-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInformation_Extractor.py
434 lines (406 loc) · 16.7 KB
/
Information_Extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import re
import json
from nltk.corpus import wordnet
from nltk.corpus import stopwords
import stanfordnlp
from collections import Counter
import pandas as pd
import difflib
stanfordnlp.download('en')
nlp = stanfordnlp.Pipeline()
def isname(text):
'''
Find all words in the text where the first letter is capitalized
'''
word=text.split(' ')
namelist=[]
last=-2
for i in range(len(word)):
if word[i][0].isupper():
if i==last+1:
namelist[-1]=namelist[-1]+' '+word[i]
else:
namelist.append([word[i],i])
last=i
for i in namelist:
text=text.replace(i[0],'$person-name')
return namelist,text
def isperson(text):
'''
Use the wordnet to find words that represent people in text
'''
word=text.split(' ')
personlist=[]
temp=0
text=' %s '%(text)
for i in range(len(word)):
#print(word[i])
#print(personlist)
if word[i]=='more':
continue
b=False
for sys in [w for w in wordnet.synsets(word[i])]:
if b:
break
for temlist in sys.hypernym_paths():
if b:
break
if wordnet.synset('person.n.01') in temlist :#or wordnet.synset('social_group.n.01') in temlist
b=True
add=False
if i!=0:
wn=[syn.name() for syn in wordnet.synsets(word[i-1])]
l=len(personlist)
for w in wn:
if '.a.' in w:
if len(personlist)>0 and personlist[-1][1]==i-1-temp:
#print(111)
personlist[-1][0]+=' '+word[i]
l=l-1
temp+=1
add=True
else:
#print(222)
personlist.append([word[i-1]+' '+word[i],i-1-temp])
temp+=1
add=True
break
if not add:
#print(333)
personlist.append([word[i],i-temp])
for i in personlist:
text=text.replace(' '+i[0]+' ',' $person-personword ')
return personlist,text[1:][:-1]
def ispersonword(word):
for sys in wordnet.synsets(word):
for temlist in sys.hypernym_paths():
if wordnet.synset('person.n.01') in temlist or wordnet.synset('social_group.n.01') in temlist:
return True
return False
def intnub(text):
'''
Find all number in text
'''
word=text.split(' ')
nublist=[]
i=0
temnub=0
while i <len(word):
if re.match('^[0-9]*$',word[i]) is not None:
if i+1<len(word) and ispersonword(word[i+1]):
nublist.append([word[i]+' '+word[i+1],i-temnub])
temnub+=1
text=text.replace(nublist[-1][0],'$person-intnub',1)
i+=1
elif i+2<len(word) and ispersonword(word[i+2]):
nublist.append([word[i]+' '+word[i+1]+' '+word[i+2],i-temnub])
temnub+=2
text=text.replace(nublist[-1][0],'$person-intnub',1)
i+=2
else:
nublist.append([word[i],i])
text=text.replace(nublist[-1][0],'$person-intnub',1)
i+=1
return nublist,text
def strnub(text):
'''
Find all word that represent a numbers.
'''
doc = nlp(text)
word=text.split(' ')
strnublist=[]
personlist=[]
temnub=0
for ent in doc.ents:
if ent.label_=='CARDINAL':
strnublist.append(ent.text)
i=0
while i <len(word):
if word[i] in strnublist:
if i+1<len(word) and ispersonword(word[i+1]):
personlist.append([word[i]+' '+word[i+1],i-temnub])
temnub+=1
text=text.replace(personlist[-1][0],'$person-strnub',1)
i+=1
elif i+2<len(word) and ispersonword(word[i+2]):
personlist.append([word[i]+' '+word[i+1]+' '+word[i+2],i-temnub])
temnub+=2
text=text.replace(personlist[-1][0],'$person-strnub',1)
i+=2
else:
personlist.append([word[i],i-temnub])
text=text.replace(personlist[-1][0],'$person-strnub',1)
i+=1
return personlist,text
def getpersonword(text):
'''
Find words that may represent people.
