-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
81 lines (59 loc) · 3.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import dataset
import numpy as np
import tensorflow as tf
from tqdm import tqdm
class Model:
input_features = 100
batch_size = 128
epochs = 1
gan = tf.keras.Sequential()
image_width = 64
dataset = []
learning_rate = 0.001
beta_1 = 0.05
def random_generator_input(self):
return tf.random.normal((self.batch_size, self.input_features))
def GAN(self):
#generator
generator = tf.keras.Sequential()
generator.add(tf.keras.layers.Dense(self.input_features*4*4, input_shape=[self.input_features]))
generator.add(tf.keras.layers.Reshape([4, 4, self.input_features]))
generator.add(tf.keras.layers.Conv2DTranspose(int(self.input_features / 2), kernel_size = 5, strides = 2, padding = 'same', activation = 'selu'))
generator.add(tf.keras.layers.Conv2DTranspose(int(self.input_features / 4), kernel_size = 10, strides = 4, padding = 'same', activation = 'selu'))
generator.add(tf.keras.layers.Conv2DTranspose(3, kernel_size = 10, strides = 2, padding = 'same', activation = 'sigmoid'))
generator.summary()
#discriminator
discriminator = tf.keras.Sequential()
discriminator.add(tf.keras.layers.Conv2D(200, kernel_size = 4, strides = 1, padding = 'same', input_shape= [self.image_width, self.image_width, 3]))
discriminator.add(tf.keras.layers.Conv2D(100, kernel_size=5, strides = 2, padding = 'same'))
discriminator.add(tf.keras.layers.Conv2D(9, kernel_size = 5, strides = 2, padding = 'same'))
discriminator.add(tf.keras.layers.Flatten())
discriminator.add(tf.keras.layers.Dense(1, activation = 'sigmoid'))
discriminator.summary()
#GAN
GAN = tf.keras.Sequential([generator, discriminator])
self.gan = GAN
#compiling
adam_optimizer = tf.keras.optimizers.Adam(learning_rate=self.learning_rate, beta_1=self.beta_1)
generator.compile(optimizer=adam_optimizer, loss='binary_crossentropy')
discriminator.compile(optimizer=adam_optimizer, loss='binary_crossentropy')
GAN.compile(optimizer=adam_optimizer, loss='binary_crossentropy')
return GAN
def training_steps(self):
generator, discriminator = self.gan.layers[0], self.gan.layers[1]
for epoch in range(self.epochs):
#train Discriminator
#Real samples = 1, fake samples = 0
discriminator.trainable = True
generated_samples = generator(tf.random.normal(shape=[self.batch_size, self.input_features]))
real_samples = self.dataset[epoch * self.batch_size : (epoch + 1) * self.batch_size]
discriminator_input = tf.concat([generated_samples, real_samples], axis = 0)
zeros = tf.zeros(( self.batch_size, 1))
ones = tf.ones(( self.batch_size, 1))
y_train = tf.concat([zeros, ones], axis = 0)
discriminator.train_on_batch(discriminator_input, y_train)
# Training Generator
discriminator.trainable = False
input_samples = tf.random.normal(shape = [self.batch_size, self.input_features])
y_train = tf.ones((self.batch_size, 1))
self.gan.train_on_batch(input_samples, y_train)