsECPPfZYmQNX/fvf/9bHH3+sgQMHXnQ+69atc/twX5J69OhR7of7qHoeBZvFixdrwYIFWrhwoTZv3qx58+bpr3/9q+bNm+fW7sKNwhhT7ghnycnJys/Pt6ZDhw55uAoAAADApXnvvfd07NgxDRgwoMz6efPmKSgoSH369LnofHJzcz36cB9Vz6PBA0aPHq1nnnlGDz30kKSfb7w6cOCA0tLS1L9/f7lcLkk/v7Dh4eHW8/Ly8kq90CWcTqecTuel9h8AAAC4ZLNnz1bPnj0VERFRZv2bb76pRx55RL6+vhXOy5MP91H1PLpic+rUqVLjR9esWVPFxcWSpKioKLlcLmVkZFj1RUVFWr16tWJjY6uguwCqS+PGjeVwOEpNQ4YMkSQNGDCgVN3NN99c4XyPHTumIUOGKDw8XL6+vmrZsqU++eSTSi8XAIDqcuDAAa1cuVKPP/54mfVr1qzRrl27yq0/n8vlKnV15mIf7qPqeXTFplevXpo4caIaNmyoG2+8UVu2bNHUqVP12GOPSfo5pQ4fPlypqamKiYlRTEyMUlNT5e/vr6SkpGpZAQBVIzMzs8wRYu6//36r7I477tCcOXOsxz4+PhedZ1FRkRISElSvXj29++67atCggQ4dOuQ2ZGNllgsAQHWYM2eO6tWrp7vuuqvM+tmzZ6tjx45q165dhfPq2rWrMjIyNGLECKtsxYoVfLh/BXkUbF555RU999xzGjx4sPLy8hQREaFBgwbp+eeft9qMGTNGp0+f1uDBg3X06FF16dJFK1asqNTY0wCunrp167o9fumll9xGiJF+/upoyVdOK+PNN9/Uf//7X61du1be3t6SpEaNGnm8XAAAqlpxcbHmzJmj/v37y8ur9ClxQUGB3nnnHU2ZMqXM5/fr10/169dXWlqaJGnYsGG69dZbNWnSJPXu3Vvvv/++Vq5cqa+//rpa1wP/x6PfsbkS+B0b4OorKipSRESERo4cqXHjxkn6+ato7733nnx8fFSrVi3FxcVp4sSJqlevXrnzufPOO1WnTh35+/vr/fffV926dZWUlKSxY8eqZs2alVouAADVYcWKFerRo4d27dqlZs2alaqfOXOmhg8frpycnDJ/sDM+Pl6NGzfW3LlzrbJ3331Xzz77rPbt26emTZtq4sSJFQ46gIvzJBsQbACU8vbbbyspKUkHDx60bqZcvHixAgMD1ahRI2VnZ+u5557T2bNntWnTpnIHAGnRooX279+vRx55RIMHD9aePXs0ZMgQDRs2zO1K78WWCwAArl8EGwCXpUePHvLx8dGHH35YbpucnBw1atRIixYtKvfTqGbNmumnn35Sdna2dYVm6tSp+stf/qKcnJxLWi4AALh+eJINPLrHBsC1r2SEmKVLl160XXh4uBo1aqQ9e/ZctI23t7fb185atmyp3NxcFRUVuQ0+UNnlAgAAlMWj4Z4BXPsqGiGmxJEjR3To0CG336y6ULdu3bR3715rSHhJ2r17t8LDw0uNqFbZ5QK4fngyHPygQYPkcDiUnp5+0XkuXbpUnTp1Uq1atRQQEKD27dvrb3/7m1ubGTNmqG3btgoODlZwcLC6du2qTz/9tCpXDUA1INgAsJQ3QsyJEyc0atQorVu3Tvv379eqVavUq1cv3XDDDbr33nutdv369VNycrL1+IknntCRI0c0bNgw7d69Wx9//LFSU1NLnZRUNDINgOtTZmamcnJyrKnkd/IuHA7+vffe04YNGyp1b16dOnU0fvx4rVu3Tlu3btWjjz6qRx99VJ999pnVpkGDBnrppZe0ceNGbdy4Ub/+9a/Vu3dvbd++vWpXEECV4gwCgGXlypU6ePCg9dtUJWrWrKlt27Zp/vz5OnbsmMLDw3Xbbbdp8eLFbkO5Hzx40O1HfCMjI7VixQqNGDFCbdu2Vf369TVs2DCNHTu2UssFcH2rzHDwP/zwg4YOHarPPvusUld84+Pj3R4PGzZM8+bN09dff60ePXpI+vl3+843ceJEzZgxQ+vXr9eNN954iWsDoLoRbABYEhMTVdZ4In5+fm6fZpZn1apVpcq6du2q9evXX9JyAaBEUVGRFixYoJEjR8rhcEj6+Wpv3759NXr06EsKHMYYffHFF9q1a5cmTZpUZptz587pnXfe0cmTJ9W1a9fLWgcA1YtgAwAAfvHee+89HTt2TAMGDLDKJk2aJC8vLz311FMezSs/P1/169dXYWGhatasqddee00JCQlubbZt26auXbvqp59+UmBgoJYtW6ZWrVpVxapckxo/8/HV7gKq2P6X7HfPK8EGAAD84s2ePVs9e/a07qPZtGmTpk2bps2bN1tXcCorKChIWVlZOnHihD7//HONHDlSTZo0cfuaWvPmzZWVlaVjx45pyZIl6t+/v1avXk24AX7BGDwAAFDtKhrdKiUlRS1atFBAQIBq166t22+/XRs2bKhwvkuWLFGrVq3kdDrVqlUrLVu2rLpXBVdByXDwjz/+uFW2Zs0a5eXlqWHDhvLy8pKXl5cOHDigp59+Wo0bN77o/GrUqKHo6Gi1b99eTz/9tO677z6lpaW5tfHx8VF0dLQ6deqktLQ0tWvXTtOmTauO1QNQRQg2AIBqV9HoVs2aNdP06dO1bds2ff3112rcuLESExP1n//8p9x5rlu3Tg8++