'''
intlist,text=intnub(text)
strlist,text=strnub(text)
#namelist,text=isname(text)
personlist,text=isperson(text)
word=text.split(' ')
returnlist=[]
for i in range(len(word)-1,-1,-1):
if word[i]=='$person-strnub':
returnlist.append([strlist.pop()[0],i])
elif word[i]=='$person-intnub':
returnlist.append([intlist.pop()[0],i])
elif word[i]=='$person-personword':
returnlist.append([personlist.pop()[0],i])
#elif word[i]=='$person-name':
#returnlist.append([namelist.pop()[0],i])
return returnlist,text
def getneighbor(personlist,text):
'''
Merge adjacent words that represent people.
'''
word=text.split(' ')
re=[]
for personitem in personlist:
temptec={}
if personitem[1]-3>0:
temptec['-3']=word[personitem[1]-3]
else:
temptec['-3']=None
if personitem[1]-2>0:
temptec['-2']=word[personitem[1]-2]
else:
temptec['-2']=None
if personitem[1]-1>0:
temptec['-1']=word[personitem[1]-1]
else:
temptec['-1']=None
temptec['0']=personitem[0]
if personitem[1]+1<len(word):
temptec['1']=word[personitem[1]+1]
else:
temptec['1']=None
if personitem[1]+2<len(word):
temptec['2']=word[personitem[1]+2]
else:
temptec['2']=None
if personitem[1]+3<len(word):
temptec['3']=word[personitem[1]+3]
else:
temptec['3']=None
re.append(temptec)
return re
def mergeword(personlist,text,otext):
'''
Merge adjacent words that represent people.
'''
otext=' %s '%(otext)
word=text.split(' ')
wordlist=['0' for i in range(len(word))]
for i in personlist:
wordlist[i[1]]=i[0]
temp=0
re=[]
i=0
while(i<len(word)):
if i<len(word)-2 and wordlist[i]!='0' and wordlist[i+2]!='0' and word[i+1].lower()=='and':
re.append([wordlist[i]+' and '+wordlist[i+2],i-temp])
temp+=2#len((wordlist[i]+' and '+wordlist[i+2]).split(' '))-1
otext=otext.replace(wordlist[i]+' '+word[i+1]+' '+wordlist[i+2],'person')
i+=2
elif i<len(word)-2 and wordlist[i]!='0' and wordlist[i+2]!='0' and word[i+1].lower()==',':
re.append([wordlist[i]+' , '+wordlist[i+2],i-temp])
temp+=2#len((wordlist[i]+' and '+wordlist[i+2]).split(' '))-1
otext=otext.replace(wordlist[i]+' '+word[i+1]+' '+wordlist[i+2],'person')
i+=2
elif i<len(word)-1 and wordlist[i]!='0' and wordlist[i+1]!='0':
re.append([wordlist[i]+' '+wordlist[i+1],i-temp])
temp+=1#len((wordlist[i]+' and '+wordlist[i+1]).split(' '))-1
otext=otext.replace(wordlist[i]+' '+wordlist[i+1],'person')
i+=1
elif wordlist[i]!='0':
re.append([wordlist[i],i-temp])
otext=otext.replace(' '+wordlist[i]+' ',' person ')
i+=1
otext=otext[1:][:-1]
return re,otext
def dropstopword(text):
'''
Drop stop words.
'''
text=text.replace(' a ','1').replace(' an ','1')
allword=text.split(' ')
english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%','\'','|','-']
stops = set(stopwords.words("english"))
allword = [word.lower() for word in allword if word.lower() not in stops and word not in english_punctuations]
return ' '.join(allword)
def getpersonneighbor(otext):
#otext=dropstopword(otext)
wordlist,text=getpersonword(otext)
temtext=text
wordlist,text=mergeword(wordlist,text,otext)
while(temtext!=text):
temtext=text
wordlist,text=mergeword(wordlist,text,otext)
return getneighbor(wordlist,text)
def gettext(otext):
'''
Get the text which replace the people word to 'person'.
