-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvacuum_vessel.py
303 lines (241 loc) · 10.9 KB
/
vacuum_vessel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
""" Define the CSX vacuum vessel boundary
We will use this boundary to construct constraints for IL coils
and to support the WP coils
"""
from simsopt.geo import Surface
from jax import grad
import jax.numpy as jnp
np = jnp
from simsopt.geo.jit import jit
from simsopt._core.optimizable import Optimizable
from simsopt._core.derivative import derivative_dec, Derivative
import simsoptpp as sopp
def gamma( tarr, zarr, params ):
barrel_OD = params['barrel_OD']
barrel_thickness = params['barrel_thickness']
barrel_height = params['barrel_height']
flange_gap = params['flange_gap']
# Elliptical head radii
DR = params['DR']
KR = params['KR']
head_thickness = params['head_thickness']
flange_height = params['flange_height']
KR_height_top = params['KR_height_top']
KR_height_bottom = params['KR_height_bottom']
KR_centerR = params['KR_centerR']
DR_height_top = params['DR_height_top']
DR_height_bottom = params['DR_height_bottom']
math = np
nz = zarr.size
nt = tarr.size
rarr = np.zeros((nz,))
for iz in range(nz):
z = zarr[iz]
#DR
if (z>=KR_height_top): # ???????????
rarr = rarr.at[iz].set( math.sqrt((DR-head_thickness)**2-(z-DR_height_top+(DR-head_thickness))**2) )
#KR
if (z>=flange_height and z<KR_height_top): # Second part of cap?
rarr = rarr.at[iz].set( math.sqrt((KR-head_thickness)**2-(z-flange_height)**2)+KR_centerR )
#Barrel
if (z>=-barrel_height/2 and z<flange_height): # cylindrical barrel
rarr = rarr.at[iz].set( barrel_OD/2 - barrel_thickness )
#KR
if (z>=KR_height_bottom and z<-barrel_height/2):
rarr = rarr.at[iz].set( math.sqrt((KR-head_thickness)**2-(z+barrel_height/2)**2)+KR_centerR )
#DR
if (z<KR_height_bottom):
rarr = rarr.at[iz].set( math.sqrt((DR-head_thickness)**2-(z-DR_height_bottom-(DR-head_thickness))**2) )
out = np.zeros((nt*nz, 3))
counter=-1
for it in range(nt):
for iz in range(nz):
counter+=1
out = out.at[counter,0].set( rarr[iz] * np.sin( tarr[it] ) )
out = out.at[counter,1].set( zarr[iz] )
out = out.at[counter,2].set( rarr[iz] * np.cos( tarr[it] ) )
return out
def normal( tarr, zarr, params ):
barrel_OD = params['barrel_OD']
barrel_thickness = params['barrel_thickness']
barrel_height = params['barrel_height']
flange_gap = params['flange_gap']
# Elliptical head radii
DR = params['DR']
KR = params['KR']
head_thickness = params['head_thickness']
flange_height = params['flange_height']
KR_height_top = params['KR_height_top']
KR_height_bottom = params['KR_height_bottom']
KR_centerR = params['KR_centerR']
DR_height_top = params['DR_height_top']
DR_height_bottom = params['DR_height_bottom']
math = np
nz = zarr.size
nt = tarr.size
rarr = np.zeros((nz,))
drdz = np.zeros((nz,))
# Sign of derivatives is chosen such that normal vector is pointing outwards - this is not
# mathematically equal to the derivative
for iz in range(nz):
z = zarr[iz]
#DR
if (z>=KR_height_top): # ???????????
rarr = rarr.at[iz].set( math.sqrt((DR-head_thickness)**2-(z-DR_height_top+(DR-head_thickness))**2) )
drdz = drdz.at[iz].set( -(z-DR_height_top+(DR-head_thickness)) / rarr[iz] )
#KR
if (z>=flange_height and z<KR_height_top): # Second part of cap?
