diff --git a/.devcontainer.json b/.devcontainer.json
new file mode 100644
index 0000000..55aca65
--- /dev/null
+++ b/.devcontainer.json
@@ -0,0 +1,8 @@
+{
+ "image": "mam10eks/qpptk:0.0.2-dev",
+ "customizations": {
+ "vscode": {
+ "extensions": ["ms-python.python", "ms-python.vscode-pylance", "ms-toolsai.jupyter"]
+ }
+ }
+}
diff --git a/.github/workflows/run-all-tests.yml b/.github/workflows/run-all-tests.yml
new file mode 100644
index 0000000..cba6c33
--- /dev/null
+++ b/.github/workflows/run-all-tests.yml
@@ -0,0 +1,25 @@
+name: Unit Tests
+
+on: [push]
+
+jobs:
+ build:
+ runs-on: ubuntu-latest
+ timeout-minutes: 15
+ strategy:
+ matrix:
+ python-version: ["3.8", "3.9", "3.10"]
+
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v4
+ with:
+ python-version: ${{ matrix.python-version }}
+ - name: Run tests
+ working-directory: ./code/qpptk
+ run: |
+ mkdir ~/repos/
+ pip3 install -r requirements.txt
+ pytest
+
diff --git a/.vscode/settings.json b/.vscode/settings.json
new file mode 100644
index 0000000..db84606
--- /dev/null
+++ b/.vscode/settings.json
@@ -0,0 +1,14 @@
+{
+ "python.testing.unittestArgs": [
+ "-v",
+ "-s",
+ "./code",
+ "-p",
+ "*test*.py"
+ ],
+ "python.testing.pytestEnabled": true,
+ "python.testing.unittestEnabled": false,
+ "python.testing.pytestArgs": [
+ "code"
+ ]
+}
\ No newline at end of file
diff --git a/README.md b/README.md
index 1ff8bd8..d301d9f 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,44 @@
# QPP-EnhancedEval
Code to Reproduce ECIR 2021 paper "An Enhanced Evaluation Framework for Query Performance Prediction"
+
+## Run it locally with TIRA
+
+Please ensure that you have python >= 3.7, Docker, and tira-run installed (`pip3 install tira`).
+
+```
+tira-run \
+ --input-dataset workshop-on-open-web-search/query-processing-20231027-training \
+ --input-run 'workshop-on-open-web-search/tira-ir-starter/Index (tira-ir-starter-pyterrier)' \
+ --image mam10eks/qpptk:0.0.1 \
+ --command 'python3 /qpptk_main.py -ti $inputRun/index/ --jsonl_queries $inputDataset/queries.jsonl --predict --retrieve --output $outputDir --cleanOutput --stats_index_path /tmp'
+```
+
+ File "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/global_manager.py", line 33, in run_pre_prediction_process
+ max_idf = process.calc_max_idf()
+ File "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/pre_retrieval_predictors.py", line 30, in calc_max_idf
+ return np.log(np.array(self.total_docs) / self.terms_df).max()
+ File "/usr/local/lib/python3.10/dist-packages/numpy/core/_methods.py", line 40, in _amax
+ return umr_maximum(a, axis, None, out, keepdims, initial, where)
+ValueError: zero-size array to reduction operation maximum which has no identity
+
+
+## Build the Docker Images
+
+Build the docker image via:
+```
+docker build -f docker/Dockerfile -t mam10eks/qpptk:0.0.1 .
+```
+
+If you update any dependencies, please rebuild the dev container via:
+```
+docker build -f docker/Dockerfile.dev -t mam10eks/qpptk:0.0.1-dev .
+```
+
+## Upload to TIRA
+
+```
+docker tag mam10eks/qpptk:0.0.1 registry.webis.de/code-research/tira/tira-user-qpptk/qpptk:0.0.1
+docker push registry.webis.de/code-research/tira/tira-user-qpptk/qpptk:0.0.1
+```
+
diff --git a/code/maik-idea-in-progress.ipynb b/code/maik-idea-in-progress.ipynb
new file mode 100644
index 0000000..5add1de
--- /dev/null
+++ b/code/maik-idea-in-progress.ipynb
@@ -0,0 +1,2844 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No settings given in /root/.tira/.tira-settings.json. I will use defaults.\n"
+ ]
+ }
+ ],
+ "source": [
+ "import pyterrier as pt\n",
+ "from tira.third_party_integrations import ensure_pyterrier_is_loaded\n",
+ "from tira.rest_api_client import Client\n",
+ "\n",
+ "ensure_pyterrier_is_loaded()\n",
+ "tira = Client()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dataset = pt.get_dataset(\"irds:disks45/nocr/trec-robust-2004\")\n",
+ "index = tira.get_run_output('ir-benchmarks/tira-ir-starter/Index (tira-ir-starter-pyterrier)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/index'\n",
+ "queries = tira.download_dataset('ir-benchmarks', 'disks45-nocr-trec-robust-2004-20230209-training', truth_dataset=True) + '/queries.jsonl'\n",
+ "\n",
+ "bm25_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/run.txt'\n",
+ "\n",
+ "monot5_base_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/MonoT5 Base (tira-ir-starter-gygaggle)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/run.txt'\n",
+ "monot5_3b_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/MonoT5 3b (tira-ir-starter-gygaggle)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/run.txt'\n",
+ "monot5_large_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/MonoT5 Large (tira-ir-starter-gygaggle)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/run.txt'\n",
+ "dirichlet_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/DirichletLM Re-Rank (tira-ir-starter-pyterrier)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/run.txt'\n",
+ "\n",
+ "tasb_run = \ttira.get_run_output('ir-benchmarks/tira-ir-starter/TASB msmarco-distilbert-base-dot (tira-ir-starter-beir)', 'disks45-nocr-trec-robust-2004-20230209-training') + '/run.txt'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:38<00:00, 13645.62it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:11<00:00, 45334.75it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:34<00:00, 15.35it/s]\n",
+ "org.terrier.terms.PorterStemmer\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {tasb_run} --output idea-in-progress/tasb-predictions/ --stats_index_path idea-in-progress/tasb-predictions/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:42<00:00, 12122.73it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:15<00:00, 34769.89it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:37<00:00, 14.35it/s]\n",
+ "org.terrier.terms.PorterStemmer\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {monot5_3b_run} --output idea-in-progress/monot5-3b-predictions/ --stats_index_path idea-in-progress/monot5-3b-predictions/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:43<00:00, 11841.73it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:12<00:00, 43002.11it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:38<00:00, 14.01it/s]\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/post_retrieval_predictors.py:53: RuntimeWarning: divide by zero encountered in log\n",
+ " return (scores_vec * abs(np.log(scores_vec / mean))).mean() / self.ql_corpus_score\n",
+ "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/post_retrieval_predictors.py:53: RuntimeWarning: invalid value encountered in multiply\n",
+ " return (scores_vec * abs(np.log(scores_vec / mean))).mean() / self.ql_corpus_score\n",
+ "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/post_retrieval_predictors.py:53: RuntimeWarning: invalid value encountered in log\n",
+ " return (scores_vec * abs(np.log(scores_vec / mean))).mean() / self.ql_corpus_score\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {dirichlet_run} --output idea-in-progress/dirichlet-predictions/ --stats_index_path idea-in-progress/dirichlet-predictions/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:35<00:00, 14768.12it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:10<00:00, 50072.09it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:55<00:00, 9.62it/s]\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/post_retrieval_predictors.py:53: RuntimeWarning: divide by zero encountered in log\n",
+ " return (scores_vec * abs(np.log(scores_vec / mean))).mean() / self.ql_corpus_score\n",
+ "/workspaces/QPP-EnhancedEval/code/qpptk/qpptk/post_retrieval_predictors.py:53: RuntimeWarning: invalid value encountered in multiply\n",
+ " return (scores_vec * abs(np.log(scores_vec / mean))).mean() / self.ql_corpus_score\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {bm25_run} --output idea-in-progress/bm25-predictions/ --stats_index_path idea-in-progress/bm25-predictions/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:39<00:00, 13042.78it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:11<00:00, 46138.29it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:31<00:00, 16.85it/s]\n",
+ "org.terrier.terms.PorterStemmer\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {bm25_run} --use-scores-from-run-file {monot5_base_run} --output idea-in-progress/bm25-predictions-monot5-base/ --stats_index_path idea-in-progress/bm25-predictions-monot5-base/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:39<00:00, 13119.23it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:12<00:00, 41475.76it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:37<00:00, 14.46it/s]\n",
+ "org.terrier.terms.PorterStemmer\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {bm25_run} --use-scores-from-run-file {monot5_large_run} --output idea-in-progress/bm25-predictions-monot5-large/ --stats_index_path idea-in-progress/bm25-predictions-monot5-large/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Start PyTerrier with version=5.7, helper_version=0.0.7, no_download=True\n",
+ "PyTerrier 0.9.2 has loaded Terrier 5.7 (built by craigm on 2022-11-10 18:30) and terrier-helper 0.0.7\n",
+ "\n",
+ "No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "org.terrier.terms.PorterStemmer\n",
+ "100%|████████████████████████████████| 520520/520520 [00:41<00:00, 12652.98it/s]\n",
+ "100%|████████████████████████████████| 528155/528155 [00:11<00:00, 46283.91it/s]\n",
+ "100%|█████████████████████████████████████████| 537/537 [00:35<00:00, 15.18it/s]\n",
+ "org.terrier.terms.PorterStemmer\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python3 qpptk/qpptk/qpptk_main.py -ti {index} --jsonl_queries {queries} --run-file {bm25_run} --use-scores-from-run-file {monot5_3b_run} --output idea-in-progress/bm25-predictions-monot5-3b/ --stats_index_path idea-in-progress/bm25-predictions-monot5-3b/stats --predPost --retrieve --cleanOutput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def qpp_correlation_to_ground_truth(bm25, qpp, dataset, eval_metrics):\n",
+ " import pandas as pd\n",
+ " topics = dataset.get_topics(variant='title')\n",
+ " df_eval = pt.Experiment([bm25], topics=topics, qrels=dataset.get_qrels(), eval_metrics=eval_metrics, perquery=True, names=['BM25'])\n",
+ " df_predictions = qpp(topics)\n",
+ " df_joined = pd.merge(df_eval, df_predictions, on=['qid'])\n",
+ " ret = []\n",
+ "\n",
+ " for q in ['wig+5', 'wig+10', 'wig+20', 'wig+50', 'wig+100', 'wig+1000', 'nqc+5', 'nqc+10', 'nqc+20', 'nqc+50', 'nqc+100', 'nqc+1000', 'smv+5', 'smv+10', 'smv+20', 'smv+50', 'smv+100', 'smv+1000', 'clarity+5+100', 'clarity+10+100', 'clarity+20+100', 'clarity+50+100', 'clarity+100+100', 'clarity+1000+100']:\n",
+ " \n",
+ " ret += [{'QPP Method': q, 'Pearson Correlation': df_joined[['value', q]].corr(method='pearson').iloc[0].to_dict()[q], 'Kendall': df_joined[['value', q]].corr(method='kendall').iloc[0].to_dict()[q], 'Spearman': df_joined[['value', q]].corr(method='spearman').iloc[0].to_dict()[q]}]\n",
+ "\n",
+ " return pd.DataFrame(ret).sort_values('Pearson Correlation', ascending=False)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{\"qid\":\"301\",\"wig+5\":8.1538426386,\"nqc+5\":0.2302213445,\"smv+5\":0.1735291643,\"clarity+5+1\":8.4389762636,\"clarity+5+2\":7.2377404637,\"clarity+5+3\":6.6500359346,\"clarity+5+4\":6.2496529378,\"clarity+5+5\":5.9353293106,\"clarity+5+10\":5.2140229176,\"clarity+5+100\":4.1163406121,\"clarity+5+1000\":4.1162974043,\"wig+10\":8.3986639162,\"nqc+10\":0.2745438091,\"smv+10\":0.1982137628,\"clarity+10+1\":8.4389762636,\"clarity+10+2\":7.3374160851,\"clarity+10+3\":6.9327226033,\"clarity+10+4\":6.442240721,\"clarity+10+5\":6.4037441021,\"clarity+10+10\":5.6065822859,\"clarity+10+100\":4.2324150965,\"clarity+10+1000\":4.2323966464,\"wig+20\":7.6090500222,\"nqc+20\":0.265131287,\"smv+20\":0.169705112,\"clarity+20+1\":8.4389762636,\"clarity+20+2\":7.355133136,\"clarity+20+3\":6.6771405965,\"clarity+20+4\":6.4459559306,\"clarity+20+5\":6.3897175598,\"clarity+20+10\":5.7679897305,\"clarity+20+100\":4.1052893064,\"clarity+20+1000\":4.105207107,\"wig+50\":6.850329445,\"nqc+50\":0.2699966326,\"smv+50\":0.1646634367,\"clarity+50+1\":8.4389762636,\"clarity+50+2\":7.3982254728,\"clarity+50+3\":6.7538453597,\"clarity+50+4\":6.4820218946,\"clarity+50+5\":6.1820700551,\"clarity+50+10\":5.6630617525,\"clarity+50+100\":3.8167603479,\"clarity+50+1000\":3.7539540741,\"wig+100\":6.0371059695,\"nqc+100\":0.2552809114,\"smv+100\":0.1529112349,\"clarity+100+1\":8.4389762636,\"clarity+100+2\":7.3706593837,\"clarity+100+3\":6.7496317582,\"clarity+100+4\":6.4899205044,\"clarity+100+5\":6.2779247944,\"clarity+100+10\":5.5874364991,\"clarity+100+100\":3.8195398052,\"clarity+100+1000\":3.7315001419,\"wig+1000\":4.059842028,\"nqc+1000\":0.160266928,\"smv+1000\":0.0925492044,\"clarity+1000+1\":8.4389762636,\"clarity+1000+2\":7.3033249205,\"clarity+1000+3\":6.8384990721,\"clarity+1000+4\":6.3588724518,\"clarity+1000+5\":6.1267928599,\"clarity+1000+10\":5.5175829001,\"clarity+1000+100\":3.7655823134,\"clarity+1000+1000\":3.5986708854}\n"
+ ]
+ }
+ ],
+ "source": [
+ "!head -1 idea-in-progress/bm25-predictions-monot5-3b/queries.jsonl"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def load_predictions(f):\n",
+ " import pandas as pd\n",
+ " from pyterrier.apply import generic\n",
+ " ret = pd.read_json(f, lines=True, dtype={'qid': str})\n",
+ " cols = [i for i in ret.columns if i not in ['qid']]\n",
+ " ret = {str(i['qid']): i for _, i in ret.iterrows()}\n",
+ "\n",
+ " def __transform_df(df):\n",
+ " for col in cols:\n",
+ " df[col] = df['qid'].apply(lambda i: ret[str(i)][col])\n",
+ " return df\n",
+ "\n",
+ " return generic(__transform_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(tas), load_predictions('idea-in-progress/bm25-predictions-monot5-3b/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.297331 | \n",
+ " 0.218452 | \n",
+ " 0.319161 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.242401 | \n",
+ " 0.170052 | \n",
+ " 0.246998 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.202920 | \n",
+ " 0.136785 | \n",
+ " 0.203184 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.197491 | \n",
+ " 0.129023 | \n",
+ " 0.192965 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.188946 | \n",
+ " 0.136198 | \n",
+ " 0.199741 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.173608 | \n",
+ " 0.122109 | \n",
+ " 0.178816 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " 0.166172 | \n",
+ " 0.106714 | \n",
+ " 0.157793 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.161279 | \n",
+ " 0.112716 | \n",
+ " 0.167670 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.138783 | \n",
+ " 0.095756 | \n",
+ " 0.143835 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.116075 | \n",
+ " 0.062228 | \n",
+ " 0.095694 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " 0.105828 | \n",
+ " 0.037507 | \n",
+ " 0.060689 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " 0.101703 | \n",
+ " 0.085580 | \n",
+ " 0.122941 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.098874 | \n",
+ " 0.054923 | \n",
+ " 0.078604 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.095586 | \n",
+ " 0.069795 | \n",
+ " 0.102226 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.061669 | \n",
+ " 0.060337 | \n",
+ " 0.087820 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.020805 | \n",
+ " 0.018916 | \n",
+ " 0.027693 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " 0.016997 | \n",
+ " 0.026157 | \n",
+ " 0.037269 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " -0.004509 | \n",
+ " 0.013894 | \n",
+ " 0.020401 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.022835 | \n",
+ " -0.026418 | \n",
+ " -0.039847 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.023925 | \n",
+ " -0.010763 | \n",
+ " -0.017689 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " -0.081707 | \n",
+ " -0.078666 | \n",
+ " -0.107321 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.122144 | \n",
+ " -0.062685 | \n",
+ " -0.095754 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " -0.134015 | \n",
+ " -0.070773 | \n",
+ " -0.104795 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.137324 | \n",
+ " -0.125109 | \n",
+ " -0.175854 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "23 clarity+1000+100 0.297331 0.218452 0.319161\n",
+ "22 clarity+100+100 0.242401 0.170052 0.246998\n",
+ "21 clarity+50+100 0.202920 0.136785 0.203184\n",
+ "20 clarity+20+100 0.197491 0.129023 0.192965\n",
+ "0 wig+5 0.188946 0.136198 0.199741\n",
+ "19 clarity+10+100 0.173608 0.122109 0.178816\n",
+ "15 smv+50 0.166172 0.106714 0.157793\n",
+ "1 wig+10 0.161279 0.112716 0.167670\n",
+ "9 nqc+50 0.138783 0.095756 0.143835\n",
+ "10 nqc+100 0.116075 0.062228 0.095694\n",
+ "16 smv+100 0.105828 0.037507 0.060689\n",
+ "14 smv+20 0.101703 0.085580 0.122941\n",
+ "18 clarity+5+100 0.098874 0.054923 0.078604\n",
+ "2 wig+20 0.095586 0.069795 0.102226\n",
+ "8 nqc+20 0.061669 0.060337 0.087820\n",
+ "3 wig+50 0.020805 0.018916 0.027693\n",
+ "13 smv+10 0.016997 0.026157 0.037269\n",
+ "7 nqc+10 -0.004509 0.013894 0.020401\n",
+ "5 wig+1000 -0.022835 -0.026418 -0.039847\n",
+ "4 wig+100 -0.023925 -0.010763 -0.017689\n",
+ "11 nqc+1000 -0.081707 -0.078666 -0.107321\n",
+ "12 smv+5 -0.122144 -0.062685 -0.095754\n",
+ "6 nqc+5 -0.134015 -0.070773 -0.104795\n",
+ "17 smv+1000 -0.137324 -0.125109 -0.175854"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(bm25_run), load_predictions('idea-in-progress/bm25-predictions-monot5-3b/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.279941 | \n",
+ " 0.202601 | \n",
+ " 0.298859 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.235805 | \n",
+ " 0.162224 | \n",
+ " 0.240220 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.222925 | \n",
+ " 0.144678 | \n",
+ " 0.215852 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.213269 | \n",
+ " 0.146178 | \n",
+ " 0.214532 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.200061 | \n",
+ " 0.128501 | \n",
+ " 0.192217 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.199354 | \n",
+ " 0.125500 | \n",
+ " 0.188106 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " 0.182064 | \n",
+ " 0.117151 | \n",
+ " 0.175939 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.181858 | \n",
+ " 0.119369 | \n",
+ " 0.178206 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " 0.176015 | \n",
+ " 0.112455 | \n",
+ " 0.164884 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.154578 | \n",
+ " 0.105149 | \n",
+ " 0.153585 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.151951 | \n",
+ " 0.094778 | \n",
+ " 0.142401 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.139933 | \n",
+ " 0.093277 | \n",
+ " 0.137660 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.092360 | \n",
+ " 0.053096 | \n",
+ " 0.080287 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " 0.055596 | \n",
+ " 0.034180 | \n",
+ " 0.049156 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.053061 | \n",
+ " 0.034963 | \n",
+ " 0.051960 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.021389 | \n",
+ " 0.001892 | \n",
+ " 0.006362 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.019076 | \n",
+ " -0.028244 | \n",
+ " -0.037358 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.037245 | \n",
+ " -0.044030 | \n",
+ " -0.064728 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " -0.064620 | \n",
+ " -0.084993 | \n",
+ " -0.122728 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " -0.071282 | \n",
+ " -0.054205 | \n",
+ " -0.081581 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " -0.075675 | \n",
+ " -0.053357 | \n",
+ " -0.079935 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.123936 | \n",
+ " -0.127392 | \n",
+ " -0.180470 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " -0.160651 | \n",
+ " -0.125500 | \n",
+ " -0.188997 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.165955 | \n",
+ " -0.125957 | \n",
+ " -0.188493 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "23 clarity+1000+100 0.279941 0.202601 0.298859\n",
+ "22 clarity+100+100 0.235805 0.162224 0.240220\n",
+ "10 nqc+100 0.222925 0.144678 0.215852\n",
+ "21 clarity+50+100 0.213269 0.146178 0.214532\n",
+ "20 clarity+20+100 0.200061 0.128501 0.192217\n",
+ "9 nqc+50 0.199354 0.125500 0.188106\n",
+ "15 smv+50 0.182064 0.117151 0.175939\n",
+ "19 clarity+10+100 0.181858 0.119369 0.178206\n",
+ "16 smv+100 0.176015 0.112455 0.164884\n",
+ "0 wig+5 0.154578 0.105149 0.153585\n",
+ "18 clarity+5+100 0.151951 0.094778 0.142401\n",
+ "1 wig+10 0.139933 0.093277 0.137660\n",
+ "2 wig+20 0.092360 0.053096 0.080287\n",
+ "14 smv+20 0.055596 0.034180 0.049156\n",
+ "8 nqc+20 0.053061 0.034963 0.051960\n",
+ "3 wig+50 0.021389 0.001892 0.006362\n",
+ "4 wig+100 -0.019076 -0.028244 -0.037358\n",
+ "5 wig+1000 -0.037245 -0.044030 -0.064728\n",
+ "11 nqc+1000 -0.064620 -0.084993 -0.122728\n",
+ "13 smv+10 -0.071282 -0.054205 -0.081581\n",
+ "7 nqc+10 -0.075675 -0.053357 -0.079935\n",
+ "17 smv+1000 -0.123936 -0.127392 -0.180470\n",
+ "6 nqc+5 -0.160651 -0.125500 -0.188997\n",
+ "12 smv+5 -0.165955 -0.125957 -0.188493"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(bm25_run), load_predictions('idea-in-progress/bm25-predictions-monot5-large/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.258257 | \n",
+ " 0.194513 | \n",
+ " 0.287696 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.216954 | \n",
+ " 0.139655 | \n",
+ " 0.210442 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.208185 | \n",
+ " 0.143895 | \n",
+ " 0.215025 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " 0.206601 | \n",
+ " 0.139264 | \n",
+ " 0.208769 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.197725 | \n",
+ " 0.124457 | \n",
+ " 0.180996 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.177883 | \n",
+ " 0.118390 | \n",
+ " 0.174230 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.167698 | \n",
+ " 0.112976 | \n",
+ " 0.164358 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " 0.155876 | \n",
+ " 0.087342 | \n",
+ " 0.129523 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.150767 | \n",
+ " 0.095691 | \n",
+ " 0.140809 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.150307 | \n",
+ " 0.103127 | \n",
+ " 0.152786 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.149999 | \n",
+ " 0.095299 | \n",
+ " 0.140990 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.132760 | \n",
+ " 0.078275 | \n",
+ " 0.116934 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.100793 | \n",
+ " 0.060467 | \n",
+ " 0.092209 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " 0.091921 | \n",
+ " 0.062098 | \n",
+ " 0.090931 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.083938 | \n",
+ " 0.055249 | \n",
+ " 0.081036 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.025501 | \n",
+ " 0.006001 | \n",
+ " 0.010647 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.014808 | \n",
+ " -0.022569 | \n",
+ " -0.027843 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.026323 | \n",
+ " -0.036006 | \n",
+ " -0.052434 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " -0.051213 | \n",
+ " -0.036920 | \n",
+ " -0.059563 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " -0.059433 | \n",
+ " -0.045530 | \n",
+ " -0.072177 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " -0.086624 | \n",
+ " -0.103453 | \n",
+ " -0.146552 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.153355 | \n",
+ " -0.149896 | \n",
+ " -0.210882 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.177895 | \n",
+ " -0.133132 | \n",
+ " -0.199061 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " -0.179554 | \n",
+ " -0.133197 | \n",
+ " -0.200643 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "23 clarity+1000+100 0.258257 0.194513 0.287696\n",
+ "9 nqc+50 0.216954 0.139655 0.210442\n",
+ "22 clarity+100+100 0.208185 0.143895 0.215025\n",
+ "15 smv+50 0.206601 0.139264 0.208769\n",
+ "10 nqc+100 0.197725 0.124457 0.180996\n",
+ "21 clarity+50+100 0.177883 0.118390 0.174230\n",
+ "0 wig+5 0.167698 0.112976 0.164358\n",
+ "16 smv+100 0.155876 0.087342 0.129523\n",
+ "1 wig+10 0.150767 0.095691 0.140809\n",
+ "19 clarity+10+100 0.150307 0.103127 0.152786\n",
+ "20 clarity+20+100 0.149999 0.095299 0.140990\n",
+ "18 clarity+5+100 0.132760 0.078275 0.116934\n",
+ "2 wig+20 0.100793 0.060467 0.092209\n",
+ "14 smv+20 0.091921 0.062098 0.090931\n",
+ "8 nqc+20 0.083938 0.055249 0.081036\n",
+ "3 wig+50 0.025501 0.006001 0.010647\n",
+ "4 wig+100 -0.014808 -0.022569 -0.027843\n",
+ "5 wig+1000 -0.026323 -0.036006 -0.052434\n",
+ "13 smv+10 -0.051213 -0.036920 -0.059563\n",
+ "7 nqc+10 -0.059433 -0.045530 -0.072177\n",
+ "11 nqc+1000 -0.086624 -0.103453 -0.146552\n",
+ "17 smv+1000 -0.153355 -0.149896 -0.210882\n",
+ "12 smv+5 -0.177895 -0.133132 -0.199061\n",
+ "6 nqc+5 -0.179554 -0.133197 -0.200643"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(bm25_run), load_predictions('idea-in-progress/bm25-predictions-monot5-base/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.462457 | \n",
+ " 0.354427 | \n",
+ " 0.507202 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.460322 | \n",
+ " 0.356188 | \n",
+ " 0.509381 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.368155 | \n",
+ " 0.298916 | \n",
+ " 0.433944 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.281720 | \n",
+ " 0.235448 | \n",
+ " 0.340680 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.281509 | \n",
+ " 0.211312 | \n",
+ " 0.306594 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.276704 | \n",
+ " 0.200615 | \n",
+ " 0.291497 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " 0.272078 | \n",
+ " 0.194483 | \n",
+ " 0.282622 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.267740 | \n",
+ " 0.225272 | \n",
+ " 0.327238 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.262368 | \n",
+ " 0.223706 | \n",
+ " 0.325353 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.250323 | \n",
+ " 0.212617 | \n",
+ " 0.309128 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.241736 | \n",
+ " 0.175697 | \n",
+ " 0.256821 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.235175 | \n",
+ " 0.200550 | \n",
+ " 0.290669 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.219148 | \n",
+ " 0.218944 | \n",
+ " 0.322299 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.208037 | \n",
+ " 0.166304 | \n",
+ " 0.243586 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.177898 | \n",
+ " 0.126122 | \n",
+ " 0.187612 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " 0.124557 | \n",
+ " 0.082288 | \n",
+ " 0.121712 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.095500 | \n",
+ " 0.114903 | \n",
+ " 0.171820 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " 0.055146 | \n",
+ " 0.026842 | \n",
+ " 0.041584 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.107954 | \n",
+ " -0.118099 | \n",
+ " -0.177440 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.172951 | \n",
+ " -0.124571 | \n",
+ " -0.183342 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " -0.208910 | \n",
+ " -0.223250 | \n",
+ " -0.328311 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " -0.379634 | \n",
+ " -0.319203 | \n",
+ " -0.460681 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " -0.448379 | \n",
+ " -0.342164 | \n",
+ " -0.493580 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " -0.470203 | \n",
+ " -0.359319 | \n",
+ " -0.514954 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "10 nqc+100 0.462457 0.354427 0.507202\n",
+ "9 nqc+50 0.460322 0.356188 0.509381\n",
+ "8 nqc+20 0.368155 0.298916 0.433944\n",
+ "23 clarity+1000+100 0.281720 0.235448 0.340680\n",
