Skip to content

Latest commit

 

History

History
170 lines (122 loc) · 6.11 KB

Python每日一谈|No.33.实例.13.-药物分子可合成性分析-SA.md

File metadata and controls

170 lines (122 loc) · 6.11 KB
title categories top
Python每日一谈|No.33.实例.13. 药物分子可合成性分析-SA
Python每日一谈
true

化学分子可及性分子

反正,你要做药物,或者不管做什么,都需要顾及到各种各样的条件,我们总是在所处的条件环境下进行选择或者进行实验。

化学分子合成性打分,简单来说,你想去合成一些分子,无法判断其合成难度。

当然前提是这些分子对你来说很有用,于是就出现了合成性打分。

我觉得比较少的分子的话,找个化学家让他自己判断一下就好,大批量的话,你总不能把化学家类似吧。

打分

SAscore:这个比较常用,就药研小木子解释理念挺清楚的,我就复制粘贴了,你们知道的,我很懒。

2009年诺华公司的研究员Ertl和Schuffenhauer在化学信息学杂志上发表了名为SAscore的Rdkit插件用于快速评估药物分子的合成难易程度,其将小分子合成难易程度用1到10区间数值进行评价,越靠近1表明越容易合成,越靠近10表明合成越困难。其计算权重为化合物的片段贡献减去复杂程度(SAscore =fragmentScore − complexityPenalty),其中片段贡献值根据PubChem数据库中上百万分子计算共性进行计算,复杂度则考虑分子中非标准结构特征的占比,例如大环、非标准环的合并、立体异构和分子量大小等方面。研究员将40个化合物给化学家进行经验性评估其合成难易程度,并与SAscore得分进行比较发现与化学家给出的合成难易程度评分的相关性R2高达0.89,表明其在识别可合成难易程度上的可靠性较高。如下图所示,蓝色表示化学家给出的合成难易程度,红色表示SAscore给出的合成难易程度分值:

Image

代码

  1. 找到仓库

    https://github.com/rdkit/rdkit/tree/master/Contrib/SA_Score

    image-20210408215954604

    两个主文件:sascorer.pyfpscores.pkl.gz

    把这两个下载下来

  2. sascorer.py

    我优化了一下

    本来想大刀阔斧的改一遍,有点浪费时间。

    脚本在后面,只要把fpscores.pkl.gz放在当前目录下就能运行,现在我的用法就是

    In [62]: m = Chem.MolFromSmiles('C1CCCCC1')
    
    In [63]: x = [m,m,m,m]
     
    In [64]: my_score(x)
    smiles	sa_score
    C1CCCCC1		1.000000
    C1CCCCC1		1.000000
    C1CCCCC1		1.000000
    C1CCCCC1		1.000000

    好了,下面是脚本,直接复制粘贴到ipython中就能运行或者,你自己随便搞点使用模式随便用。完事,睡觉

    import math
    import pickle
    
    
    from rdkit import Chem
    from rdkit.Chem import rdMolDescriptors
    
    import os
    import os.path as op
    
    _fscores = None
    
    
    def readFragmentScores(name='fpscores'):
        import gzip
        global _fscores
        # generate the full path filename:
        if name == "fpscores":
            name = op.join(os.getcwd(), name)
            # name = op.join(op.dirname(__file__), name)
        data = pickle.load(gzip.open('%s.pkl.gz' % name))
        outDict = {}
        for i in data:
            for j in range(1, len(i)):
                outDict[i[j]] = float(i[0])
        _fscores = outDict
    
    
    def numBridgeheadsAndSpiro(mol, ri=None):
        nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol)
        nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol)
        return nBridgehead, nSpiro
    
    
    def calculateScore(m):
        if _fscores is None:
            readFragmentScores()
    
        # fragment score
        fp = rdMolDescriptors.GetMorganFingerprint(m,
                                                   2)  # <- 2 is the *radius* of the circular fingerprint
        fps = fp.GetNonzeroElements()
        score1 = 0.
        nf = 0
        for bitId, v in fps.items():
            nf += v
            sfp = bitId
            score1 += _fscores.get(sfp, -4) * v
        score1 /= nf
    
        # features score
        nAtoms = m.GetNumAtoms()
        nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True))
        ri = m.GetRingInfo()
        nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri)
        nMacrocycles = 0
        for x in ri.AtomRings():
            if len(x) > 8:
                nMacrocycles += 1
    
        sizePenalty = nAtoms**1.005 - nAtoms
        stereoPenalty = math.log10(nChiralCenters + 1)
        spiroPenalty = math.log10(nSpiro + 1)
        bridgePenalty = math.log10(nBridgeheads + 1)
        macrocyclePenalty = 0.
        # ---------------------------------------
        # This differs from the paper, which defines:
        #  macrocyclePenalty = math.log10(nMacrocycles+1)
        # This form generates better results when 2 or more macrocycles are present
        if nMacrocycles > 0:
            macrocyclePenalty = math.log10(2)
    
        score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty
    
        # correction for the fingerprint density
        # not in the original publication, added in version 1.1
        # to make highly symmetrical molecules easier to synthetise
        score3 = 0.
        if nAtoms > len(fps):
            score3 = math.log(float(nAtoms) / len(fps)) * .5
    
        sascore = score1 + score2 + score3
    
        # need to transform "raw" value into scale between 1 and 10
        min = -4.0
        max = 2.5
        sascore = 11. - (sascore - min + 1) / (max - min) * 9.
        # smooth the 10-end
        if sascore > 8.:
            sascore = 8. + math.log(sascore + 1. - 9.)
        if sascore > 10.:
            sascore = 10.0
        elif sascore < 1.:
            sascore = 1.0
    
        return sascore
    
    
    def my_score(mols:list):
        readFragmentScores("fpscores")
        print('smiles\tsa_score')
        for m in mols:
            s = calculateScore(m)
            smiles = Chem.MolToSmiles(m)
            print(smiles + "\t" + "\t%3f" % s)