rarr = rarr.at[iz].set( math.sqrt((KR-head_thickness)**2-(z-flange_height)**2)+KR_centerR )
drdz = drdz.at[iz].set( (z-flange_height) / (KR_centerR - rarr[iz]) )
#Barrel
if (z>=-barrel_height/2 and z<flange_height): # cylindrical barrel
rarr = rarr.at[iz].set( barrel_OD/2 - barrel_thickness )
#KR
if (z>=KR_height_bottom and z<-barrel_height/2):
rarr = rarr.at[iz].set( math.sqrt((KR-head_thickness)**2-(z+barrel_height/2)**2)+KR_centerR )
drdz = drdz.at[iz].set( (z+barrel_height/2) / (KR_centerR - rarr[iz]) )
#DR
if (z<KR_height_bottom):
rarr = rarr.at[iz].set( math.sqrt((DR-head_thickness)**2-(z-DR_height_bottom-(DR-head_thickness))**2) )
drdz = drdz.at[iz].set( -(z-DR_height_bottom-(DR-head_thickness)) / rarr[iz] )
dtheta = np.zeros((nt*nz, 3))
dz = np.zeros((nt*nz, 3))
dz = dz.at[:,1].set( 1 )
counter=-1
for it in range(nt):
for iz in range(nz):
counter+=1
dtheta = dtheta.at[counter,0].set( rarr[iz] * np.cos( tarr[it] ) )
dtheta = dtheta.at[counter,2].set(-rarr[iz] * np.sin( tarr[it] ) )
dz = dz.at[counter,0].set( drdz[iz] * np.sin( tarr[it] ) )
dz = dz.at[counter,2].set( drdz[iz] * np.cos( tarr[it] ) )
return np.cross( dtheta, dz )
class CSX_VacuumVessel:
def __init__(self, ntheta=128, nz = 152, scale=1):
f = 0.0254 # inch to meters
epsilon = 0.1
self.scale = scale
self.nz = nz
self.nt = ntheta
# Vessel Params
params = dict()
params['barrel_OD'] = 60
params['barrel_thickness'] = 0.25
params['barrel_height'] = 38.81
params['flange_gap'] = 1.5
# Elliptical head radii
params['DR'] = params['barrel_OD'] * 0.9
params['KR'] = params['barrel_OD'] * 0.173
params['head_thickness'] = 0.3125
params['flange_height'] = params['flange_gap'] + params['barrel_height']/2
params['KR_height_top'] = 8.991611 + params['flange_gap'] + params['barrel_height']/2
params['KR_height_bottom'] = -8.991611 - params['barrel_height']/2
params['KR_centerR'] = 19.62
params['DR_height_top'] = params['flange_height'] + 14.729061
params['DR_height_bottom'] = (-38.81/2-14.729061)
self.params = params
self.quadpoints_theta = np.linspace(0, 2*np.pi, ntheta)
self.quadpoints_z = np.linspace(params['DR_height_bottom']+epsilon, params['DR_height_top']-epsilon, nz)
# Only evaluate it once
self.gamma_stack = gamma( self.quadpoints_theta, self.quadpoints_z, self.params ) * f
self.normal_stack = normal( self.quadpoints_theta, self.quadpoints_z, self.params )
self.unit_normal_stack = np.einsum( 'ij,i->ij', self.normal_stack, 1./np.linalg.norm(self.normal_stack, axis=1) )
def gamma(self):
return self.gamma_stack.reshape((self.nz,self.nt,3)) * self.scale
def normal(self):
return self.normal_stack
def unitnormal(self):
return self.unit_normal_stack
def signed_distance_from_surface(xyz, surface):
"""
Compute the signed distances from points ``xyz`` to a surface. The sign is
positive for points inside the volume surrounded by the surface.
