-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisobaric.py
225 lines (181 loc) · 8.33 KB
/
isobaric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import streamlit as st
import numpy as np
import matplotlib
from matplotlib import style
import matplotlib.pyplot as plt
import pandas as pd
import requests
import scipy.optimize
import scipy.constants as constants
from scipy.special import xlogy
from antoine import get_psat, get_Antoine_params
from sklearn import metrics
import lxml
import html5lib
from models.uniquac import *
import time
from scipy.interpolate import make_interp_spline
def main():
st.title('Isobaric Binary VLE Data')
st.markdown("Vapor-liquid equlibrium data of 30 important components from "
"[Dortmund Data Bank](http://www.ddbst.com/en/EED/VLE/VLEindex.php) can be accessed from here. "
"Find out which pair of components have isobaric data available and see the $y-x$, $T-x-y$ and $\gamma-x$ graphs.")
style.use("classic")
compounds = ['Acetonitrile', 'Acetone', '1,2-Ethanediol', 'Ethanol',
'Diethyl ether', 'Ethyl acetate', 'Benzene', '1-Butanol',
'Chloroform', 'Cyclohexane', 'Acetic acid butyl ester', 'Acetic acid',
'Hexane', '2-Propanol', '1-Hexene', 'Methanol',
'Water', 'm-Xylene', 'p-Xylene', 'Hexadecane']
menu_options = compounds.copy()
for i, compound in enumerate(compounds):
if ' ' in compound:
compounds[i] = compound.replace(' ', '%20')
compound1 = st.selectbox('Select compound 1', menu_options, key='compound1')
compound2 = st.selectbox('Select compound 2', menu_options, key='compound2')
i1 = menu_options.index(compound1)
i2 = menu_options.index(compound2)
st.info("You have chosen %s and %s" % (compound1, compound2))
# @st.cache(suppress_st_warning=True)
def link_generator(i1, i2):
url = 'https://web.archive.org/web/20200220211155/http://www.ddbst.com/en/EED/VLE%20' + compounds[i1] + '%3B' + compounds[i2] + '.php'
if requests.get(url).status_code == 404:
url = 'https://web.archive.org/web/20200220211155/http://www.ddbst.com/en/EED/VLE%20' + compounds[i2] + '%3B' + compounds[i1] + '.php'
return url
try:
if compound1 == compound2:
st.warning('Choose different compounds')
else:
url = link_generator(i1, i2)
if requests.get(url).status_code == 404:
st.error("VLE data for this pair of compounds doesn't exist at DDBST.")
dataframes = pd.read_html(url)
isobaric_vledata = []
P = []
for i, data in enumerate(dataframes):
col = data.columns
if col.dtype == object:
if len(col) == 3 and 'T' in col[0] and 'x1' in col[1] and 'y1' in col[2]:
P.append(float(dataframes[i - 1][1]))
isobaric_vledata.append(dataframes[i])
if isobaric_vledata == []:
st.error('There is no isobaric data available at DDBST')
else:
for i in range(len(P)):
st.write('%d)' % (i + 1), 'P = ', P[i], 'kPa')
st.write(isobaric_vledata[i])
if len(P) == 1:
choice = 1
else:
choice = st.number_input('Choose a dataset', value=1, min_value=1, max_value=len(P))
st.info('Analysing dataset %d ...' % choice)
T = isobaric_vledata[choice - 1]['T [K]']
x1 = np.array(isobaric_vledata[choice - 1]['x1 [mol/mol]'])
y1 = np.array(isobaric_vledata[choice - 1]['y1 [mol/mol]'])
P = P[choice - 1]
st.write(r'$P = %0.3f kPa$' % P)
n_points = len(x1) - 1
p1sat = get_psat(compounds[i1], T[0])
p2sat = get_psat(compounds[i2], T[0])
if p1sat > p2sat:
st.info('The more volatile component is %s' % menu_options[i1])
s1, s2 = compounds[i1], compounds[i2]
