-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.js
157 lines (137 loc) · 3.23 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
let video;
let poseNet;
let pose;
let skeleton;
let brain;
let poseLabel = "";
let state = 'waiting';
let targetLabel;
function keyPressed() {
if (key == 't') {
console.log("going to train");
brain.normalizeData();
brain.train({epochs: 50}, finished);
} else if (key == 's') {
brain.saveData();
} else {
console.log(key);
// targetLabel = key;
// console.log(targetLabel);
// setTimeout(function() {
// console.log('collecting');
// state = 'collecting';
// setTimeout(function() {
// console.log('not collecting');
// state = 'waiting';
// }, 2000);
// }, 1000);
}
}
function setup() {
createCanvas(640, 480);
video = createCapture(VIDEO);
video.hide();
poseNet = ml5.poseNet(video, modelLoaded);
poseNet.on('pose', gotPoses);
let options = {
inputs: 34,
outputs: 2,
task: 'classification',
debug: true
}
brain = ml5.neuralNetwork(options);
// LOAD PRETRAINED MODEL
const modelInfo = {
model: './model/model.json',
metadata: './model/model_meta.json',
weights: './model/model.weights.bin',
};
brain.load(modelInfo, brainLoaded);
// LOAD TRAINING DATA
// brain.loadData("./data/rl.json", dataReady);
}
function brainLoaded() {
console.log("loaded pretrained model");
// state = "predicting";
classifyPose();
}
function classifyPose() {
if (pose) {
let inputs = [];
for (let i = 0; i < pose.keypoints.length; i++) {
let x = pose.keypoints[i].position.x;
let y = pose.keypoints[i].position.y;
inputs.push(x);
inputs.push(y);
}
brain.classify(inputs, gotResult);
} else {
setTimeout(classifyPose, 100);
}
}
function gotResult(error, results) {
if (results[0].confidence > 0.75) {
poseLabel = results[0].label.toUpperCase();
}
classifyPose();
}
function dataReady() {
brain.normalizeData();
brain.train({
epochs: 50
}, finished);
}
function finished() {
console.log('model trained');
brain.save();
classifyPose();
}
function gotPoses(poses) {
// console.log(poses);
if (poses.length > 0) {
pose = poses[0].pose;
skeleton = poses[0].skeleton;
if (state == 'collecting') {
let inputs = [];
for (let i = 0; i < pose.keypoints.length; i++) {
let x = pose.keypoints[i].position.x;
let y = pose.keypoints[i].position.y;
inputs.push(x);
inputs.push(y);
}
let target = [targetLabel];
brain.addData(inputs, target);
}
}
}
function modelLoaded() {
console.log('poseNet ready');
}
function draw() {
push();
translate(video.width, 0);
scale(-1, 1);
image(video, 0, 0, video.width, video.height);
if (pose) {
for (let i = 0; i < skeleton.length; i++) {
let a = skeleton[i][0];
let b = skeleton[i][1];
strokeWeight(2);
stroke(0);
line(a.position.x, a.position.y, b.position.x, b.position.y);
}
for (let i = 0; i < pose.keypoints.length; i++) {
let x = pose.keypoints[i].position.x;
let y = pose.keypoints[i].position.y;
fill(0);
stroke(255);
ellipse(x, y, 16, 16);
}
}
pop();
fill(255, 0, 255);
noStroke();
textSize(512);
textAlign(CENTER, CENTER);
text(poseLabel, width / 2, height / 2);
}