+ "0 wig+5 0.281509 0.211312 0.306594\n",
+ "1 wig+10 0.276704 0.200615 0.291497\n",
+ "11 nqc+1000 0.272078 0.194483 0.282622\n",
+ "22 clarity+100+100 0.267740 0.225272 0.327238\n",
+ "21 clarity+50+100 0.262368 0.223706 0.325353\n",
+ "20 clarity+20+100 0.250323 0.212617 0.309128\n",
+ "2 wig+20 0.241736 0.175697 0.256821\n",
+ "19 clarity+10+100 0.235175 0.200550 0.290669\n",
+ "7 nqc+10 0.219148 0.218944 0.322299\n",
+ "18 clarity+5+100 0.208037 0.166304 0.243586\n",
+ "3 wig+50 0.177898 0.126122 0.187612\n",
+ "4 wig+100 0.124557 0.082288 0.121712\n",
+ "6 nqc+5 0.095500 0.114903 0.171820\n",
+ "5 wig+1000 0.055146 0.026842 0.041584\n",
+ "12 smv+5 -0.107954 -0.118099 -0.177440\n",
+ "17 smv+1000 -0.172951 -0.124571 -0.183342\n",
+ "13 smv+10 -0.208910 -0.223250 -0.328311\n",
+ "14 smv+20 -0.379634 -0.319203 -0.460681\n",
+ "16 smv+100 -0.448379 -0.342164 -0.493580\n",
+ "15 smv+50 -0.470203 -0.359319 -0.514954"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(bm25_run), load_predictions('idea-in-progress/bm25-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.297331 | \n",
+ " 0.218452 | \n",
+ " 0.319161 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.293091 | \n",
+ " 0.212777 | \n",
+ " 0.311435 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.290094 | \n",
+ " 0.210428 | \n",
+ " 0.307036 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.287910 | \n",
+ " 0.206449 | \n",
+ " 0.302137 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.287268 | \n",
+ " 0.202144 | \n",
+ " 0.295356 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.260596 | \n",
+ " 0.177162 | \n",
+ " 0.259691 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " 0.178812 | \n",
+ " 0.115455 | \n",
+ " 0.170733 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.164368 | \n",
+ " 0.111085 | \n",
+ " 0.162520 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.164234 | \n",
+ " 0.114803 | \n",
+ " 0.173650 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " 0.162670 | \n",
+ " 0.115912 | \n",
+ " 0.172033 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.160671 | \n",
+ " 0.107693 | \n",
+ " 0.161651 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " 0.147612 | \n",
+ " 0.082449 | \n",
+ " 0.123279 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " 0.095559 | \n",
+ " 0.075144 | \n",
+ " 0.108472 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.091792 | \n",
+ " 0.071621 | \n",
+ " 0.103446 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.046209 | \n",
+ " 0.039398 | \n",
+ " 0.052908 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.034252 | \n",
+ " 0.033723 | \n",
+ " 0.054435 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " 0.032684 | \n",
+ " 0.042529 | \n",
+ " 0.056616 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.013164 | \n",
+ " 0.013111 | \n",
+ " 0.020761 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " -0.021886 | \n",
+ " -0.018721 | \n",
+ " -0.024729 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.022835 | \n",
+ " -0.026418 | \n",
+ " -0.039847 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " -0.055797 | \n",
+ " -0.031179 | \n",
+ " -0.047256 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.071619 | \n",
+ " -0.041551 | \n",
+ " -0.061967 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " -0.081707 | \n",
+ " -0.078666 | \n",
+ " -0.107321 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.137324 | \n",
+ " -0.125109 | \n",
+ " -0.175854 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "23 clarity+1000+100 0.297331 0.218452 0.319161\n",
+ "22 clarity+100+100 0.293091 0.212777 0.311435\n",
+ "21 clarity+50+100 0.290094 0.210428 0.307036\n",
+ "20 clarity+20+100 0.287910 0.206449 0.302137\n",
+ "19 clarity+10+100 0.287268 0.202144 0.295356\n",
+ "18 clarity+5+100 0.260596 0.177162 0.259691\n",
+ "14 smv+20 0.178812 0.115455 0.170733\n",
+ "8 nqc+20 0.164368 0.111085 0.162520\n",
+ "9 nqc+50 0.164234 0.114803 0.173650\n",
+ "15 smv+50 0.162670 0.115912 0.172033\n",
+ "10 nqc+100 0.160671 0.107693 0.161651\n",
+ "16 smv+100 0.147612 0.082449 0.123279\n",
+ "13 smv+10 0.095559 0.075144 0.108472\n",
+ "7 nqc+10 0.091792 0.071621 0.103446\n",
+ "6 nqc+5 0.046209 0.039398 0.052908\n",
+ "0 wig+5 0.034252 0.033723 0.054435\n",
+ "12 smv+5 0.032684 0.042529 0.056616\n",
+ "1 wig+10 0.013164 0.013111 0.020761\n",
+ "2 wig+20 -0.021886 -0.018721 -0.024729\n",
+ "5 wig+1000 -0.022835 -0.026418 -0.039847\n",
+ "3 wig+50 -0.055797 -0.031179 -0.047256\n",
+ "4 wig+100 -0.071619 -0.041551 -0.061967\n",
+ "11 nqc+1000 -0.081707 -0.078666 -0.107321\n",
+ "17 smv+1000 -0.137324 -0.125109 -0.175854"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(bm25_run), load_predictions('idea-in-progress/monot5-3b-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " 0.271772 | \n",
+ " 0.179331 | \n",
+ " 0.265175 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.255656 | \n",
+ " 0.168275 | \n",
+ " 0.250367 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.235714 | \n",
+ " 0.165088 | \n",
+ " 0.249465 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " 0.220694 | \n",
+ " 0.147399 | \n",
+ " 0.223921 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.205987 | \n",
+ " 0.144603 | \n",
+ " 0.213371 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.200144 | \n",
+ " 0.141091 | \n",
+ " 0.207027 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.196198 | \n",
+ " 0.138619 | \n",
+ " 0.203131 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " 0.190493 | \n",
+ " 0.134652 | \n",
+ " 0.201750 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.188698 | \n",
+ " 0.128669 | \n",
+ " 0.191014 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.177662 | \n",
+ " 0.128279 | \n",
+ " 0.192733 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.177114 | \n",
+ " 0.116833 | \n",
+ " 0.173923 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.174384 | \n",
+ " 0.113386 | \n",
+ " 0.173824 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " 0.139247 | \n",
+ " 0.086853 | \n",
+ " 0.127837 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.137884 | \n",
+ " 0.081260 | \n",
+ " 0.122198 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.089783 | \n",
+ " 0.071765 | \n",
+ " 0.111235 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " 0.073765 | \n",
+ " 0.070659 | \n",
+ " 0.111223 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.015265 | \n",
+ " 0.002699 | \n",
+ " 0.008956 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " -0.018818 | \n",
+ " -0.022274 | \n",
+ " -0.031599 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.038880 | \n",
+ " -0.042630 | \n",
+ " -0.066252 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " -0.065862 | \n",
+ " -0.056677 | \n",
+ " -0.084378 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " -0.106025 | \n",
+ " -0.071960 | \n",
+ " -0.110063 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.117922 | \n",
+ " -0.083016 | \n",
+ " -0.125982 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " -0.150946 | \n",
+ " -0.095567 | \n",
+ " -0.141881 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.187925 | \n",
+ " -0.126783 | \n",
+ " -0.185906 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "14 smv+20 0.271772 0.179331 0.265175\n",
+ "8 nqc+20 0.255656 0.168275 0.250367\n",
+ "9 nqc+50 0.235714 0.165088 0.249465\n",
+ "15 smv+50 0.220694 0.147399 0.223921\n",
+ "23 clarity+1000+100 0.205987 0.144603 0.213371\n",
+ "22 clarity+100+100 0.200144 0.141091 0.207027\n",
+ "21 clarity+50+100 0.196198 0.138619 0.203131\n",
+ "13 smv+10 0.190493 0.134652 0.201750\n",
+ "20 clarity+20+100 0.188698 0.128669 0.191014\n",
+ "7 nqc+10 0.177662 0.128279 0.192733\n",
+ "19 clarity+10+100 0.177114 0.116833 0.173923\n",
+ "10 nqc+100 0.174384 0.113386 0.173824\n",
+ "16 smv+100 0.139247 0.086853 0.127837\n",
+ "18 clarity+5+100 0.137884 0.081260 0.122198\n",
+ "6 nqc+5 0.089783 0.071765 0.111235\n",
+ "12 smv+5 0.073765 0.070659 0.111223\n",
+ "0 wig+5 0.015265 0.002699 0.008956\n",
+ "1 wig+10 -0.018818 -0.022274 -0.031599\n",
+ "5 wig+1000 -0.038880 -0.042630 -0.066252\n",
+ "2 wig+20 -0.065862 -0.056677 -0.084378\n",
+ "3 wig+50 -0.106025 -0.071960 -0.110063\n",
+ "4 wig+100 -0.117922 -0.083016 -0.125982\n",
+ "11 nqc+1000 -0.150946 -0.095567 -0.141881\n",
+ "17 smv+1000 -0.187925 -0.126783 -0.185906"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(monot5_3b_run), load_predictions('idea-in-progress/monot5-3b-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.475283 | \n",
+ " 0.363273 | \n",
+ " 0.509555 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.463473 | \n",
+ " 0.330830 | \n",
+ " 0.465296 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.400821 | \n",
+ " 0.304849 | \n",
+ " 0.441586 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.387609 | \n",
+ " 0.288530 | \n",
+ " 0.422133 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.384282 | \n",
+ " 0.283895 | \n",
+ " 0.415216 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.380293 | \n",
+ " 0.281414 | \n",
+ " 0.408809 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.367162 | \n",
+ " 0.264116 | \n",
+ " 0.388863 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.362036 | \n",
+ " 0.262223 | \n",
+ " 0.384062 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.352186 | \n",
+ " 0.318035 | \n",
+ " 0.452020 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.302615 | \n",
+ " 0.213917 | \n",
+ " 0.311940 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.300922 | \n",
+ " 0.204321 | \n",
+ " 0.298204 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.288021 | \n",
+ " 0.194203 | \n",
+ " 0.282529 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.257996 | \n",
+ " 0.168614 | \n",
+ " 0.246089 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.238329 | \n",
+ " 0.254128 | \n",
+ " 0.368739 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " 0.237420 | \n",
+ " 0.150923 | \n",
+ " 0.219848 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " 0.231533 | \n",
+ " 0.160258 | \n",
+ " 0.235285 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.211302 | \n",
+ " 0.196553 | \n",
+ " 0.294236 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " 0.200226 | \n",
+ " 0.122201 | \n",
+ " 0.180734 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.140665 | \n",
+ " -0.110239 | \n",
+ " -0.161856 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " -0.214073 | \n",
+ " -0.249493 | \n",
+ " -0.365242 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.227290 | \n",
+ " -0.198446 | \n",
+ " -0.296831 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " -0.341180 | \n",
+ " -0.319341 | \n",
+ " -0.453131 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " -0.456666 | \n",
+ " -0.317187 | \n",
+ " -0.449887 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " -0.482864 | \n",
+ " -0.361641 | \n",
+ " -0.507898 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "9 nqc+50 0.475283 0.363273 0.509555\n",
+ "10 nqc+100 0.463473 0.330830 0.465296\n",
+ "23 clarity+1000+100 0.400821 0.304849 0.441586\n",
+ "22 clarity+100+100 0.387609 0.288530 0.422133\n",
+ "21 clarity+50+100 0.384282 0.283895 0.415216\n",
+ "20 clarity+20+100 0.380293 0.281414 0.408809\n",
+ "19 clarity+10+100 0.367162 0.264116 0.388863\n",
+ "18 clarity+5+100 0.362036 0.262223 0.384062\n",
+ "8 nqc+20 0.352186 0.318035 0.452020\n",
+ "0 wig+5 0.302615 0.213917 0.311940\n",
+ "1 wig+10 0.300922 0.204321 0.298204\n",
+ "2 wig+20 0.288021 0.194203 0.282529\n",
+ "3 wig+50 0.257996 0.168614 0.246089\n",
+ "7 nqc+10 0.238329 0.254128 0.368739\n",
+ "4 wig+100 0.237420 0.150923 0.219848\n",
+ "11 nqc+1000 0.231533 0.160258 0.235285\n",
+ "6 nqc+5 0.211302 0.196553 0.294236\n",
+ "5 wig+1000 0.200226 0.122201 0.180734\n",
+ "17 smv+1000 -0.140665 -0.110239 -0.161856\n",
+ "13 smv+10 -0.214073 -0.249493 -0.365242\n",
+ "12 smv+5 -0.227290 -0.198446 -0.296831\n",
+ "14 smv+20 -0.341180 -0.319341 -0.453131\n",
+ "16 smv+100 -0.456666 -0.317187 -0.449887\n",
+ "15 smv+50 -0.482864 -0.361641 -0.507898"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(dirichlet_run), load_predictions('idea-in-progress/dirichlet-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.362994 | \n",
+ " 0.281135 | \n",
+ " 0.417103 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.334834 | \n",
+ " 0.273627 | \n",
+ " 0.410473 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.324611 | \n",
+ " 0.254630 | \n",
+ " 0.377288 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.269630 | \n",
+ " 0.227016 | \n",
+ " 0.344634 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.263652 | \n",
+ " 0.200838 | \n",
+ " 0.293189 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.259267 | \n",
+ " 0.197705 | \n",
+ " 0.288425 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.254336 | \n",
+ " 0.194571 | \n",
+ " 0.283784 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.242314 | \n",
+ " 0.186476 | \n",
+ " 0.271842 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.224332 | \n",
+ " 0.171266 | \n",
+ " 0.250670 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.189275 | \n",
+ " 0.144305 | \n",
+ " 0.213833 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.179945 | \n",
+ " 0.153575 | \n",
+ " 0.229033 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.145259 | \n",
+ " 0.115842 | \n",
+ " 0.165247 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.134025 | \n",
+ " 0.101806 | \n",
+ " 0.146347 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.117516 | \n",
+ " 0.085094 | \n",
+ " 0.120440 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.095125 | \n",
+ " 0.063486 | \n",
+ " 0.089292 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " 0.084873 | \n",
+ " 0.045207 | \n",
+ " 0.066467 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " 0.078762 | \n",
+ " 0.048080 | \n",
+ " 0.067425 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " 0.067236 | \n",
+ " 0.024513 | \n",
+ " 0.030896 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.066679 | \n",
+ " -0.028365 | \n",
+ " -0.042101 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.181872 | \n",
+ " -0.155011 | \n",
+ " -0.231010 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " -0.295992 | \n",
+ " -0.237592 | \n",
+ " -0.362323 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " -0.304027 | \n",
+ " -0.239289 | \n",
+ " -0.352545 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " -0.342231 | \n",
+ " -0.276043 | \n",
+ " -0.412148 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " -0.351869 | \n",
+ " -0.267491 | \n",
+ " -0.399422 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "9 nqc+50 0.362994 0.281135 0.417103\n",
+ "8 nqc+20 0.334834 0.273627 0.410473\n",
+ "10 nqc+100 0.324611 0.254630 0.377288\n",
+ "7 nqc+10 0.269630 0.227016 0.344634\n",
+ "23 clarity+1000+100 0.263652 0.200838 0.293189\n",
+ "22 clarity+100+100 0.259267 0.197705 0.288425\n",
+ "21 clarity+50+100 0.254336 0.194571 0.283784\n",
+ "20 clarity+20+100 0.242314 0.186476 0.271842\n",
+ "19 clarity+10+100 0.224332 0.171266 0.250670\n",
+ "18 clarity+5+100 0.189275 0.144305 0.213833\n",
+ "6 nqc+5 0.179945 0.153575 0.229033\n",
+ "0 wig+5 0.145259 0.115842 0.165247\n",
+ "1 wig+10 0.134025 0.101806 0.146347\n",
+ "2 wig+20 0.117516 0.085094 0.120440\n",
+ "3 wig+50 0.095125 0.063486 0.089292\n",
+ "11 nqc+1000 0.084873 0.045207 0.066467\n",
+ "4 wig+100 0.078762 0.048080 0.067425\n",
+ "5 wig+1000 0.067236 0.024513 0.030896\n",
+ "17 smv+1000 -0.066679 -0.028365 -0.042101\n",
+ "12 smv+5 -0.181872 -0.155011 -0.231010\n",
+ "13 smv+10 -0.295992 -0.237592 -0.362323\n",
+ "16 smv+100 -0.304027 -0.239289 -0.352545\n",
+ "14 smv+20 -0.342231 -0.276043 -0.412148\n",
+ "15 smv+50 -0.351869 -0.267491 -0.399422"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(tasb_run), load_predictions('idea-in-progress/tasb-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.282463 | \n",
+ " 0.197446 | \n",
+ " 0.292077 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.265958 | \n",
+ " 0.180081 | \n",
+ " 0.264895 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.251506 | \n",
+ " 0.176570 | \n",
+ " 0.260652 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.178078 | \n",
+ " 0.136313 | \n",
+ " 0.201397 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.138866 | \n",
+ " 0.101649 | \n",
+ " 0.149602 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.128110 | \n",
+ " 0.092740 | \n",
+ " 0.136104 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.122493 | \n",
+ " 0.089683 | \n",
+ " 0.131691 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.111473 | \n",
+ " 0.081814 | \n",
+ " 0.117454 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.105758 | \n",
+ " 0.060612 | \n",
+ " 0.092119 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.103543 | \n",
+ " 0.076676 | \n",
+ " 0.108268 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " 0.086970 | \n",
+ " 0.050922 | \n",
+ " 0.077490 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " 0.080265 | \n",
+ " 0.032127 | \n",
+ " 0.051867 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.079674 | \n",
+ " 0.055865 | \n",
+ " 0.076556 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.078470 | \n",
+ " 0.051312 | \n",
+ " 0.071608 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " 0.049419 | \n",
+ " 0.029656 | \n",
+ " 0.045138 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " 0.001787 | \n",
+ " -0.007934 | \n",
+ " -0.010028 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.026655 | \n",
+ " -0.032062 | \n",
+ " -0.050795 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.027841 | \n",
+ " -0.040907 | \n",
+ " -0.059752 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.052500 | \n",
+ " 0.000973 | \n",
+ " -0.006085 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " -0.088152 | \n",
+ " -0.064319 | \n",
+ " -0.090197 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " -0.174780 | \n",
+ " -0.138459 | \n",
+ " -0.205432 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " -0.226644 | \n",
+ " -0.164928 | \n",
+ " -0.244240 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " -0.278132 | \n",
+ " -0.194519 | \n",
+ " -0.286368 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " -0.283806 | \n",
+ " -0.202974 | \n",
+ " -0.298829 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "9 nqc+50 0.282463 0.197446 0.292077\n",
+ "8 nqc+20 0.265958 0.180081 0.264895\n",
+ "10 nqc+100 0.251506 0.176570 0.260652\n",
+ "7 nqc+10 0.178078 0.136313 0.201397\n",
+ "23 clarity+1000+100 0.138866 0.101649 0.149602\n",
+ "22 clarity+100+100 0.128110 0.092740 0.136104\n",
+ "21 clarity+50+100 0.122493 0.089683 0.131691\n",
+ "20 clarity+20+100 0.111473 0.081814 0.117454\n",
+ "0 wig+5 0.105758 0.060612 0.092119\n",
+ "19 clarity+10+100 0.103543 0.076676 0.108268\n",
+ "1 wig+10 0.086970 0.050922 0.077490\n",
+ "11 nqc+1000 0.080265 0.032127 0.051867\n",
+ "6 nqc+5 0.079674 0.055865 0.076556\n",
+ "18 clarity+5+100 0.078470 0.051312 0.071608\n",
+ "2 wig+20 0.049419 0.029656 0.045138\n",
+ "3 wig+50 0.001787 -0.007934 -0.010028\n",
+ "4 wig+100 -0.026655 -0.032062 -0.050795\n",
+ "5 wig+1000 -0.027841 -0.040907 -0.059752\n",
+ "17 smv+1000 -0.052500 0.000973 -0.006085\n",
+ "12 smv+5 -0.088152 -0.064319 -0.090197\n",
+ "13 smv+10 -0.174780 -0.138459 -0.205432\n",
+ "16 smv+100 -0.226644 -0.164928 -0.244240\n",
+ "14 smv+20 -0.278132 -0.194519 -0.286368\n",
+ "15 smv+50 -0.283806 -0.202974 -0.298829"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(monot5_3b_run), load_predictions('idea-in-progress/bm25-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pyterrier/pipelines.py:107: UserWarning: 1 topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.\n",
+ " warn(f'{backfill_count} topic(s) not found in qrels. Scores for these topics are given as NaN and should not contribute to averages.')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " QPP Method | \n",
+ " Pearson Correlation | \n",
+ " Kendall | \n",
+ " Spearman | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 14 | \n",
+ " smv+20 | \n",
+ " 0.271772 | \n",
+ " 0.179331 | \n",
+ " 0.265175 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " nqc+20 | \n",
+ " 0.255656 | \n",
+ " 0.168275 | \n",
+ " 0.250367 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " nqc+50 | \n",
+ " 0.235714 | \n",
+ " 0.165088 | \n",
+ " 0.249465 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " smv+50 | \n",
+ " 0.220694 | \n",
+ " 0.147399 | \n",
+ " 0.223921 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " clarity+1000+100 | \n",
+ " 0.205987 | \n",
+ " 0.144603 | \n",
+ " 0.213371 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " clarity+100+100 | \n",
+ " 0.200144 | \n",
+ " 0.141091 | \n",
+ " 0.207027 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " clarity+50+100 | \n",
+ " 0.196198 | \n",
+ " 0.138619 | \n",
+ " 0.203131 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " smv+10 | \n",
+ " 0.190493 | \n",
+ " 0.134652 | \n",
+ " 0.201750 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " clarity+20+100 | \n",
+ " 0.188698 | \n",
+ " 0.128669 | \n",
+ " 0.191014 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " nqc+10 | \n",
+ " 0.177662 | \n",
+ " 0.128279 | \n",
+ " 0.192733 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " clarity+10+100 | \n",
+ " 0.177114 | \n",
+ " 0.116833 | \n",
+ " 0.173923 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " nqc+100 | \n",
+ " 0.174384 | \n",
+ " 0.113386 | \n",
+ " 0.173824 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " smv+100 | \n",
+ " 0.139247 | \n",
+ " 0.086853 | \n",
+ " 0.127837 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " clarity+5+100 | \n",
+ " 0.137884 | \n",
+ " 0.081260 | \n",
+ " 0.122198 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " nqc+5 | \n",
+ " 0.089783 | \n",
+ " 0.071765 | \n",
+ " 0.111235 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " smv+5 | \n",
+ " 0.073765 | \n",
+ " 0.070659 | \n",
+ " 0.111223 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " wig+5 | \n",
+ " 0.015265 | \n",
+ " 0.002699 | \n",
+ " 0.008956 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " wig+10 | \n",
+ " -0.018818 | \n",
+ " -0.022274 | \n",
+ " -0.031599 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " wig+1000 | \n",
+ " -0.038880 | \n",
+ " -0.042630 | \n",
+ " -0.066252 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " wig+20 | \n",
+ " -0.065862 | \n",
+ " -0.056677 | \n",
+ " -0.084378 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " wig+50 | \n",
+ " -0.106025 | \n",
+ " -0.071960 | \n",
+ " -0.110063 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wig+100 | \n",
+ " -0.117922 | \n",
+ " -0.083016 | \n",
+ " -0.125982 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " nqc+1000 | \n",
+ " -0.150946 | \n",
+ " -0.095567 | \n",
+ " -0.141881 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " smv+1000 | \n",
+ " -0.187925 | \n",
+ " -0.126783 | \n",
+ " -0.185906 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " QPP Method Pearson Correlation Kendall Spearman\n",
+ "14 smv+20 0.271772 0.179331 0.265175\n",
+ "8 nqc+20 0.255656 0.168275 0.250367\n",
+ "9 nqc+50 0.235714 0.165088 0.249465\n",
+ "15 smv+50 0.220694 0.147399 0.223921\n",
+ "23 clarity+1000+100 0.205987 0.144603 0.213371\n",
+ "22 clarity+100+100 0.200144 0.141091 0.207027\n",
+ "21 clarity+50+100 0.196198 0.138619 0.203131\n",
+ "13 smv+10 0.190493 0.134652 0.201750\n",
+ "20 clarity+20+100 0.188698 0.128669 0.191014\n",
+ "7 nqc+10 0.177662 0.128279 0.192733\n",
+ "19 clarity+10+100 0.177114 0.116833 0.173923\n",
+ "10 nqc+100 0.174384 0.113386 0.173824\n",
+ "16 smv+100 0.139247 0.086853 0.127837\n",
+ "18 clarity+5+100 0.137884 0.081260 0.122198\n",
+ "6 nqc+5 0.089783 0.071765 0.111235\n",
+ "12 smv+5 0.073765 0.070659 0.111223\n",
+ "0 wig+5 0.015265 0.002699 0.008956\n",
+ "1 wig+10 -0.018818 -0.022274 -0.031599\n",
+ "5 wig+1000 -0.038880 -0.042630 -0.066252\n",
+ "2 wig+20 -0.065862 -0.056677 -0.084378\n",
+ "3 wig+50 -0.106025 -0.071960 -0.110063\n",
+ "4 wig+100 -0.117922 -0.083016 -0.125982\n",
+ "11 nqc+1000 -0.150946 -0.095567 -0.141881\n",
+ "17 smv+1000 -0.187925 -0.126783 -0.185906"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "qpp_correlation_to_ground_truth(pt.io.read_results(monot5_3b_run), load_predictions('idea-in-progress/monot5-3b-predictions/queries.jsonl'), dataset, ['ndcg_cut_10', ])"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/code/qpptk/.vscode/settings.json b/code/qpptk/.vscode/settings.json
new file mode 100644
index 0000000..9b38853
--- /dev/null
+++ b/code/qpptk/.vscode/settings.json
@@ -0,0 +1,7 @@
+{
+ "python.testing.pytestArgs": [
+ "tests"
+ ],
+ "python.testing.unittestEnabled": false,
+ "python.testing.pytestEnabled": true
+}
\ No newline at end of file
diff --git a/code/qpptk/qpptk/__init__.py b/code/qpptk/qpptk/__init__.py
index 642e28f..4d6a5d8 100644
--- a/code/qpptk/qpptk/__init__.py
+++ b/code/qpptk/qpptk/__init__.py
@@ -1,19 +1,20 @@
from .utility_functions import *
from .config import *
from .load_text_index import IndexText, parse_posting_list
-from .load_ciff_index import IndexCiff, parse_index_file
from .load_db_index import IndexDB
-from .parse_queries import QueryParserText, QueryParserCiff
+from .load_terrier_index import IndexTerrier
+from .parse_queries import QueryParserText, QueryParserCiff, QueryParserJsonl
from .retrieval_local_manager import LocalManagerRetrieval
-# from .parse_ciff_queries import QueryParserCiff, parse_ciff_queries_file
from .pre_retrieval_predictors import LocalManagerPredictorPre
from .post_retrieval_predictors import LocalManagerPredictorPost
-from .index_to_db import parse_index_to_db
+from .qpptk_main import parse_args, main, get_queries_object
+from .score_replacement_prediction import replace_scores_in_run_file_with_reference_scores
__all__ = ['Config', 'Posting', 'TermPosting', 'TermRecord', 'TermFrequency', 'DocRecord', 'ResultPair', 'get_file_len',
- 'read_line', 'parse_posting_list', 'binary_search', 'IndexText', 'IndexCiff', 'parse_index_file', 'IndexDB',
- 'QueryParserText', 'QueryParserCiff', 'LocalManagerRetrieval', 'LocalManagerPredictorPre', 'ensure_dir',
- 'ensure_file', 'LocalManagerPredictorPost', 'read_message', 'plot_roc',
- 'transform_list_to_counts_dict', 'jaccard_similarity', 'overlap_coefficient',
- 'set_index_dump_paths', 'add_topic_to_qdf', 'msgpack_encode', 'msgpack_decode',
- 'parse_index_to_db', 'read_trec_res_file']
+ 'read_line', 'parse_posting_list', 'binary_search', 'IndexText', 'IndexDB', 'IndexTerrier',
+ 'QueryParserText', 'QueryParserCiff', 'QueryParserJsonl', 'LocalManagerRetrieval',
+ 'LocalManagerPredictorPre', 'ensure_dir', 'ensure_file', 'LocalManagerPredictorPost', 'read_message',
+ 'plot_roc', 'transform_list_to_counts_dict', 'jaccard_similarity', 'overlap_coefficient',
+ 'sorensen_dice_similarity', 'calc_ndcg', 'set_index_dump_paths', 'add_topic_to_qdf', 'msgpack_encode',
+ 'msgpack_decode', 'read_trec_res_file', 'parse_args', 'main', 'get_queries_object',
+ 'replace_scores_in_run_file_with_reference_scores']
diff --git a/code/qpptk/qpptk/config.py b/code/qpptk/qpptk/config.py
index ac40b6f..2eb1305 100644
--- a/code/qpptk/qpptk/config.py
+++ b/code/qpptk/qpptk/config.py
@@ -6,7 +6,19 @@
from qpptk import ensure_dir, ensure_file
-CONFIG_FILE = './qpptk/config.toml'
+# def __init_logger(self, logger):
+# if logger:
+# return logger
+# logger = logging.getLogger(__name__)
+# logger.setLevel(logging.INFO)
+# if not logger.hasHandlers():
+# formatter = logging.Formatter('{asctime} - {message}', datefmt="%H:%M:%S", style="{")