'''
otext=' '+otext+' '
otext=otext.replace(' one ',' 1 ').replace(' two ',' 2 ').replace(' three ',' 3 ').replace(' four ',' 4 ').replace(' five ',' 5 ')
otext=otext.replace(' six ',' 6 ').replace(' seven ',' 7 ').replace(' eight ',' 8 ').replace(' nine ',' 9 ')
otext=otext.replace(' One ',' 1 ').replace(' Two ',' 2 ').replace(' Three ',' 3 ').replace(' Four ',' 4 ').replace(' Five ',' 5 ')
otext=otext.replace(' ten ',' 10 ').replace(' eleven ',' 11 ').replace(' twilve ',' 12 ').replace(' thriteen ',' 13 ').replace(' forteen ',' 14 ').replace(' fifteen ',' 15 ').replace(' sixteen ',' 16 ').replace(' seventeen ',' 17 ').replace(' eighteen ',' 18 ').replace(' nineteen ',' 19 ')
otext=otext.replace(' Ten ',' 10 ').replace(' Eleven ',' 11 ').replace(' Twilve ',' 12 ').replace(' Thriteen ',' 13 ').replace(' Forteen ',' 14 ').replace(' Fifteen ',' 15 ').replace(' Sixteen ',' 16 ').replace(' Seventeen ',' 17 ').replace(' Eighteen ',' 18 ').replace(' Nineteen ',' 19 ')
otext=otext.replace(' Six ',' 6 ').replace(' Seven ',' 7 ').replace(' Eight ',' 8 ').replace(' Nine ',' 9 ')
otext=otext.replace('A ','1 ').replace('An ','1 ').replace(' a ',' 1 ').replace(' an ',' 1 ').replace("Dozen ",'12 ').replace(" Dozen",' 12').replace("dozen ",'12 ').replace(" dozen",' 12')
otext=otext.replace('at least ','').replace('At least ','').replace('At Least ','').replace(', ',' , ').replace(' ,',' ,')
otext=otext.replace('More than ','').replace('more than ','').replace('More Than ','')
otext=otext[1:-1]
wordlist,text=getpersonword(otext)
temtext=text
wordlist,text=mergeword(wordlist,text,otext)
while(temtext!=text):
temtext=text
wordlist,text=mergeword(wordlist,text,otext)
return wordlist,text
def extract_casualties(text):
'''
Extract casualities from the text.
'''
probablity=eval(open('probablity.json').read())
wordlist,text=gettext(text)
doc = nlp(text)
list_index=0
death=None
wounded=None
for i in doc.sentences[0]:
if i[2].text=='person':
if i[0].text+'_'+i[1] in probablity.keys():
if probablity[i[0].text+'_'+i[1]]=='d':
death=wordlist[list_index]
else:
wounded=wordlist[list_index]
list_index+=1
elif i[0].text=='person':
if i[1]+'_'+i[2].text in probablity.keys():
if probablity[i[1]+'_'+i[2].text]=='d':
death=wordlist[list_index]
else:
wounded=wordlist[list_index]
list_index+=1
if death is not None and len(re.findall('\d+',death))>0:
death=re.findall('\d+',death)[0]
elif death is not None:
death=1
else:
death=0
#print(wound)
if wounded is not None and len(re.findall('\d+',wounded))>0:
wounded=re.findall('\d+',wounded)[0]
elif wounded is not None:
wounded=1
else:
wounded=0
return death,wounded
class Loaction_extactor():
'''
Class used to extract the location from the news.
use the function 'getlocation' to extract the location from the news text.
'''
def __init__(self):
self.location_data=pd.read_csv('allCountries.txt',sep='\t',names=['id','name','asciiname','alternatenames','latitude','longitude','feature class','feature code','country code','cc2','admin1 code','admin2 code','admin3 code','admin4 code','population','elevation','dem','timezone','modification date'])
self.location_data=self.location_data.loc[self.location_data['feature class']=='A']
self.country2code=pd.read_csv('country_code.csv',sep='\t')
self.location_data['admin1 code']=self.location_data['admin1 code'].map(lambda x:str(x))
self.location_data['statuscode']=self.location_data['country code']+'.'+self.location_data['admin1 code']
def getlocationword(self,text):
'''
Find all words in the text where the first letter is capitalized.