KD69u2rf/7zn+rbt68eeOCBSgUi2EtZw8H37dtXW7duVVZWljVFRERo9OjRlbon8HzGGBUWFl52GwBXF19FAwBUu4pGt0pKSnKrnzp1qmbPnq2tW7eqe/fuZc4zPT1dCQkJ1hDjycnJWr16tdLT0/XWW29Vw1rgaihvOPjQ0FCFhoa6tfX29pbL5VLz5s2tsn79+ql+/frWFZm0tDR16tRJTZs2VVFRkT755BPNnz9fM2bMsJ4zbtw49ezZU5GRkTp+/LgWLVqkVatWafny5dW8tgAuB8EGAHBFlTW61YX1M2fOVEhIiNq1a1fufNatW6cRI0a4lfXo0aPCH2iEvVzucPAXDkN/8uRJDR48WN9//738/PzUokULLViwQA8++KDV5t///rf69u2rnJwchYSEqG3btlq+fHmpAQYA/LIQbAAAV1RZo1tJ0kcffaSHHnpIp06dUnh4uDIyMnTDDTeUO5/c3FyFhYW5lYWFhSk3N7c6uo2rxJPh4Pfv31+q7MJh6F988UW9+OKLF53P7NmzK9s9AL8gBBvgCmEozGuTHYfDvNouHN2qxG233aasrCwdPnxYs2bNsu6XqVevXrnzuvCKjzHG4xGyAADXBgYPAABcMWWNblUiICBA0dHRuvnmmzV79mx5eXld9JNzl8tV6upMXl5eqas4AIDrA8EGAHDFlDW6VXkqGoWqa9eu1uhqJVasWKHY2NjL7icAwH74KhoA4Ioob3SrkydPauLEibrnnnsUHh6uI0eO6LXXXtP3339vDQctlR7datiwYbr11ls1adIk9e7dW++//75Wrlypr7/++oqvGwDg6iPYAACuiPJGt6pZs6a+/fZbzZs3T4cPH1ZoaKg6d+6sNWvW6MYbb7TaXTi6VWxsrBYtWqRnn31Wzz33nJo2barFixerS5cuV2ydAAC/HAQbAMAVUd7oVr6+vlq6dGmFz79wdCtJuu+++3TfffdVRfcAADZHsAEA4DrFaI3XHkZqxPWMwQMAAAAA2B7BBgAAAIDtEWwAAAAA2B7BBgAAAIDtEWwAAAAA2B7BBgAAAIDtMdwzANgMQ/RemximFwAuD1dsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANieR8GmcePGcjgcpaYhQ4ZIkowxSklJUUREhPz8/BQfH6/t27dXS8cBAAAAoIRHwSYzM1M5OTnWlJGRIUm6//77JUmTJ0/W1KlTNX36dGVmZsrlcikhIUHHjx+v+p4DAAAAwP/Po2BTt25duVwua/roo4/UtGlTxcXFyRij9PR0jR8/Xn369FHr1q01b948nTp1SgsXLqyu/gMAAADApd9jU1RUpAULFuixxx6Tw+FQdna2cnNzlZiYaLVxOp2Ki4vT2rVry51PYWGhCgoK3CYAAAAA8MQlB5v33ntPx44d04ABAyRJubm5kqSwsDC3dmFhYVZdWdLS0hQSEmJNkZGRl9olAAAAANepSw42s2fPVs+ePRUREeFW7nA43B4bY0qVnS85OVn5+fnWdOjQoUvtEgAAAIDrlNelPOnAgQNauXKlli5dapW5XC5JP1+5CQ8Pt8rz8vJKXcU5n9PplNPpvJRuAAAAAICkS7xiM2fOHNWrV0933XWXVRYVFSWXy2WNlCb9fB/O6tWrFRsbe/k9BQAAAIByeHzFpri4WHPmzFH//v3l5fV/T3c4HBo+fLhSU1MVExOjmJgYpaamyt/fX0lJSVXaaQAAAAA4n8fBZuXKlTp48KAee+yxUnVjxozR6dOnNXjwYB09elRdunTRihUrFBQUVCWdBQAAAICyeBxsEhMTZYwps87hcCglJUUpKSmX2y8AAAAAqLRLHhUNAAAAAH4pCDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbM/jYPPDDz/od7/7nUJDQ+Xv76/27dtr06ZNVr0xRikpKYqIiJCfn5/i4+O1ffv2Ku00AAAAAJzPo2Bz9OhRdevWTd7e3vr000+1Y8cOTZkyRbVq1bLaTJ48WVOnTtX06dOVmZkpl8ulhIQEHT9+vKr7DgAAAACSJC9PGk+aNEmRkZGaM2eOVda4cWPrb2OM0tPTNX78ePXp00eSNG/ePIWFhWnhwoUaNGhQ1fQaAAAAAM7j0RWbDz74QJ06ddL999+vevXqqUOHDpo1a5ZVn52drdzcXCUmJlplTqdTcXFxWrt2bZnzLCwsVEFBgdsEAAAAAJ7wKNjs27dPM2bMUExMjD777DP98Y9/1FNPPaX58+dLknJzcyVJYWFhbs8LCwuz6i6UlpamkJAQa4qMjLyU9QAAAABwHfMo2BQXF+tXv/qVUlNT1aFDBw0aNEi///3vNWPGDLd2DofD7bExplRZieTkZOXn51vToUOHPFwFAAAAANc7j4JNeHi4WrVq5VbWsmVLHTx4UJLkcrkkqdTVmby8vFJXcUo4nU4FBwe7TQAAAADgCY+CTbdu3bRr1y63st27d6tRo0aSpKioKLlcLmVkZFj1RUVFWr16tWJjY6uguwAAAABQmkejoo0YMUKxsbFKTU3VAw88oG+++UYzZ87UzJkzJf38FbThw4crNTVVMTExiomJUWpqqvz9/ZWUlFQtKwAAAAAAHgWbzp07a9