+# handler = logging.StreamHandler()
+# handler.setFormatter(formatter)
+# logger.addHandler(handler)
+# return logger
+
+CONFIG_FILE = os.path.dirname(os.path.realpath(__file__)) + '/config.toml'
def set_index_dump_paths(index_dir):
@@ -31,25 +43,37 @@ class Config:
WORKING_SET_SIZE = parameters.get('working_set_size', None)
FB_TERMS = parameters.get('fb_terms')
NUM_DOCS = parameters.get('max_result_size')
- logging_level = parameters.get('logging_level', 'DEBUG')
+
N_PROC = parameters.get('num_processes', 1)
- logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', datefmt='%d/%m/%Y %H:%M:%S',
- level=logging_level)
- logger = logging.getLogger(__name__)
+
prediction_parameters = parameters.get('prediction')
WIG_LIST_SIZE = prediction_parameters.get('wig_list_size')
NQC_LIST_SIZE = prediction_parameters.get('nqc_list_size')
SMV_LIST_SIZE = prediction_parameters.get('smv_list_size')
+
CLARITY_FB_TERMS = prediction_parameters.get('clarity_fb_terms')
CLARITY_LIST_SIZE = prediction_parameters.get('clarity_list_size')
- uef_parameters = prediction_parameters.get('uef')
- UEF_RM_FB_PARAM = uef_parameters.get('rm_fb_size')
- UEF_SIM_PARAM = uef_parameters.get('re_rank_list_size')
+
+ QF_FB_TERMS = prediction_parameters.get('qf_fb_terms')
+ QF_LIST_SIZE = prediction_parameters.get('qf_list_size')
+ QF_OVERLAP_SIZE = prediction_parameters.get('qf_overlap_size')
+
+ UEF_FB_TERMS = prediction_parameters.get('uef_fb_terms')
+ UEF_LIST_SIZE = prediction_parameters.get('uef_list_size')
+ UEF_RANKING_SIZE = prediction_parameters.get('uef_ranking_size')
+
+ logging_level = parameters.get('logging_level', 'DEBUG')
+ # logging_level = logging.DEBUG
+
+ # uef_parameters = prediction_parameters.get('uef')
+ # UEF_RM_FB_PARAM = uef_parameters.get('rm_fb_size')
+ # UEF_SIM_PARAM = uef_parameters.get('re_rank_list_size')
env = config.get('environment')
executables = env.get('executables')
TREC_EVAL = executables.get('trec_eval')
+ RBP_EVAL = executables.get('rbp_eval')
env_paths = env.get('paths')
_root_dir = env_paths.get('root_dir')
@@ -58,7 +82,24 @@ class Config:
_root_dir = ensure_dir(_root_dir, False)
INDEX_DIR = env_paths.get('text_index_dir')
CIFF_INDEX = env_paths.get('ciff_index_file')
- assert not (INDEX_DIR and CIFF_INDEX), f"Only one type of Index can be specified in the configurations file"
+ TERRIER_INDEX = env_paths.get('terrier_index_dir')
+
+ BATCH_NAME = env_paths.get('batch_name', '')
+
+ assert sum((bool(TERRIER_INDEX), bool(CIFF_INDEX), bool(INDEX_DIR))) <= 1, \
+ f"Only one type of Index can be specified in the configurations file"
+
+ RESULTS_DIR = ensure_dir(os.path.join(_root_dir, env_paths.get('results_dir')), True)
+
+ log_file = env_paths.get('log_file')
+ if log_file:
+ log_file = os.path.join(RESULTS_DIR, log_file)
+ logging.basicConfig(filename=log_file, format='%(asctime)s %(levelname)s: %(message)s',
+ datefmt='%d/%m/%Y %H:%M:%S',
+ level=logging_level)
+ logger = logging.getLogger(__name__)
+
+ DB_DIR = ensure_dir(os.path.join(_root_dir, env_paths.get('db_dir')), True)
if INDEX_DIR:
try:
@@ -76,11 +117,25 @@ class Config:
logger.warning(err)
logger.warning(f"The setting 'ciff_index_file={CIFF_INDEX}' in the config file was skipped")
CIFF_INDEX = None
+ elif TERRIER_INDEX:
+ try:
+ # Index dump paths
+ TERRIER_INDEX = ensure_dir(os.path.join(_root_dir, TERRIER_INDEX), create_if_not=False)
+ ensure_file(os.path.join(TERRIER_INDEX, 'data.properties'))
+ except FileNotFoundError as err:
+ logger.warning(err)
+ logging.warning(f"The setting 'terrier_index_dir={TERRIER_INDEX}'"
+ f"in the config file was skipped, data.properties file is missing")
+ INDEX_DIR = None
TEXT_QUERIES = env_paths.get('text_queries_file')
CIFF_QUERIES = env_paths.get('ciff_queries_file')
- assert not (TEXT_QUERIES and CIFF_QUERIES), f"Only a single type of queries file can be specified" \
- f" in the configurations file"
+ JSONL_QUERIES = env_paths.get('jsonl_queries_file')
+ QREL_FILE = os.path.join(_root_dir, env_paths.get('qrel_file'))
+
+ assert sum((bool(TEXT_QUERIES), bool(CIFF_QUERIES), bool(JSONL_QUERIES))) == 1, \
+ f"Only one type of queries file can be specified in the configurations file"
+
if TEXT_QUERIES:
try:
TEXT_QUERIES = ensure_file(os.path.join(_root_dir, TEXT_QUERIES))
@@ -95,9 +150,13 @@ class Config:
logger.warning(err)
logger.warning(f"The setting 'ciff_queries_file={CIFF_QUERIES}' in the config file was skipped")
CIFF_QUERIES = None
-
- RESULTS_DIR = ensure_dir(os.path.join(_root_dir, env_paths.get('results_dir')), True)
- DB_DIR = ensure_dir(os.path.join(_root_dir, env_paths.get('db_dir')), True)
+ elif JSONL_QUERIES:
+ try:
+ JSONL_QUERIES = ensure_file(os.path.join(_root_dir, JSONL_QUERIES))
+ except FileNotFoundError as err:
+ logger.warning(err)
+ logger.warning(f"The setting 'jsonl_queries_file={JSONL_QUERIES}' in the config file was skipped")
+ JSONL_QUERIES = None
@staticmethod
def get_logger():
diff --git a/code/qpptk/qpptk/config.toml b/code/qpptk/qpptk/config.toml
index 0fc55d3..d7a1152 100644
--- a/code/qpptk/qpptk/config.toml
+++ b/code/qpptk/qpptk/config.toml
@@ -3,44 +3,73 @@ title = "Global configurations"
[environment]
[environment.paths]
# The root directory which will be used as the base path for all the environment paths
- root_dir = "./"
-# text_index_dir = "ROBUST04/dump/"
- ciff_index_file = "ciff_indexes/robust04/robust04_Lucene_indri_porter.ciff"
-# text_queries_file = "data/robust04.stemmed.qry"
- ciff_queries_file = "ciff_query_indexes/robust04_Lucene_query_indri_porter.ciff"
- results_dir = "anova_qpp"
- # Directory for the DB files,
+ root_dir = "~/repos/"
+
+# text_index_dir = "mini_dump/"
+# ciff_index_file = "ciff_indexes/robust04/robust04_Lucene_indri_nostem.ciff"
+ terrier_index_dir = "qpp-Maik/docker/pyterrier-index/index"
+
+# text_queries_file = "data/cw12b.stemmed.stopped.qry"
+ jsonl_queries_file = "qpp-Maik/docker/sample-input-full-rank/queries.jsonl"
+# ciff_queries_file = "ciff_query_indexes/robust04_Lucene_query_indri_nostem.ciff"
+
+ # results_dir = "eval_qpp_results"
+ results_dir = "testing_docker"
+
+ log_file = 'qpptk_robust_retr.log'
+
+ # Directory for the DB files
db_dir = "qpptk/qpptk_db"
+ qrel_file = 'qpp-Maik/docker/sample-input-full-rank/sample.qrels'
[environment.executables]
# path to trec_eval executable
- trec_eval = '~/trec_eval-9.0.7/trec_eval'
+# trec_eval = '/research/remote/petabyte/users/oleg/trec_eval-9.0.7/trec_eval'
+ trec_eval = '/home/s3806763/Downloads/trec_eval/trec_eval'
+# rbp_eval = '/research/remote/petabyte/users/oleg/eval/rbp_eval'
+
[parameters]
+ mu = 1000
+ # Number of docs to use for the RM construction
+ fb_docs = 100
+ # The maximum number of documents to use for the re-ranking, comment out to re-rank all docs in initial list
+ working_set_size = 100
+ # Number of top terms to use, *after* RM construction
+ fb_terms = 100
+ max_result_size = 1000
+ # predefined logging levels: CRITICAL, ERROR, WARNING, INFO, DEBUG
+ logging_level = 'DEBUG'
+ num_processes = 1
+
+ [parameters.prediction]
+ wig_list_size = 10 # Good for Robust04
+ nqc_list_size = 100 # Good for Robust04
+ smv_list_size = 100 # Good for Robust04
+ # Number of top terms from RM to use in Clarity
+ clarity_fb_terms = 100
+ # Number of docs to use for the RM construction in Clarity
+ clarity_list_size = 1000
+
+ # Number of top terms from RM to use in QF
+ qf_fb_terms = 100
+ # Number of docs to use for the RM construction in QF
+ qf_list_size = 1000
+ # Number of docs to use for the overlap calc in QF
+ qf_overlap_size = 25
+
+ # Number of top terms from RM to use in UEF
+ uef_fb_terms = 100
+ # Number of docs to use for the RM construction in UEF
+ uef_list_size = 1000
+ # Number of docs to use for the re-ranking and comparison in UEF
+ uef_ranking_size = 100
+
+ #[parameters.prediction.uef]
+
+ #rm_fb_size = 100
+ # Number of docs to re-rank with the RM, and calc the similarity
+ #re_rank_list_size = 150
-mu = 1000
-# Number of docs to use for the RM construction
-fb_docs = 100
-# The maximum number of documents to use for the re-ranking, comment out to re-rank all docs in initial list
-working_set_size = 100
-# Number of top terms to use, *after* RM construction
-fb_terms = 100
-max_result_size = 1000
-# predefined logging levels: CRITICAL, ERROR, WARNING, INFO, DEBUG
-logging_level = 'DEBUG'
-num_processes = 25
-
-[parameters.prediction]
-wig_list_size = 10
-nqc_list_size = 100
-smv_list_size = 100
-# Number of top terms from RM to use in Clarity
-clarity_fb_terms = 100
-# Number of docs to use for the RM construction in Clarity
-clarity_list_size = 1000
-
-[parameters.prediction.uef]
-
-#rm_fb_size = 100
-# Number of docs to re-rank with the RM, and calc the similarity
-#re_rank_list_size = 150
+#[logging]
+#output=
diff --git a/code/qpptk/qpptk/data_analysis.py b/code/qpptk/qpptk/data_analysis.py
index 35b0514..eed1463 100644
--- a/code/qpptk/qpptk/data_analysis.py
+++ b/code/qpptk/qpptk/data_analysis.py
@@ -1,23 +1,80 @@
+import concurrent.futures
+import math
import os
import sys
+from collections.abc import Sequence
from glob import glob
-import matplotlib.pyplot as plt
+from itertools import combinations, permutations
+from textwrap import wrap
+import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
-from scipy import stats
import statsmodels.api as sm
+from PIL.ImageOps import pad
+from syct import timer
+from matplotlib import rcParams, font_manager
+from numpy.distutils.conv_template import paren_repl
+from scipy import stats
from sklearn.datasets import dump_svmlight_file
-from sklearn.metrics import roc_auc_score
-from itertools import combinations, permutations
-
-from qpptk import Config, ensure_file, add_topic_to_qdf, ensure_dir, overlap_coefficient
+from sklearn.metrics import roc_auc_score, pairwise_distances
+from tabulate import tabulate
+from statsmodels.stats.multicomp import pairwise_tukeyhsd
+from statsmodels.formula.api import ols
+from statsmodels.graphics.api import interaction_plot, abline_plot
+from statsmodels.stats.anova import anova_lm
+from tqdm import tqdm
+
+from qpptk import Config, ensure_file, add_topic_to_qdf, ensure_dir, overlap_coefficient, calc_ndcg
from qpptk.global_manager import initialize_text_queries, initialize_ciff_queries
# plt.switch_backend('Qt5Agg')
+def seaborn_setup() -> None:
+ fmt = {
+ "backend": "Cairo",
+ "text.usetex": False,
+ "ps.fonttype": 42,
+ "pdf.fonttype": 42,
+ "lines.linewidth": 5.0,
+ "lines.markersize": 15.0,
+ "patch.linewidth": 0.5,
+ "legend.fancybox": False,
+ "axes.grid": True,
+ "patch.edgecolor": "#f0f0f0",
+ "axes.titlesize": "x-large",
+ "figure.facecolor": "#f0f0f0",
+ "grid.linestyle": "-",
+ "grid.linewidth": 0.8,
+ "grid.color": "#cbcbcb",
+ "axes.edgecolor": "#000000",
+ "xtick.major.size": 10,
+ "xtick.minor.size": 0,
+ "ytick.major.size": 10,
+ "ytick.minor.size": 0,
+ "axes.linewidth": 1.0,
+ "legend.handletextpad": 0.1,
+ "legend.handlelength": 0.3,
+ "legend.columnspacing": 0.1,
+ "font.size": 44,
+ "font.family": "serif",
+ "font.serif": "Linux Libertine O",
+ "font.sans-serif": "Linux Biolinum O",
+ "axes.labelpad": 10.0,
+ "xtick.major.pad": 10.0,
+ "ytick.major.pad": 10.0,
+ "lines.solid_capstyle": "butt",
+ "savefig.edgecolor": "#000000",
+ "savefig.facecolor": "#ffffff",
+ "mathtext.default": "regular",
+ }
+ plt.rcParams.update(fmt)
+ sns.set_style("darkgrid")
+ # plt.rcParams.update({"font.sans-serif": ["Linux Biolinum O"]})
+
+
def filter_robust_title_queries(_df):
_df = _df.loc[_df.index.str.contains('-50-1')]
# assert len(_df) == 249, 'wrong numbers of title queries in ROBUST eval file'
@@ -33,7 +90,10 @@ def get_queries_object():
def set_index():
- index_path, index_type = (Config.INDEX_DIR, 'text') if Config.INDEX_DIR else (Config.CIFF_INDEX, 'ciff')
+ if Config.TERRIER_INDEX:
+ index_path, index_type = (Config.TERRIER_INDEX, 'terrier')
+ else:
+ index_path, index_type = (Config.INDEX_DIR, 'text') if Config.INDEX_DIR else (Config.CIFF_INDEX, 'ciff')
if index_path is None:
raise AssertionError('No index was specified')
return index_path, index_type
@@ -49,8 +109,18 @@ def print_samples_ratios(data_df):
def read_eval_df(prefix_path, ir_metric):
eval_file = ensure_file(f"{prefix_path}_QL.{ir_metric}")
eval_df = pd.read_csv(eval_file, delim_whitespace=True, names=['qid', ir_metric], index_col=0)
- return eval_df.drop(DUPLICATED_QIDS, errors='ignore')
- # return eval_df
+ # if 'robust' in prefix_path.rsplit('/', maxsplit=1)[1].lower():
+ # return eval_df.drop(ROBUST_DUPLICATED_QIDS, errors='ignore').sort_index()
+ # else:
+ return eval_df.sort_index()
+
+
+def read_query_sim_df(prefix_path, sim_metric):
+ sim_file = ensure_file(f"{prefix_path}_pairwise_sim-{sim_metric}.tsv")
+ try:
+ return pd.read_csv(sim_file, delim_whitespace=True, index_col='qid')
+ except KeyError:
+ return pd.read_csv(sim_file, delim_whitespace=True).rename_axis('qid')
def generate_labeled_df(prefix_path, ir_metric, threshold):
@@ -59,7 +129,7 @@ def generate_labeled_df(prefix_path, ir_metric, threshold):
_threshold = eval_df.quantile(threshold)[0]
logger.info(f"Threshold for bad queries was set to {_threshold:.3f}")
# This will label all variants above the threshold as 0, and less eq than as 1
- labeled_df = eval_df.where(eval_df.values <= _threshold, 0).mask(eval_df.values <= _threshold, 1).rename(
+ labeled_df = eval_df.where(eval_df.to_numpy() <= _threshold, 0).mask(eval_df.to_numpy() <= _threshold, 1).rename(
columns={ir_metric: 'label'})
labeled_df = add_topic_to_qdf(labeled_df).set_index('qid')
assert labeled_df['label'].sum() > 0, 'No samples were labeled as positive'
@@ -87,19 +157,34 @@ def read_lgbm_prediction_files(ir_metric, threshold=None):
def read_prediction_files(prefix_path, r_type='all'):
if r_type == 'all':
- post_ret_predictors = glob(prefix_path + '_QL*.pre')
- pre_ret_predictors = glob(prefix_path + '*PRE*')
+ # post_ret_predictors = glob(prefix_path + '_QL_g_*.pre') # The g is used for the optimized parameters
+ post_ret_predictors = glob(f'{prefix_path}_QL_*.pre') # The g is used for the optimized parameters
+ pre_ret_predictors = glob(prefix_path + f'*PRE*.pre')
predictors = pre_ret_predictors + post_ret_predictors
elif r_type.lower() == 'pre':
predictors = glob(prefix_path + '*PRE*')
else:
- predictors = glob(prefix_path + '_QL*.pre')
+ # predictors = glob(prefix_path + '_QL_g_*.pre') # The g is used for the optimized parameters
+ predictors = glob(prefix_path + '_QL_*.pre')
_results = []
for _file in predictors:
- collection, method, predictor = _file.rsplit('/', 1)[1].replace('.pre', '').rsplit('_', 2)
+ comps = _file.rsplit('/', 1)[1].replace('.pre', '').rsplit('_')
+ assert 5 <= len(comps) <= 7, f'The predictions file {_file} has an unknown name format'
+ if len(comps) == 7:
+ collection, _, stemmer, stoplist, method, _, predictor = comps
+ elif len(comps) == 6:
+ # collection, stemmer, stoplist, method, predictor, part_name = comps
+ collection, _, stemmer, stoplist, method, predictor = comps
+ else:
+ collection, stemmer, stoplist, method, predictor = comps
_results.append(
- pd.read_csv(_file, delim_whitespace=True, names=['topic', 'qid', predictor], index_col=['topic', 'qid']))
- return pd.concat(_results, axis=1).drop(672, errors='ignore').drop(DUPLICATED_QIDS, level=1, errors='ignore')
+ pd.read_csv(_file, delim_whitespace=True, names=['topic', 'qid', predictor],
+ dtype={'topic': str}).set_index(['topic', 'qid']))
+ # return pd.concat(_results, axis=1).drop(['672', 672], errors='ignore') \
+ # .drop(ROBUST_DUPLICATED_QIDS, level=1, errors='ignore').sort_index() \
+ # .rename(columns=lambda x: '-'.join([i.split('+')[0] for i in x.split('-')]))
+ return pd.concat(_results, axis=1).drop(['672', 672], errors='ignore').sort_index() \
+ .rename(columns=lambda x: '-'.join([i.split('+')[0] for i in x.split('-')]))
def df_to_libsvm(df: pd.DataFrame, set_name):
@@ -115,10 +200,11 @@ def generate_random_col(data_df):
return x
+# TODO: check this
def plot_hard_queries(prefix_path, ir_metric):
predictors_group = 'post'
eval_df = read_eval_df(prefix_path, ir_metric)
- predictions_df = read_prediction_files(prefix_path, predictors_group)
+ predictions_df = read_prediction_files(prefix_path, r_type=predictors_group)
data_df = predictions_df.merge(eval_df, left_on='qid', right_on='qid')
data_df['random'] = generate_random_col(data_df)
diff_df = data_df.drop(ir_metric, 1).rank(pct=True, ascending=False).subtract(
@@ -158,7 +244,7 @@ def plot_hard_queries(prefix_path, ir_metric):
def plot_hard_topics(topics_df, ir_metric):
- plt.rcParams.update({'font.size': 16, 'font.family': 'serif'})
+ # plt.rcParams.update({'font.size': 16, 'font.family': 'serif'})
fig, ax = plt.subplots(figsize=(16, 9), dpi=100, facecolor='w', edgecolor='k')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
@@ -166,7 +252,7 @@ def plot_hard_topics(topics_df, ir_metric):
# sns.set(font='serif', font_scale=2)
fig.suptitle(f'Top Ranking Errors by Query {ir_metric}')
# Create the boxplot and store the resulting python dictionary
- boxes = ax.boxplot(topics_df.values)
+ boxes = ax.boxplot(topics_df.to_numpy())
ax.set_xticklabels(topics_df.columns, rotation=45)
make_flier_labels(ax, boxes, topics_df)
plt.tight_layout()
@@ -224,9 +310,11 @@ def calc_correlations_df(predictions_df: pd.DataFrame, eval_df, title_only=False
eval_df = filter_robust_title_queries(eval_df)
for pred in predictions_df.columns:
results_pearson.append(
- (pred, eval_df.merge(predictions_df[pred], left_index=True, right_on='qid').corr('pearson').values[0][1]))
+ (pred,
+ eval_df.merge(predictions_df[pred], left_index=True, right_on='qid').corr('pearson').to_numpy()[0][1]))
results_kendall.append(
- (pred, eval_df.merge(predictions_df[pred], left_index=True, right_on='qid').corr('kendall').values[0][1]))
+ (pred,
+ eval_df.merge(predictions_df[pred], left_index=True, right_on='qid').corr('kendall').to_numpy()[0][1]))
p_corrs_df = pd.DataFrame(results_pearson, columns=['predictor', 'pearson correlation']).set_index('predictor')
k_corrs_df = pd.DataFrame(results_kendall, columns=['predictor', 'kendall correlation']).set_index('predictor')
@@ -259,18 +347,19 @@ def plot_dist(data_sr, title='', xlabel=None, ylabel='Density', save_figure=Fals
rug_kws={'color': '#2F4C56', "alpha": 0.2},
kde_kws={"lw": 2, "label": "KDE", "bw": "silverman"},
hist_kws={"histtype": "bar", "lw": 1, "alpha": 0.5}) # fit=stats.gamma to fit gamma function
- # plt.ylabel(ylabel)
- # plt.xlabel(xlabel)
- # plt.title(titles.get(title, title))
- # plt.tight_layout()
+ plt.ylabel(ylabel)
+ plt.xlabel(xlabel)
+ plt.title(titles.get(title, title))
+ plt.tight_layout()
sns.despine(left=True)
if save_figure:
plt.savefig(f'{title}_dist.pdf')
else:
- return
- # plt.show()
+ # return
+ plt.show()
+# TODO: check this
def plot_eval_metrics_dist(prefix_path):
def _poor_topics(_eval_df, _ir_metric, _n):
# return add_topic_to_qdf(_eval_df.nsmallest(_n, _ir_metric)).topic
@@ -279,19 +368,21 @@ def _poor_topics(_eval_df, _ir_metric, _n):
# save_figures = True
save_figures = False
ir_metric = 'ap@1000'
- eval_df = read_eval_df(prefix_path, ir_metric)
- n = len(eval_df) // 10
- plot_dist(eval_df, title=ir_metric, save_figure=save_figures)
- poor_ap_topics = set(_poor_topics(eval_df, ir_metric, n))
+ ap_eval_df = read_eval_df(prefix_path, ir_metric)
+ n = len(ap_eval_df) // 10
+ # plot_dist(ap_eval_df, title=ir_metric, save_figure=save_figures)
+ poor_ap_topics = set(_poor_topics(ap_eval_df, ir_metric, n))
ir_metric = 'ndcg@100'
- eval_df.corrwith(read_eval_df(prefix_path, ir_metric))
- eval_df = read_eval_df(prefix_path, ir_metric)
- plot_dist(eval_df, title=ir_metric, save_figure=save_figures)
- poor_ndcg_100_topics = set(_poor_topics(eval_df, ir_metric, n))
+ ndcg_100_eval_df = read_eval_df(prefix_path, ir_metric)
+ ap_eval_df.corrwith(ndcg_100_eval_df)
+ # plot_dist(ndcg_100_eval_df, title=ir_metric, save_figure=save_figures)
+ poor_ndcg_100_topics = set(_poor_topics(ndcg_100_eval_df, ir_metric, n))
ir_metric = 'ndcg@10'
- eval_df = read_eval_df(prefix_path, ir_metric)
- plot_dist(eval_df, title=ir_metric, save_figure=save_figures)
- poor_ndcg_10_topics = set(_poor_topics(eval_df, ir_metric, n))
+ ndcg_10_eval_df = read_eval_df(prefix_path, ir_metric)
+ ir_metric = 'rbp-0.5'
+ rbp_eval_df = read_eval_df(prefix_path, ir_metric)
+ plot_dist(rbp_eval_df, title=ir_metric, save_figure=save_figures)
+ poor_ndcg_10_topics = set(_poor_topics(ndcg_10_eval_df, ir_metric, n))
print(f'{n} is ~10% of the data, printing coefficients of the {n} worst topics:')
print('Overlap coefficient of AP-nDCG@100:')
print(overlap_coefficient(poor_ap_topics, poor_ndcg_100_topics))
@@ -299,14 +390,17 @@ def _poor_topics(_eval_df, _ir_metric, _n):
print(overlap_coefficient(poor_ap_topics, poor_ndcg_10_topics))
print('Overlap coefficient of nDCG@100-nDCG@10:')
print(overlap_coefficient(poor_ndcg_100_topics, poor_ndcg_10_topics))
+ eval_df = pd.concat([ap_eval_df.sort_index(), ndcg_100_eval_df.sort_index(), ndcg_10_eval_df.sort_index()], axis=1)
+ eval_df.corr(method='kendall')
+# TODO: check this
def plot_predictors_errors(diff_df: pd.DataFrame, title='', subplots=True, save_figure=False):
# plt.rcParams.update({
# "text.usetex": True,
# "font.family": "sans-serif",
# "font.sans-serif": ["Helvetica"]})
- plt.rcParams.update({'font.size': 20, 'font.family': 'serif'})
+ # plt.rcParams.update({'font.size': 20, 'font.family': 'serif'})
plt.figure(figsize=(16, 9), dpi=100)
ax = diff_df[diff_df.median().sort_values().index].boxplot()
plt.xticks(rotation=45)
@@ -331,7 +425,7 @@ def plot_predictors_errors(diff_df: pd.DataFrame, title='', subplots=True, save_
plt.show()
else:
# _df = diff_df.melt()
- # g = sns.FacetGrid(_df, col="variable", col_wrap=5, height=1.5)
+ # g = sns.FacetGrid(_df, col="variable", col_wrap=PLOTS_COL_WRAP, height=1.5)
# g = g.map(sns.distplot, "value")
# plt.show()
# exit()
@@ -350,7 +444,7 @@ def plot_predictors_errors(diff_df: pd.DataFrame, title='', subplots=True, save_
def plot_qq_plot(diff_df, save_figure=False):
for pred in diff_df.columns:
- plt.rcParams.update({'font.size': 12, 'font.family': 'serif'})
+ # plt.rcParams.update({'font.size': 12, 'font.family': 'serif'})
# sns.set(font='serif')
# sns.set_style("white")
# sns.set_palette("PuBuGn_d")
@@ -366,7 +460,7 @@ def plot_qq_plot(diff_df, save_figure=False):
def plot_predictors_dist(prefix_path):
- predictions_df = read_prediction_files(prefix_path, 'pre').reset_index('topic', drop=True)
+ predictions_df = read_prediction_files(prefix_path, r_type='pre').reset_index('topic', drop=True)
for pred in predictions_df.columns:
plot_dist(predictions_df[pred], title=pred, save_figure=False)
@@ -429,6 +523,679 @@ def test_variance_equality(*args, alpha=5e-2):
return True
+def construct_pairwise_df(sr: pd.Series, np_fun):
+ """Constructs an upper diagonal df from all pairwise comparisons of a sr"""
+ sr = sr.sort_index()
+ _mat = np.triu(np_fun(sr.to_numpy() - sr.to_numpy()[:, None]), k=1)
+ _mat[np.tril_indices(_mat.shape[0])] = None
+ return pd.DataFrame(_mat, index=sr.index.get_level_values('qid'),
+ columns=sr.index.get_level_values('qid')).rename_axis(index='qid_1', columns='qid_2')
+
+
+def clear_triangular_df(df: pd.DataFrame):
+ """Clear all values under the diagonal (including diagonal) for a square df"""
+ _mat = df.to_numpy()
+ _mat[np.tril_indices(_mat.shape[0])] = None
+ return pd.DataFrame(_mat, index=df.index, columns=df.index)
+
+
+def construct_sampled_inter_df(eval_df, predictions_df, n, sim_df):
+ _res = []
+ for _ in range(n):
+ ev_sr = eval_df.groupby('topic').sample(1).iloc[:, 0]
+ _ev_sgn = construct_pairwise_df(ev_sr, np.sign).stack()
+ _ev_diff = construct_pairwise_df(ev_sr, np.abs).stack()
+ _sim_df = sim_df.stack().loc[_ev_diff.index]
+ for predictor, _sr in predictions_df.loc[ev_sr.index].iteritems():
+ _pr_sgn = construct_pairwise_df(_sr, np.sign).stack()
+ _df = pd.DataFrame({'sim': _sim_df, 'diff': _ev_diff, 'status': _ev_sgn == _pr_sgn}, index=_ev_diff.index)
+ _res.append(_df.reset_index(drop=True).assign(predictor=predictor))
+ return pd.concat(_res).sort_values(['predictor', 'diff', 'status']).reset_index(drop=True)
+ # df['status'] = df['status'].map({0: 'wrong', 1: 'correct'})
+ # return _df
+
+
+def construct_full_pairwise_inter_df(eval_df, predictions_df, sim_df):
+ _res = []
+ intra_topic_index = eval_df.iloc[:, 0].groupby('topic').apply(
+ lambda x: construct_pairwise_df(x, np.abs)).stack().index.droplevel(0)
+ # ev_sr = eval_df.groupby('topic').sample(1).iloc[:, 0]
+ _ev_sgn = construct_pairwise_df(eval_df.iloc[:, 0], np.sign).stack()
+ _ev_diff = construct_pairwise_df(eval_df.iloc[:, 0], np.abs).stack()
+ _sim_df = sim_df.stack()
+ for predictor, _sr in predictions_df.iteritems():
+ _pr_sgn = construct_pairwise_df(_sr, np.sign).stack()
+ _pr_diff = construct_pairwise_df(_sr, np.abs).stack()
+ _df = pd.DataFrame({'sim': _sim_df, 'ev_diff': _ev_diff, 'pr_diff': _pr_diff, 'status': _ev_sgn == _pr_sgn},
+ index=_ev_diff.index).drop(intra_topic_index)
+ _res.append(_df.reset_index().assign(predictor=predictor))
+ return pd.concat(_res).sort_values(['predictor', 'ev_diff', 'pr_diff', 'status']).reset_index(drop=True)
+
+
+def construct_inter_sampled_to_intra_df(eval_df, predictions_df, sim_df):
+ _res = []
+ _round = 4
+ intra_topic_df = eval_df.iloc[:, 0].groupby('topic').apply(
+ lambda x: construct_pairwise_df(x, np.abs)).stack().round(_round)
+ # w = intra_topic_df.reset_index(drop=True).round(2).value_counts().sort_index()
+ # w = pd.cut(intra_topic_df, bins=100, precision=3, include_lowest=True)
+ w, bins = pd.cut(intra_topic_df, bins=100, precision=3, include_lowest=True, retbins=True)
+ bins[0] = 0
+ bins[-1] = 1
+ w = w.replace({w.min(): pd.Interval(0, w.min().right, closed='both')}).replace(
+ {w.max(): pd.Interval(w.max().left, 1, closed='right')})
+ w = w.groupby(w).count()
+ intra_topic_index = intra_topic_df.index.droplevel(0)
+ _ev_diff = construct_pairwise_df(eval_df.iloc[:, 0], np.abs).stack().round(_round)
+ # x = pd.cut(_ev_diff.drop(intra_topic_index), bins=100, precision=3, include_lowest=True)
+ x = pd.cut(_ev_diff.drop(intra_topic_index), bins=bins, precision=3, include_lowest=True)
+ x = x.replace({x.min(): pd.Interval(0, x.min().right, closed='both')})
+ x.index.rename(['qid_1', 'qid_2'], inplace=True)
+ sampled_qids = pd.MultiIndex.from_frame(
+ x.reset_index().groupby(0).apply(lambda x: x.sample(w.loc[x.name])).reset_index(drop=True)[['qid_1', 'qid_2']])
+ _sim_df = sim_df.stack().loc[sampled_qids]
+ _ev_sgn = construct_pairwise_df(eval_df.iloc[:, 0], np.sign).stack().loc[sampled_qids]
+ _ev_diff = _ev_diff.loc[sampled_qids]
+ for predictor, _sr in predictions_df.iteritems():
+ _pr_sgn = construct_pairwise_df(_sr, np.sign).stack().loc[sampled_qids]
+ _pr_diff = construct_pairwise_df(_sr, np.abs).stack().loc[sampled_qids]
+ _df = pd.DataFrame({'sim': _sim_df, 'ev_diff': _ev_diff, 'pr_diff': _pr_diff, 'status': _ev_sgn == _pr_sgn},
+ index=_ev_diff.index)
+ _res.append(_df.reset_index().assign(predictor=predictor))
+ return pd.concat(_res).sort_values(['predictor', 'ev_diff', 'pr_diff', 'status']).reset_index(drop=True)
+
+
+def load_generate_pickle_df(file_name, func, *args):
+ if isinstance(file_name, (list, tuple, set)):
+ single_file = False
+ else:
+ single_file = True
+ try:
+ if single_file:
+ result = pd.read_pickle(file_name)
+ else:
+ result = [pd.read_pickle(_file) for _file in file_name]
+ except FileNotFoundError:
+ logger.warning(f'Failed to load {file_name}')
+ logger.warning(f'Generating a new df and saving')
+ result = func(*args)
+ if single_file:
+ result.to_pickle(file_name)
+ else:
+ assert len(result) == len(
+ file_name), f'The number of objects returned by the function and number of files differ'
+ [_res.to_pickle(_file) for (_res, _file) in zip(result, file_name)]
+ return result
+
+
+@timer