else:
st.info('The more volatile component is %s' % menu_options[i2])
s1, s2 = compounds[i2], compounds[i1]
x = np.linspace(0, 1, 50)
p1_s = get_psat(s1, T)
p2_s = get_psat(s2, T)
Tmin = min(T)
Tmax = max(T)
try:
if x1[0] == 0 and x1[n_points] != 1:
x1, y1, T = x1[1:], y1[1:], T[1:]
if x1[0] != 0 and x1[n_points] == 1:
x1, y1, T = x1[:n_points], y1[:n_points], T[:n_points]
if x1[0] == 0 and x1[n_points] == 1:
x1, y1, T = x1[1:n_points], y1[1:n_points], T[1:n_points]
except KeyError or IndexError:
pass
gamma1 = []
gamma2 = []
y_roault = []
for i in range(len(x1)):
gamma1.append(np.divide(P * y1[i], x1[i] * p1_s[i]))
gamma2.append(np.divide(P * (1 - y1[i]), (1 - x1[i]) * p2_s[i]))
# G_e = constants.R * T * (xlogy(x1, gamma1) + xlogy(1 - x1, gamma2))
X = [x1, T]
gamma = np.concatenate((gamma1, gamma2))
st.write("Fitting parameters for the UNIQUAC model:")
# latest_iteration = st.empty()
# bar = st.progress(0)
#
# for i in range(100):
# latest_iteration.text(f'{i + 1}%')
# bar.progress(i + 1)
# time.sleep(0.02)
uniquac = UNIQUAC(s1, s2)
params = uniquac.get_parameter(X, gamma)
cost = params['cost']
A = params['x'][0]
B = params['x'][1]
st.write(r"$u_{12} - u_{22}$ = %0.2f, $u_{21} - u_{11}$ = %0.2f" % (A, B))
st.write(r"Sum of squared errors = %0.3f" % cost)
n = 18
x_pred = np.linspace(0.001, 0.999, n)
T_guess = np.linspace(Tmin, Tmax, n)
antoine1 = get_Antoine_params(s1)
antoine2 = get_Antoine_params(s2)
def psat(antoine, T):
[A, B, C] = antoine
return (101.325 / 760) * np.power(10, A - B / (T - 273.15 + C)) # in kPa
def residuals(T):
return uniquac.gamma1([x_pred, T], A, B) * x_pred * psat(antoine1, T) + \
uniquac.gamma2([x_pred, T], A, B) * (1 - x_pred) * psat(antoine2, T) - np.ones(n) * P
T_pred = scipy.optimize.newton(residuals, T_guess)
X_pred = [x_pred, T_pred]
gamma1_pred = uniquac.gamma1(X_pred, A, B)
gamma2_pred = uniquac.gamma2(X_pred, A, B)
y_pred = np.zeros(n)
for i in range(n):
y_pred[i] = gamma1_pred[i] * x_pred[i] * get_psat(s1, T_pred[i]) / P
fig1 = plt.figure(facecolor='white')
plt.gca().set_aspect('equal', adjustable='box')
plt.title(r"$y-x$")
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel(r'$x_1$')
plt.ylabel(r'$y_1$')
plt.scatter(x1, y1)
plt.plot(x_pred, y_pred, 'b')
plt.plot(x, x, color='grey')
plt.legend(loc='best', fontsize=8, frameon=False)
st.write(fig1)
fig2 = plt.figure(facecolor='white')
plt.title(r"$T-x$")
plt.xlim(0, 1)
plt.ylim(0.98 * min(T), 1.02 * max(T))
plt.xlabel(r'$x_1$')
plt.ylabel(r'$T\ (K)$')
plt.scatter(x1, T, label=r'$x_1$', color='blue')
plt.scatter(y1, T, label=r'$y_1$', color='green')
plt.plot(x_pred, T_pred, 'b')
plt.plot(y_pred, T_pred, 'g')
plt.legend(loc='best', fontsize=8, frameon=False)
st.write(fig2)
fig3 = plt.figure(facecolor='white')
plt.title(r"$\gamma-x$")
plt.xlim(0, 1)
# plt.ylim(0.98 * min(gamma), 1.02 * max(gamma))
plt.xlabel(r'$x_1$')
plt.ylabel(r'$\gamma$')
plt.scatter(x1, gamma1, label=r'$\gamma_1$', color='blue')
plt.plot(x_pred, gamma1_pred, color='blue')
plt.scatter(x1, gamma2, label=r'$\gamma_2$', color='green')
plt.plot(x_pred, gamma2_pred, color='green')
plt.legend(loc='best', fontsize=8, frameon=False)
st.write(fig3)
except:
''
st.sidebar.title("Note")
st.sidebar.info(""" The saturation pressures are obtained from
[DDBST's database](http://ddbonline.ddbst.com/AntoineCalculation/AntoineCalculationCGI.exe?component=Ethanol).""")