myZUpOTtYLL7ygqKgopaen65FHHrHajBkzRqdPn9bgwYN19OhRdenSRStWrFBQUFCVdx4AAAAAJA+DjSTdfffduvvuu8utdzgcSklJUUpKyuX0CwAAAAAqzaN7bAAAAADgl4hgAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDbXoJSUFDkcDrfJ5XJJks6cOaOxY8eqTZs2CggIUEREhPr166cff/yxwvkuWbJErVq1ktPpVKtWrbRs2bLqXhUAAACgUgg216gbb7xROTk51rRt2zZJ0qlTp7R582Y999xz2rx5s5YuXardu3frnnvuuej81q1bpwcffFB9+/bVP//5T/Xt21cPPPCANmzYcCVWBwAAALgor6vdAVQPLy8v6yrN+UJCQpSRkeFW9sorr+imm27SwYMH1bBhwzLnl56eroSEBCUnJ0uSkpOTtXr1aqWnp+utt96q+hUAAAAAPMAVm2vUnj17FBERoaioKD300EPat29fuW3z8/PlcDhUq1atctusW7dOiYmJbmU9evTQ2rVrq6rLAAAAwCUj2FyDunTpovnz5+uzzz7TrFmzlJubq9jYWB05cqRU259++knPPPOMkpKSFBwcXO48c3NzFRYW5lYWFham3NzcKu8/AAAA4Cm+inYN6tmzp/V3mzZt1LVrVzVt2lTz5s3TyJEjrbozZ87ooYceUnFxsV577bUK5+twONweG2NKlQEAAABXA8HmOhAQEKA2bdpoz549VtmZM2f0wAMPKDs7W1988cVFr9ZIksvlKnV1Ji8vr9RVHAAAAOBq4Kto14HCwkLt3LlT4eHhkv4v1OzZs0crV65UaGhohfPo2rVrqUEHVqxYodjY2GrpMwAAAOAJrthcg0aNGqVevXqpYcOGysvL04svvqiCggL1799fZ8+e1X333afNmzfro48+0rlz56wrMXXq1JGPj48kqV+/fqpfv77S0tIkScOGDdOtt96qSZMmqXfv3nr//fe1cuVKff3111dtPQEAAIASBJtr0Pfff6+HH35Yhw8fVt26dXXzzTdr/fr1atSokfbv368PPvhAktS+fXu353355ZeKj4+XJB08eFA1avzfBb3Y2FgtWrRIzz77rJ577jk1bdpUixcvVpcuXa7UagEAAADlIthcgxYtWlRuXePGjWWMqXAeq1atKlV233336b777rucrgEAAADVgntsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgev2NTCY2f+fhqdwFVbP9Ld13tLgAAAKAKccUGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYnkfBJiUlRQ6Hw21yuVxWvTFGKSkpioiIkJ+fn+Lj47V9+/Yq7zQAAAAAnM/jKzY33nijcnJyrGnbtm1W3eTJkzV16lRNnz5dmZmZcrlcSkhI0PHjx6u00wAAAABwPo+DjZeXl1wulzXVrVtX0s9Xa9LT0zV+/Hj16dNHrVu31rx583Tq1CktXLiwyjsOAAAAACU8DjZ79uxRRESEoqKi9NBDD2nfvn2SpOzsbOXm5ioxMdFq63Q6FRcXp7Vr15Y7v8LCQhUUFLhNAAAAAOAJj4JNly5dNH/+fH322WeaNWuWcnNzFRsbqyNHjig3N1eSFBYW5vacsLAwq64saWlpCgkJsabIyMhLWA0AAAAA1zOPgk3Pnj3129/+Vm3atNHtt9+ujz/+WJI0b948q43D4XB7jjGmVNn5kpOTlZ+fb02HDh3ypEsAAAAAcHnDPQcEBKhNmzbas2ePNTrahVdn8vLySl3FOZ/T6VRwcLDbBAAAAACeuKxgU1hYqJ07dyo8PFxRUVFyuVzKyMiw6ouKirR69WrFxsZedkcBAAAAoDxenjQeNWqUevXqpYYNGyovL08vvviiCgoK1L9/fzkcDg0fPlypqamKiYlRTEyMUlNT5e/vr6SkpOrqPwAAAAB4Fmy+//57Pfzwwzp8+LDq1q2rm2++WevXr1ejRo0kSWPGjNHp06c1ePBgHT16VF26dNGKFSsUFBRULZ0HAAAAAMnDYLNo0aKL1jscDqWkpCglJeVy+gQAAAAAHrmse2wAAAAA4JeAYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9i4r2KSlpcnhcGj48OFWmTFGKSkpioiIkJ+fn+Lj47V9+/bL7ScAAAAAlOuSg01mZqZmzpyptm3bupVPnjxZU6dO1fTp05WZmSmXy6WEhAQdP378sjsLAAAAAGW5pGBz4sQJPfLII5o1a5Zq165tlRtjlJ6ervHjx6tPnz5q3bq15s2bp1OnTmnhwoVV1mkAAAAAON8lBZshQ4borrvu0u233+5Wnp2drdzcXCUmJlplTqdTcXFxWrt27eX1FAAAAADK4eXpExYtWqTNmzcrMzOzVF1ubq4kKSwszK08LCxMBw4cKHN+hYWFKiwstB4XFBR42iUAAAAA1zmPrtgcOnRIw4YN04IFC+Tr61tuO4fD4fbYGFOqrERaWppCQkKsKTIy0pMuAQAAAIBnwWbTpk3Ky8tTx44d5eXlJS8vL61evVr/+7//Ky8vL+tKTcmVmxJ5eXmlruKUSE