+def inter_topic_pairwise_analysis(eval_df, predictions_df, similarities_df, prefix, n=None, load_cache=True,
+ sample=False):
+ ir_metric = eval_df.columns[0]
+ n = n or 'all'
+ if load_cache:
+ if sample:
+ df = load_generate_pickle_df(f'{prefix}_inter_topic_pairwise_{ir_metric}_df_{n}.pkl',
+ construct_sampled_inter_df, eval_df, predictions_df, n, similarities_df)
+ else:
+ df = load_generate_pickle_df(f'{prefix}_inter_topic_pairwise_{ir_metric}_df_{n}.pkl',
+ construct_full_pairwise_inter_df, eval_df, predictions_df, similarities_df)
+ else:
+ if sample:
+ df = construct_sampled_inter_df(eval_df, predictions_df, n, similarities_df)
+ else:
+ df = construct_full_pairwise_inter_df(eval_df, predictions_df, similarities_df)
+ # intra_df = eval_df.iloc[:, 0].groupby('topic').apply(
+ # lambda x: construct_pairwise_df(x, np.abs)).stack().reset_index(drop=True).rename('diff')
+ # dd = pd.concat(
+ # [pd.DataFrame(df.loc[df['predictor'] == 'clarity', ['diff']]).assign(kind='inter').reset_index(drop=True),
+ # pd.DataFrame(intra_df).assign(kind='intra')])
+ # dd.to_pickle(f'all_pairs_{ir_metric}_diff.pkl')
+ log_pairwise_stats(df, 'Inter-topic', ir_metric)
+ p = 2
+
+ _gpd_df = df.round(p).groupby(['predictor', 'ev_diff'])['status']
+ _freq_df = (_gpd_df.sum() / _gpd_df.count()).fillna(0).reset_index().rename({'status': 'freq'}, axis=1).assign(
+ sample_size=_gpd_df.count().to_numpy())
+ # df['status'] = df['status'].map({False: 'wrong', True: 'correct'})
+ plot_pairwise_freq_diff(df.round(4), f'Inter-topic {n} samples {PlotNames.get(ir_metric, ir_metric)}', ir_metric)
+ plot_pairwise_freq_diff_rel(_freq_df, f'Inter-topic {n} samples {PlotNames.get(ir_metric, ir_metric)}', ir_metric)
+
+ _p = 4
+ _gpd_df = df.round(p).groupby(['predictor', 'pr_diff'])['status']
+ _freq_df = (_gpd_df.sum() / _gpd_df.count()).fillna(0).reset_index().rename({'status': 'freq'}, axis=1).assign(
+ sample_size=_gpd_df.count().to_numpy())
+ plot_pairwise_freq_diff(df.round(4), f'Inter-topic {n} samples {PlotNames.get(ir_metric, ir_metric)}', 'Predictor',
+ diff_col='pr_diff')
+ plot_pairwise_freq_diff_rel(_freq_df, f'Inter-topic {n} samples {PlotNames.get(ir_metric, ir_metric)}', 'Predictor',
+ diff_col='pr_diff')
+
+ # plot_pairwise_freq_sim(df, f'Inter-topic {n} samples similarity {ir_metric}')
+
+ return df
+
+
+def construct_intra_topic_df(eval_df, predictions_df, similarities_df):
+ _res = []
+ # freq_res = []
+ _ev_sgn = eval_df.iloc[:, 0].groupby('topic').apply(lambda x: construct_pairwise_df(x, np.sign)).stack()
+ _ev_diff = eval_df.iloc[:, 0].groupby('topic').apply(lambda x: construct_pairwise_df(x, np.abs)).stack()
+ sim_df = similarities_df.stack().loc[_ev_diff.reset_index('topic', drop=True).index.to_numpy()]
+ for predictor, _sr in predictions_df.iteritems():
+ _pr_sgn = _sr.groupby('topic').apply(lambda x: construct_pairwise_df(x, np.sign)).stack()
+ _pr_diff = _sr.groupby('topic').apply(lambda x: construct_pairwise_df(x, np.abs)).stack()
+ _df = pd.DataFrame({'ev_diff': _ev_diff, 'pr_diff': _pr_diff, 'status': _ev_sgn == _pr_sgn},
+ index=_ev_diff.index).reset_index('topic', drop=True).assign(sim=sim_df)
+ logger.debug(f'Number of tied ev pairs: {len(_ev_sgn.loc[_ev_sgn == 0].index.droplevel(0))}')
+ logger.debug(f'Number of tied {predictor} pairs: {len(_pr_sgn.loc[_pr_sgn == 0].index.droplevel(0))}')
+ _res.append(_df.reset_index().rename(columns={'level_1': 'qid_2'}).assign(predictor=predictor))
+ return pd.concat(_res).sort_values(['predictor', 'ev_diff', 'status']).reset_index(drop=True)
+
+
+@timer
+def intra_topic_pairwise_analysis(eval_df, predictions_df, similarities_df, prefix, load_cache=False):
+ ir_metric = eval_df.columns[0]
+ if load_cache:
+ df = load_generate_pickle_df(f'{prefix}_intra_topic_pairwise_{ir_metric}_df.pkl', construct_intra_topic_df,
+ eval_df, predictions_df, similarities_df)
+ else:
+ df = construct_intra_topic_df(eval_df, predictions_df, similarities_df)
+ log_pairwise_stats(df, 'Intra-topic', ir_metric)
+ p = 2
+ _gpd_df = df.round(p).groupby(['predictor', 'ev_diff'])['status']
+ _freq_df = (_gpd_df.sum() / _gpd_df.count()).fillna(0).reset_index().rename({'status': 'freq'}, axis=1).assign(
+ sample_size=_gpd_df.count().to_numpy())
+ plot_pairwise_freq_diff(df.round(4), f'Intra-topic all pairs {PlotNames.get(ir_metric, ir_metric)}', ir_metric,
+ diff_col='ev_diff')
+ plot_pairwise_freq_diff_rel(_freq_df, f'Intra-topic all pairs {PlotNames.get(ir_metric, ir_metric)}', ir_metric,
+ diff_col='ev_diff')
+ _p = 4
+ _gpd_df = df.round(_p).groupby(['predictor', 'pr_diff'])['status']
+ _freq_df = (_gpd_df.sum() / _gpd_df.count()).fillna(0).reset_index().rename({'status': 'freq'}, axis=1).assign(
+ sample_size=_gpd_df.count().to_numpy())
+ plot_pairwise_freq_diff(df.round(4), f'Intra-topic all pairs {PlotNames.get(ir_metric, ir_metric)}', 'Predictor',
+ diff_col='pr_diff')
+ plot_pairwise_freq_diff_rel(_freq_df, f'Intra-topic all pairs {PlotNames.get(ir_metric, ir_metric)}', 'Predictor',
+ diff_col='pr_diff')
+
+ plot_pairwise_freq_sim(df, f'Intra-topic all pairs similarity {ir_metric}')
+ return df
+
+
+def plot_pairwise_freq_sim(df, title):
+ if df.loc[df.predictor == df.predictor[0]].sim.nunique() / len(df.loc[df.predictor == df.predictor[0]]) < 0.001:
+ lowess = False
+ else:
+ lowess = True
+ g = sns.lmplot(data=df.loc[df.predictor == df.predictor[0]], y='ev_diff', x='sim', hue='status', markers=["+", "x"],
+ scatter_kws={"alpha": 0.2}, line_kws={'lw': 2}, lowess=lowess, x_jitter=0.01)
+ print('Using lowess correlation') if lowess else print('Using linear correlation')
+ g.set_axis_labels("Similarity", "Metric Diff")
+ g.tight_layout()
+ plt.show()
+ _gpd_df = df.groupby(['predictor', 'sim'])['status']
+ _freq_df = (_gpd_df.sum() / _gpd_df.count()).fillna(0).reset_index().rename({'status': 'freq'}, axis=1).assign(
+ sample_size=_gpd_df.count().to_numpy())
+ plot_pairwise_freq_diff(df, title, 'Cosine sim', diff_col='sim')
+ plot_pairwise_freq_diff_rel(_freq_df, title, 'Cosine sim', diff_col='sim')
+
+
+def plot_pairwise_freq_diff_rel(_freq_df, title, ir_metric, diff_col='ev_diff'):
+ n_predictors = _freq_df['predictor'].nunique()
+ _title = f'freq_given_diff_{n_predictors}_predictors_{title.replace(" ", "_").lower()}'
+
+ def plot_regplots(**kwargs):
+ sns.regplot(x=diff_col, y='freq', lowess=True,
+ scatter_kws={'s': 5 * np.log2(kwargs['data']['sample_size']) + 2}, **kwargs)
+
+ if diff_col == 'pr_diff':
+ g2 = sns.FacetGrid(_freq_df, col="predictor", col_wrap=PLOTS_COL_WRAP, sharex=False, sharey=False)
+ g2.map_dataframe(plot_regplots)
+ else:
+ g2 = sns.lmplot(data=_freq_df, x=diff_col, y='freq', col='predictor', lowess=True, col_wrap=PLOTS_COL_WRAP,
+ scatter_kws={
+ 's': 5 * np.log2(_freq_df.head(int(len(_freq_df) / n_predictors))['sample_size']) + 2})
+ g2.set_axis_labels(f"{PlotNames.get(ir_metric, ir_metric)} difference", "Correct Ratio")
+ g2.set_titles(title + " {col_name} predictor")
+ g2.tight_layout()
+ g2.savefig(f'{_title}_{diff_col}_reg.pdf')
+ plt.show()
+ _freq_df = _freq_df.rename({diff_col: f"{PlotNames.get(ir_metric, ir_metric)} diff"})
+ g3 = sns.pairplot(data=_freq_df, hue='predictor')
+ plt.savefig(f'{_title}_{diff_col}_pairplot.pdf')
+ plt.show()
+
+
+def plot_pairwise_freq_diff(_df, title, ir_metric, diff_col='ev_diff'):
+ n_predictors = _df['predictor'].nunique()
+ _title = f'estimating_freq_given_diff_{n_predictors}_predictors_{title.replace(" ", "_").lower()}'
+ if diff_col == 'pr_diff':
+ g1 = sns.displot(data=_df, x=diff_col, col='predictor', hue='status', stat="density", element='step',
+ col_wrap=PLOTS_COL_WRAP, common_bins=False, facet_kws={'sharex': None, 'sharey': False})
+ else:
+ g1 = sns.displot(data=_df, x=diff_col, col='predictor', col_wrap=PLOTS_COL_WRAP, hue='status', stat="density",
+ element='step')
+ g1.set_axis_labels(f"{PlotNames.get(ir_metric, ir_metric)} difference", "Density")
+ g1.set_titles(title + " {col_name} predictor")
+ plt.tight_layout()
+ plt.savefig(f'{_title}_{ir_metric.replace(" ", "_").lower()}_hist.pdf')
+ plt.show()
+ if diff_col == 'pr_diff':
+ g11 = sns.displot(data=_df, x=diff_col, col='predictor', hue='status', kind='kde', clip=(0.0, 1.0), fill=True,
+ alpha=0.5, col_wrap=PLOTS_COL_WRAP, facet_kws={'sharex': False, 'sharey': False})
+ else:
+ g11 = sns.displot(data=_df, x=diff_col, col='predictor', hue='status', kind='kde', clip=(0.0, 1.0), fill=True,
+ col_wrap=PLOTS_COL_WRAP, alpha=0.5)
+ g11.set_axis_labels(f"{PlotNames.get(ir_metric, ir_metric)} difference", "Density")
+ g11.set_titles(title + " {col_name} predictor")
+ plt.tight_layout()
+ plt.savefig(f'{_title}_{ir_metric.replace(" ", "_").lower()}_kde.pdf')
+ plt.show()
+
+
+def inter_topic_eval(ir_metric, prefix_path, similarities_df):
+ predictors_type = 'all'
+ eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ predictions_df = read_prediction_files(prefix_path, r_type=predictors_type)
+ # sim_df = clear_triangular_df(similarities_df)
+ # predictions_df = predictions_df[['qf', 'nqc', 'uef-wig']]
+ # predictions_df = predictions_df[['qf', 'uef-wig']]
+ prefix = prefix_path.rsplit('/', maxsplit=1)[1]
+ df = inter_topic_pairwise_analysis(eval_df, predictions_df, similarities_df, prefix, load_cache=True)
+ print('Inter Topic table')
+ # print_diff_probabilities_table(df, title='Inter-Topic', q=4, ir_metric=ir_metric)
+
+
+def log_pairwise_stats(df, prefix, ir_metric):
+ _gdf = df.groupby('predictor')['status']
+ logger.info(f"{prefix} pairs df has {_gdf.count()[0]} pairs")
+ tbl_1 = tabulate(
+ pd.DataFrame((_gdf.sum() / _gdf.count()).sort_values()).rename({'status': 'Correct Ratio'}, axis=1),
+ headers='keys', tablefmt='psql')
+ logger.info(f"Ratio of correct pairs by predictor: \n{tbl_1}")
+ _ties_gdf = df.loc[df['ev_diff'] == 0.0].groupby('predictor')['status']
+ logger.info(f"Number of tied (0 {PlotNames.get(ir_metric, ir_metric)} ev_diff) pairs: {_ties_gdf.count()[0]}")
+ tbl_2 = tabulate(
+ pd.DataFrame((_ties_gdf.sum() / _ties_gdf.count()).sort_values()).rename({'status': 'Correct Ratio'}, axis=1),
+ headers='keys', tablefmt='psql')
+ logger.info(f"Ratio of correct tied pairs by predictor: \n{tbl_2}")
+
+
+def intra_topic_eval(ir_metric, prefix_path, similarities_df):
+ predictors_type = 'all'
+ eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ predictions_df = read_prediction_files(prefix_path, r_type=predictors_type)
+ # predictions_df = predictions_df[['qf', 'nqc', 'uef-wig']]
+ prefix = prefix_path.rsplit('/', maxsplit=1)[1]
+ df = intra_topic_pairwise_analysis(eval_df, predictions_df, similarities_df, prefix, load_cache=True)
+ # print_diff_probabilities_table(df, title='Intra-Topic', q=4, ir_metric=ir_metric)
+ return df
+
+
+def plot_cond_prob(df):
+ # FIXME: need to rethink this
+ _df = df.sort_values(['predictor', 'diff']).reset_index(drop=True)
+ _df['cnt'] = _df[_df["status"] == 'correct'].groupby('predictor').cumcount() + 1
+ _df['cnt'] = _df.groupby('predictor')['cnt'].fillna(method='ffill')
+ _df['total'] = _df.groupby('predictor').cumcount() + 1
+ _df['prob'] = _df['cnt'] / _df['total']
+ g = sns.lmplot(data=_df, x='diff', y='prob', hue='predictor')
+ g.set_axis_labels("AP difference", "Probability")
+ plt.tight_layout()
+ plt.show()
+
+
+def print_diff_probabilities_table(predictions_results, title, q, ir_metric):
+ res = []
+ if isinstance(predictions_results, pd.DataFrame):
+ df = predictions_results
+ else:
+ df = pd.DataFrame(predictions_results, columns=['status', 'predictor', 'topic', 'diff'])
+ # plot_cond_prob(df)
+ df['status'] = df['status'].map({False: 'wrong', True: 'correct'})
+ num_predictors = df['predictor'].nunique()
+ # df = df.drop('diff', axis=1).rename({'sim': 'diff'}, axis=1)
+ # FIXME: These lines are used for similarity, can be uncommented
+ # q = 9
+ df['int'] = pd.qcut(df['ev_diff'], q=q, precision=2, duplicates='drop')
+ for predictor, _df in df.groupby('predictor'):
+ _df = pd.crosstab(index=_df['status'], columns=_df['int'].astype(str), values=_df['ev_diff'], aggfunc='count',
+ normalize='columns', margins=True).reset_index()
+ _df.insert(loc=0, column='predictor', value=predictor)
+ res.append(_df)
+ res_df = pd.concat(res)
+ x = res_df.set_index(['predictor', 'status']).columns[0]
+ res_df.rename(columns={x: pd.Interval(np.round(x.left, 2), x.right)}, inplace=True)
+ print(res_df.set_index(['predictor', 'status']).rename({'All': 'Overall'}, axis=1).
+ to_latex(float_format='%.2f', escape=False, multirow=True, multicolumn=True))
+ _df = res_df.drop('All', axis=1).set_index(['predictor', 'status']).stack().reset_index().rename({0: 'prob'},
+ axis=1)
+ g = sns.catplot(data=_df, x='int', y='prob', hue='predictor', col='status')
+ g.set_axis_labels(f"{PlotNames.get(ir_metric, ir_metric)} difference", "Probability")
+ g.set_xticklabels(rotation=30)
+ g.set_titles("{col_name} prediction")
+ plt.tight_layout()
+ plt.savefig(
+ f'{title}_cond-prob_{num_predictors}-predictors_{q}-quantiles_{ir_metric.replace(" ", "_").lower()}.pdf')
+ plt.show()
+
+
+def plot_corr_vs_sim(data_df, xlabel, ylabel, title):
+ sns.scatterplot(x='correlation', y='similarity', data=data_df, hue='predictor')
+ plt.xlabel(xlabel)
+ plt.ylabel(ylabel)
+ plt.title(title)
+ plt.show()
+ sns.boxplot(x='predictor', y='correlation', data=data_df,
+ order=data_df.groupby('predictor')['correlation'].median().sort_values().index)
+ plt.title(title + ' Correlation')
+ plt.show()
+ sns.boxplot(x='predictor', y='similarity', data=data_df,
+ order=data_df.groupby('predictor')['similarity'].median().sort_values().index)
+ plt.title(title + ' Similarity')
+ plt.show()
+
+
+def scatter_text(x, y, text_column, data, title, xlabel, ylabel):
+ """Create a scatter plot with labels"""
+ # Create the scatter plot
+ p1 = sns.scatterplot(x, y, data=data, size=8, legend=False)
+ # Add text besides each point
+ for line in range(0, data.shape[0]):
+ p1.text(data[x][line] + 0.01, data[y][line],
+ data[text_column][line], horizontalalignment='left',
+ size='medium', color='black', weight='semibold')
+ # Set title and axis labels
+ plt.title(title)
+ plt.xlabel(xlabel)
+ plt.ylabel(ylabel)
+ return p1
+
+
+def construct_distances_matrix(sr):
+ """The distance for pair (i,j) is: 1 + |AP(i) - AP(j)|"""
+ df = pd.DataFrame(np.triu(abs(sr.to_numpy() - sr.to_numpy()[:, None]) + 1, k=1),
+ index=sr.index.get_level_values('qid'), columns=sr.index.get_level_values('qid'))
+ idx = np.triu(np.ones(df.shape)).astype(np.bool)
+ return df.where(idx)
+
+
+def weighted_kendall_distance(arr_x: pd.Series, arr_y: pd.Series, distances=None):
+ """This version is identical to Kendall's tau for arrays without ties"""
+ distances_mat = __init_kendall(arr_x, arr_y, distances)
+ distances_sum = np.nansum(distances_mat) # arr_x is a constant vector (single value)
+ # TODO: need to test special case where the X_arr is constant e.g [0.3,0.3,0.3]
+ # FIXME: The normalization is bad, numbers can be higher than 1
+ # Tie in X is 0.5 wrong if not tie in Y, as it is both xi <= xj and xi>=xj
+ # the number of pairs has quadratic growth
+ dist = 0
+ x_norm = 0
+ y_norm = 0
+ p = 0.5 # penalty for ties in one of the arrays
+ for i, x_i in enumerate(arr_x):
+ j = i + 1
+ for j, x_j in enumerate(arr_x[j:], j):
+ if x_i == x_j:
+ dist += p * distances_mat[i, j] * (arr_y[i] != arr_y[j])
+ x_norm -= (1 - p)
+ y_norm -= (1 - p) * (arr_y[i] == arr_y[j])
+ elif arr_y[i] == arr_y[j]:
+ dist += p * distances_mat[i, j]
+ x_norm -= (1 - p) * (x_i == x_j)
+ y_norm -= (1 - p)
+ else:
+ dist += distances_mat[i, j] * (
+ ((x_i > x_j) and (arr_y[i] < arr_y[j])) or ((x_i < x_j) and (arr_y[i] > arr_y[j])))
+ x_norm += 1
+ y_norm += 1
+ # return 2 * dist / (len(arr_x) ** 2 - len(arr_x)) # scaling to [0,1]
+ return dist / np.sqrt(x_norm * y_norm) # scaling to [0,1]
+
+
+def weighted_kendall_correlation(arr_x: pd.Series, arr_y: pd.Series, distances=None):
+ """Calculates Kendall's tau correlation, for arrays with ties + weights + distance options"""
+ distances_mat = __init_kendall(arr_x, arr_y, distances)
+ corr = 0
+ x_norm = 0
+ y_norm = 0
+ for i, x_i in enumerate(arr_x):
+ j = i + 1
+ for j, x_j in enumerate(arr_x[j:], j):
+ corr += distances_mat[i, j] * np.sign(x_i - x_j) * np.sign(arr_y[i] - arr_y[j])
+ x_norm += abs(distances_mat[i, j] * np.sign(x_i - x_j))
+ y_norm += abs(distances_mat[j, i] * np.sign(arr_y[i] - arr_y[j]))
+ return corr / np.sqrt(x_norm * y_norm) # scaling to [0,1]
+ # return corr / np.nansum(distances_mat) # scaling to [-1,1]
+
+
+def __init_kendall(arr_x: pd.Series, arr_y: pd.Series, distances=None):
+ assert (arr_x.index == arr_y.index).all(), 'Indices of the series are not identical, or not sorted'
+ if distances is None:
+ # distances_mat = np.tri(len(arr_x), k=-1).T
+ distances_mat = np.triu(arr_x.to_numpy()[:] - arr_x.to_numpy()[:, None]).astype(bool).astype(int) + np.tril(
+ arr_y.to_numpy()[:] - arr_y.to_numpy()[:, None]).astype(bool).astype(int)
+ else:
+ distances_mat = distances.loc[arr_x.index, arr_x.index].to_numpy()
+ return distances_mat
+
+
+def weighted_footrule_distance():
+ pass
+
+
+def calc_rank_differences(prefix_path, ir_metric, title_only=False, scale=True, diff_func='abs', predictors_type='all'):
+ # difference_functions = {'abs': np.abs, 'sqr': np.power(2), 'raw': lambda x: x}
+ predictions_df = read_prediction_files(prefix_path, r_type=predictors_type).reset_index('topic', drop=True)
+ eval_df = read_eval_df(prefix_path, ir_metric)
+ if title_only:
+ predictions_df = filter_robust_title_queries(predictions_df)
+ eval_df = filter_robust_title_queries(eval_df)
+ diff_df = predictions_df.rank(pct=scale, ascending=False, method='average').subtract(
+ eval_df[ir_metric].rank(pct=scale, ascending=False, method='average'), axis=0)
+ return diff_df
+
+
+def plot_metrics_differences(prefix_path):
+ meanprops = {"marker": "s", "markerfacecolor": "white", "markeredgecolor": "blue"}
+
+ def boxplot(_df, orderby='median'):
+ _df = _df.stack().reset_index().rename({'level_1': 'predictor', 0: 'rank_diff'}, axis=1)
+ if orderby == 'median':
+ _order = _df.groupby('predictor').median().sort_values('rank_diff').index
+ else:
+ _order = _df.groupby('predictor').mean().sort_values('rank_diff').index
+ sns.boxplot(x='rank_diff', y='predictor', data=_df, order=_order, showmeans=True, meanprops=meanprops)
+ plt.tight_layout()
+ plt.show()
+
+ # predictors_type = 'pre'
+ # predictors_type = 'post'
+ predictors_type = 'all'
+
+ ap_diff_df = calc_rank_differences(prefix_path, 'ap@1000', title_only=True, predictors_type=predictors_type).abs()
+ ndcgs_diff_df = calc_rank_differences(prefix_path, 'ndcg@10', title_only=True,
+ predictors_type=predictors_type).abs()
+ ndcgl_diff_df = calc_rank_differences(prefix_path, 'ndcg@100', title_only=True,
+ predictors_type=predictors_type).abs()
+ rbp_diff_df = calc_rank_differences(prefix_path, 'rbp-0.95', title_only=True,
+ predictors_type=predictors_type).abs()
+
+ # boxplot(ap_diff_df)
+ # boxplot(ndcgl_diff_df)
+ # boxplot(ndcgs_diff_df)
+ boxplot(rbp_diff_df)
+ # full_df = pd.concat(
+ # {'ap': ap_diff_df, 'ndcg@10': ndcgs_diff_df, 'ndcg@100': ndcgl_diff_df, 'rbp-0.95': rbp_diff_df},
+ # axis=1).mean().reset_index().rename(
+ # {'level_0': 'eval_measure', 'level_1': 'predictor', 0: 'mean_ranks_diff'}, axis=1)
+ # wide_df = full_df.pivot(index='eval_measure', columns='predictor')
+ # all_metrics_df = pd.concat(
+ # {'ap': read_eval_df(prefix_path, 'ap@1000'), 'ndcg@100': read_eval_df(prefix_path, 'ndcg@100'),
+ # 'ndcg@10': read_eval_df(prefix_path, 'ndcg@10'), 'rbp-0.95': read_eval_df(prefix_path, 'rbp-0.95')}, axis=1)
+ topics_df = pd.concat(
+ {'ap': ap_diff_df, 'ndcg@10': ndcgs_diff_df, 'ndcg@100': ndcgl_diff_df, 'rbp-0.95': rbp_diff_df},
+ axis=1).stack().reset_index().rename({'level_1': 'predictor'}, axis=1)
+ print(topics_df.loc[topics_df['predictor'] == 'nqc'].corr())
+ sns.pairplot(topics_df, hue='predictor', kind='kde')
+ plt.show()
+
+
+def filter_tail_queries_by_percentile(prefix_path, ir_metric, inverted_df=False, percentile=0.99):
+ predictions_df = read_prediction_files(prefix_path, r_type='all')
+ eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ _df = predictions_df.rank(pct=True, ascending=False, method='average').subtract(
+ eval_df[ir_metric].rank(pct=True, ascending=False, method='average'), axis=0).abs()
+ ap_tail_df = _df.abs().apply(lambda x: x.nlargest(int(len(predictions_df) // (percentile * 100)), keep='all')).rank(
+ method='min') # Keep=all will keep all tied items on the last rank, generally it's n largest including ties.
+ if not inverted_df:
+ return ap_tail_df
+ else:
+ return ap_tail_df.stack().reset_index().rename({0: 'rank', 'level_2': 'predictor'}, axis=1).pivot_table(
+ index='rank', columns='predictor', values='qid', aggfunc=set)
+
+
+def plot_sare_predictors_corrs(prefix_path, ir_metric, k, order):
+ predictions_df = read_prediction_files(prefix_path, r_type='all')
+ eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ random_df = predictions_df.groupby('topic').sample(1)
+ _df = random_df.rank(pct=True, ascending=False, method='average').subtract(
+ eval_df.loc[random_df.index, ir_metric].rank(pct=True, ascending=False, method='average'), axis=0).abs().corr(
+ method='kendall')
+ for _ in range(k):
+ random_df = predictions_df.groupby('topic').sample(1)
+ _df += random_df.rank(pct=True, ascending=False, method='average').subtract(
+ eval_df.loc[random_df.index, ir_metric].rank(pct=True, ascending=False, method='average'),
+ axis=0).corr(method='kendall')
+ plot_heatmap_qpp_similarities(_df.corr(method='kendall'), order=order, save_figure=True,
+ title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_{PlotNames.get(ir_metric)}_kendall-corr_resampled-{k}")
+
+
+def plot_qpp_correlations(prefix_path):
+ # k = 5000
+ # predictions_df = read_prediction_files(prefix_path, 'all').drop(['qf', 'uef-qf'], axis=1)
+ PostRetPredictors.remove('qf')
+ PostRetPredictors.remove('uef-qf')
+ order = PreRetPredictors + PostRetPredictors
+ # order = pd.Index(['scq', 'qf', 'var', 'uef-qf', 'max-idf', 'avg-scq', 'max-scq',
+ # 'avg-idf', 'max-var', 'smv', 'clarity', 'avg-var', 'nqc', 'uef-clarity',
+ # 'wig', 'uef-smv', 'uef-nqc', 'uef-wig'])
+ # random_df = predictions_df.groupby('topic').sample(1).corr(method='kendall')
+ # for _ in range(k):
+ # random_df += predictions_df.groupby('topic').sample(1).corr(method='kendall')
+ # order = plot_heatmap_qpp_similarities(random_df / (k + 1), save_figure=True,
+ # title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_kendall-corr_resampled-{k}")
+ # print(order)
+ # plot_heatmap_qpp_similarities(predictions_df.corr(method='kendall'), save_figure=True, order=order,
+ # title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_kendall-corr_all-vars")
+ # plot_heatmap_qpp_similarities(
+ # filter_robust_title_queries(predictions_df.reset_index('topic', drop=True)).corr(method='kendall'),
+ # save_figure=True,
+ # order=order,
+ # title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_kendall-corr_title_queries")
+ ap_tail_df = filter_tail_queries_by_percentile(prefix_path, 'ap@1000', percentile=0.99, inverted_df=False)
+ # ap_sim_df = pd.DataFrame(1 - pairwise_distances(ap_tail_df.T.fillna(0).to_numpy(), metric='cosine', n_jobs=10),
+ # index=ap_tail_df.columns,
+ # columns=ap_tail_df.columns)
+ # plot_heatmap_qpp_similarities(ap_sim_df,
+ # title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_cosine_AP_tail-vars",
+ # order=order, save_figure=True)
+ # rbp_tail_df = filter_tail_queries_by_percentile(prefix_path, 'rbp-0.95', percentile=0.99, inverted_df=False)
+ # rbp_sim_df = pd.DataFrame(1 - pairwise_distances(rbp_tail_df.T.fillna(0).to_numpy(), metric='cosine', n_jobs=10),
+ # index=rbp_tail_df.columns,
+ # columns=rbp_tail_df.columns)
+ # plot_heatmap_qpp_similarities(rbp_sim_df,
+ # title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_cosine_RBP(0.95)_tail-vars",
+ # order=order, save_figure=True)
+ # ndcg_tail_df = filter_tail_queries_by_percentile(prefix_path, 'ndcg@10', percentile=0.99, inverted_df=False)
+ # ndcg_sim_df = pd.DataFrame(1 - pairwise_distances(ndcg_tail_df.T.fillna(0).to_numpy(), metric='cosine', n_jobs=10),
+ # index=ndcg_tail_df.columns,
+ # columns=ndcg_tail_df.columns)
+ # plot_heatmap_qpp_similarities(ndcg_sim_df,
+ # title=f"{prefix_path.rsplit('/', 1)[-1].split('_', 2)[-1]}_QPP_cosine_nDCG@10_tail-vars",
+ # order=order, save_figure=True)
+ # plot_sare_predictors_corrs(prefix_path, 'rbp-0.95', k, order)
+ # plot_sare_predictors_corrs(prefix_path, 'ndcg@10', k, order)
+ tail_topics_analysis(ap_tail_df)
+ # tail_topics_analysis(ndcg_tail_df, metric='nDCG@10')
+ exit()
+
+
+def tail_topics_analysis(tail_df, order=None, metric='AP'):
+ if order is None:
+ order = PreRetPredictors + PostRetPredictors
+ tail_topics_df = tail_df.groupby('topic').count()
+ topics_order = tail_topics_df.sum(1).sort_values(kind='mergesort').index
+ last_quart = len(topics_order) // 3
+ g = sns.heatmap(tail_topics_df.loc[topics_order[-last_quart:], order].T.rename(PlotNames), yticklabels=True,
+ xticklabels=True, square=True, cbar_kws={"shrink": 0.75})
+ g.set_xlabel(None)
+ g.set_ylabel(None)
+ g.set_yticklabels(g.get_yticklabels(), rotation=0)
+ g.set_xticklabels(g.get_xticklabels(), rotation=60)
+ g.set_xticks(g.get_xticks())
+ g.set_yticks(g.get_yticks())
+ plt.tight_layout()
+ plt.savefig('tail_topics_' + metric + '_heatmap.pdf', dpi=300, bbox_inches='tight')
+ plt.show()
+ tail_topics_df.loc[:, 'Total'] = tail_topics_df.sum(1)
+ tail_topics_df.loc['Total', :] = tail_topics_df.sum(0)
+ print(tail_topics_df.sort_values('Total', kind='mergesort').to_latex())
+
+
+def plot_heatmap_qpp_similarities(df, title=None, save_figure=False, order=None):
+ plt.close()
+ mask = np.triu(np.ones_like(df, dtype=bool))
+ if order is None:
+ order = df.sum().sort_values().index
+ g = sns.heatmap(df.loc[order, order].rename(PlotNames, axis=0).rename(PlotNames, axis=1), mask=mask, annot=True,
+ fmt=".2f", cbar=False, center=False, cmap=None, square=True, annot_kws={'fontsize': 6},
+ yticklabels=True, xticklabels=True, linewidths=.2)
+ g.set_xlabel(None)
+ g.set_ylabel(None)
+ g.set_yticklabels([None] + g.get_yticklabels()[1:], rotation=0, fontdict={'fontsize': 6})
+ g.set_xticklabels(g.get_xticklabels()[:-1] + [None], rotation=45, fontdict={'fontsize': 6})
+ g.set_xticks(g.get_xticks()[:-1])
+ g.set_yticks(g.get_yticks()[1:])
+ if title is not None:
+ _title = []
+ for s in title.split('_'):
+ if s == 'indri' or s == 'porter':
+ continue
+ else:
+ if s.islower():
+ s = s.title()
+ _title.append(s)
+ _title = ' '.join(_title)
+ # plt.title(_title)
+ plt.title(None)
+ if save_figure:
+ plt.savefig(title + '_heatmap.pdf', dpi=300, bbox_inches='tight')
+ plt.tight_layout()
+ plt.show()
+ return order
+
+
+def plot_ranks_differences(prefix_path, ir_metric):
+ def boxplot(_df, orderby='median'):
+ meanprops = {"marker": "s", "markerfacecolor": "white", "markeredgecolor": "blue"}
+ if orderby == 'median':
+ _order = _df.groupby('predictor').median().sort_values('rank_diff').index
+ else:
+ _order = _df.groupby('predictor').mean().sort_values('rank_diff').index
+ sns.boxplot(x='rank_diff', y='predictor', data=_df, order=_order, showmeans=True, meanprops=meanprops)
+ plt.tight_layout()
+ plt.show()
+
+ diff_df = calc_rank_differences(prefix_path, ir_metric, title_only=True)
+ abs_df = diff_df.abs().stack().reset_index().rename({'level_1': 'predictor', 0: 'rank_diff'}, axis=1)
+ sqr_df = diff_df.pow(2).stack().reset_index().rename({'level_1': 'predictor', 0: 'rank_diff'}, axis=1)
+
+ boxplot(abs_df, 'median')
+ boxplot(sqr_df, 'median')
+ boxplot(abs_df, 'mean')
+ boxplot(sqr_df, 'mean')
+
+
def test_eval_measures(ir_metric, title_only=False, pct=True):
predictors_type = 'all'
correlation_method = 'kendall'
@@ -443,7 +1210,7 @@ def test_eval_measures(ir_metric, title_only=False, pct=True):
pipe, _metric = eval_file.split('/')[-1].split('.')
