-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
96 lines (86 loc) · 4.27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import argparse
import torch
import torch.nn as nn
import numpy as np
from Unet import Generic_UNet, InitWeights_He
parser = argparse.ArgumentParser(description='PyTorch WideResNet Training')
# General configures.
parser.add_argument('--name', default='Deepmedic', type=str, help='name of experiment')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
# Test configures.
parser.add_argument('--saveresults', help='To save results in name', action='store_true')
parser.add_argument('--patch-size', default=[80,80,80], nargs='+', type=int, help='patch size')
# Network configures.
parser.add_argument('--downsampling', default=4, type=int, help='too see if I need deeper arch')
parser.add_argument('--features', default=30, type=int, help='feature map')
parser.add_argument('--deepsupervision', action='store_true', help='use deep supervision, just like nnunet')
# Dataset configures.
parser.add_argument('--liver0', default=0, type=float, help='choose the dataset')
parser.add_argument('--trainval', help='to test on the training data, just for debugging', action='store_true')
# CoLab parameters.
parser.add_argument('--taskcls', type=int, default=3, help='how many classes I expect for the task geneartor')
parser.set_defaults(augment=True)
args = parser.parse_args()
if __name__ == '__main__':
if args.liver0 == 0:
## lits aux
NumsInputChannel = 1
NumsClass = args.taskcls
from common_test import testlitstumor as test
if args.trainval:
DatafileValFold = './datafiles/liver0/traintumorset/'
else:
DatafileValFold = './datafiles/liver0/valtumor/'
torch.cuda.set_device(args.gpu)
# create model
conv_op = nn.Conv3d
dropout_op = nn.Dropout3d
norm_op = nn.InstanceNorm3d
conv_per_stage = 2
base_num_features = args.features
norm_op_kwargs = {'eps': 1e-5, 'affine': True}
dropout_op_kwargs = {'p': 0, 'inplace': True}
net_nonlin = nn.LeakyReLU
net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
net_num_pool_op_kernel_sizes = []
if args.patch_size[1] != args.patch_size[2]:
net_num_pool_op_kernel_sizes.append([2, 2, 1])
for kiter in range(0, args.downsampling - 1): # (0,5)
net_num_pool_op_kernel_sizes.append([2, 2, 2])
else:
for kiter in range(0, args.downsampling): # (0,5)
net_num_pool_op_kernel_sizes.append([2, 2, 2])
net_conv_kernel_sizes = []
for kiter in range(0, args.downsampling + 1): # (0,6)
net_conv_kernel_sizes.append([3, 3, 3])
model = Generic_UNet(NumsInputChannel, base_num_features, NumsClass,
len(net_num_pool_op_kernel_sizes),
conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op,
dropout_op_kwargs,
net_nonlin, net_nonlin_kwargs, args.deepsupervision, False, lambda x: x, InitWeights_He(1e-2),
net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, False, True, True)
model = model.cuda()
# model.train()
model.eval()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cuda:' + str(args.gpu))
# args.start_epoch = checkpoint['epoch']
# best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
DSC, SENS, PREC = test(model, args.saveresults, args.name + '/results/', trainval=args.trainval,
ImgsegmentSize=args.patch_size, deepsupervision=args.deepsupervision,
DatafileValFold=DatafileValFold, NumsClass=NumsClass)
print('DSC ' + str(DSC))
print('SENS ' + str(SENS))
print('PREC ' + str(PREC))
if len(DSC) > 1:
print('DSCavg ' + str(np.mean(DSC[1:])))
print('SENSavg ' + str(np.mean(SENS[1:])))
print('PRECavg ' + str(np.mean(PREC[1:])))