'''
word=text.split(' ')
word=[w for w in word if len(w)>0]
if len([i for i in word if i[0].isupper()])==len(word):
return [word,[1 for i in word]]
re=[]
i=0
isup=[]
for w in word:
if w[0].isupper():
isup.append(1)
else:
isup.append(0)
return [word,isup]
def islocation(self,locationname,country_code):
'''
locationname: the word want to determine if it is a location name.
country_code: country code from the geonames data.
return the location name, if found
'''
#return []
if country_code is not None:
df=self.location_data.loc[self.location_data['country code']==country_code].loc[self.location_data['feature class']=='A']
else:
df=self.location_data.loc[self.location_data['feature class']=='A']
temp=df.loc[df['asciiname']==locationname]
df['sim']=df['name'].map(lambda x :similar(locationname, x))
if df['sim'].max()>0.5:
return df.loc[df['name'].str.find(locationname)>=0].loc[df['sim']>0.5].sort_values('modification date',ascending=False)
else:
return []
def similar(text1,text2):
text1=text1.split(' ')
text2=Counter(text2.split(' '))
find_words=0
for word1 in text1:
if len(word1)>3:
if word1 in text2.keys() and text2[word1]>0:
text2[word1]-=1
find_words+=1
return find_words/len(text2.keys())
def getcountry_code(self,text):
'''
Get the country that appears in the text.
'''
location=text.split(' ')
c_dict={}
for i in location:
tem=self.country2code
tem['sim']=tem['Country'].map(lambda x :difflib.SequenceMatcher(None, x, i).quick_ratio())
if tem['sim'].max()>0.9:
c_dict[tem.sort_values('sim',ascending=False).iloc[0]['Country'],tem.sort_values('sim',ascending=False).iloc[0]['ISO']]=tem['sim'].max()
#if len(self.country2code.loc[self.country2code['Country'].str.find(i[6:])==0])==1:
#if i in self.country2code.loc[self.country2code['Country'].str.find(i[:-2])==0].iloc[0]['Country'] or self.country2code.loc[self.country2code['Country'].str.find(i[:-2])==0].iloc[0]['Country'] in i:
#return tem.sort_values('sim',ascending=False).iloc[0]['Country'],tem.sort_values('sim',ascending=False).iloc[0]['ISO']#.loc[self.country2code['Country'].str.find(i[:-2])==0].values[0]
if len(c_dict)>0:
max_name=None
Max_nub=0
for i in c_dict.keys():
if c_dict[i]>Max_nub:
max_name=i
return i
else:
return None,None
def getlocation(self,text):
'''
Get the the information which appear in the text.
'''
text=text.replace(',','')
text=text.replace('.','')
cname,ccode=self.getcountry_code(text)
word,isup=self.getlocationword(text)
for i,u in zip(word,isup):
if u==1:
if i != cname:
tem =self.islocation(i,ccode)
if len(tem)>0:# is not None:
return tem['name'].values[0],tem['latitude'].values[0],tem['longitude'].values[0],tem['country code'].values[0],tem['nameasc'].values[0]
for i in range(len(word)-1):
if isup[i] == 1 and isup[i+1] == 1:
tem =self.islocation(word[i]+' '+word[i+1],ccode)
if len(tem)>0:#if tem is not None:
return tem['name'].values[0],tem['latitude'].values[0],tem['longitude'].values[0],tem['country code'].values[0],tem['nameasc'].values[0]
for i in range(len(word)-2):
if isup[i] == 1 and isup[i+1] == 1 and isup[i+2] == 1:
tem =self.islocation(word[i]+' '+word[i+1]+' '+word[i+2],ccode)
if len(tem)>0:#if tem is not None:
return tem['name'].values[0],tem['latitude'].values[0],tem['longitude'].values[0],tem['country code'].values[0],tem['nameasc'].values[0]
return cname,None,None,cname,None