prefix = pipe.rsplit('_', 1)[0]
prefix_path = os.path.join(results_dir, prefix)
- predictions_df = read_prediction_files(prefix_path, predictors_type).reset_index('topic', drop=True)
+ predictions_df = read_prediction_files(prefix_path, r_type=predictors_type).reset_index('topic', drop=True)
eval_df = read_eval_df(prefix_path, ir_metric)
if title_only:
predictions_df = filter_robust_title_queries(predictions_df)
@@ -451,8 +1218,8 @@ def test_eval_measures(ir_metric, title_only=False, pct=True):
corr_res = predictions_df.corrwith(eval_df[ir_metric], 0, method=correlation_method)
mean_diff_df = predictions_df.rank(pct=pct, ascending=False, method='average').subtract(
eval_df[ir_metric].rank(pct=pct, ascending=False, method='average'), axis=0)
- for topic, _df in add_topic_to_qdf(mean_diff_df.abs()).set_index('qid').groupby('topic'):
- _df.drop('topic',axis=1).boxplot()
+ # for topic, _df in add_topic_to_qdf(mean_diff_df.abs()).set_index('qid').groupby('topic'):
+ # _df.drop('topic', axis=1).boxplot()
dense_diff_df = predictions_df.rank(pct=pct, ascending=False, method='dense').subtract(
eval_df[ir_metric].rank(pct=pct, ascending=False, method='dense'), axis=0)
first_diff_df = predictions_df.rank(pct=pct, ascending=False, method='first').subtract(
@@ -476,7 +1243,7 @@ def test_eval_measures(ir_metric, title_only=False, pct=True):
avg_abs_mean.append(mean_diff_df.abs().mean())
avg_corr_df = pd.concat(avg_corr, axis=1)
title = 'title' if title_only else 'all'
- # avg_corr_df.to_pickle(f'{results_dir}/{corpus}_{predictors_type}_{title}_kendall_scores.pkl')
+ avg_corr_df.to_pickle(f'{results_dir}/{corpus}_{predictors_type}_{title}_kendall_scores.pkl')
avg_abs_mean_df = pd.concat(avg_abs_mean, axis=1)
avg_abs_mean_df.to_pickle(f'{results_dir}/{corpus}_{predictors_type}_{title}_mrd_scores.pkl')
print(corpus)
@@ -513,15 +1280,15 @@ def pairwise_agreement(correlations_sr, diff_df):
return np.mean(result)
-def one_way_anova(corpus='robust04', predictors_type='all', queries_group='title', save_figure=True):
+def eval_methods_analysis(corpus='robust04', predictors_type='all', queries_group='title', save_figure=True): # Used in the IRJ paper figure 4
meanprops = {"marker": "s", "markerfacecolor": "white", "markeredgecolor": "blue"}
- sns.set(font='serif', context='poster', style="whitegrid")
+ # sns.set(font='serif', context='poster', style="whitegrid")
corr_file = f'{results_dir}/{corpus}_{predictors_type}_{queries_group}_kendall_scores.pkl'
- msqr_file = f'{results_dir}/{corpus}_{predictors_type}_{queries_group}_mrd_scores.pkl'
+ smare_file = f'{results_dir}/{corpus}_{predictors_type}_{queries_group}_mrd_scores.pkl'
corr_df = pd.read_pickle(corr_file).rename(PlotNames)
- msqr_df = pd.read_pickle(msqr_file).rename(PlotNames)
+ smare_df = pd.read_pickle(smare_file).rename(PlotNames)
_cdf = corr_df.T.melt(var_name='predictor', value_name='Correlation')
- _rdf = msqr_df.T.melt(var_name='predictor', value_name='sMARE')
+ _rdf = smare_df.T.melt(var_name='predictor', value_name='sMARE')
fig, ax = plt.subplots(figsize=(12, 9))
if save_figure:
title = None
@@ -545,7 +1312,7 @@ def one_way_anova(corpus='robust04', predictors_type='all', queries_group='title
else:
title = f'{corpus}_{predictors_type}_predictors_{queries_group}_mrd_scores'.replace('_', ' ').capitalize()
fig, ax = plt.subplots(figsize=(12, 9))
- sns.boxplot('sMARE', 'predictor', data=_rdf, order=msqr_df.median(1).sort_values(ascending=True).index, ax=ax,
+ sns.boxplot('sMARE', 'predictor', data=_rdf, order=smare_df.median(1).sort_values(ascending=True).index, ax=ax,
showmeans=True, meanprops=meanprops)
plt.title(title)
plt.xlabel('sMARE$_{AP}$')
@@ -559,7 +1326,7 @@ def one_way_anova(corpus='robust04', predictors_type='all', queries_group='title
# print(stats.f_oneway(*corr_df.values))
# _df = pd.concat([_cdf.assign(type='sMARE'), _rdf.assign(type='Correlation')])
# sns.catplot('value', 'predictor', col='type', kind='box', data=_df, order=corr_df.median(1).sort_values().index)
- print(stats.f_oneway(*msqr_df.values))
+ print(stats.f_oneway(*smare_df.to_numpy()))
def plot_rank_diff_prob(n):
@@ -575,17 +1342,785 @@ def plot_rank_diff_prob(n):
plt.show()
+def plot_estimates_per_interval(intra_topic, inter_topic, ir_metric, n_boot=10000):
+ # PlotPredictors = ['max-idf', 'nqc', 'qf', 'uef-clarity']
+ # PlotPredictors = ['avg-idf', 'clarity', 'nqc', 'wig', 'max-idf', 'uef-clarity', 'uef-nqc', 'uef-wig']
+ PlotPredictors = PreRetPredictors + PostRetPredictors
+ # intra_topic['int'], bins = pd.qcut(intra_topic['ev_diff'], q=10, precision=3, retbins=True)
+ intra_topic['int'], bins = pd.cut(intra_topic['ev_diff'], bins=(0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1),
+ precision=3, retbins=True, include_lowest=True)
+ # intra_topic['int'], bins = pd.cut(intra_topic['ev_diff'],
+ # bins=(0, 0.005, 0.015, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1),
+ # precision=3, retbins=True, include_lowest=True)
+ inter_topic['int'] = pd.cut(inter_topic['ev_diff'], bins=bins, precision=3, include_lowest=True)
+ min_samples = intra_topic.groupby(['predictor', 'int']).count().min()[0]
+ logger.debug(f'min number of samples is {min_samples}')
+ logger.debug(f'inter topic means per interval: {inter_topic.groupby("int")["ev_diff"].mean()}')
+ logger.debug(f'intra topic means per interval: {intra_topic.groupby("int")["ev_diff"].mean()}')
+ logger.debug(
+ f'Correlation between inter-intra means over intervals r='
+ f'{stats.pearsonr(intra_topic.groupby("int")["ev_diff"].mean(), inter_topic.groupby("int")["ev_diff"].mean())[0]:.3f}')
+ # _intra = intra_topic.groupby(['predictor', 'int']).sample(min_samples).sort_values(['predictor', 'ev_diff'])
+ # _inter = inter_topic.groupby(['predictor', 'int']).sample(min_samples).sort_values(['predictor', 'ev_diff'])
+ _intra = intra_topic.sort_values(['predictor', 'ev_diff'])
+ _inter = inter_topic.sort_values(['predictor', 'ev_diff'])
+ _plot_df = pd.concat([_intra[['int', 'predictor', 'status']].assign(method='Intra'),
+ _inter[['int', 'predictor', 'status']].assign(method='Inter')])
+ pt = pd.CategoricalDtype(PlotPredictors, ordered=True)
+ _plot_df['predictor'] = _plot_df['predictor'].astype(pt)
+ _plot_df = _plot_df.dropna().sort_values('predictor').replace(PlotNames).replace(
+ {_plot_df['int'].min(): pd.Interval(0, _plot_df['int'].min().right, closed='both')})
+ g = sns.catplot(data=_plot_df, x='int', y='status', col='predictor', hue='method', kind='point', ci=95,
+ n_boot=n_boot, col_wrap=4, height=3.5, aspect=1.3, scale=0.8, errwidth=1.3, capsize=0.3,
+ palette={'Inter': '#008297', 'Intra': '#83bb32'}, linestyles=[':', '--'], markers=["x", "p"],
+ hue_order=['Inter', 'Intra'], legend=True)
+ # {'Inter': '#1285bf', 'Intra': '#b5325d'}
+ plt.minorticks_on()
+ g.map(plt.grid, b=True, which='minor', axis='y', color='#E5E5E5', linestyle=':', zorder=0,
+ alpha=0.5, linewidth=0.5)
+ g.map(plt.grid, b=True, which='major', axis='y', color='#E5E5E5', linestyle='-.', zorder=1, linewidth=1)
+ g.set_xlabels(f"{PlotNames.get(ir_metric, ir_metric)} Difference").set_ylabels("Pairwise Accuracy") \
+ .set_xticklabels(rotation=30).set_titles("{col_name}").set(ylim=(0.2, 1))
+ for ax in g.axes.flat:
+ ax.tick_params(axis='x', which='minor', bottom=False)
+ # if ax.get_ylabel():
+ # if ax.get_title() == 'UEF(Clarity)':
+ # ax.yaxis.labelpad = 20
+ # else:
+ # ax.set_ylabel('')
+ # if ax.get_xlabel():
+ # if ax.get_title() == 'UEF(Clarity)':
+ # ax.xaxis.labelpad = 15
+ # else:
+ # ax.set_xlabel('')
+ for l in ax.lines + ax.collections:
+ l.set_zorder(5)
+ # plt.setp(l, linewidth=1)
+ # g._legend.set_title(None)
+
+ g.tight_layout()
+ g.savefig(f'point_plot_{ir_metric}_all.pdf', dpi=300)
+ # import tikzplotlib
+ # tikzplotlib.save("test.tex")
+ plt.show()
+ logger.debug('\n' + tabulate(pd.DataFrame({'Inter': _inter.groupby('predictor')['status'].mean(),
+ 'Intra': _intra.groupby('predictor')['status'].mean()}).
+ sort_values('Inter'), headers='keys', tablefmt='psql', floatfmt=".3f"))
+ return _intra, _inter
+
+
+def _get_stats_for_t_test(row):
+ return row.groupby('int').apply(
+ lambda x: stats.ttest_ind_from_stats(mean1=x.mean_x, std1=x.std_x, nobs1=x.len_x, mean2=x.mean_y, std2=x.std_y,
+ nobs2=x.len_y, equal_var=False).pvalue[0])
+
+
+def plot_ttest_pvalues(_intra, _inter, title):
+ _intra['int'] = _intra['int'].astype(str)
+ _inter['int'] = _inter['int'].astype(str)
+ dfx = _intra.pivot_table(index='predictor', columns='int', values='status', aggfunc=['mean', 'std', len])
+ dfy = _inter.pivot_table(index='predictor', columns='int', values='status', aggfunc=['mean', 'std', len])
+ pvalues_df = pd.merge(dfx, dfy, on='predictor').apply(_get_stats_for_t_test, axis=1)
+ pvalues_df.to_pickle(f'ttest_{title}_pvalues_df.pkl')
+ print(pvalues_df.to_latex(float_format='%.3f'))
+ # df = pd.read_pickle('ttest_equal_samples_pvalues_df.pkl')
+ # _df = pd.read_pickle('ttest_all_pairs_pvalues_df.pkl')
+ sns.heatmap(pvalues_df, annot=True, fmt='.2f', center=0.01, linewidths=.1, cmap="coolwarm")
+ plt.xticks(rotation=30)
+ plt.title(title.replace('_', ' '))
+ plt.tight_layout()
+ plt.savefig(f'heatmap_pvalues_ttest_{title}.pdf')
+ plt.show()
+
+
+def _calc_kl_divergence_df(df, precision=2, stat='count'):
+ zdf = df.round(precision).reset_index().pivot_table(values='index', index='ev_diff', columns='kind',
+ aggfunc='count', fill_value=0.1)
+ norm_zdf = zdf / zdf.sum() # normalized values (sum to 1)
+ norm_zdf.plot()
+ plt.show()
+ logger.debug(f'The KL divergence of intra to inter: {stats.entropy(norm_zdf["intra"], norm_zdf["inter"]):.3f}')
+ ecdf_zdf = norm_zdf.cumsum() # empirical Cumulative Distribution Function, eCDF
+ ecdf_zdf.plot()
+ plt.show()
+ if stat == 'count':
+ return zdf
+ elif stat == 'ratio':
+ return norm_zdf
+ else:
+ logger.warning('Specify stat= \"count\" or \"ratio\" to return a df')
+
+
+def per_group_sampling(_df, wsr):
+ p, i = _df[['predictor', 'int']].iloc[0]
+ return _df.sample(wsr.loc[p, i])
+
+
+def sample_similar_distributions(intra_topic, inter_topic):
+ intra_topic['int'], bins = pd.cut(intra_topic['ev_diff'],
+ bins=(0, 0.005, 0.015, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1),
+ precision=3, retbins=True, include_lowest=True)
+ inter_topic['int'] = pd.cut(inter_topic['ev_diff'], bins=bins, precision=3, include_lowest=True)
+ wsr = intra_topic.groupby(['predictor', 'int'])['ev_diff'].count()
+ return inter_topic.groupby(['predictor', 'int']).apply(per_group_sampling, wsr).reset_index(drop=True)
+
+
+def _plot_ecdf_hist(xdf, ir_metric, title='dist_diff'):
+ palette = {'Inter': '#008297', 'Intra': '#83bb32', 'Sub-Inter': '#BD5B22'}
+
+ xdf['kind'] = xdf['kind'].str.title()
+ sub_df = xdf.loc[xdf['kind'] == 'Sub-Inter']
+ fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
+ # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(12, 9), dpi=300)
+ g1 = sns.ecdfplot(data=xdf.loc[xdf['kind'] == 'Inter'], x='ev_diff', ax=ax1, linestyle='-.', label='Inter',
+ color='#008297', zorder=4, linewidth=2)
+ g1 = sns.ecdfplot(data=xdf.loc[xdf['kind'] == 'Intra'], x='ev_diff', ax=ax1, linestyle='--', label='Intra',
+ color='#83bb32', zorder=2, linewidth=2)
+ if len(sub_df) > 0:
+ g1 = sns.ecdfplot(data=sub_df, x='ev_diff', ax=ax1, linestyle=(0, (1, 4)), label='Sub-Inter', color='#BD5B22',
+ zorder=3, linewidth=5)
+ g1.grid(b=True, which='major', axis='both', color='#E5E5E5', linestyle='-.', zorder=0, linewidth=2)
+ g1.set_xlabel(None)
+ g1.legend()
+ g2 = sns.histplot(data=xdf.loc[xdf['kind'] == 'Inter'], x='ev_diff', stat='probability', element='step', ax=ax2,
+ label='Inter', color='#008297', zorder=4, linewidth=2, linestyle='-.')
+ g2 = sns.histplot(data=xdf.loc[xdf['kind'] == 'Intra'], x='ev_diff', stat='probability', element='step', ax=ax2,
+ label='Intra', color='#83bb32', zorder=2, linewidth=2)
+ if len(sub_df) > 0:
+ g2 = sns.histplot(data=sub_df, x='ev_diff', stat='probability', element='step', ax=ax2, linestyle=":",
+ label='Sub-Inter', color='#BD5B22', zorder=3, linewidth=2, alpha=0.4)
+ g2.grid(b=True, which='major', axis='both', color='#E5E5E5', linestyle='-.', zorder=0, linewidth=2)
+ g2.set_xlabel(f'{PlotNames.get(ir_metric, ir_metric)} Difference')
+ g2.legend()
+ # legend2 = ax2.get_legend()
+ # legend2.set_title(None)
+ plt.tight_layout()
+ plt.savefig(f'{title}.pdf', dpi=300)
+
+ plt.show()
+
+ # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(3.3, 3), dpi=300)
+ # g1 = sns.ecdfplot(data=xdf.loc[xdf['kind'] == 'Inter'], x='ev_diff', ax=ax1, linestyle='--', label='Inter',
+ # color='#008297')
+ # g1 = sns.ecdfplot(data=xdf.loc[xdf['kind'] == 'Intra'], x='ev_diff', ax=ax1, linestyle=(0, (3, 7)), label='Intra',
+ # color='#83bb32')
+ # g1 = sns.ecdfplot(data=xdf.loc[xdf['kind'] == 'Sub-Inter'], x='ev_diff', ax=ax1, linestyle=(5, (1, 4)),
+ # label='Sub-Inter', color='red')
+ # g1.set_xlabel(None)
+ # g1.legend()
+ # g2 = sns.histplot(data=xdf, hue='kind', x='ev_diff', common_norm=False, stat='probability', element='step', ax=ax2)
+ # g2 = sns.histplot(data=xdf.loc[xdf['kind'] == 'inter'], x='ev_diff', common_norm=False, stat='probability',
+ # alpha=0.3,element='step', ax=ax2, label='Inter', color=sns.color_palette("tab10")[1])
+ # g2.set_xlabel(f'{PlotNames.get(ir_metric, ir_metric)} Difference')
+ # legend2 = ax2.get_legend()
+ # legend2.set_title(None)
+ # plt.tight_layout()
+ # plt.savefig(f'{title}.pdf', dpi=300)
+ # plt.show()
+ # plt.close('all')
+ # f, ax = plt.subplots(figsize=(3.15, 2), dpi=300)
+ # g = sns.histplot(data=xdf, hue='kind', x='ev_diff', common_norm=False, stat='probability', element='step')
+ # g.set_xlabel(f"{PlotNames.get(ir_metric, ir_metric)} Difference", fontsize=5)
+ # g.set_ylabel("Probability", fontsize=5)
+ # g.set_xticklabels(g.get_xticklabels(), fontsize=4)
+ # plt.tight_layout()
+ # plt.show()
+
+
+def _plot_utility(df, _df):
+ meanprops = {"marker": "s", "markerfacecolor": "white", "markeredgecolor": "blue"}
+ sns.displot(data=_df, col='predictor', x='utility', col_wrap=PLOTS_COL_WRAP)
+ plt.show()
+ sns.displot(data=df, col='predictor', x='utility', col_wrap=PLOTS_COL_WRAP)
+ plt.show()
+ sns.boxplot(y='utility', data=df[['predictor', 'utility']], x='predictor',
+ order=df.groupby('predictor')['utility'].mean().sort_values().index, showmeans=True,
+ meanprops=meanprops)
+ plt.show()
+ sns.boxplot(y='utility', data=_df[['predictor', 'utility']], x='predictor',
+ order=df.groupby('predictor')['utility'].mean().sort_values().index, showmeans=True,
+ meanprops=meanprops)
+ plt.show()
+ # figure size in inches
+ # rcParams['figure.figsize'] = 16, 9
+ ydf = pd.concat([df.assign(kind='intra')[['predictor', 'utility', 'kind']].reset_index(drop=True),
+ _df.assign(kind='inter')[['predictor', 'utility', 'kind']].reset_index(drop=True)], axis=0)
+ sns.violinplot(data=ydf, y='utility', x='predictor', hue='kind', split=False, inner='quartile',
+ order=ydf.groupby('predictor')['utility'].mean().sort_values().index)
+ plt.xticks(rotation=30)
+ plt.tight_layout()
+ plt.show()
+
+
+def load_all_pairs(ir_metric, prefix_path, diff_col='ev_diff'): # Used in SIGIR 21 short paper
+
+ def _add_utility(_df):
+ return _df.assign(utility=_df['status'].map(lambda x: 1 if x else -1) * _df['ev_diff'])
+
+ def _merge_into_single_first_grp(_intra, _inter, cols, groups_col='predictor', _sub_inter=None):
+ _p = _intra[groups_col][0]
+ if _sub_inter is None:
+ return pd.concat([_intra.assign(kind='intra').loc[_intra[groups_col] == _p, cols].reset_index(drop=True),
+ _inter.assign(kind='inter').loc[_inter[groups_col] == _p, cols].reset_index(drop=True)],
+ axis=0)
+ else:
+ return pd.concat([_inter.assign(kind='inter').loc[_inter[groups_col] == _p, cols].reset_index(drop=True),
+ _intra.assign(kind='intra').loc[_intra[groups_col] == _p, cols].reset_index(drop=True),
+ _sub_inter.assign(kind='sub-Inter').loc[_sub_inter[groups_col] == _p, cols].reset_index(
+ drop=True)], axis=0)
+
+ prefix = prefix_path.rsplit('/', maxsplit=1)[1]
+ pt = pd.CategoricalDtype(PreRetPredictors + PostRetPredictors, ordered=True)
+ intra_topic = pd.read_pickle(f'{prefix}_intra_topic_pairwise_{ir_metric}_df.pkl')
+ intra_topic['predictor'] = intra_topic['predictor'].astype(pt)
+ intra_topic = intra_topic.sort_values(['predictor', 'ev_diff'])
+ s_inter_topic = pd.read_pickle(f'{prefix}_inter_sampled_topic_pairwise_{ir_metric}_df.pkl')
+ s_inter_topic['predictor'] = s_inter_topic['predictor'].astype(pt)
+ s_inter_topic = s_inter_topic.sort_values(['predictor', 'ev_diff'])
+ inter_topic = pd.read_pickle(f'{prefix}_inter_topic_pairwise_{ir_metric}_df_all.pkl')
+ inter_topic['predictor'] = inter_topic['predictor'].astype(pt)
+ inter_topic = inter_topic.sort_values(['predictor', 'ev_diff'])
+ ut_intra_df = _add_utility(intra_topic)
+ ut_inter_df = _add_utility(pd.read_pickle(f'{prefix}_inter_topic_pairwise_{ir_metric}_df_all.pkl'))
+ ut_inter_df['predictor'] = ut_inter_df['predictor'].astype(pt)
+ ut_inter_df = ut_inter_df.sort_values(['predictor', 'ev_diff'])
+ ut_raw = _merge_into_single_first_grp(ut_intra_df, ut_inter_df, ['ev_diff', 'kind'])
+ # _calc_kl_divergence_df(ut_raw, precision=2)
+ _plot_ecdf_hist(ut_raw, ir_metric, 'full_inter_intra_dist')
+ ut_s_inter_df = _add_utility(s_inter_topic)
+ # order = plot_heatmap_diff_sim(ut_intra_df, 'utility',
+ # f'Predictors similarity over intra-topic query pairs {prefix}')
+ # plot_heatmap_diff_sim(ut_s_inter_df, 'utility', 'Predictors similarity over inter-topic query pairs', order=order)
+ # plot_heatmap_diff_sim(ut_inter_df, 'utility', f'Predictors similarity over all inter-topic query pairs {prefix}',
+ # order=order)
+ ut_s_raw = _merge_into_single_first_grp(ut_intra_df, ut_inter_df, ['ev_diff', 'kind'], _sub_inter=ut_s_inter_df)
+ # calc_intra_inter_stats(intra_topic, s_inter_topic)
+ # calc_intra_inter_stats(intra_topic, inter_topic)
+ #
+ # _calc_kl_divergence_df(ut_s_raw, precision=2)
+ _plot_ecdf_hist(ut_s_raw, ir_metric, 'sampled_inter_intra_dist')
+ # _plot_utility(ut_intra_df, ut_s_inter_df)
+ # calc_intra_inter_stats(intra_topic, inter_topic)
+ # calc_intra_inter_stats(intra_topic, s_inter_topic)
+ # _intra, _inter = plot_estimates_per_interval(intra_topic, s_inter_topic, ir_metric, n_boot=3)
+ _intra, _inter = plot_estimates_per_interval(intra_topic, inter_topic, ir_metric, n_boot=1000)
+ # max_interval = _intra['int'].max()
+ # _max_intra, _max_inter = plot_estimates_per_interval(_intra.loc[_intra['int'] == max_interval],
+ # _inter.loc[_inter['int'] == max_interval], ir_metric)
+ # max_interval = _max_intra['int'].max()
+ # _max_intra, _max_inter = plot_estimates_per_interval(_max_intra.loc[_max_intra['int'] == max_interval],
+ # _max_inter.loc[_inter['int'] == _max_inter], ir_metric)
+ # plot_ttest_pvalues(_intra, _inter, title=f'equal_samples_{ir_metric}')
+ return None
+
+
+def two_way_anova(df, response, factor_1, factor_2):
+ """ols formula syntax: simply """
+ formula = f'{response} ~ {factor_1}*{factor_2}'
+ lm = ols(formula, data=df).fit()
+ anova_res_df = anova_lm(lm)
+ print(anova_res_df)
+ _df = df.set_index(['predictor', 'kind'])
+ _df.index = ['_'.join(pair) for pair in _df.index]
+ tukey = pairwise_tukeyhsd(endog=_df['status'], groups=_df.index, alpha=0.01)
+ tukey_res_df = pd.DataFrame(data=tukey._results_table.data[1:], columns=tukey._results_table.data[0])
+ tukey_res_df[['predictor1', 'kind1']] = tukey_res_df['group1'].str.split('_', expand=True)
+ tukey_res_df[['predictor2', 'kind2']] = tukey_res_df['group2'].str.split('_', expand=True)
+ t_res_df = tukey_res_df.loc[
+ tukey_res_df['predictor1'] == tukey_res_df['predictor2'], ['predictor1', 'meandiff', 'p-adj', 'lower',
+ 'upper']].set_index('predictor1')
+ t_res_df.index = t_res_df.index.astype(pd.CategoricalDtype(PreRetPredictors + PostRetPredictors, ordered=True))
+ mean_acc = df.groupby(['predictor', 'kind'])['status'].mean().reset_index(). \
+ pivot(index='predictor', columns='kind').droplevel(0, axis=1)
+ t_res_df['p-adj'] = t_res_df['p-adj'].map('${:.3f}$'.format)
+ t_res_df['meandiff'] = t_res_df['meandiff'].map('${:.3f}$'.format)
+ t_res_df = t_res_df.drop(['upper', 'lower'], axis=1).assign(
+ CI=t_res_df['lower'].map('[${:.3f}$'.format).str.cat(t_res_df['upper'].map('${:.3f}$]'.format), sep=','),
+ intra=mean_acc['intra'].map('${:.3f}$'.format), inter=mean_acc['inter'].map('${:.3f}$'.format))
+
+ print(
+ t_res_df.sort_index()[['intra', 'inter', 'meandiff', 'CI', 'p-adj']].rename(LatexMacros).to_latex(
+ float_format="%.3f", escape=False))
+ return t_res_df.sort_index()
+
+
+def calc_intra_inter_stats(intra_topic, inter_topic):
+ dfx = intra_topic.pivot_table(index='predictor', aggfunc={'status': ['mean', 'std', len]})
+ dfx.columns = dfx.columns.droplevel(0)
+ dfy = inter_topic.pivot_table(index='predictor', aggfunc={'status': ['mean', 'std', len]})
+ dfy.columns = dfy.columns.droplevel(0)
+ df = pd.concat([intra_topic[['predictor', 'status', 'ev_diff']].assign(kind='intra'),
+ inter_topic[['predictor', 'status', 'ev_diff']].assign(kind='inter')]).rename(
+ {'ev_diff': 'AP_Diff'}, axis=1).rename({'ev_diff': 'AP_Diff'}, axis=0)
+ df['status'] = df['status'].astype(int)
+ # df = df.loc[df['predictor'] == 'uef-nqc']
+ # df['predictor'] = df['predictor'].astype(str)
+ res_df = two_way_anova(df, 'status', 'predictor', 'kind')
+ # two_way_anova(df, 'status', 'AP_Diff', 'kind')
+ # two_way_anova(df, 'status', 'AP_Diff', 'predictor')
+ #
+ # for pred, _df in df.groupby('predictor'):
+ # print(pred)
+ # _df['predictor'] = _df['predictor'].astype(str)
+ # two_way_anova(_df, 'status', 'AP_Diff', 'kind')
+
+ # lm = ols('status ~ predictor + kind + AP_Diff + predictor:AP_Diff + kind:AP_Diff + kind:predictor', data=df).fit()
+ # print(anova_lm(lm))
+
+ # Welch's t-test
+ # pvalues_df = pd.merge(dfx, dfy, on='predictor', suffixes=['_intra', '_inter']).assign(
+ # pval=lambda x: stats.ttest_ind_from_stats(mean1=x.mean_intra, std1=x.std_intra, nobs1=x.len_intra,
+ # mean2=x.mean_inter, std2=x.std_inter, nobs2=x.len_inter,
+ # equal_var=False).pvalue, kendall_intra=lambda x: 2 * x.mean_intra - 1,
+ # kendall_inter=lambda x: 2 * x.mean_inter - 1)
+ # print(pvalues_df.sort_values('predictor')[
+ # ['len_intra', 'len_inter', 'mean_intra', 'mean_inter', 'kendall_intra', 'kendall_inter',
+ # 'pval']].to_string(float_format='%.3f'))
+ # pvalues_df = pd.merge(dfx, dfy, on='predictor', suffixes=['_intra', '_inter']).assign(
+ # pval=lambda x: stats.ttest_ind_from_stats(mean1=x.mean_intra, std1=x.std_intra, nobs1=x.len_intra,
+ # mean2=x.mean_inter, std2=x.std_inter, nobs2=x.len_inter,
+ # equal_var=False).pvalue)
+ # print(pvalues_df.sort_values('predictor')[['len_intra', 'len_inter', 'mean_intra', 'mean_inter', 'pval']].to_string(
+ # float_format='%.3f'))
+ return res_df
+
+
+def plot_heatmap_diff_sim(df, values_col, title, order=None, ret_order=False):
+ # sns.set_theme(style="white")
+ pdf = df.pivot(index=['qid_1', 'qid_2'], columns='predictor', values=values_col)
+ # sim_pdf = pd.DataFrame(1 - pairwise_distances(pdf.T.to_numpy(), metric='cosine'), index=pdf.columns,
+ # columns=pdf.columns)
+ sim_pdf = pd.DataFrame(1 - pairwise_distances(pdf.to_numpy(), metric='cosine'), index=pdf.index,
+ columns=pdf.index)
+ if order is None:
+ order = sim_pdf.mean().sort_values().index
+ # Generate a mask for the upper triangle
+ mask = np.triu(np.ones_like(sim_pdf, dtype=bool))
+ # Set up the matplotlib figure
+ # Generate a custom diverging colormap
+ # cmap = sns.diverging_palette(230, 20, as_cmap=True)
+ # cmap = sns.color_palette("rocket_r", as_cmap=True)
+ # Draw the heatmap with the mask and correct aspect ratio
+ f, ax = plt.subplots(figsize=(3.2, 3), dpi=300)
+ # g = sns.heatmap(sim_pdf.loc[order, order].rename(PlotNames).rename(PlotNames, axis=1), mask=mask, vmin=0, vmax=1,
+ # annot=True, fmt=".2f", cbar=False, center=False, cmap=None, square=True,
+ # annot_kws={'fontsize': 'small'})
+ g = sns.heatmap(sim_pdf.loc[order, order], mask=mask, vmin=0, vmax=1, annot=False, fmt=".2f", cbar=True,
+ center=False, cmap=None, square=True, annot_kws={'fontsize': 'small'})
+ g.set_xlabel(None)
+ g.set_ylabel(None)
+ g.set_title("\n".join(wrap(title, 50)), loc='center', fontdict={'fontsize': 9}, pad=0)
+ g.set_yticklabels([None] + g.get_yticklabels()[1:], rotation=0, fontdict={'fontsize': 6})
+ g.set_xticklabels(g.get_xticklabels()[:-1] + [None], rotation=45, fontdict={'fontsize': 6})
+ g.set_xticks(g.get_xticks()[:-1])
+ g.set_yticks(g.get_yticks()[1:])
+ plt.tight_layout()
+ # plt.savefig(f'queries_byPredictors_heatmap.pdf', dpi=300, bbox_inches='tight')
+ plt.savefig(f'{title.lower().replace(" ", "_")}_heatmap.pdf', dpi=300, bbox_inches='tight')
+ plt.show()
+ return order
+
+
+def _corr_annotate_func(*args, **kwargs):
+ x, y = args
+ r, _ = stats.pearsonr(x, y)
+ ax = plt.gca()
+ xy = (0.1, 0.9) if kwargs['label'] == 'Title' else (0.1, 0.8)
+ ax.annotate(f"{kwargs['label']} $r$ = {r:.2f}", xy=xy, xycoords=ax.transAxes)
+
+
+def plot_ir_eval_metrics(prefix_path, ir_metrics: list):
+ plt.close('all')
+ edf = pd.concat([read_eval_df(prefix_path, _metric) for _metric in ir_metrics], axis=1)
+ edf = edf.assign(query_type='Variant')
+ edf.loc[filter_robust_title_queries(edf).index, 'query_type'] = 'Title'
+ g = sns.PairGrid(edf, hue='query_type', aspect=1.5)
+ # g.map_diag(sns.kdeplot, fill=True, clip=(0, 1))
+ g.map_diag(sns.histplot)
+ g.map_upper(sns.kdeplot, clip=(0, 1))
+ g.map_upper(_corr_annotate_func)
+ g.map_lower(sns.scatterplot)
+ g.add_legend()
+ g.savefig('AP_nDCG_RR_pairplot.pdf')
+ plt.show()
+
+
+def generate_sampled_inter_topic_df(prefix_path, ir_metric, sim_df):
+ predictors_group = 'all'
+ eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ predictions_df = read_prediction_files(prefix_path, r_type=predictors_group)
+ return construct_inter_sampled_to_intra_df(eval_df, predictions_df, sim_df)
+
+
+def calc_corrs_scores_table(prefix_path, ir_metric):
+ pt = pd.CategoricalDtype(PreRetPredictors + PostRetPredictors, ordered=True)
+ intra_topic = pd.read_pickle(f'intra_topic_pairwise_{ir_metric}_df.pkl')
+ intra_topic['predictor'] = intra_topic['predictor'].astype(pt)
+ intra_topic = intra_topic.sort_values(['predictor', 'ev_diff'])
+ s_inter_topic = pd.read_pickle(f'inter_sampled_topic_pairwise_{ir_metric}_df.pkl')
+ s_inter_topic['predictor'] = s_inter_topic['predictor'].astype(pt)
+ s_inter_topic = s_inter_topic.sort_values(['predictor', 'ev_diff'])
+
+ sampled_df = calc_intra_inter_stats(intra_topic, s_inter_topic)
+ # sampled_df['pval'] = sampled_df['pval'] * 18 # correction adjusted pval
+ # print(sampled_df.loc[:, ['mean_intra', 'mean_inter', 'pval']].sort_index().rename(LatexMacros).to_latex(
+ # float_format="%.4f", escape=False))
+
+ inter_topic = pd.read_pickle(f'inter_topic_pairwise_{ir_metric}_df_all.pkl')
+ inter_topic['predictor'] = inter_topic['predictor'].astype(pt)
+ inter_topic = inter_topic.sort_values(['predictor', 'ev_diff'])
+ print('doing full inter')
+ full_df = calc_intra_inter_stats(intra_topic, inter_topic)
+
+ # eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ # predictions_df = read_prediction_files(prefix_path, 'all')
+ # df = pd.merge(predictions_df, eval_df, left_index=True, right_index=True)
+ # _corrs_df = pd.DataFrame(
+ # {'TitleQueries-$\\tau$': filter_robust_title_queries(df.reset_index('topic', drop=True)).corr(
+ # method='kendall')[ir_metric], 'AllQueries-$\\tau$': df.corr(method='kendall')[ir_metric]}).drop(ir_metric)
+ # _corrs_df.index = _corrs_df.index.astype(pt)
+ # corrs_df = _corrs_df.assign(NewIntra=sampled_df['kendall_intra'], NewAllInter=full_df['kendall_inter'],
+ # NewSubInter=sampled_df['kendall_inter'], MeanIntra=sampled_df['mean_intra'],
+ # MeanAllInter=full_df['mean_inter'],
+ # MeanSubInter=sampled_df['mean_inter'])
+ # print(corrs_df.sort_index().to_latex(float_format="%.3f"))
+
+ # print(sampled_df.loc[sampled_df['pval'] > 0.0005, ['mean_intra', 'mean_inter', 'pval']].sort_index().rename(
+ # LatexMacros).to_latex(float_format="%.3f", escape=False))
+ # order = corrs_df.corr().sort_values('NewAllInter').index
+ # sns.heatmap(corrs_df.corr().loc[order, order], cmap=sns.color_palette("rocket_r", as_cmap=True), annot=True)
+ # plt.tight_layout()
+ # plt.show()
+
+
+def plot_pairwise_asl(df, title, order, n_boot, save_figure=False, comp_df=None):
+ plt.close()
+ if comp_df is None:
+ g = sns.heatmap(df.loc[order[1:], order[:-1]].rename(PlotNames, axis=0).rename(PlotNames, axis=1), annot=True,
+ fmt=".2f", cbar=False, center=0.0, cmap=None, square=True, annot_kws={'fontsize': 6},
+ yticklabels=True, xticklabels=True, linewidths=.2)
+
+ else:
+ _df = comp_df.loc[order[1:], order[:-1]].add(df.T.loc[order[:-1], order[1:]], fill_value=0, axis=0).loc[
+ order, order]
+ g = sns.heatmap(_df.loc[order, order].T.rename(PlotNames, axis=0).rename(PlotNames, axis=1),
+ annot=True,
+ fmt=".2f", cbar=False, center=0.0, cmap=None, square=True, annot_kws={'fontsize': 6},
+ yticklabels=True, xticklabels=True, linewidths=.2)
+ g.set_xlabel(None)
+ g.set_ylabel(None)
+ g.set_yticklabels(g.get_yticklabels(), rotation=0, fontdict={'fontsize': 6})
+ g.set_xticklabels(g.get_xticklabels(), rotation=45, fontdict={'fontsize': 6})
+ plt.title(title)
+ if save_figure:
+ if comp_df is None:
+ plt.savefig(title.replace(' ', '_') + f'_{n_boot}-boots_heatmap.pdf', dpi=300, bbox_inches='tight')
+ else:
+ plt.savefig(f'combined-metrics_{n_boot}-boots_heatmap.pdf', dpi=300, bbox_inches='tight')
+ plt.tight_layout()
+ plt.show()
+
+
+def bootstrap_ranks_diff(prefix_path, ir_metric, order, n_boot):
+ """
+ This will generate two DataFrames, one with mean absolute ranks differences and
+ another with root mean square ranks differences. The bootstrap happens on ranks differences of the initial list,
+ that is, the values for the queries for the bootstrap are determined in advance.