5OVn5+vjUdOnToElcFAAAAwPXKo6+ide/eXdu2bXMre/TRR9WiRQuNHTtWTZo0kcvlUkZGhjp06CBJKioq0urVqzVp0qQy5+l0OuV0Oi+x+wAAAADgYbAJCgpS69at3coCAgIUGhpqlQ8fPlypqamKiYlRTEyMUlNT5e/vr6SkpKrrNQAAAACcx+PBAyoyZswYnT59WoMHD9bRo0fVpUsXrVixQkFBQVW9KAAAAACQVAXBZtWqVW6PHQ6HUlJSlJKScrmzBgAAAIBKuaTfsQEAAACAXxKCDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2CDQAAAADbI9gAAAAAsD2Pgs2MGTPUtm1bBQcHKzg4WF27dtWnn35q1RtjlJKSooiICPn5+Sk+Pl7bt2+v8k4DAAAAwPk8CjYNGjTQSy+9pI0bN2rjxo369a9/rd69e1vhZfLkyZo6daqmT5+uzMxMuVwuJSQk6Pjx49XSeQAAAACQPAw2vXr10p133qlmzZqpWbNmmjhxogIDA7V+/XoZY5Senq7x48erT58+at26tebNm6dTp05p4cKF1dV/AAAAALj0e2zOnTunRYsW6eTJk+ratauys7OVm5urxMREq43T6VRcXJzWrl1b7nwKCwtVUFDgNgEAAACAJzwONtu2bVNgYKCcTqf++Mc/atmyZWrVqpVyc3MlSWFhYW7tw8LCrLqypKWlKSQkxJoiIyM97RIAAACA65zHwaZ58+bKysrS+vXr9cQTT6h///7asWOHVe9wONzaG2NKlZ0vOTlZ+fn51nTo0CFPuwQAAADgOufl6RN8fHwUHR0tSerUqZMyMzM1bdo0jR07VpKUm5ur8PBwq31eXl6pqzjnczqdcjqdnnYDAAAAACyX/Ts2xhgVFhYqKipKLpdLGRkZVl1RUZFWr16t2NjYy10MAAAAAJTLoys248aNU8+ePRUZGanjx49r0aJFWrVqlZYvXy6Hw6Hhw4crNTVVMTExiomJUWpqqvz9/ZWUlFRd/QcAAAAAz4LNv//9b/Xt21c5OTkKCQlR27ZttXz5ciUkJEiSxowZo9OnT2vw4ME6evSounTpohUrVigoKKhaOg8AAAAAkofBZvbs2RetdzgcSklJUUpKyuX0CQAAAAA8ctn32AAAAADA1UawAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtudRsElLS1Pnzp0VFBSkevXq6Te/+Y127drl1sYYo5SUFEVERMjPz0/x8fHavn17lXYaAAAAAM7nUbBZvXq1hgwZovXr1ysjI0Nnz55VYmKiTp48abWZPHmypk6dqunTpyszM1Mul0sJCQk6fvx4lXceAAAAACTJy5PGy5cvd3s8Z84c1atXT5s2bdKtt94qY4zS09M1fvx49enTR5I0b948hYWFaeHChRo0aFDV9RwAAAAA/n+XdY9Nfn6+JKlOnTqSpOzsbOXm5ioxMdFq43Q6FRcXp7Vr15Y5j8LCQhUUFLhNAAAAAOCJSw42xhiNHDlSt9xyi1q3bi1Jys3NlSSFhYW5tQ0LC7PqLpSWlqaQkBBrioyMvNQuAQAAALhOXXKwGTp0qLZu3aq33nqrVJ3D4XB7bIwpVVYiOTlZ+fn51nTo0KFL7RIAAACA65RH99iUePLJJ/XBBx/oq6++UoMGDaxyl8sl6ecrN+Hh4VZ5Xl5eqas4JZxOp5xO56V0AwAAAAAkeXjFxhijoUOHaunSpfriiy8UFRXlVh8VFSWXy6WMjAyrrKioSKtXr1ZsbGzV9BgAAAAALuDRFZshQ4Zo4cKFev/99xUUFGTdNxMSEiI/Pz85HA4NHz5cqampiomJUUxMjFJTU+Xv76+kpKRqWQEAAAAA8CjYzJgxQ5IUHx/vVj5nzhwNGDBAkjRmzBidPn1agwcP1tGjR9WlSxetWLFCQUFBVdJhAAAAALiQR8HGGFNhG4fDoZSUFKWkpFxqnwAAAADAI5f1OzYAAAAA8EtAsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgex4Hm6+++kq9evVSRESEHA6H3nvvPbd6Y4xSUlIUEREhPz8/xcfHa/v27VXVXwAAAAAoxeNgc/LkSbVr107Tp08vs37y5MmaOnWqpk+frszMTLlcLiUkJOj48eOX3VkAAAAAKIuXp0/o2bOnevbsWWadMUbp6ekaP368+vTpI0maN2+ewsLCtHDhQg0aNOjyegsAAAAAZajSe2yys7OVm5urxMREq8zpdCouLk5r166tykUBAAAAgMXjKzYXk5ubK0kKCwtzKw8LC9OBAwfKfE5hYaEKCwutxwUFBVXZJQAAAADXgWoZFc3hcLg9NsaUKiuRlpamkJAQa4qMjKyOLgEAAAC4hlVpsHG5XJL+78pNiby8vFJXcUokJycrPz/fmg4dOlSVXQIAAABwHajSYBMVFSWXy6WMjAyrrKioSKtXr1ZsbGyZz3E6nQoODnabAAAAAMATHt9jc+LECe3du9d6nJ2draysLNWpU0cNGzbU8OHDlZqaqpiYGMXExCg1NVX+/v5KSkqq0o4DAAAAQAmPg83GjRt12223WY9HjhwpSerfv7/mzp2rMWPG6PTp0xo8eLCOHj2qLl26aMWKFQoKCqq6XgMAAADAeTwONvHx8TLGlFvvcDiUkpKilJSUy+kXAAAAAFRatYyKBgAAAABXEsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYHsEGAAAAgO0RbAAAAADYXrUFm9dee01RUVHy9fVVx44dtWbNmupaFAAAAIDrXLUEm8WLF2v48OEaP368tmzZov/5n/9Rz549dfDgwepYHAAAAIDrXLUEm6lTp2rgwIF6/PHH1bJlS6WnpysyMlIzZsyojsUBAAAAuM55VfUMi4qKtGnTJj3zzDNu5YmJiVq7dm2p9oWFhSosLLQe5+fnS5IKCgqqumuXrLjw1NXuAqrY1di+2I6uTWxLqCpsS6gKV+v8iW3p2vNLORcv6YcxpsK2VR5sDh8+rHPnziksLMytPCwsTLm5uaXap6Wl6U9/+lOp8sjIyKruGmAJSb/aPcC1gm0JVYVtCVWB7QhV5Ze2LR0/flwhISEXbVPlwaaEw+Fwe2yMKVUmScnJyRo5cqT1uLi4WP/9738VGhpaZntUj4KCAkVGRurQoUMKDg6+2t2BjbEtoaqwLaGqsC2hqrAtXXnGGB0/flwREREVtq3yYHPDDTeoZs2apa7O5OXllbqKI0lOp1NOp9OtrFatWlXdLVRScHAwb1RUCbYlVBW2JVQVtiVUFbalK6uiKzUlqnzwAB8fH3Xs2FEZGRlu5RkZGYqNja3qxQEAAABA9XwVbeTIkerbt686deqkrl27aubMmTp48KD++Mc/VsfiAAAAAFznqiXYPPjggzpy5IheeOEF5eTkqHXr1vrkk0/UqFGj6lgcqoDT6dSECRNKfS0Q8BTbEqoK2xKqCtsSqgrb0i+bw1Rm7DQAAAAA+AWrlh/oBAAAAIAriWADAAAAwPYINgAAAABsj2BzhTVu3Fjp6emX/Py5c+fyOz+S9u/fL4fDoaysrKvdlWvKpfxfBwwYoN/85jfV1ieA/d7145ewPzHG6A9/+IPq1KnDceY6dSX3ORdu82Vtf/Hx8Ro+fPgV6Y/dEWwuUN071czMTP3hD3+oVNuyQtCDDz6o3bt3V3p58fHxcjgccjgc8vHxUdOmTZWcnKzCwkJPuv2LExkZaY24B/wSTobsLDc3V8OGDVN0dLR8fX0VFhamW265Ra+//rpOnTp1tbvn8X6vshwOh3x9fXXgwAG38t/85jcaMGCA9XjAgAHWftThcCg0NFR33HGHtm7dWuV9wtW3fPlyzZ07Vx999NFVPc5c6x/gnTt3TrGxsfrtb3/rVp6fn6/IyEg9++yzVtmSJUv061//WrVr15a/v7+aN2+uxx57TFu2bLHazJ071+19GhgYqI4dO2rp0qWllv3ll1/qzjvvVGhoqPz9/dWqVSs9/fTT+uGHH6pvhcsxbdo0zZ0713pc1va3dOlS/fnPf77ifbMjgs0VVrduXfn7+1/y8/38/FSvXj2PnvP73/9eOTk52rt3ryZPnqxXX31VKSkpl9yHyjh37pyKi4urbf41a9aUy+WSl1e1jFgOXDf27dunDh06aMWKFUpNTdWWLVu0cuVKjRgxQh9++KFWrlx5tbt4Sfu9ynI4HHr++ecrbHfHHXcoJydHOTk5+vzzz+Xl5aW77767Wvr0S1dUVHS1u1CtvvvuO4WHhys2NvaSjzPGGJ09e7YaenftqFmzpubNm6fly5fr73//u1X+5JNPqk6dOtb7cuzYsXrwwQfVvn17ffDBB9q+fbtmzpyppk2baty4cW7zDA4Ott6nW7ZsUY8ePfTAAw9o165dVps33nhDt99+u1wul5YsWaIdO3bo9ddfV35+vqZMmXJlVv48ISEhbleHytr+6tSpo6CgoEteRnWfk/2iGLjp37+/6d27d5l1q1atMp07dzY+Pj7G5XKZsWPHmjNnzlj1BQUFJikpyfj7+xuXy2WmTp1q4uLizLBhw6w2jRo1Mi+//LL1eMKECSYyMtL4+PiY8PBw8+STTxpjjImLizOS3CZjjJkzZ44JCQlx69f7779vOnbsaJxOpwkNDTX33nuvVXfh8o0xpk+fPuZXv/qV9bi4uNhMmjTJREVFGV9fX9O2bVvzzjvvlFpGdHS08fX1NfHx8Wbu3LlGkjl69Khbvz788EPTsmVLU7NmTbNv3z5TWFhoRo8ebSIiIoy/v7+56aabzJdffmnNd//+/ebuu+82tWrVMv7+/qZVq1bm448/NsYY89///tckJSWZG264wfj6+pro6Gjz5ptvGmOMyc7ONpLMli1bKv36xMXFmSeffNKMHj3a1K5d24SFhZkJEyaUfqGvIZ9++qnp1q2bCQkJMXXq1DF33XWX2bt3r1W/YcMG0759e+N0Ok3Hjh3N0qVL3f6vZ8+eNY899php3Lix8fX1Nc2aNTPp6eluyyh5z6SkpJi6deuaoKAg84c//MEUFhZabX766Sfz5JNPmrp16xqn02m6detmvvnmG7f5VPT6vfPOO6Z169bG19fX1KlTx3Tv3t2cOHHCTJgwodR75fxtDBfXo0cP06BBA3PixIky64uLi40xxkyZMsW0bt3a+Pv7mwYNGpgnnnjCHD9+3Go3YcIE065dO7fnvvzyy6ZRo0bW4y+//NJ07tzZ+Pv7m5CQEBMbG2v2799vjDEmKyvLxMfHm8DAQBMUFGR+9atfmczMTGNM6f3e3r17zT333GPq1atnAgICTKdOnUxGRobbshs1amQmTpxoHn30URMYGGgiIyPNG2+84dZGkhk9erSpUaOG2bp1q1Xeu3dv079/f+txWceFr776ykgyeXl5Zf7friVxcXFmyJAhZsSIESY0NNTceuutFW4PJa/Z8uXLTYsWLUxAQIDp0aOH+fHHH602Z8+eNSNGjLD2T6NHjzb9+vVz+19XtO/48ssvjSSzfPly0759e+Pr62tuu+028+9//9t88sknpkWLFiYoKMg89NBD5uTJkxWua//+/d32JSXbryf96Nixo/H29jZffPFFhcfXix3nLtyvxcXFefrS2cK0adNM7dq1zQ8//GDee+894+3tbR2D1q1bZySZadOmlfnckv2TMWWfH507d854e3ubt99+2xhjzKFDh4yPj48ZPnx4mfO78JymRGX2Oa+++qqJjo42TqfT1KtXz/z2t7+16so7fhnjvn8pb/u78FyuonOr8s7JrgcEmwuUF2y+//574+/vbwYPHmx27txpli1bZm644Qa3E+PHH3/cNGrUyKxcudJs27bN3HvvvSYoKKjcYPPOO++Y4OBg88knn5gDBw6YDRs2mJkzZxpjjDly5Ihp0KCBeeGFF0xOTo7JyckxxpR+s3300UemZs2a5vnnnzc7duwwWVlZZuLEiVb9hW+GrKwsExYWZrp06WKVjRs3zrRo0cIsX77cfPfdd2bOnDnG6XSaVatWGWN+DhHe3t5m1KhR5ttvvzVvvfWWqV+/fqlg4+3tbWJjY80//vEP8+2335oTJ06YpKQkExsba7766iuzd+9e85e//MU4nU6ze/duY4wxd911l0lISDBbt2413333nfnwww/N6tWrjTHGDBkyxLRv395kZmaa7Oxsk5GRYT744AOrT+efgFfm9YmLizPBwcEmJSXF7N6928ybN884HA6zYsWKi28UNvbuu++aJUuWmN27d5stW7aYXr16mTZt2phz586ZEydOmLp165oHH3zQ/Otf/zIffvihadKkidv/taioyDz//PPmm2++Mfv27TMLFiww/v7+ZvHixdYy+vfvbwIDA635fPTRR6Zu3bpm3LhxVpunnnrKREREmE8++cRs377d9O/f39SuXdscOXLEGFPx6/fjjz8aLy8vM3XqVJOdnW22bt1qXn31VXP8+HFz/Phx88ADD5g77rjDeq+cH6pQvsOHDxuHw2HS0tIqbPvyyy+bL774wuzbt898/vnnpnnz5uaJJ56w6isKNmfOnDEhISFm1KhRZu/evWbHjh1m7ty55sCBA8YYY2688Ubzu9/9zuzcudPs3r3bvP322yYrK8sYU3q/l5WVZV5//XWzdetWs3v3bjN+/Hjj6+trzcuYn/e1derUMa+++qrZs2ePSUtLMzVq1DA7d+602kgyy5YtM/fcc4+56667rPKKgs3x48fNoEGDTHR0tDl37lyF/zu7i4uLM4GBgWb06NHm22+/NTt37qxweyg5Jtx+++0mMzPTbNq0ybRs2dIkJSVZbSZNmmRCQkLMu+++a3bs2GEGDhxogoKC3P7XFe07SgLFzTffbL7++muzefNmEx0dbeLi4kxiYqLZvHmz+eqrr0xoaKh56aWXKlzXY8eOmRdeeME0aNDA5OTkWMG1sv1o27atWbFihdm7d685fPhwhcfXix3nvvnmGyPJrFy50uTk5FjLutYUFxeb+Ph40717d1OvXj3z5z//2ap76qmnTGBgoNuHXOW5cD9x9uxZ8+abbxpvb2/rA72pU6caSW4BuzLzqmifk5mZaWrWrGkWLlxo9u/fbzZv3myFsYsdv4xx37+Ut/1deC5X0blVeedk1wOCzQXKCzbjxo0zzZs3d/t04NVXXzWBgYHm3LlzpqCgwHh7e7t9EnPs2DHj7+9fbrCZMmWKadasmSkqKiqzLxde3TGm9Juta9eu5pFHHil3feLi4oy3t7cJCAgwPj4+RpKpUaOGeffdd40xxpw4ccL4+vqatWvXuj1v4MCB5uGHHzbGGDN27FjTunVrt/rx48eXCjaSrBMRY37+hMPhcJgffvjB7bndu3c3ycnJxhhj2rRpY1JSUsrse69evcyjjz5aZt2Fwaai16fkf3HLLbe4zadz585m7NixZS7jWpSXl2ckmW3btpk33njD1KlTx+1TzBkzZpS6EnahwYMHu30S1b9//zLnU/K/P3HihPH29jZ///vfrfqioiITERFhJk+ebIyp+PXbtGmTkWR9un+hi11pRfnWr19vJJmlS5e6lYeGhpqAgAATEBBgxowZU+Zz3377bRMaGmo9rijYHDlyxEiyTuguFBQUZObOnVtmXVmfxF6oVatW5pVXXrEeN2rUyPzud7+zHhcXF5t69eqZGTNmWGUlwWb79u2mZs2a5quvvjLGlB1satasaf1PJJnw8HCzadOmi/bpWhEXF2fat29/0TYXbg8lx4TzrxC/+uqrJiwszHocHh7uFjbOnDljGjRoYL2XK7PvKAkUK1eutNqkpaUZSea7776zygYNGmR69OhRqfW98EqjJ/1477333J5X0fHVk+PctWznzp1GkmnTpo1biLnjjjtM27Zt3dpOmTLFei8GBASYY8eOGWP+b5srKa9Ro4ZxOp1mzpw51nOfeOIJExwcXGF/PN3nLFmyxAQHB5uCgoJS7Tw9fl24/RnjHmwqc25V1jnZ9YJ7bCpp586d6tq1qxwOh1XWrVs3nThxQt9//7327dunM2fO6KabbrLqQ0JC1Lx583Lnef/99+v06dNq0qSJfv/732vZsmUefyc3KytL3bt3v2ibRx55RFlZWVq3bp0eeOABPfbYY9bNejt27NBPP/2khIQEBQYGWtP8+fP13XffSZJ27dqlzp07u83z/PUs4ePjo7Zt21qPN2/eLGOMmjVr5jbv1atXW/N+6qmn9OKLL6pbt26aMGGC2824TzzxhBYtWqT27dtrzJgxWrt2bbnrWNHrU+L8/klSeHi48vLyLvr/s7PvvvtOSUlJatKkiYKDgxUVFSVJOnjwoHbu3Kl27dq53fPVtWvXUvN4/fXX1alTJ9WtW1eBgYGaNWuWDh486NamrPmcOHFChw4d0nfffaczZ86oW7duVr23t7duuukm7dy5U1LFr1+7du3UvXt3tWnTRvfff79mzZqlo0ePVs0/CW7/d0n65ptvlJWVpRtvvNEaaOTLL79UQkKC6tevr6CgIPXr109HjhzRyZMnK7WMOnXqaMCAAerRo4d69eqladOmKScnx6ofOXKkHn/8cd1+++166aWXrH1EWU6ePKkxY8aoVatWqlWrlgIDA/Xtt9+W2i7Pf787HA65XK4y3++tWrVSv379NHbs2HKXedtttykrK0tZWVnasGGDEhMT1bNnz1IDD1yrOnXq5Pa4MtuDv7+/mjZtaj0+f3+bn5+vnJwct32Ol5eX23Iqs+8ocf5rHRYWJn9/fzVp0sSt7FL39Z704/z+V+b46slx7lr25ptvyt/fX9nZ2W7HbKn0/umxxx5TVlaW3njjDZ08eVLGGKsuKCjIep9u2bJFqampGjRokD788ENJP9/7dOH8KqOifU5CQoIaNWqkJk2aqG/fvvr73/9uDbxS1cevypxbSaXPya4XBJtKKuvNUPJmcjgcbn+X1aYskZGR2rVrl1599VX5+flp8ODBuvXWW3XmzJlK98vPz6/CNiEhIYqOjtavfvUrLViwQKtXr9bs2bMlybqZ7OOPP7Z2BllZWdqxY4feffddax0qs15+fn5u7YqLi1WzZk1t2rTJbd47d+7UtGnTJEmPP/649u3bp759+2rbtm3q1KmTXnnlFUmyThqGDx+uH3/8Ud27d9eoUaPKXMeKXp8S3t7ebm0cDsc1fUNdr169dOTIEc2aNUsbNmzQhg0bJP188+/Fts0Sb7/9tkaMGKHHHntMK1asUFZWlh599NFK3zxc0XujpKyi169mzZrKyMjQp59+qlatWumVV15R8+bNlZ2dXal+oGzR0dFyOBz69ttv3cqbNGmi6Ohoa/9y4MAB3XnnnWrdurWWLFmiTZs26dVXX5Uka39Vo0aNUtvUhfuyOXPmaN26dYqNjdXixYvVrFkzrV+/XpKUkpKi7du366677tIXX3yhVq1aadmyZWX2e/To0VqyZIkmTpyoNWvWKCsrS23atCm1XXryfv/Tn/6kLVu26L333iuzPiAgQNHR0YqOjtZNN92k2bNn6+TJk5o1a1aZ7a81AQEB1t+V2R6ksv//ldnvlKjMvqOsZTkcjird13vSj/P/T5U5vnpynLtWrVu3Ti+//LLef/99de3aVQMHDrT+5zExMVawLFGrVi1FR0erfv36peZVo0YN633atm1bjRw5UrfddpsmTZokSWrWrJkVqj1R0T4nKChImzdv1ltvvaXw8HA9//zzateunY4dO1blx6/KnFtJpc/JrhcEm0pq1aqV1q5d67ZTXrt2rYKCglS/fn01bdpU3t7e+uabb6z6goIC7dmz56Lz9fPz0z333KP//d//1apVq7Ru3Tpt27ZN0s9p+9y5cxd9ftu2bfX5559Xej28vb01btw4Pfvsszp16pRatWolp9OpgwcPWjuDkikyMlKS1KJFC2VmZrrNZ+PGjRUuq0OHDjp37pzy8vJKzdvlclntIiMj9cc//lFLly7V008/7XaiULduXQ0YMEALFixQenq6Zs6cWeayKnp9rkdHjhzRzp079eyzz6p79+5q2bKl26dErVq10j//+U+dPn3aKis5ySyxZs0axcbGavDgwerQoYOio6PL/CS9rPkEBgaqQYMGio6Olo+Pj77++mur/syZM9q4caNatmxp9aWi18/hcKhbt27WCaiPj4914luZ9wpKCw0NVUJCgqZPn37RKy8bN27U2bNnNWXKFN18881q1qyZfvzxR7c2devWVW5urttrWNYwtR06dFBycrLWrl2r1q1ba+HChVZds2bNNGLECK1YsUJ9+vTRnDlzyuzPmjVrNGDAAN17771q06aNXC6X9u/f79nKXyAyMlJDhw7VuHHjKrUtORwO1ahRw227v15UZnuoSEhIiMLDw932OWfPntWmTZusx5XZd1wJl9qPyhxfpfKPcz4+PpJ0Te/bTp8+rf79+2vQoEG6/fbb9f/+3/9TZmam3njjDUnSww8/rBMnTui111675GXUrFnTep/ed9998vHx0eTJk8tse+zYsTLLK7PP8fLy0u23367Jkydr69at2r9/v7744gtJFz9+eaqy51bXK8bKLUN+fn6pA/If/vAHpaen68knn9TQoUO1a9cuTZgwQSNHjlSNGjUUFBSk/v37a/To0apTp47q1aunCRMmqEaNGuUm5rlz5+rcuXPq0qWL/P399be//U1+fn5q1KiRpJ9/x+arr77SQw89JKfTqRtuuKHUPCZMmKDu3buradOmeuihh3T27Fl9+umnGjNmTLnrl5SUpHHjxum1117TqFGjNGrUKI0YMULFxcW65ZZbVFBQoLVr1yowMNDa4UydOlVjx47VwIEDlZWVZY25frFPA5o1a6ZHHnlE/fr105QpU9ShQwcdPnxYX3zxhdq0aaM777xTw4cPV8+ePdWsWTMdPXpUX3zxhXWgeP7559WxY0fr6zAfffRRuQeRwYMHX/T1uR7Vrl1boaGhmjlzpsLDw3Xw4EE988wzVn1SUpLGjx+vgQMH6tlnn9X+/fv117/+1W0e0dHRmj9/vj777DNFRUXpb3/7mzIzM62vtJUoKiqy5nPgwAFNmDBBQ4cOVY0aNRQQEKAnnnjCem80bNhQkydP1qlTpzRw4EBJFb9+GzZs0Oeff67ExETVq1dPGzZs0H/+8x9re2jcuLE+++wz7dq1S6GhoQoJCSn1iS3K9tprr6lbt27q1KmTUlJS1LZtW9WoUUOZmZn69ttv1bFjRzVt2lRnz57VK6+8ol69eukf//iHXn/9dbf5xMfH6z//+Y8mT56s++67T8uXL9enn36q4OBgSVJ2drZmzpype+65RxEREdq1a5d2796tfv366fTp0xo9erTuu+8+RUVF6fvvv1dmZmap37coER0draVLl6pXr15yOBx67rnnquTKa3JysmbNmqXs7Gw9+OCDbnWFhYXKzc2VJB09elTTp0/XiRMn1KtXr8tert1UZnuojGHDhumll15STEyMWrZsqalTp7qdWFZm33ElXGo/goKCKjy+Xuw4V69ePfn5+Wn58uVq0KCBfH19FRIScqVW+4p45plnVFxcbF1RadiwoaZMmaKRI0fqjjvuUNeuXfX000/r6aef1oEDB9SnTx/rd+xmz55tfcBQwhhjvU9Pnz6tjIwMffbZZ9bQ0ZGRkXr55Zc1dOhQFRQUqF+/fmrcuLG+//57zZ8/X4GBgWUO+VzRPuejjz7Svn37dOutt6p27dr65JNPVFxcrObNm1d4/PJUZc6trmtX5E4eG7lwqL2SqX///pc03PNNN91knnnmGavN+QMCLFu2zHTp0sUEBwebgIAAc/PNN7vdALlu3TrTtm1b43Q6Lzrc85IlS0z79u2Nj4+PueGGG0yfPn2surKGezbGmIkTJ5q6deua48ePm+LiYjNt2jTTvHlz4+3tberWrWt69OhhjU5mzP8N9+x0Ok18fLx1k/np06fL7Zcx/zeqVuPGjY23t7dxuVzm3nvvtYZWHTp0qGnatKlxOp2mbt26pm/fvubw4cPGGGP+/Oc/m5YtWxo/Pz9Tp04d07t3b2u4wksd7vnC/8WFNwlfazIyMkzLli2N0+k0bdu2NatWrbJumDbm522sXbt2xsfHx7Rv394sWbLE7f/6008/mQEDBpiQkBBTq1Yt88QTT5hnnnnG7Sbxkhsfn3/+eRMaGmoCAwPN448/bn766SerzenTp82TTz5pbrjhhksa7nnHjh2mR48e1lCrzZo1c7tRPC8vzyQkJJjAwECGe74EP/74oxk6dKiJiooy3t7eJjAw0Nx0003mL3/5izUoxNSpU014eLjx8/MzPXr0MPPnz3cbQMSYnweNiIyMNAEBAaZfv35m4sSJ1k2wubm55je/+Y0JDw83Pj4+plGjRub55583586dM4WFheahhx6yhr6PiIgwQ4cOLXf/kp2dbW677Tbj5+dnIiMjzfTp0yscWt8YY9q1a+c2UuL574USqamp1j6/xIXHhaCgINO5c2drEJZrXVn7zoq2h7KOCcuWLTPnn3acOXPGDBs2zAQHB5tatWqZkSNHlhruuaJ9R8lN++dvh2Utu6zBLcpT1s3bl9IPY0yFx9eLHeeMMWbWrFkmMjLS1KhR45ob7nnVqlWmZs2aZs2aNaXqEhMTza9//WtrQJnFixeb+Ph4ExISYry9vU2DBg1MUlKSWb9+vfWckhvmS6aSY8XEiRPN2bNn3eafkZFhevToYWrXrm18fX1NixYtzKhRo6zR0jzd56xZs8bExcWZ2rVrGz8/P9O2bVtr9NCKjl+eDh5gTMXnVpUZ/OBa5TDGgy+8wiMnT55U/fr1NWXKlCv66dKVMHHiRL3++us6dOjQ1e4KAAAAwFfRqtKWLVv07bff6qabblJ+fr5eeOEFSVLv3r2vcs8u32uvvabOnTsrNDRU//jHP/SXv/xFQ4cOvdrdAgAAACQRbKrcX//6V+3atUs+Pj7q2LGj1qxZU+a9MXazZ88evfjii/rvf/+rhg0b6umnn1ZycvLV7hYAAJV28OBBtWrVqtz6HTt2qGHDhlewRwCqEl9FAwAA14WzZ89edAS9xo0by8uLz3wBuyLYAAAAALC963McXAAAAADXFIINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANv7/wBKqQTiSG/40wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "