-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcontours_processing.py
96 lines (81 loc) · 3.36 KB
/
contours_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
import numpy as np
import cv2
def read_rgb_image(image_name, show):
rgb_image = cv2.imread(image_name)
if show:
cv2.imshow("RGB Image",rgb_image)
return rgb_image
def convert_rgb_to_gray(rgb_image,show,blur):
gray_image = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2GRAY)
if show:
cv2.imshow("Gray Image",gray_image)
if blur: rgb_image = cv2.GaussianBlur(rgb_image, (5, 5), 0)
return gray_image
def convert_gray_to_binary(gray_image, adaptive, show):
#choose THRESH_BINARY_INV or THRESH_BINARY depending on
# which give a black background.
# We must get a black background for countours to work
if adaptive:
binary_image = cv2.adaptiveThreshold(gray_image,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 5, 2)
else:
_,binary_image = cv2.threshold(gray_image,60,255,cv2.THRESH_BINARY_INV)
if show:
cv2.imshow("Binary Image", binary_image)
#binary_image = cv2.erode(binary_image, None, iterations=2)
#binary_image = cv2.dilate(binary_image, None, iterations=2)
return binary_image
def getContours(binary_image):
#_, contours, hierarchy = cv2.findContours(binary_image,
# cv2.RETR_TREE,
# cv2.CHAIN_APPROX_SIMPLE)
contours, hierarchy = cv2.findContours(binary_image.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
return contours
def draw_contours(image, contours, image_name):
index = -1 #means all contours
thickness = 2 #thinkess of the contour line
color = (255, 0, 255) #color of the contour line
cv2.drawContours(image, contours, index, color, thickness)
cv2.imshow(image_name,image)
def process_contours(binary_image, rgb_image, contours):
black_image = np.zeros([binary_image.shape[0], binary_image.shape[1],3],'uint8')
for c in contours:
area = cv2.contourArea(c)
perimeter= cv2.arcLength(c, True)
((x, y), radius) = cv2.minEnclosingCircle(c)
cv2.drawContours(rgb_image, [c], -1, (150,250,150), 1)
cv2.drawContours(black_image, [c], -1, (150,250,150), 1)
cx, cy = get_contour_center(c)
cv2.circle(rgb_image, (cx,cy),(int)(radius),(0,0,255),1)
cv2.circle(black_image, (cx,cy),(int)(radius),(0,0,255),1)
print ("Area: {}, Perimeter: {}".format(area, perimeter))
print ("number of contours: {}".format(len(contours)))
cv2.imshow("RGB Image Contours",rgb_image)
cv2.imshow("Black Image Contours",black_image)
def get_contour_center(contour):
M = cv2.moments(contour)
cx=-1
cy=-1
if (M['m00']!=0):
cx= int(M['m10']/M['m00'])
cy= int(M['m01']/M['m00'])
return cx, cy
def main():
image_name = "images/shapes.png"
#image_name = "images/shapes2.jpg"
rgb_image = read_rgb_image(image_name, True)
gray_image= convert_rgb_to_gray(rgb_image,True,True)
binary_image = convert_gray_to_binary(gray_image, True, True)
contours = getContours(binary_image)
process_contours(binary_image, rgb_image,contours)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
cv2.waitKey(0)
cv2.destroyAllWindows()