+ :param prefix_path:
+ :param ir_metric:
+ :param order:
+ :param n_boot:
+ :return:
+ """
+ predictions_df = filter_robust_title_queries(
+ read_prediction_files(prefix_path, r_type='all').reset_index('topic', drop=True)). \
+ rank(pct=True, ascending=False, method='average')
+ eval_df = filter_robust_title_queries(read_eval_df(prefix_path, ir_metric)). \
+ rank(pct=True, ascending=False, method='average')
+ diff_df = predictions_df.rank(pct=True, ascending=False, method='average').subtract(
+ eval_df[ir_metric].rank(pct=True, ascending=False, method='average'), axis=0)
+ rmse_test_statistic = {}
+ mae_test_statistic = {}
+ rmse_boot_statistic = {}
+ mae_boot_statistic = {}
+ pt = pd.CategoricalDtype(order, ordered=True)
+ predictions_df.columns = predictions_df.columns.astype(pt)
+ comb_len = 0.5 * (len(order) ** 2 - len(order))
+ for (p1, p2) in tqdm(combinations(order, 2), desc='Pairwise comparisons', total=comb_len):
+ rmse_test_statistic[(p1, p2)] = np.sqrt(diff_df[p1].pow(2).mean()) - np.sqrt(diff_df[p2].pow(2).mean())
+ mae_test_statistic[(p1, p2)] = diff_df[p1].abs().mean() - diff_df[p2].abs().mean()
+ x_boot_res = []
+ y_boot_res = []
+ _p_df = diff_df[p1].append(diff_df[p2])
+ for _ in range(n_boot):
+ x_boot_res.append(_p_df.sample(frac=0.5, replace=True).reset_index(drop=True))
+ y_boot_res.append(_p_df.sample(frac=0.5, replace=True).reset_index(drop=True))
+ mae_boot_statistic[(p1, p2)] = pd.concat(x_boot_res, axis=1).abs().mean() - pd.concat(y_boot_res, axis=1). \
+ abs().mean()
+ rmse_boot_statistic[(p1, p2)] = pd.concat(x_boot_res, axis=1).pow(2).mean().pow(0.5) - pd. \
+ concat(y_boot_res, axis=1).pow(2).mean().pow(0.5)
+ mae_boot_statistic_df = pd.DataFrame.from_dict(mae_boot_statistic, orient='index')
+ mae_boot_statistic_df['test'] = pd.Series(mae_test_statistic)
+ mae_boot_statistic_df.index.set_names(['p1', 'p2'], inplace=True)
+ rmse_boot_statistic_df = pd.DataFrame.from_dict(rmse_boot_statistic, orient='index')
+ rmse_boot_statistic_df['test'] = pd.Series(rmse_test_statistic)
+ rmse_boot_statistic_df.index.set_names(['p1', 'p2'], inplace=True)
+ return mae_boot_statistic_df.abs(), rmse_boot_statistic_df.abs()
+
+
+def bootstrap_ranks_paired(prefix_path, ir_metric, order, n_boot):
+ """
+ This will generate two DataFrames, one with mean absolute ranks differences and
+ another with root mean square ranks differences. The bootstrap happens on raw values,
+ the ranks (and) differences are calculated for each sample.
+ that is, the values for the queries for the bootstrap are determined after bootstrapping.
+ That way we're able to calculate the correlation values, but will have more tied values.
+ :param prefix_path:
+ :param ir_metric:
+ :param order:
+ :param n_boot:
+ :return:
+ """
+ predictions_df = filter_robust_title_queries(
+ read_prediction_files(prefix_path, r_type='all').reset_index('topic', drop=True))
+ eval_df = filter_robust_title_queries(read_eval_df(prefix_path, ir_metric))
+ sare_test_statistic = {}
+ sre_test_statistic = {}
+ sare_boot_statistic = {}
+ sre_boot_statistic = {}
+ pt = pd.CategoricalDtype(order, ordered=True)
+ predictions_df.columns = predictions_df.columns.astype(pt)
+ comb_len = 0.5 * (len(order) ** 2 - len(order))
+ diff_df = predictions_df.rank(pct=True, ascending=False, method='average').subtract(
+ eval_df[ir_metric].rank(pct=True, ascending=False, method='average'), axis=0)
+ for (p1, p2) in tqdm(combinations(order, 2), desc='Pairwise comparisons', total=comb_len):
+ sre_z = diff_df[p1].pow(2) - diff_df[p2].pow(2)
+ sre_test_statistic[(p1, p2)] = sre_z.mean() * np.sqrt(len(sre_z)) / sre_z.std()
+ sre_w = sre_z - sre_z.mean()
+ are_z = diff_df[p1].abs() - diff_df[p2].abs()
+ sare_test_statistic[(p1, p2)] = are_z.mean() * np.sqrt(len(are_z)) / are_z.std()
+ are_w = are_z - are_z.mean()
+ sre_boot_res = []
+ are_boot_res = []
+ for _ in range(n_boot):
+ _sre_w = sre_w.sample(frac=1, replace=True)
+ sre_boot_res.append(_sre_w.mean() * np.sqrt(len(_sre_w)) / _sre_w.std())
+ _are_w = are_w.sample(frac=1, replace=True)
+ are_boot_res.append(_are_w.mean() * np.sqrt(len(_are_w)) / _are_w.std())
+ sre_boot_statistic[(p1, p2)] = sre_boot_res
+ sare_boot_statistic[(p1, p2)] = are_boot_res
+
+ sare_boot_statistic_df = pd.DataFrame.from_dict(sare_boot_statistic, orient='columns').T
+ sare_boot_statistic_df['test'] = pd.Series(sare_test_statistic)
+ sare_boot_statistic_df.index.set_names(['p1', 'p2'], inplace=True)
+
+ ssre_boot_statistic_df = pd.DataFrame.from_dict(sre_boot_statistic, orient='columns').T
+ ssre_boot_statistic_df['test'] = pd.Series(sre_test_statistic)
+ ssre_boot_statistic_df.index.set_names(['p1', 'p2'], inplace=True)
+ return sare_boot_statistic_df.abs(), ssre_boot_statistic_df.abs()
+
+
+def bootstrap_sensitivity_comparison(prefix_path, ir_metric, n_boot=10000, alpha=0.05, title_only=True): # used for IRJ
+ np.random.seed(12345) # for reproducibility purpose
+ PostRetPredictors.remove('qf')
+ PostRetPredictors.remove('uef-qf')
+ order = PreRetPredictors + PostRetPredictors
+ # mae_boot_statistic_df, mse_boot_statistic_df = bootstrap_ranks_paired(prefix_path, ir_metric, order, n_boot)
+ mae_boot_statistic_df, mse_boot_statistic_df = load_generate_pickle_df(
+ [f'sare_boot_paired-{n_boot}_statistic_df.pkl', f'ssre_boot_paired-{n_boot}_statistic_df.pkl'],
+ bootstrap_ranks_paired, prefix_path, ir_metric, order, n_boot)
+ # mae_boot_statistic_df, rmse_boot_statistic_df = load_generate_pickle_df(
+ # [f'smare_boot-{n_boot}_statistic_df.pkl', f'srmsre_boot-{n_boot}_statistic_df.pkl'], bootstrap_ranks_diff,
+ # prefix_path, ir_metric, order, n_boot)
+ mae_pairwise_asl = mae_boot_statistic_df.iloc[:, :n_boot].ge(mae_boot_statistic_df['test'], axis=0).mean(1)
+ # rmse_pairwise_asl = rmse_boot_statistic_df.iloc[:, :n_boot].ge(rmse_boot_statistic_df['test'], axis=0).mean(1)
+ mse_pairwise_asl = mse_boot_statistic_df.iloc[:, :n_boot].ge(mse_boot_statistic_df['test'], axis=0).mean(1)
+
+ mae_estimated_diff = mae_boot_statistic_df.iloc[:, :n_boot].quantile(1 - alpha, axis=1).max()
+ # rmse_estimated_diff = rmse_boot_statistic_df.iloc[:, :n_boot].quantile(1 - alpha, axis=1).max()
+ mse_estimated_diff = mse_boot_statistic_df.iloc[:, :n_boot].quantile(1 - alpha, axis=1).max()
+ print(f'sMARE estimated_difference for {alpha}: {mae_estimated_diff:.3g}')
+ print(f'sMARE pairs with ASL<{alpha}: {mae_pairwise_asl.lt(alpha).sum()}/{len(mae_pairwise_asl)}'
+ f' {100 * (mae_pairwise_asl.lt(alpha).sum() / len(mae_pairwise_asl)):.3g}%')
+ print(f'sMARE pairs with ASL<0.01: {mae_pairwise_asl.lt(0.01).sum()}/{len(mae_pairwise_asl)}')
+ print(f'sMSRE estimated_difference for {alpha}: {mse_estimated_diff:.3g}')
+ print(f'sMSRE pairs with ASL<{alpha}: {mse_pairwise_asl.lt(alpha).sum()}/{len(mse_pairwise_asl)}'
+ f' {100 * (mse_pairwise_asl.lt(alpha).sum() / len(mse_pairwise_asl)):.3g}%')
+ print(f'sMSRE pairs with ASL<0.01: {mse_pairwise_asl.lt(0.01).sum()}/{len(mse_pairwise_asl)}')
+ # print(f'sRMSRE sensitivity: {rmse_estimated_diff:.2g}')
+ # print(f'sRMSRE pairs with ASL<{alpha}: {rmse_pairwise_asl.lt(alpha).sum()}/{len(rmse_pairwise_asl)}')
+ # print(f'sRMSRE pairs with ASL<0.01: {rmse_pairwise_asl.lt(0.01).sum()}/{len(rmse_pairwise_asl)}')
+ plot_pairwise_asl(mae_pairwise_asl.unstack().T, title='sMARE ASL pairwise values', order=order, n_boot=n_boot,
+ save_figure=True)
+ plot_pairwise_asl(mse_pairwise_asl.unstack().T, title='sMSRE ASL pairwise values', order=order, n_boot=n_boot,
+ save_figure=True)
+ plot_pairwise_asl(mae_pairwise_asl.unstack().T, comp_df=mse_pairwise_asl.unstack().T, title='', order=order,
+ n_boot=n_boot, save_figure=True)
+
+
+# def test_larger(row, *args, **kwargs):
+# d_hat = abs(kwargs.get('kwargs').get(row.name))
+# return (row >= d_hat).mean()
+
+
+def plot_sare_metric_reg(prefix_path, ir_metric, save_figure=False, title_only=False): # used for IRJ
+ predictors_to_plot = ['scq', 'max-idf', 'nqc', 'uef-clarity']
+ # predictors_to_drop = ['qf', 'uef-qf', 'smv', 'uef-smv']
+ if not save_figure:
+ plt.rcParams['figure.dpi'] = 150
+ predictions_df = read_prediction_files(prefix_path, r_type='all').reset_index('topic', drop=True)
+ eval_df = read_eval_df(prefix_path, ir_metric)
+ diff_df = predictions_df.rank(pct=True, ascending=False, method='average').subtract(
+ eval_df[ir_metric].rank(pct=True, ascending=False, method='average'), axis=0).abs()
+ if title_only:
+ diff_df = filter_robust_title_queries(diff_df)
+ _df = diff_df.join(eval_df).set_index(ir_metric, append=True).rename_axis('predictor', axis=1).loc[:,
+ predictors_to_plot].rename(PlotNames, axis=1)
+ data = _df.stack().reset_index().rename({0: 'sARE'}, axis=1).rename(PlotNames, axis=1)
+ g = sns.lmplot(data=data, x=PlotNames.get(ir_metric, ir_metric), y='sARE', col='predictor', col_wrap=4,
+ markers=['1'], scatter_kws={"s": 40, "alpha": 0.7}, fit_reg=False, height=3)
+ g.set_titles("{col_name}")
+ plt.minorticks_on()
+ for ax in g.axes.flat:
+ # ax.tick_params(axis='x', which='minor', bottom=False)
+ ax.grid(b=True, which='minor', axis='y', color='#E5E5E5', linestyle=':', zorder=0,
+ alpha=1, linewidth=1)
+ ax.grid(b=True, which='major', axis='y', color='#E5E5E5', linestyle='-.', zorder=1, linewidth=2)
+ ax.grid(b=True, which='minor', axis='x', color='#E5E5E5', linestyle=':', zorder=0,
+ alpha=1, linewidth=1)
+ ax.grid(b=True, which='major', axis='x', color='#E5E5E5', linestyle='-.', zorder=1, linewidth=2)
+ for l in ax.lines + ax.collections:
+ l.set_zorder(5)
+
+ # g.map(plt.grid, b=True, which='minor', axis='y', color='#E5E5E5', linestyle=':', zorder=0,
+ # alpha=0.5, linewidth=0.5)
+ # g.map(plt.grid, b=True, which='major', axis='y', color='#E5E5E5', linestyle='-.', zorder=1, linewidth=1)
+ # g.map(plt.grid, b=True, which='minor', axis='x', color='#E5E5E5', linestyle=':', zorder=0,
+ # alpha=0.5, linewidth=0.5)
+ # g.map(plt.grid, b=True, which='major', axis='x', color='#E5E5E5', linestyle='-.', zorder=1, linewidth=1)
+ plt.tight_layout()
+ if save_figure:
+ queries = 'title-queries' if title_only else 'all-vars'
+ plt.savefig(f'regplot_{queries}_{ir_metric}.pdf', dpi=300)
+ plt.close()
+ else:
+ plt.show()
+
+
+def plot_scatter_predictor(prefix_path, ir_metric): # Used for the DC presentation
+ eval_df = add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid'])
+ predictions_df = read_prediction_files(prefix_path, r_type='post')
+ eval_sr = eval_df[ir_metric].droplevel('topic')
+ predictor_sr = predictions_df['nqc'].droplevel('topic')
+ # eff_sr = eval_sr
+ # eff_sr = (eff_sr - eff_sr.min()) / (eff_sr.max() - eff_sr.min()) * 0.1 + np.random.random(len(eval_sr)) * 0.009
+ df = pd.DataFrame({'AP': eval_sr.sort_index(), 'NQC': predictor_sr.sort_index()})
+ # df = pd.DataFrame({'AP': eval_sr.sort_index(), 'NQC': eff_sr.sort_index()})
+ _df = filter_robust_title_queries(df)
+ _df.index = _df.index.str[:3]
+ print(f'Kendall corr {_df.corr(method="kendall").iloc[0, 1]:.2g}')
+ # sare_sr = _df.rank(ascending=False, pct=True).diff(axis=1).abs()['NQC'].sort_values(ascending=False)
+
+ fig, ax = plt.subplots()
+ # ax.scatter(sare_sr.index, sare_sr, zorder=2.5, linewidths=0.5, marker='o', s=20)
+ ax.scatter(x=_df['AP'], y=_df['NQC'], zorder=2.5, linewidths=0.5, marker='o', s=20, edgecolor='c')
+ # Hide the right and top spines
+ ax.spines['right'].set_visible(False)
+ ax.spines['top'].set_visible(False)
+ # ax.axline(_df.min(), _df.max(), linewidth=0.8, color='slategray', linestyle=':')
+ # for i, tick in enumerate(ax.get_xticklabels()):
+ # if bool(i % 10):
+ # tick.set_visible(False)
+ # else:
+ # tick.set_rotation(90)
+
+ ax.annotate(f'Kendall\'s $\\tau$ = {_df.corr(method="kendall").iloc[0, 1]:.2g}', (0.5, 1), size='small',
+ xycoords='axes fraction', ha='center', va='center')
+ # ax.spines['left'].set_visible(False)
+ # ax.spines['bottom'].set_visible(False)
+ # plt.ylabel('sARE$_{AP}$')
+ plt.ylabel('NQC')
+ plt.xlabel('AP')
+ # plt.xlabel('Topic')
+ # sns.despine(right=True, top=True)
+ plt.minorticks_on()
+ plt.grid(b=True, which='major', axis='both', color='#E5E5E5', linestyle='-.', zorder=2.01, linewidth=1.5, alpha=0.8)
+ plt.grid(b=True, which='minor', axis='both', color='#E5E5E5', linestyle=':', zorder=2, linewidth=1, alpha=0.6)
+ outliers = _df.rank(ascending=False).diff(axis=1).abs()['NQC'].nlargest(2).index
+ # outliers = sare_sr.nlargest(2).index
+ for (i, x, y) in _df.loc[outliers].itertuples():
+ ax.annotate(i, (x, y), size='small', xytext=(1, 2), textcoords='offset points')
+ # # arrowprops=dict(arrowstyle='->', color='black'))
+ # jig = 15
+ # for x, y in sare_sr.loc[outliers].items():
+ # ax.annotate(x, (x, y), size='small', xytext=(45-jig, -jig), textcoords='offset points',
+ # arrowprops=dict(arrowstyle='->', color='black'))
+ # jig += 20
+ plt.tight_layout()
+ plt.savefig('dc_scatter_fig_1_annot.pdf')
+ plt.show()
+
+
+@timer
def main():
+ # Change the current working dir to project dir
+ # if Config.BATCH_NAME:
+ # os.chdir(os.path.join(Config.RESULTS_DIR, Config.BATCH_NAME))
+ # else:
+ # os.chdir(os.path.join(Config.env_paths.get('root_dir', '/'), 'qpptk'))
+
+ os.chdir(os.path.join(Config.RESULTS_DIR, Config.BATCH_NAME))
+
plt.set_loglevel("info")
index_path, index_type = set_index()
prefix = '_'.join(index_path.split('/')[-2:]) if index_type == 'text' else \
index_path.rsplit('/', 1)[-1].replace('.ciff', '')
- prefix_path = os.path.join(results_dir, prefix)
+ prefix_path = os.path.join(results_dir, Config.BATCH_NAME, prefix)
+ query_similarity_measure = 'cos' # Seems to be most informative
+ # query_similarity_measure = 'jac'
+ # query_similarity_measure = 'dsc'
+ sim_df = read_query_sim_df(prefix_path.replace(Config.BATCH_NAME, ''), sim_metric=query_similarity_measure)
# plot_eval_metrics_dist(prefix_path)
# plot_predictors_dist(prefix_path)
- # exit()
ir_metric = 'ap@1000'
# ir_metric = 'ndcg@10'
+ # ir_metric = 'rbp-0.5'
+ # plot_sare_metric_reg(prefix_path, ir_metric, save_figure=True, title_only=True)
+ # ir_metric = 'ndcg@10'
+ # plot_sare_metric_reg(prefix_path, ir_metric, save_figure=True, title_only=True)
+ # plot_scatter_predictor(prefix_path, ir_metric)
+ # ir_metric = 'RR'
+ # ir_metric = 'ndcg@10'
+ # plot_qpp_correlations(prefix_path)
+ # plot_metrics_differences(prefix_path)
+ # plot_ranks_differences(prefix_path, ir_metric)
+ # test_eval_measures(ir_metric, title_only=True, pct=True)
+ # eval_methods_analysis(save_figure=False)
+
+ # plot_ir_eval_metrics(prefix_path, ['ap@1000', 'ndcg@10', 'RR'])
+
+ # test_eval_measures(ir_metric, title_only=True, pct=False)
+ # calc_corrs_scores_table(prefix_path, ir_metric)
+
+ # bootstrap_sensitivity_comparison(prefix_path, ir_metric) # used for IRJ
+ # cols = corrs_df.mean().sort_values().index
+ # corrs_df = corrs_df[cols]
+ # sns.pointplot(data=corrs_df, ci=95, n_boot=100, join=False)
+ # plt.show()
+ # prefix = prefix_path.rsplit('/', maxsplit=1)[1]
+ # s_inter_topic_df = construct_inter_sampled_to_intra_df(
+ # add_topic_to_qdf(read_eval_df(prefix_path, ir_metric)).set_index(['topic', 'qid']),
+ # read_prediction_files(prefix_path), sim_df)
+ # s_inter_topic_df.to_pickle(f'{prefix}_inter_sampled_topic_pairwise_{ir_metric}_df.pkl')
+ load_generate_pickle_df(f'{prefix}_inter_sampled_topic_pairwise_{ir_metric}_df.pkl',
+ generate_sampled_inter_topic_df,
+ prefix_path, ir_metric, sim_df)
+ # inter_topic_eval(ir_metric, prefix_path, sim_df)
+ # intra_topic_eval(ir_metric, prefix_path, sim_df)
+
+ load_all_pairs(ir_metric, prefix_path, 'ev_diff')
+ return None
+ # sys.exit()
# eval_df = read_eval_df(prefix_path, ir_metric)
# lgbm_df = read_lgbm_prediction_files(ir_metric, 0.1)
# plot_dist(lgbm_df)
@@ -595,10 +2130,8 @@ def main():
# print(corr_df)
# exit()
# plot_rank_diff_prob(10)
- test_eval_measures(ir_metric, title_only=False, pct=True)
- # one_way_anova()
+ # test_eval_measures(ir_metric, title_only=False, pct=True)
# plot_hard_queries(prefix_path, ir_metric)
- exit()
data_df, threshold = generate_data_df(prefix_path, ir_metric, quantile_threshold=0.3)
logger.info(f'The labeling threshold was set to {threshold} {ir_metric}')
data_df.to_pickle('data/data_df.pkl')
@@ -621,19 +2154,47 @@ def main():
if __name__ == '__main__':
- PreRetPredictors = {'scq', 'avg-scq', 'max-scq', 'var', 'avg-var', 'max-var', 'max-idf', 'avg-idf'}
- PostRetPredictors = {'clarity', 'smv', 'nqc', 'wig', 'uef-clarity', 'uef-smv', 'uef-nqc', 'uef-wig'}
+ PreRetPredictors = ['scq', 'avg-scq', 'max-scq', 'var', 'avg-var', 'max-var', 'avg-idf', 'max-idf']
+ PostRetPredictors = ['clarity', 'smv', 'nqc', 'wig', 'qf', 'uef-clarity', 'uef-smv', 'uef-nqc', 'uef-wig', 'uef-qf']
LatexMacros = {'scq': '\\Scq', 'avg-scq': '\\avgScq', 'max-scq': '\\maxScq', 'var': '\\Var', 'avg-var': '\\avgVar',
'max-var': '\\maxVar', 'max-idf': '\\maxIDF', 'avg-idf': '\\avgIDF',
'clarity': '\\clarity', 'smv': '\\smv', 'nqc': '\\nqc', 'wig': '\\wig',
'uef-clarity': '\\uef{\\clarity}', 'uef-smv': '\\uef{\\smv}', 'uef-nqc': '\\uef{\\nqc}',
- 'uef-wig': '\\uef{\\wig}'}
+ 'uef-wig': '\\uef{\\wig}', 'qf': '\\qf', 'uef-qf': '\\uef{\\qf}'}
PlotNames = {'scq': 'SCQ', 'avg-scq': 'AvgSCQ', 'max-scq': 'MaxSCQ', 'var': 'SumVAR', 'avg-var': 'AvgVAR',
'max-var': 'MaxVAR', 'max-idf': 'MaxIDF', 'avg-idf': 'AvgIDF', 'clarity': 'Clarity', 'smv': 'SMV',
- 'nqc': 'NQC', 'wig': 'WIG', 'uef-clarity': 'UEF(Clarity)', 'uef-smv': 'UEF(SMV)',
- 'uef-nqc': 'UEF(NQC)', 'uef-wig': 'UEF(WIG)'}
- with open('duplicated_qids.txt') as f:
- DUPLICATED_QIDS = {line.rstrip('\n') for line in f}
+ 'nqc': 'NQC', 'wig': 'WIG', 'qf': 'QF', 'uef-clarity': 'UEF(Clarity)', 'uef-smv': 'UEF(SMV)',
+ 'uef-nqc': 'UEF(NQC)', 'uef-wig': 'UEF(WIG)', 'uef-qf': 'UEF(QF)', 'ap@1000': 'AP',
+ 'ndcg@10': 'nDCG@10'}
+ cm = 1 / 2.54 # centimeters in inches
+ # These settings should match the font used in LaTeX
+
+ # seaborn_setup()
+
+ fmt = {
+ "font.family": "Fira Sans",
+ # "font.family": ["Century Schoolbook Std", "Linux Libertine O", "serif", 'sans-serif'],
+ "font.serif": "Fira",
+ # "font.serif": ["New Century Schoolbook", "Century Schoolbook L", "Century Schoolbook Std"],
+ # 'font.size': 16,
+ 'font.size': 11,
+ # "font.sans-serif": "Linux Biolinum",
+ 'figure.facecolor': (0.98, 0.98, 0.98),
+ 'text.color': '#23373b',
+ 'axes.labelcolor': '#23373b',
+ 'figure.dpi': 300,
+ 'savefig.dpi': 300,
+ # 'figure.figsize': (8, 4.5),
+ 'legend.borderaxespad': 2,
+ # "axes.labelpad": 20.0
+ "axes.labelpad": 15
+ }
+ plt.rcParams.update(fmt)
+
+ PLOTS_COL_WRAP = 6
+
+ with open('qpptk/duplicated_qids.txt') as f:
+ ROBUST_DUPLICATED_QIDS = {line.rstrip('\n') for line in f}
logger = Config.get_logger()
results_dir = Config.RESULTS_DIR
main()
diff --git a/code/qpptk/qpptk/global_manager.py b/code/qpptk/qpptk/global_manager.py
index 6215e53..6307b1d 100644
--- a/code/qpptk/qpptk/global_manager.py
+++ b/code/qpptk/qpptk/global_manager.py
@@ -1,24 +1,34 @@
import multiprocessing as mp
+from functools import partial
import pandas as pd
+import syct
from syct import timer
-from qpptk import Config, IndexText, IndexDB, QueryParserText, QueryParserCiff, LocalManagerRetrieval, parse_index_file, \
- IndexCiff, add_topic_to_qdf, LocalManagerPredictorPre, LocalManagerPredictorPost
+from qpptk import Config, IndexText, IndexDB, QueryParserText, QueryParserCiff, LocalManagerRetrieval, \
+ add_topic_to_qdf, LocalManagerPredictorPre, LocalManagerPredictorPost, IndexTerrier, \
+ ensure_dir
logger = Config.logger
+TREC_RES_COLUMNS = ['qid', 'iteration', 'docNo', 'rank', 'docScore', 'method']
def init_proc(*args):
+ kwargs = dict(args)
global index
global queries
global results_df
- index = args[0]
- queries = args[1]
- results_df = args[2] if len(args) > 2 else None
+ if callable(kwargs.get('index')):
+ index = kwargs.get('index')()
+ else:
+ index = kwargs.get('index')
+ queries = kwargs.get('queries')
+ results_df = kwargs.get('results_df')
+ ensure_dir(f'{Config.RESULTS_DIR}/temp/{index}', create_if_not=True)
def run_pre_prediction_process(qid):
+ timer = syct.Timer(f'QID: {qid}', logger=logger)
process = LocalManagerPredictorPre(index_obj=index, query_obj=queries, qid=qid)
max_idf = process.calc_max_idf()
avg_idf = process.calc_avg_idf()
@@ -28,12 +38,14 @@ def run_pre_prediction_process(qid):
var = process.calc_var()
avg_var = process.calc_avg_var()
max_var = process.calc_max_var()
- logger.debug(qid + ' finished')
+ # logger.debug(qid + ' finished')
+ timer.stop()
return {'qid': qid, 'max-idf': max_idf, 'avg-idf': avg_idf, 'scq': scq, 'max-scq': max_scq, 'avg-scq': avg_scq,
'var': var, 'max-var': max_var, 'avg-var': avg_var}
def run_post_prediction_process(qid):
+ timer = syct.Timer(f'QID: {qid}', logger=logger)
process = LocalManagerPredictorPost(index_obj=index, query_obj=queries, results_df=results_df, qid=qid)
wig = process.calc_wig(Config.WIG_LIST_SIZE)
nqc = process.calc_nqc(Config.NQC_LIST_SIZE)
@@ -41,97 +53,135 @@ def run_post_prediction_process(qid):
ret_process = LocalManagerRetrieval(index_obj=index, query_obj=queries, qid=qid)
results_vec = results_df.loc[qid, ['docNo', 'docScore']].reset_index(drop=True).values
- p_w_rm = ret_process.generate_rm(results_vec[:Config.CLARITY_LIST_SIZE])
- clarity_list_size = min(Config.CLARITY_FB_TERMS, len(p_w_rm['term_id']))
- if clarity_list_size < Config.CLARITY_FB_TERMS:
- logger.warn(f'Query-{qid}: The RM passed to Clarity had less terms than clarity_list_size parameter')
- clarity = process.calc_clarity(p_w_rm=p_w_rm[:clarity_list_size])
-
- re_ranked_df = run_rm_rerank_retrieval_process(qid)
-
- uef_wig = process.calc_uef(Config.WORKING_SET_SIZE, re_ranked_df.set_index('qid'), wig)
- uef_nqc = process.calc_uef(Config.WORKING_SET_SIZE, re_ranked_df.set_index('qid'), nqc)
- uef_smv = process.calc_uef(Config.WORKING_SET_SIZE, re_ranked_df.set_index('qid'), smv)
- uef_clarity = process.calc_uef(Config.WORKING_SET_SIZE, re_ranked_df.set_index('qid'), clarity)
- logger.debug(qid + ' finished')
- return {'qid': qid, 'wig': wig, 'nqc': nqc, 'smv': smv, 'clarity': clarity, 'uef-wig': uef_wig, 'uef-nqc': uef_nqc,
- 'uef-smv': uef_smv, 'uef-clarity': uef_clarity}
-
-
-def _run_multiprocess_sync(func, tasks, n_proc, *init_args):
- with mp.Pool(processes=n_proc, initializer=init_proc, initargs=init_args) as pool:
+ c_p_w_rm = ret_process.generate_rm(results_vec[:Config.CLARITY_LIST_SIZE])
+ # if Config.QF_LIST_SIZE == Config.CLARITY_LIST_SIZE:
+ # q_p_w_rm = c_p_w_rm
+ # else:
+ # q_p_w_rm = ret_process.generate_rm(results_vec[:Config.QF_LIST_SIZE])
+ # if Config.UEF_LIST_SIZE == Config.CLARITY_LIST_SIZE:
+ # u_p_w_rm = c_p_w_rm
+ # elif Config.UEF_LIST_SIZE == Config.QF_LIST_SIZE:
+ # u_p_w_rm = q_p_w_rm
+ # else:
+ # u_p_w_rm = ret_process.generate_rm(results_vec[:Config.UEF_LIST_SIZE])
+
+ clarity_terms_size = min(Config.CLARITY_FB_TERMS, len(c_p_w_rm['term_id']))
+ if clarity_terms_size < Config.CLARITY_FB_TERMS:
+ logger.warn(f'Query-{qid}: The RM passed to Clarity had less terms than clarity_list_size parameter')
+ clarity = process.calc_clarity(p_w_rm=c_p_w_rm[:clarity_terms_size])
+
+ # rm_ranked_df, _ = ret_process.run_rm_retrieval(initial_set_docs=results_vec,
+ # _sorted_rm_terms=q_p_w_rm[:Config.QF_FB_TERMS])
+ # _df = pd.DataFrame.from_records(rm_ranked_df, columns=['docNo', 'docScore'])
+ # rm_df = _df.assign(qid=qid, iteration='Q0', rank=range(1, len(rm_ranked_df) + 1), method='RM')[TREC_RES_COLUMNS]
+ # qf = process.calc_qf(Config.QF_OVERLAP_SIZE, rm_df)
+ #
+ # rm_re_ranked_df, _ = ret_process.run_rm_retrieval(ranking_set_docs=results_vec[:Config.UEF_RANKING_SIZE],
+ # initial_set_docs=results_vec,
+ # _sorted_rm_terms=u_p_w_rm[:Config.UEF_FB_TERMS])
+ # _df = pd.DataFrame.from_records(rm_re_ranked_df, columns=['docNo', 'docScore'])
+ # re_ranked_df = _df.assign(qid=qid, iteration='Q0', rank=range(1, len(rm_re_ranked_df) + 1),
+ # method='RM')[TREC_RES_COLUMNS]
+ # uef_wig = process.calc_uef(Config.UEF_RANKING_SIZE, re_ranked_df.set_index('qid'), wig)
+ # uef_nqc = process.calc_uef(Config.UEF_RANKING_SIZE, re_ranked_df.set_index('qid'), nqc)
+ # uef_smv = process.calc_uef(Config.UEF_RANKING_SIZE, re_ranked_df.set_index('qid'), smv)
+ # uef_clarity = process.calc_uef(Config.UEF_RANKING_SIZE, re_ranked_df.set_index('qid'), clarity)
+ # uef_qf = process.calc_uef(Config.UEF_RANKING_SIZE, re_ranked_df.set_index('qid'), qf)
+
+ timer.stop()
+ # return {'qid': qid, f'wig+{Config.WIG_LIST_SIZE}': wig, f'nqc+{Config.NQC_LIST_SIZE}': nqc,
+ # f'smv+{Config.SMV_LIST_SIZE}': smv, f'clarity+{Config.CLARITY_LIST_SIZE}+{clarity_terms_size}': clarity,
+ # f'qf+{Config.QF_LIST_SIZE}+{Config.QF_OVERLAP_SIZE}': qf,
+ # f'uef+{Config.UEF_LIST_SIZE}+{Config.UEF_RANKING_SIZE}-wig+{Config.WIG_LIST_SIZE}': uef_wig,
+ # f'uef+{Config.UEF_LIST_SIZE}+{Config.UEF_RANKING_SIZE}-nqc+{Config.NQC_LIST_SIZE}': uef_nqc,
+ # f'uef+{Config.UEF_LIST_SIZE}+{Config.UEF_RANKING_SIZE}-smv+{Config.SMV_LIST_SIZE}': uef_smv,
+ # f'uef+{Config.UEF_LIST_SIZE}+{Config.UEF_RANKING_SIZE}-clarity+{Config.CLARITY_LIST_SIZE}+{clarity_terms_size}': uef_clarity,
+ # f'uef+{Config.UEF_LIST_SIZE}+{Config.UEF_RANKING_SIZE}-qf+{Config.QF_LIST_SIZE}+{Config.QF_FB_TERMS}+{Config.QF_OVERLAP_SIZE}': uef_qf}
+ return {'qid': qid, f'wig+{Config.WIG_LIST_SIZE}': wig, f'nqc+{Config.NQC_LIST_SIZE}': nqc,
+ f'smv+{Config.SMV_LIST_SIZE}': smv, f'clarity+{Config.CLARITY_LIST_SIZE}+{Config.CLARITY_FB_TERMS}': clarity}
+
+
+def _run_multiprocess_sync(func, tasks, n_proc, **init_kwargs):
+ with mp.Pool(processes=n_proc, initializer=init_proc, initargs=init_kwargs.items()) as pool:
+ # result = pool.map(func, tasks, chunksize=len(tasks) // n_proc)
result = pool.map(func, tasks)
return result
+# @timer(info)
def pre_ret_prediction_full(qids, index, queries, n_proc=Config.N_PROC):
- # result = {}
- # for qid in qids:
- # result[qid] = run_prediction_process(qid, index, queries)
- # df = pd.DataFrame.from_dict(result, orient='index')
- # df.index = df.index.rename('qid')
- result = _run_multiprocess_sync(run_pre_prediction_process, qids, n_proc, index, queries)
+ result = _run_multiprocess_sync(run_pre_prediction_process, qids, n_proc, index=index, queries=queries)
df = pd.DataFrame(result)
logger.debug(df)
- return add_topic_to_qdf(df).set_index(['topic', 'qid'])
+ return add_topic_to_qdf(df)
+# @timer(info)
def post_ret_prediction_full(qids, index, queries, results_df, n_proc=Config.N_PROC):
- result = _run_multiprocess_sync(run_post_prediction_process, qids, n_proc, index, queries, results_df)
+ result = _run_multiprocess_sync(run_post_prediction_process, qids, n_proc, index=index, queries=queries,
+ results_df=results_df)
df = pd.DataFrame(result)
logger.debug(df)
- return add_topic_to_qdf(df).set_index(['topic', 'qid'])
+ return add_topic_to_qdf(df)
-@timer
+# @timer # TODO: add debug level, and should add debugging each qid with time to a log file
def run_ql_retrieval_process(qid):
- columns = ['qid', 'iteration', 'docNo', 'rank', 'docScore', 'method']
+ timer = syct.Timer(f'QID: {qid}', logger=logger)
process = LocalManagerRetrieval(index_obj=index, query_obj=queries, qid=qid)
result = process.run_ql_retrieval()
- logger.debug(qid + ' finished')
+ timer.stop()
+ # logger.debug(qid + ' finished')
df = pd.DataFrame.from_records(result, columns=['docNo', 'docScore'])
- return df.assign(qid=qid, iteration='Q0', rank=range(1, len(result) + 1), method='QL')[columns]
+ result_df = df.assign(qid=qid, iteration='Q0', rank=range(1, len(result) + 1), method='QL')[TREC_RES_COLUMNS]
+ result_df.to_pickle(f'{Config.RESULTS_DIR}/temp/{index}/{qid}_QL.res.pkl')
+ return result_df
-@timer
-def run_rm_retrieval_process(qid):
- columns = ['qid', 'iteration', 'docNo', 'rank', 'docScore', 'method']
+@timer # TODO: add debug level
+def run_rm_retrieval_process(qid, return_rm=False, __sorted_rm_terms=None):
+ timer = syct.Timer(f'QID: {qid}', logger=logger)
process = LocalManagerRetrieval(index_obj=index, query_obj=queries, qid=qid)
- result = process.run_rm_retrieval()
+ result, p_w_rm = process.run_rm_retrieval()
logger.debug(qid + ' finished')
df = pd.DataFrame.from_records(result, columns=['docNo', 'docScore'])
- return df.assign(qid=qid, iteration='Q0', rank=range(1, len(result) + 1), method='RM')[columns]
+ res_df = df.assign(qid=qid, iteration='Q0', rank=range(1, len(result) + 1), method='RM')[TREC_RES_COLUMNS]
+ timer.stop()
+ if return_rm:
+ return res_df, p_w_rm
+ else:
+ return res_df
-@timer
-def run_rm_rerank_retrieval_process(qid, return_rm=False):
- columns = ['qid', 'iteration', 'docNo', 'rank', 'docScore', 'method']
+@timer # TODO: add debug level
+def run_rm_rerank_retrieval_process(qid, ranking_set_docs=None, return_rm=False, __sorted_rm_terms=None):
+ timer = syct.Timer(f'QID: {qid}', logger=logger)
process = LocalManagerRetrieval(index_obj=index, query_obj=queries, qid=qid)
- results_vec = None if results_df is None else results_df.loc[qid, ['docNo', 'docScore']].reset_index(
- drop=True).values
+ results_vec = ranking_set_docs if ranking_set_docs is not None else results_df.loc[
+ qid, ['docNo', 'docScore']].reset_index(drop=True).values
if Config.WORKING_SET_SIZE:
results_vec = results_vec[:Config.WORKING_SET_SIZE]
- result, p_w_rm = process.run_rm_retrieval(re_rank_ql=True, working_set_docs=results_vec)
+ result, p_w_rm = process.run_rm_retrieval(ranking_set_docs=results_vec)
logger.debug(qid + ' finished')
df = pd.DataFrame.from_records(result, columns=['docNo', 'docScore'])
- res_df = df.assign(qid=qid, iteration='Q0', rank=range(1, len(result) + 1), method='QlRm')[columns]
+ res_df = df.assign(qid=qid, iteration='Q0', rank=range(1, len(result) + 1), method='QlRm')[TREC_RES_COLUMNS]
+ timer.stop()
if return_rm:
return res_df, p_w_rm
else:
return res_df
+# TODO: add @time(info)
def retrieval_full(qids, index, queries, n_proc=Config.N_PROC, method='ql', results_df=None):
- # init_proc(index, queries)
- # for qid in qids:
- # run_retrieval_process(qid)
if method == 'ql':
- result = _run_multiprocess_sync(run_ql_retrieval_process, qids, n_proc, index, queries)
+ result = _run_multiprocess_sync(run_ql_retrieval_process, qids, n_proc, index=index, queries=queries)
elif method == 'rm':
- result = _run_multiprocess_sync(run_rm_retrieval_process, qids, n_proc, index, queries)
+ result = _run_multiprocess_sync(run_rm_retrieval_process, qids, n_proc, index=index, queries=queries)
elif method == 'rm_rerank':
- result = _run_multiprocess_sync(run_rm_rerank_retrieval_process, qids, n_proc, index, queries, results_df)
+ result = _run_multiprocess_sync(run_rm_rerank_retrieval_process, qids, n_proc, index=index, queries=queries,
+ results_df=results_df)
else:
logger.warn(f'Unknown method, choose between [ql, rm, rm_rerank]')
return None
@@ -140,44 +190,27 @@ def retrieval_full(qids, index, queries, n_proc=Config.N_PROC, method='ql', resu
return df
-@timer
-def initialize_ciff_index(ciff_index):
- header, terms_dict, doc_records = parse_index_file(ciff_index)
- return IndexCiff(header, ciff_index, terms_dict, doc_records)
-
-
-@timer
+@timer # TODO: add debug level
def initialize_text_index(text_inv, dict_txt, doc_lens, doc_names, index_globals):
return IndexText(text_inverted=text_inv, terms_dict=dict_txt, index_global=index_globals, document_lengths=doc_lens,
document_names=doc_names)
-@timer
+@timer # TODO: add debug level
def initialize_db_index(db_dir):
return IndexDB(index_db_dir=db_dir)
-@timer
+@timer # TODO: add debug level
+def initialize_terrier_index(terrier_index_dir, **kwargs):
+ return partial(IndexTerrier, terrier_index_dir=terrier_index_dir, **kwargs)
+
+
+@timer # TODO: add debug level
def initialize_ciff_queries(queries_file):
return QueryParserCiff(queries_file)
-@timer
+@timer # TODO: add debug level
def initialize_text_queries(queries_file):
return QueryParserText(queries_file)
-
-# @timer
-# def main():
-# index = initialize_ciff_index(CIFF_INDEX)
-# # index = initialize_text_index(*Config.set_dump_paths(INDEX_DIR))
-# # queries = initialize_ciff_queries(QUERIES_FILE)
-# queries = initialize_text_queries(QUERIES_FILE)
-# qids = queries.get_query_ids()
-# # result = [run_retrieval_process(qids[1], index, queries)]
-# # retrieval_full(qids, index, queries)
-# prediction_full(qids, index, queries)
-#
-#
-# if __name__ == '__main__':
-# main()
-# # test()
diff --git a/code/qpptk/qpptk/load_ciff_index.py b/code/qpptk/qpptk/load_ciff_index.py
index 7558af4..44a5581 100644
--- a/code/qpptk/qpptk/load_ciff_index.py
+++ b/code/qpptk/qpptk/load_ciff_index.py
@@ -1,7 +1,7 @@
from syct import timer
import qpptk.CommonIndexFileFormat_pb2 as ciff
-from qpptk import TermPosting, Posting, TermRecord, DocRecord, read_message
+from qpptk import TermPosting, Posting, TermRecord, DocRecord, read_message, Config
"""
An index stored in CIFF is a single file comprised of exactly the following:
@@ -10,7 +10,11 @@
- Exactly the number of DocRecord messages specified in the num_doc record field of the Header
"""
-INDEX_CIFF_FILE = "/research/local/olz/ciff_indexes/robust04-Lucene-indri-krovetz.ciff"
+INDEX_CIFF_FILE = "/research/local/olz/ciff_indexes/robust04_Lucene_indri_krovetz.ciff"
+
+# INDEX_CIFF_FILE = "/research/local/olz/ciff_indexes/cw12b/cw12b_Indri_nostop_krovetz.ciff"
+
+logger = Config.logger
def parse_posting_list(posting_list: ciff.PostingsList) -> TermPosting:
@@ -34,6 +38,7 @@ def parse_index_file(index_file):
buf = fp.read()
n = 0
cur_n, header = read_message(buf, n, ciff.Header)
+ print(f'header:\n{header}')
num_postings_lists = header.num_postings_lists
for _ in range(num_postings_lists):
n, _posting_list = read_message(buf, cur_n, ciff.PostingsList)
@@ -55,7 +60,12 @@ def oov(cls, term):
return TermPosting(term, 0, 0, tuple()) # Out of vocabulary terms
def __init__(self, header, index_file, terms_dict, doc_records):
- self.total_terms = header.total_terms_in_collection
+ sum_terms = sum(map(lambda x: x.doc_len, doc_records.values()))
+ if sum_terms != header.total_terms_in_collection:
+ logger.warn(f'total_terms_in_collection stat in the header != sum of all doc_lens')
+ logger.warn(f'header.total_terms_in_collection: {header.total_terms_in_collection}')
+ logger.warn(f'sum of all documents lengths: {sum_terms}')
+ self.total_terms = sum_terms
assert header.total_docs == len(doc_records), f'total docs in header differs from total docs in doc_records'
self.number_of_docs = header.total_docs
with open(index_file, 'rb') as fp:
diff --git a/code/qpptk/qpptk/load_db_index.py b/code/qpptk/qpptk/load_db_index.py
index bcb135f..1d12e40 100644
--- a/code/qpptk/qpptk/load_db_index.py
+++ b/code/qpptk/qpptk/load_db_index.py
@@ -19,6 +19,7 @@ def oov(cls, term):
return TermPosting(term, 0, 0, tuple()) # Out of vocabulary terms
def __init__(self, index_db_dir):
+ ensure_file(os.path.join(index_db_dir, 'data.mdb'))
self.db_env = lmdb.open(index_db_dir, create=False, subdir=True, map_size=2 ** 39, readonly=True, max_dbs=3,
lock=False)
_stats = self.db_env.stat()
diff --git a/code/qpptk/qpptk/load_terrier_index.py b/code/qpptk/qpptk/load_terrier_index.py
new file mode 100644
index 0000000..cfc29d4
--- /dev/null
+++ b/code/qpptk/qpptk/load_terrier_index.py
@@ -0,0 +1,388 @@
+import numpy as np
+import os
+import pyterrier as pt
+from typing import Iterable
+import multiprocessing as mp
+from zlib import crc32
+
+import pickle
+from syct import timer
+from scipy import sparse
+from tqdm import tqdm
+
+from qpptk import TermRecord, TermPosting, Config, msgpack_decode, DocRecord, ensure_file, ensure_dir, pickle_load_obj, \
+ pickle_save_obj, Posting
+
+logger = Config.get_logger()
+
+
+class IndexTerrier:
+ @classmethod
+ def oov(cls, term):
+ return TermPosting(term, 0, 0, tuple()) # Out of vocabulary terms
+
+ def __str__(self):
+ index_name = self.index_dir.rsplit('/', 1)[-1]
+ if hasattr(self, 'partial_terms_hash'):
+ index_name = f'{index_name}_partial-{self.partial_terms_hash}'
+ return str(index_name)
+
+ def __init__(self, terrier_index_dir, partial_terms=None, read_only=True, stats_index_path=None):
+ # TODO: looks like I need to init terrier only if going to generate
+ """
+ The index is loading a Terrier index and several python objects that were generated from the Terrier index.
+ To use it in a subprocess for retrieval first all the python objects should be generated and saved to disk,
+ to generate the objects first time add read_only=False (only in the main process, should not run in parallel)
+ """
+ _generate = not read_only # Added for brevity
+ if mp.parent_process() and _generate:
+ logger.warn("*** The generate attribute in the index is being used in a sub-process. ***")
+ logger.warn("It should be used only in the main process, "
+ "during parallel runs the index should be used as read-only")
+ self.index_dir = ensure_dir(terrier_index_dir)
+ self.stats_index_dir = ensure_dir(stats_index_path if stats_index_path else self.index_dir)
+
+ self.index_stats = self.__load_generate_stats_dict(_generate)
+ self.total_terms = self.index_stats.get('total_terms')
+ self.number_of_docs = self.index_stats.get('number_of_docs')
+ self.unique_terms = self.index_stats.get('unique_terms')
+ logger.debug(f"Vocab size {self.unique_terms}")
+ self.terms_postings_mat = None # row - doc_ids; col - term_ids
+ self.docs_postings_mat = None
+ self.terms_mapping_in_mat = None
+ self.doc_len_vec = None
+ self.doc_name_vec = None
+ self.__terms_cf_vec = None
+ self._zero_len_docs = None
+ self.doc_name_id_dict = None
+ self.terms_records = self.__load_generate_terms_dict(_generate)
+ self.docs_records = self.__load_generate_docs_dict(_generate)
+ if partial_terms is None:
+ self.initialize_full_postings_sparse_mat(_generate)
+ else:
+ self.partial_terms_hash = crc32(''.join(partial_terms).encode())
+ self.initialize_partial_postings_sparse_mat(partial_terms, _generate)
+
+ @property
+ def terms_cf_vec(self) -> np.ndarray:
+ if self.__terms_cf_vec is None:
+ self.__terms_cf_vec = np.array([(v.id, v.cf) for v in self.terms_records.values()],
+ dtype=[('term_id', np.uint32), ('term_cf', np.uint32)])
+ self.__terms_cf_vec.sort(order='term_id')
+ return self.__terms_cf_vec
+
+ def init_pt_index(self):
+ # import and start pyterrier so that it works within tira and outside of tira
+ from tira.third_party_integrations import ensure_pyterrier_is_loaded
+ ensure_pyterrier_is_loaded()
+
+ _index_file = ensure_file(os.path.join(self.index_dir, 'data.properties'))
+ _indexref = pt.IndexRef.of(_index_file)
+ return pt.IndexFactory.of(_indexref)
+
+ def __generate_all_terms_records(self):
+ terms_records = {}
+ logger.info('Generating Terms Records Dict')
+ with tqdm(total=self.unique_terms) as progress:
+ for iterm in self._index.getLexicon():
+ term = iterm.getKey()
+ term_id = iterm.getValue().getTermId()
+ df = iterm.getValue().getDocumentFrequency()
+ cf = iterm.getValue().getFrequency()
+ terms_records[term] = TermRecord(term, term_id, cf, df)
+ progress.update(1)
+ return terms_records
+
+ def __load_generate_stats_dict(self, generate):
+ stats_dict_file = os.path.join(self.stats_index_dir, 'stats_dict.pkl')
+ if generate:
+ _index = self.init_pt_index()
+ _stats = _index.getCollectionStatistics().toString()
+ logger.info(f'Terrier index stats:\n{_stats}')
+ stats_dict = {'total_terms': _index.getCollectionStatistics().getNumberOfTokens(),
+ 'number_of_docs': _index.getCollectionStatistics().getNumberOfDocuments(),
+ 'unique_terms': _index.getCollectionStatistics().getNumberOfUniqueTerms()}
+ pickle_save_obj(stats_dict, stats_dict_file)
+ self._index = _index
+ else:
+ try:
+ stats_dict_file = ensure_file(stats_dict_file)
+ stats_dict = pickle_load_obj(stats_dict_file)
+ logger.info('Terrier index stats:\n' + '\n'.join([f'{k}: {v}' for k, v in stats_dict.items()]))
+ except FileNotFoundError as er:
+ logger.warning(f'The file {stats_dict_file} can\'t be found, pass read_only=False to generate')
+ raise er
+ return stats_dict
+
+ def __load_generate_terms_dict(self, generate):
+ terms_dict_file = os.path.join(self.stats_index_dir, 'terms_dict.pkl')
+ try:
+ terms_dict_file = ensure_file(terms_dict_file)
+ terms_records = pickle_load_obj(terms_dict_file)
+ except FileNotFoundError as er:
+ if generate:
+ terms_records = self.__generate_all_terms_records()
+ pickle_save_obj(terms_records, terms_dict_file)
+ else:
+ logger.warn(f'The file {terms_dict_file} can\'t be found')
+ raise er
+ return terms_records
+
+ def __generate_all_docs_records(self):
+ docs_records = {}
+ logger.info('Generating Docs Records Dict')
+ _doi = self._index.getDocumentIndex()
+ with tqdm(total=self.number_of_docs) as progress:
+ for doc_id in range(_doi.getNumberOfDocuments()):
+ docs_records[doc_id] = DocRecord(doc_id, self._index.getMetaIndex().getItem("docno", doc_id),
+ _doi.getDocumentLength(doc_id))
+ progress.update(1)
+ return docs_records
+
+ def __load_generate_docs_dict(self, generate):
+ docs_records_file = os.path.join(self.stats_index_dir, 'docs_dict.pkl')
+ try:
+ docs_records_file = ensure_file(docs_records_file)
+ docs_records = pickle_load_obj(docs_records_file)
+ except FileNotFoundError as er:
+ if generate:
+ docs_records = self.__generate_all_docs_records()
+ pickle_save_obj(docs_records, docs_records_file)
+ else:
+ logger.warn(f'The file {docs_records_file} can\'t be found')
+ raise er
+ return docs_records
+
+ def get_terms_cf_vec(self, indices=None):
+ return self.terms_cf_vec[indices]
+
+ def get_posting_list(self, term: str) :
+ # Warning to future self, Returning zip object instead of Post()
+ term_id = self.terms_mapping_in_mat.get(term)
+ if term_id is not None:
+ posting = self.terms_postings_mat[:, term_id]
+ return zip(posting.nonzero()[0], posting.data)
+ else:
+ return []
+
+ # def __get_doc_record_db(self, doc_id):
+ def get_doc_record(self, doc_id): # FIXME
+ with self.db_env.begin(db=self.docs_db, write=False) as txn:
+ doc_record = txn.get(str(doc_id).encode())
+ return DocRecord(*msgpack_decode(doc_record))
+
+ # def get_doc_record(self, doc_id) -> DocRecord:
+ # return self.doc_records_cache.setdefault(doc_id, self.__get_doc_record_db(doc_id))
+
+ def get_doc_len(self, doc_id: int) -> int:
+ return self.get_doc_record(doc_id).doc_len
+
+ def get_doc_name(self, doc_id: int) -> str:
+ return self.get_doc_record(doc_id).collection_doc_id
+
+ def get_term_cf(self, term: str) -> int:
+ term_record = self.get_term_record(term)
+ if term_record:
+ return term_record.cf
+ else:
+ return 0
+
+ def get_term_record(self, term: str) -> TermRecord:
+ return self.terms_records.get(term)
+
+ def _generate_doc_len_vector(self): # FIXME
+ # docs_dict = {}
+ # doc_ids = []
+ # doc_names = []
+ # doc_lens = []
+ # zero_len_docs = []
+ doc_ids, doc_names, doc_lens = zip(*self.docs_records.values())
+ doc_len_ar = np.array([*zip(doc_ids, doc_lens)], dtype=[('index', np.uint32), ('doc_len', np.uint32)])
+ doc_name_ar = np.array([*zip(doc_ids, doc_names)], dtype=[('index', np.uint32), ('doc_name', object)])
+ # doc_records = np.array(list(docs_dict.items()), dtype=[('index', np.uint32), ('doc_len', np.uint32)])
+ doc_len_ar.sort(order='index')
+ doc_name_ar.sort(order='index')
+ self.doc_len_vec = doc_len_ar['doc_len']
+ self.doc_name_vec = doc_name_ar['doc_name']
+ # if min(doc_ids) > 0:
+ # doc_ids = np.array(doc_ids) - 1
+ # zero_len_docs = np.array(zero_len_docs) - 1
+ # self._zero_len_docs = np.array(zero_len_docs)
+ self.doc_name_id_dict = dict([*zip(doc_names, doc_ids)])
+ return self.doc_len_vec, self.doc_name_vec, self.doc_name_id_dict
+
+ def get_doc_len_vec(self, indices=None):
+ doc_len = self.doc_len_vec if self.doc_len_vec is not None else self._generate_doc_len_vector()[0]
+ if indices is not None:
+ return doc_len[indices]
+ else:
+ return doc_len
+
+ def get_doc_name_vec(self, indices=None):
+ doc_name = self.doc_name_vec if self.doc_name_vec is not None else self._generate_doc_len_vector()[1]
+ if indices is not None:
+ return doc_name[indices]
+ else:
+ return doc_name
+
+ def get_doc_ids_by_name(self, names_vec):
+ self.get_doc_name_vec()
+ return np.array([self.doc_name_id_dict.get(n) for n in names_vec])
+
+ @timer
+ def initialize_full_postings_sparse_mat(self, generate):
+ terms_postings_mat_file = os.path.join(self.stats_index_dir, f'full_terms_postings_mat.npz')
+ terms_mapping_file = os.path.join(self.stats_index_dir, f'full_terms_mapping.pkl')
+ try:
+ terms_mapping_file = ensure_file(terms_mapping_file)
+ terms_postings_mat_file = ensure_file(terms_postings_mat_file)
+ self.terms_postings_mat = pickle_load_obj(terms_postings_mat_file)
+ self.terms_mapping_in_mat = pickle_load_obj(terms_mapping_file)
+ except FileNotFoundError as ex:
+ if generate:
+ logger.info(f"{terms_mapping_file} or {terms_postings_mat_file} "
+ f"files are missing found, will generate and save new ones")
+ self.terms_postings_mat, self.terms_mapping_in_mat = self._generate_mat_from_terms()
+ sparse.save_npz(terms_postings_mat_file, self.terms_postings_mat)
+ pickle_save_obj(self.terms_mapping_in_mat, terms_mapping_file)
+ else:
+ raise ex
+
+ @timer
+ def initialize_partial_postings_sparse_mat(self, partial_terms, generate): # FIXME
+ terms_postings_mat_file = os.path.join(self.stats_index_dir, f'partial_{self.partial_terms_hash}_postings_mat.npz')
+ terms_mapping_file = os.path.join(self.stats_index_dir, f'partial_{self.partial_terms_hash}_mapping.pkl')
+ try:
+ terms_mapping_file = ensure_file(terms_mapping_file)
+ terms_postings_mat_file = ensure_file(terms_postings_mat_file)
+ self.terms_postings_mat = sparse.load_npz(terms_postings_mat_file)
+ self.terms_mapping_in_mat = pickle_load_obj(terms_mapping_file)
+ except FileNotFoundError as er:
+ if generate:
+ logger.info(f"{terms_mapping_file} or {terms_postings_mat_file} "
+ f"files are missing, will generate and save new ones")
+ self.terms_postings_mat, self.terms_mapping_in_mat = self._generate_partial_mat_from_terms(
+ partial_terms)
+ # logger.info(f"{terms_postings_mat_file} file is missing, will generate and save new one")
+ # self.terms_postings_mat= self._generate_partial_mat_from_terms(partial_terms)
+ sparse.save_npz(terms_postings_mat_file, self.terms_postings_mat)
+ pickle_save_obj(self.terms_mapping_in_mat, terms_mapping_file)
+ else:
+ raise er
+
+ @timer
+ def _generate_mat_from_terms(self): # FIXME
+ terms_mapping = {}
+ reverse_terms_mapping = []
+ row = []
+ col = []
+ data = []
+ lex = self._index.getLexicon()
+ inv = self._index.getInvertedIndex()
+ with tqdm(total=self.unique_terms) as progress:
+ i = 0
+ for iterm in lex:
+ # posting_list = inv.getPostings(iterm.getValue())
+ term = iterm.getKey()
+ df = iterm.getValue().getDocumentFrequency()
+ cf = iterm.getValue().getFrequency()
+ terms_mapping[term] = TermRecord(term, i, cf, df)
+ reverse_terms_mapping.append(term)
+ doc_ids, tf_tuple = zip(*[(p.getId(), p.getFrequency()) for p in inv.getPostings(iterm.getValue())])
+ data.extend(tf_tuple)
+ col.extend([i] * df)
+ row.extend(doc_ids)
+ i += 1
+ progress.update(1)
+ terms_mapping['reverse_mapping'] = reverse_terms_mapping
+ return sparse.csr_matrix((data, (row, col)), shape=(self.number_of_docs, self.unique_terms),
+ dtype=np.uint32), terms_mapping
+
+ @timer
+ def _generate_partial_mat_from_terms(self, terms):
+ terms_mapping = {}
+ # reverse_terms_mapping = []
+ row = []
+ col = []
+ data = []
+ lex = self._index.getLexicon()
+ inv = self._index.getInvertedIndex()
+
+ for term in tqdm(terms):
+ iterm = lex.getLexiconEntry(term)
+ if iterm is None:
+ logger.info(f'The term \"{term}\" is OOV')
+ continue
+ tid = iterm.getTermId()
+ df = iterm.getDocumentFrequency()
+ # cf = iterm.getFrequency()
+ # terms_mapping[term] = TermRecord(term, tid, cf, df)
+ terms_mapping[term] = tid
+ doc_ids, tf_tuple = zip(*[(p.getId(), p.getFrequency()) for p in inv.getPostings(iterm)])
+ data.extend(tf_tuple)
+ col.extend([tid] * df)
+ row.extend(doc_ids)
+ return sparse.csr_matrix((data, (row, col)), shape=(self.number_of_docs, self.unique_terms),
+ dtype=np.uint32), terms_mapping
+
+ @timer
+ def _generate_partial_mat_from_docs(self, docs): # TODO: Implement here the docs index mat
+ docs_mapping = {}
+ # reverse_terms_mapping = []
+ row = []
+ col = []
+ data = []
+ lex = self._index.getLexicon()
+ di = self._index.getDirectIndex()
+ doi = self._index.getDocumentIndex()
+
+ for doc in tqdm(docs):
+ iterm = lex.getLexiconEntry(term)
+ if iterm is None:
+ logger.info(f'The term \"{term}\" is OOV')
+ continue
+ tid = iterm.getTermId()
+ df = iterm.getDocumentFrequency()
+ # cf = iterm.getFrequency()
+ # docs_mapping[term] = TermRecord(term, tid, cf, df)
+ docs_mapping[term] = tid
+ doc_ids, tf_tuple = zip(*[(p.getId(), p.getFrequency()) for p in inv.getPostings(iterm)])
+ data.extend(tf_tuple)
+ col.extend([tid] * df)
+ row.extend(doc_ids)
+ return sparse.csr_matrix((data, (row, col)), shape=(self.number_of_docs, self.unique_terms),
+ dtype=np.uint32)
+
+ def get_mat_by_terms(self, terms: Iterable[str]):
+ """
+ :param terms - iterable of string terms
+ :returns sparse index matrix
+ """
+ # terms_indices = [self.terms_mapping_in_mat[t] for t in terms if t in self.terms_mapping_in_mat]
+ terms_indices = [
+ self.terms_mapping_in_mat[t] if t in self.terms_mapping_in_mat else logger.warn(f'missing posting for {t}')
+ for t in terms]
+ return self.get_mat_by_term_ids(terms_indices)
+
+ def get_mat_by_term_ids(self, terms_indices: Iterable[int]):
+ """
+ :param terms_indices - iterable of terms ids
+ :returns sparse index matrix
+ """
+ doc_terms_mat = self.terms_postings_mat[:, terms_indices]
+ return doc_terms_mat
+
+ def get_mat_by_docs(self, docs):
+ doc_terms_mat = self.terms_postings_mat[docs, :]
+ return doc_terms_mat
+
+
+if __name__ == '__main__':
+ DEV_INDEX = '/research/local/olz/qpptk/dev_index/data.properties'
+ # ROBUST_INDEX = '/research/local/olz/robust_krovetz_nostop_terrier/data.properties'
+ # CW_INDEX = '/research/local/olz/cw12b_krovetz_nostop_terrier/index/krovetz-nostop/data.properties'
+ # index_path = Config.CIFF_INDEX
+ # prefix = index_path.rsplit('/', 1)[-1].replace('.ciff', '')
+ # _db_dir = os.path.join(Config.DB_DIR, prefix)
+ index = IndexTerrier(DEV_INDEX)
+ index.initialize_full_postings_sparse_mat()
diff --git a/code/qpptk/qpptk/nested_cross_validation.py b/code/qpptk/qpptk/nested_cross_validation.py
new file mode 100644
index 0000000..282477c
--- /dev/null
+++ b/code/qpptk/qpptk/nested_cross_validation.py
@@ -0,0 +1,215 @@
+import pandas as pd
+import numpy as np
+from sklearn.pipeline import Pipeline
+from sklearn.preprocessing import StandardScaler
+from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV, cross_val_score, KFold
+from sklearn.metrics import accuracy_score, roc_curve, auc, roc_auc_score, log_loss, SCORERS
+import random
+import matplotlib.pyplot as plt
+import lightgbm as lgb
+from syct import timer
+
+from qpptk import plot_roc
+
+
+class NestedCrossVal:
+ """
+ Implements the nested cross validation methodology.