"""
gammas = surface.gamma().reshape((-1, 3))
mins = jnp.argmin( jnp.sum((gammas[:, None, :] - xyz[None, :, :])**2, axis=2), axis=0 )
n = surface.unitnormal().reshape((-1, 3))
nmins = n[mins]
gammamins = gammas[mins]
# Now that we have found the closest node, we approximate the surface with
# a plane through that node with the appropriate normal and then compute
# the distance from the point to that plane
# https://stackoverflow.com/questions/55189333/how-to-get-distance-from-point-to-plane-in-3d
mindist = np.sum((xyz-gammamins) * nmins, axis=1)
a_point_in_the_surface = np.mean(surface.gamma()[0, :, :], axis=0)
sign_of_interiorpoint = np.sign(np.sum((a_point_in_the_surface-gammas[0, :])*n[0, :]))
signed_dists = mindist * sign_of_interiorpoint
return signed_dists
def ws_distance_pure(gammac, lc, surface, minimum_distance):
"""
This function is used in a Python+Jax implementation of the curve-surface distance
formula.
"""
ns = surface.normal().reshape((-1, 3))
gammas = surface.gamma().reshape((-1,3))
dists = jnp.sqrt(jnp.sum(
(gammac[:, None, :] - gammas[None, :, :])**2, axis=2))
integralweight = jnp.linalg.norm(lc, axis=1)[:, None] \
* jnp.linalg.norm(ns, axis=1)[None, :]
return jnp.mean(integralweight * jnp.maximum(minimum_distance-dists, 0)**2)
def minimum_distance(gammac, surface):
"""
This function returns the minimum distance between a curve and a surface
"""
ns = surface.normal().reshape((-1, 3))
gammas = surface.gamma().reshape((-1,3))
dists = jnp.sqrt(jnp.sum(
(gammac[:, None, :] - gammas[None, :, :])**2, axis=2))
return np.min(dists)
class VesselConstraint(Optimizable):
r"""Used to constrain coils to remain on a surface
Computed
.. math:
J = \sum_{i=1}^{\text{num_coils}} d_i
where
.. math::
d_{i} = \int_{\text{curve}_i} \int_{surface} \| \mathbf{r}_i - \mathbf{s} \|_2)^2 ~dl_i ~ds\\
and :math:`\mathbf{r}_i`, :math:`\mathbf{s}` are points on coil :math:`i`
and the surface, respectively. This penalty is zero when all points are on the surface.
"""
def __init__(self, curves, surface, maximum_distance):
self.curves = curves
self.surface = surface
self.maximum_distance = maximum_distance
#gammas = self.surface.gamma().reshape((-1,3))
#ns = self.surface.normal().reshape((-1, 3))
self.J_jax = jit(lambda gammac, lc: ws_distance_pure(gammac, lc, self.surface, self.maximum_distance))
self.thisgrad0 = jit(lambda gammac, lc: grad(self.J_jax, argnums=0)(gammac, lc))
self.thisgrad1 = jit(lambda gammac, lc: grad(self.J_jax, argnums=1)(gammac, lc))
super().__init__(depends_on=curves)
def minimum_distances(self):
res = []
for c in self.curves:
gammac = c.gamma()
res.append(minimum_distance(gammac, self.surface))
return res
def J(self):
"""
This returns the value of the quantity.
"""
res = 0
for c in self.curves:
gammac = c.gamma()
lc = c.gammadash()
res += self.J_jax(gammac, lc)
return res
@derivative_dec
def dJ(self):
"""
This returns the derivative of the quantity with respect to the curve dofs.
"""
dgamma_by_dcoeff_vjp_vecs = [np.zeros_like(c.gamma()) for c in self.curves]
dgammadash_by_dcoeff_vjp_vecs = [np.zeros_like(c.gammadash()) for c in self.curves]
for i, c in enumerate(self.curves):
gammac = c.gamma()
lc = c.gammadash()
dgamma_by_dcoeff_vjp_vecs[i] += self.thisgrad0(gammac, lc)
dgammadash_by_dcoeff_vjp_vecs[i] += self.thisgrad1(gammac, lc)
res = [self.curves[i].dgamma_by_dcoeff_vjp(dgamma_by_dcoeff_vjp_vecs[i]) + \
self.curves[i].dgammadash_by_dcoeff_vjp(dgammadash_by_dcoeff_vjp_vecs[i]) for i in range(len(self.curves))
]
return sum(res)