+ First the data is split in an outer loop to k folds, where each fold serves as a test set single time while all the
+ other folds are used as train data. The test set is used for the final evaluation of the model.
+ Inside the first loop, each train set is split into train validation (a.k.a dev) sets. In the inner loop the
+ validation set is used for parameter optimization, i.e. to find the best parameters for the model. After the best
+ parameters are found the model is then trained over all the train set (including the validation) and evaluated on
+ the test set.
+ The data is over the topics to avoid data leakage, the cost is that it may cause imbalanced data.
+ (over stratified sampling)
+ """
+
+ def __init__(self, data_df):
+ self.full_data = data_df
+
+ @timer
+ def outer_evaluation(self, run_path=''):
+ topics = self.full_data['topic'].unique()
+ test_predictions = []
+ params_res = []
+ features_imp = []
+ kf = KFold(n_splits=10, random_state=321)
+ for train_index, test_index in kf.split(topics):
+ train_df = self.full_data.loc[self.full_data['topic'].isin(topics[train_index])]
+ test_df = self.full_data.loc[self.full_data['topic'].isin(topics[test_index])]
+ print(f'Train:')
+ print_data_summary(train_df)
+ print(f'Test:')
+ print_data_summary(test_df)
+ _predictions, params_df, features_import = self.find_best_params(train_df, test_df)
+ test_predictions.append(pd.Series(index=test_df.index, data=_predictions))
+ params_res.append(params_df)
+ features_imp.append(pd.DataFrame(features_import, index=train_df.drop(['label', 'topic'], axis=1).columns))
+ full_test = pd.concat(test_predictions)
+ full_test.to_pickle(f'full_prediction_set.pkl')
+ full_test.to_csv(f"{run_path}_LGBM.pre", sep=' ', index=True, header=False, float_format="%.4f")
+ df = pd.concat(params_res)
+ df.to_pickle('full_cv_result.pkl')
+ features_df = pd.concat(features_imp).set_index('features')
+ features_df = features_df.groupby('features').mean()
+ features_df.to_pickle('features_importance.pkl')
+ print('The AucRoc after CV is:', roc_auc_score(self.full_data['label'], full_test))
+ plot_roc(self.full_data['label'], full_test, 'LGBM-Predictor')
+ return roc_auc_score(self.full_data['label'], full_test)
+
+ @timer
+ def find_best_params(self, train_df, test_df):
+ estimator = lgb.LGBMClassifier()
+ param_grid = [
+ # {'objective': ['binary'], 'metric': ['auc'], 'boosting_type': ['dart'], 'is_unbalance': [True],
+ # 'num_leaves': [5], 'min_data_in_leaf': [5], 'lambda_l1': [0.7], 'lambda_l2': [0.7],
+ # 'feature_fraction': [0.0625], 'bagging_fraction': [0.25, 0.5, 0.75], 'bagging_freq': [1, 5, 10]}
+ {'objective': ['binary'], 'boosting_type': ['dart'],
+ 'metric': ['auc'],
+ 'bagging_fraction': [0.25, 0.5, 0.75],
+ 'num_leaves': [5],
+ 'learning_rate': [0.05, 0.1],
+ 'feature_fraction': [0.0625, 0.125, 0.25],
+ # 'feature_fraction': [0.0625, 0.125],
+ 'bagging_freq': [1],
+ 'lambda_l1': [0.75], # helps in feature selection - minimizes to median of data
+ 'lambda_l2': [0.75], # minimizes the mean of data
+ 'is_unbalance': [True],
+ 'num_iterations': [50, 100, 200, 300],
+ 'min_data_in_leaf': [5], 'verbose': [-1]},
+ # {'objective': ['binary'], 'boosting_type': ['dart'],
+ # 'metric': ['auc'],
+ # 'num_leaves': [5],
+ # 'learning_rate': [0.01, 0.05, 0.1],
+ # 'feature_fraction': [0.0625, 0.125, 0.25],
+ # # 'feature_fraction': [0.0625, 0.125],
+ # 'bagging_freq': [0],
+ # 'lambda_l1': [0.75], # helps in feature selection - minimizes to median of data
+ # 'lambda_l2': [0.75], # minimizes the mean of data
+ # 'is_unbalance': [True],
+ # 'num_iterations': [100, 150, 200],
+ # 'min_data_in_leaf': [5], 'verbose': [-1]}
+ ]
+ # score function should be specified here (AUC)
+ # cv = None - default value 5-folds
+ clf = GridSearchCV(estimator, param_grid, n_jobs=40, refit=True, cv=3, verbose=1, error_score='raise',
+ scoring='roc_auc', return_train_score=True)
+ fim = clf.fit(train_df.drop(['label', 'topic'], axis=1), train_df['label'])
+ _df = pd.DataFrame(fim.cv_results_)
+ df = _df.sort_values('mean_test_score', ascending=False).head(10)
+ param_cols = df.columns[df.columns.str.startswith('param_')].tolist()
+ # df.loc[:, param_cols + ['mean_test_score']].to_pickle('cv_results.pkl')
+ # predictions = fim.predict_proba(test_df.drop(['topic', 'label'], axis=1))[:, 1]
+ # print('CV model AUC of ROC of prediction is:', roc_auc_score(test_df['label'], predictions))
+ # print(f'Logloss = {log_loss(test_df["label"], predictions): 0.2f}')
+ # print(fim.best_estimator_)
+ # print(fim.best_params_)
+ # print(fim.best_score_)
+ _best_params = fim.best_params_
+ _best_params.update(verbose=4, num_threads=10)
+ # _best_params.update(num_threads=10)
+ # create dataset for lightgbm
+ lgb_train = lgb.Dataset(train_df.drop(['label', 'topic'], axis=1), train_df['label'])
+ gbm = lgb.train(_best_params, lgb_train)
+ # print('Starting predicting...')
+ # predict
+ predictions = gbm.predict(test_df.drop(['topic', 'label'], axis=1))
+ # assert (fim.best_estimator_.feature_importances_ == gbm.feature_importance('split')).all(), \
+ # f'{fim.best_estimator_.feature_importances_}\n {gbm.feature_importance("split")}'
+ # eval
+ # print('The AUC of ROC of prediction is:', roc_auc_score(test_df['label'], y_pred))
+ # try:
+ # print('The type of best_est ', type(best_est))
+ # # save model to file
+ # gbm.save_model('model.txt')
+ # except AttributeError as er:
+ # print(er)
+ # lgb.plot_importance(gbm)
+ # lgb.plot_split_value_histogram(gbm, 'max-var')
+ # plt.show()
+ # exit()
+ return predictions, df.loc[:, param_cols + ['mean_test_score', 'mean_train_score']], {
+ 'features': gbm.feature_name(), 'split': gbm.feature_importance('split'),
+ 'gain': gbm.feature_importance('gain')}
+
+
+def print_best_params(n=15):
+ cv_res = 'full_cv_result.pkl'
+ _df = pd.read_pickle(cv_res)
+ df = _df.sort_values('mean_test_score', ascending=False).head(n)
+ for col in df.columns:
+ print(col)
+ if col.endswith('score'):
+ continue
+ else:
+ print(df.groupby(col).count())
+ else:
+ print(df[['mean_test_score', 'mean_train_score']])
+ print(f'max score: {df["mean_test_score"].max()}')
+
+
+def print_data_summary(data_df=None):
+ data_df = pd.read_pickle('data/data_df.pkl') if data_df is None else data_df
+ print(f"Number of positive samples: {data_df['label'].sum()}")
+ print(f"Ratio of positive samples: {data_df['label'].sum() / len(data_df)}")
+
+
+def plot_feature_importance():
+ features_df = pd.read_pickle('features_importance.pkl')
+
+ by_split = features_df['split'].sort_values()
+ fig, ax = plt.subplots()
+ ylocs = np.arange(len(by_split))
+ ax.barh(ylocs, by_split, align='center')
+ ax.set_yticks(ylocs)
+ ax.set_yticklabels(by_split.index)
+ ax.set_title('Feature importance by split')
+ # plt.show()
+ fig.savefig('feat_split_imp_ndcg_03.eps')
+
+ by_gain = features_df['gain'].sort_values()
+ fig, ax = plt.subplots()
+ ylocs = np.arange(len(by_gain))
+ ax.barh(ylocs, by_gain, align='center')
+ ax.set_yticks(ylocs)
+ ax.set_yticklabels(by_gain.index)
+ ax.set_title('Feature importance by gain')
+ # plt.show()
+ fig.savefig('feat_gain_imp_ndcg_03.eps')
+
+
+if __name__ == '__main__':
+ plt.set_loglevel("info")
+ # cols = ['param_bagging_freq', 'param_boosting_type', 'param_feature_fraction',
+ # 'param_is_unbalance', 'param_learning_rate', 'param_max_bin',
+ # 'param_metric', 'param_min_data_in_leaf', 'param_num_iterations',
+ # 'param_num_leaves', 'param_objective', 'param_reg_alpha',
+ # 'param_reg_lambda', 'param_subsample', 'param_subsample_for_bin',
+ # 'param_verbose', 'params', 'split0_test_score', 'split1_test_score',
+ # 'split2_test_score', 'split3_test_score', 'split4_test_score',
+ # 'mean_test_score', 'std_test_score', 'rank_test_score', 'mean_train_score']
+ # cv_res = 'cv_results.pkl'
+ # cv_res = 'full_cv_result.pkl'
+ # df = pd.read_pickle(cv_res)
+ # asd = 1
+ z = NestedCrossVal(pd.read_pickle('data/data_df.pkl'))
+ z.outer_evaluation()
+ print_best_params(25)
+ print_data_summary()
+ plot_feature_importance()
+
+"""
+Best test AUC 0.791345
+{'bagging_freq': 20, 'boosting_type': 'gbdt', 'feature_fraction': 0.25,
+'is_training_metric': False, 'is_unbalance': False, 'learning_rate': 0.1, 'max_bin': 511, 'metric': 'auc',
+'min_data_in_leaf': 10, 'n_estimators': 10, 'num_iterations': 50, 'num_leaves': 10, 'objective': 'binary',
+'reg_alpha': 0.75, 'reg_lambda': 0.75, 'subsample': 0.8, 'subsample_for_bin': 100000, 'verbose': 1}
+
+Best dart test AUC 0.785872
+{'bagging_freq': 20, 'boosting_type': 'dart', 'feature_fraction': 0.25, 'importance_type': 'split',
+'is_training_metric': False, 'is_unbalance': False, 'learning_rate': 0.1, 'max_bin': 511, 'metric': 'auc',
+'min_data_in_leaf': 10, 'n_estimators': 10, 'num_iterations': 50, 'num_leaves': 31, 'objective': 'binary',
+'reg_alpha': 0.75, 'reg_lambda': 0.75, 'subsample': 0.8, 'subsample_for_bin': 100000, 'verbose': 1}
+
+"""
diff --git a/code/qpptk/qpptk/parse_queries.py b/code/qpptk/qpptk/parse_queries.py
index 67259fa..425e0f6 100644
--- a/code/qpptk/qpptk/parse_queries.py
+++ b/code/qpptk/qpptk/parse_queries.py
@@ -1,10 +1,13 @@
from collections import defaultdict
+import numpy as np
import pandas as pd
from syct import timer
from lxml import etree
+import os
+from sklearn.cluster import KMeans
-import qpptk.CommonIndexFileFormat_pb2 as ciff
+# import qpptk.CommonIndexFileFormat_pb2 as ciff
from qpptk import Config, read_message, DocRecord, transform_list_to_counts_dict, add_topic_to_qdf
@@ -40,10 +43,17 @@ def __init__(self, queries_file, **kwargs):
header, queries_dict, query_records = parse_ciff_queries_file(queries_file)
self.queries_dict = queries_dict
self._rename_queries_to_qid(query_records)
- filter_queries_file: list = kwargs.get('filter_queries_file', [])
- if filter_queries_file:
+ filter_queries_file: list = kwargs.get('filter_queries_file', '')
+ drop_queries_file: str = kwargs.get('drop_queries_file', '')
+ drop_duplicate_queries: bool = kwargs.get('drop_duplicate_queries', True) # TODO: implement this
+
+ if bool(filter_queries_file):
self.filter_queries = QueryParserText(filter_queries_file).get_query_ids()
self._filter_queries()
+ if bool(drop_queries_file):
+ with open(drop_queries_file, 'r') as _f:
+ self.drop_queries = _f.read().splitlines()
+ self._drop_queries()
def _rename_queries_to_qid(self, query_records):
"""
@@ -57,6 +67,13 @@ def _filter_queries(self):
filter_qids = set(self.filter_queries).intersection(self.queries_dict.keys())
self.queries_dict = {qid: self.queries_dict.get(qid) for qid in filter_qids}
+ def _drop_queries(self):
+ for qid in self.drop_queries:
+ try:
+ del self.queries_dict[qid]
+ except KeyError:
+ pass
+
def get_query(self, qid: str) -> dict:
"""
get the query dict for a given qid if it exists, otherwise returns None
@@ -72,29 +89,184 @@ def get_query_ids(self) -> list:
"""
return sorted(self.queries_dict.keys())
+ def get_queries_df(self):
+ return pd.DataFrame.from_dict(self.queries_dict, orient='index')
+
class QueryParserText:
def __init__(self, queries_txt_file, **kwargs):
self.queries_file = queries_txt_file
self.raw_queries_df = self._read_queries()
self.queries_sr = self._weight_queries()
- filter_queries_file: list = kwargs.get('filter_queries_file', [])
- if filter_queries_file:
+ self.__queries_df = None
+ filter_queries_file: str = kwargs.get('filter_queries_file', '')
+ drop_queries_file: str = kwargs.get('drop_queries_file', '')
+ drop_duplicate_queries: bool = kwargs.get('drop_duplicate_queries', True)
+ clusters: int = kwargs.get('cluster', None)
+ if bool(filter_queries_file):
self.filter_queries = self._read_queries(filter_queries_file).index
self._filter_queries()
+ if bool(drop_queries_file):
+ self.drop_queries = self._read_queries(filter_queries_file).index
+ self._drop_queries()
+ if bool(clusters):
+ self.cluster_queries_by_similarity(clusters)
+ if drop_duplicate_queries:
+ duplicated_qids = self.get_duplicates_bow()
+ self._drop_queries(duplicated_qids)
- def _read_queries(self, queries_file=None):
+ @property
+ def queries_df(self):
+ if self.__queries_df is None:
+ self.__queries_df = pd.DataFrame.from_dict(self.queries_sr.to_dict(), orient='index').rename_axis(
+ index='qid')
+ return self.__queries_df
+
+ def _read_queries(self, queries_file=None): # FIXME: add an adaptation for tsv files
_queries_file = queries_file if queries_file else self.queries_file
with open(_queries_file, 'r') as fp:
- queries = [line.strip().split(' ', maxsplit=1) for line in fp]
+ queries = [line.strip().split(None, maxsplit=1) for line in fp]
return pd.DataFrame(queries, columns=['qid', 'terms']).set_index('qid')
def _weight_queries(self):
- return self.raw_queries_df.terms.str.split().apply(transform_list_to_counts_dict)
+ return self.raw_queries_df.terms.replace('', None).dropna().str.split().apply(transform_list_to_counts_dict)
+
+ def _filter_queries(self):
+ self.queries_sr = self.queries_sr.loc[self.filter_queries]
+
+ def _drop_queries(self, duplicated_qids=None):
+ _duplicated_qids = self.drop_queries if duplicated_qids is None else duplicated_qids
+ self.queries_sr = self.queries_sr.drop(_duplicated_qids)
+
+ def get_duplicates_bow(self):
+ duplicate_qids = set()
+ for topic, _df in add_topic_to_qdf(pd.DataFrame(self.queries_sr)).set_index('qid').groupby('topic')['terms']:
+ try:
+ duplicate_qids.update(_df.loc[_df.duplicated('last')].index)
+ # duplicate_qids.update(set(_df.index).difference(_df.drop_duplicates('last').index))
+ except SystemError as err:
+ _df = add_topic_to_qdf(self.raw_queries_df).set_index('topic').loc[topic].set_index('qid', drop=True)
+ duplicate_qids.update(_df.loc[_df['terms'].str.split().map(sorted).map(tuple).duplicated('last')].index)
+ return duplicate_qids
+
+ # def get_duplicates_bow_new(self):
+ # duplicate_qids = set()
+ # for topic, qids in add_topic_to_qdf(self.raw_queries_df)[['topic', 'qid']].groupby('topic'):
+ # _df = self.queries_df.loc[qids['qid']].dropna(axis=1, how='all')
+ # duplicate_qids.update(_df.loc[_df.duplicated(keep='last')].index)
+ # return duplicate_qids
+
+ def get_duplicates_seq(self):
+ duplicate_qids = set()
+ for topic, _df in add_topic_to_qdf(self.raw_queries_df).set_index('qid').groupby('topic')['terms']:
+ duplicate_qids.update(duplicate_qids.update(_df.loc[_df.duplicated('last')].index))
+ return duplicate_qids
+
+ def get_query(self, qid: str) -> dict:
+ return self.queries_sr.loc[qid]
+
+ def get_query_ids(self) -> list:
+ return self.queries_sr.index.to_numpy()
+
+ def get_queries_df(self):
+ return self.queries_df
+
+ def cluster_queries_by_similarity(self, k=3):
+ """
+ Greedy and simple (not optimal) clustering of queries by topics and similarity
+ """
+ _df = add_topic_to_qdf(self.queries_df)
+ all_topics = set(_df.topic)
+ threshold = len(all_topics) // 3
+ clusters = {i: set() for i in range(k)}
+ i = 0
+ assigned_topics = set()
+ for column in _df.set_index(['topic', 'qid']):
+ _topics = set(_df.loc[_df[column].fillna(False).astype(bool)].topic.to_numpy())
+ if len(clusters[i]) <= threshold or i == k - 1:
+ clusters[i].update(_topics.difference(assigned_topics))
+ else:
+ i += 1
+ clusters[i].update(_topics.difference(assigned_topics))
+ assigned_topics.update(_topics)
+ for i, _topics in clusters.items():
+ qids = _df[['topic', 'qid']].set_index('topic').loc[_topics].sort_index()['qid']
+ self.raw_queries_df.terms.replace('', None).dropna().str.split().apply(' '.join).loc[qids].to_csv(
+ self.queries_file + f'.part-{i}', sep='\t', header=False)
+
+
+class QueryParserJsonl:
+ def __init__(self, queries_jsonl_file, terrier_index, **kwargs):
+ self.queries_file = queries_jsonl_file
+ self.terrier_index = os.path.abspath(terrier_index)
+ self.raw_queries_df = self._read_queries()
+ self.queries_sr = self._weight_queries()
+ self.__queries_df = None
+ filter_queries_file: str = kwargs.get('filter_queries_file', '')
+ drop_queries_file: str = kwargs.get('drop_queries_file', '')
+ drop_duplicate_queries: bool = kwargs.get('drop_duplicate_queries', True)
+ clusters: int = kwargs.get('cluster', None)
+ if bool(filter_queries_file):
+ self.filter_queries = self._read_queries(filter_queries_file).index
+ self._filter_queries()
+ if bool(drop_queries_file):
+ self.drop_queries = self._read_queries(filter_queries_file).index
+ self._drop_queries()
+ if bool(clusters):
+ self.cluster_queries_by_similarity(clusters)
+ if drop_duplicate_queries:
+ duplicated_qids = self.get_duplicates_bow()
+ self._drop_queries(duplicated_qids)
+
+ @property
+ def queries_df(self):
+ if self.__queries_df is None:
+ self.__queries_df = pd.DataFrame.from_dict(self.queries_sr.to_dict(), orient='index').rename_axis(
+ index='qid')
+ return self.__queries_df
+
+ def _read_queries(self, queries_file=None): # FIXME: add an adaptation for tsv files
+ _queries_file = queries_file if queries_file else self.queries_file
+ import pyterrier as pt
+ from tira.third_party_integrations import ensure_pyterrier_is_loaded
+ ensure_pyterrier_is_loaded()
+ from jnius import cast, autoclass
+ index_properties = cast('org.terrier.structures.PropertiesIndex', pt.IndexFactory.of(self.terrier_index)).getProperties().getProperty('termpipelines')
+
+ index_properties = index_properties.split(',')
+ # stopwords automatically handled later because they are oov
+ index_properties = [i for i in index_properties if i.lower() != 'stopwords']
+ if len(index_properties) == 1:
+ print("org.terrier.terms." + index_properties[0])
+ s = autoclass("org.terrier.terms." + index_properties[0])()
+ stemmer = lambda i: s.stem(i.strip()).strip()
+ elif len(index_properties) > 1:
+ raise ValueError('Could not handle ' + str(index_properties))
+ else:
+ stemmer = lambda i: i.strip()
+
+ t = autoclass("org.terrier.indexing.tokenisation.Tokeniser").getTokeniser()
+
+ def tokenize(text):
+ text = t.getTokens(text)
+ return ' '.join([stemmer(i) for i in text])
+
+ ret = pd.read_json(_queries_file, lines=True, dtype=str).rename(columns={'query': 'terms'})[
+ ['qid', 'terms']]
+ ret['terms'] = ret['terms'].apply(tokenize)
+
+ return ret.set_index('qid')
+
+ def _weight_queries(self):
+ return self.raw_queries_df.terms.replace('', None).dropna().str.split().apply(transform_list_to_counts_dict)
def _filter_queries(self):
self.queries_sr = self.queries_sr.loc[self.filter_queries]
+ def _drop_queries(self, duplicated_qids=None):
+ _duplicated_qids = self.drop_queries if duplicated_qids is None else duplicated_qids
+ self.queries_sr = self.queries_sr.drop(_duplicated_qids)
+
def get_duplicates_bow(self):
duplicate_qids = set()
for topic, _df in add_topic_to_qdf(pd.DataFrame(self.queries_sr)).set_index('qid').groupby('topic')['terms']:
@@ -106,6 +278,13 @@ def get_duplicates_bow(self):
duplicate_qids.update(_df.loc[_df['terms'].str.split().map(sorted).map(tuple).duplicated('last')].index)
return duplicate_qids
+ # def get_duplicates_bow_new(self):
+ # duplicate_qids = set()
+ # for topic, qids in add_topic_to_qdf(self.raw_queries_df)[['topic', 'qid']].groupby('topic'):
+ # _df = self.queries_df.loc[qids['qid']].dropna(axis=1, how='all')
+ # duplicate_qids.update(_df.loc[_df.duplicated(keep='last')].index)
+ # return duplicate_qids
+
def get_duplicates_seq(self):
duplicate_qids = set()
for topic, _df in add_topic_to_qdf(self.raw_queries_df).set_index('qid').groupby('topic')['terms']:
@@ -116,7 +295,33 @@ def get_query(self, qid: str) -> dict:
return self.queries_sr.loc[qid]
def get_query_ids(self) -> list:
- return self.queries_sr.index.tolist()
+ return self.queries_sr.index.to_numpy()
+
+ def get_queries_df(self):
+ return self.queries_df
+
+ def cluster_queries_by_similarity(self, k=3):
+ """
+ Greedy and simple (not optimal) clustering of queries by topics and similarity
+ """
+ _df = add_topic_to_qdf(self.queries_df)
+ all_topics = set(_df.topic)
+ threshold = len(all_topics) // 3
+ clusters = {i: set() for i in range(k)}
+ i = 0
+ assigned_topics = set()
+ for column in _df.set_index(['topic', 'qid']):
+ _topics = set(_df.loc[_df[column].fillna(False).astype(bool)].topic.to_numpy())
+ if len(clusters[i]) <= threshold or i == k - 1:
+ clusters[i].update(_topics.difference(assigned_topics))
+ else:
+ i += 1
+ clusters[i].update(_topics.difference(assigned_topics))
+ assigned_topics.update(_topics)
+ for i, _topics in clusters.items():
+ qids = _df[['topic', 'qid']].set_index('topic').loc[_topics].sort_index()['qid']
+ self.raw_queries_df.terms.replace('', None).dropna().str.split().apply(' '.join).loc[qids].to_csv(
+ self.queries_file + f'.part-{i}', sep='\t', header=False)
class QueriesXMLWriter:
diff --git a/code/qpptk/qpptk/post_retrieval_predictors.py b/code/qpptk/qpptk/post_retrieval_predictors.py
index 4eeac13..a9c0b0e 100644
--- a/code/qpptk/qpptk/post_retrieval_predictors.py
+++ b/code/qpptk/qpptk/post_retrieval_predictors.py
@@ -30,7 +30,11 @@ def calc_wig(self, list_size_param):
"""
Y. Zhou and W. B. Croft. Query performance prediction in web search environments
"""
- scores_vec = self.scores_vec[:list_size_param]
+ try:
+ scores_vec = self.scores_vec[:list_size_param]
+ except IndexError as err:
+ print(err)
+ print(self.qid)
return (scores_vec.mean() - self.ql_corpus_score) / np.sqrt(len(self.query))
def calc_nqc(self, list_size_param):
@@ -54,6 +58,17 @@ def calc_clarity(self, p_w_rm):
"""
terms_cf = self.index.get_terms_cf_vec(p_w_rm['term_id'])
_p_w_rm = p_w_rm['term_score'] / p_w_rm['term_score'].sum()
+ corpus_lm = terms_cf['term_cf'] / self.index.total_terms
+ return np.log(_p_w_rm / corpus_lm).dot(_p_w_rm)
+
+ def calc_dfr_info_bo2(self, p_w_rm):
+ # FIXME: Need to construct the RM* based on the top k=(10) documents
+ """
+ Amati Giambattista, Carpineto Claudio and Romano Giovanni.
+ Query Difficulty, Robustness, and Selective Application of Query Expansion
+ """
+ terms_cf = self.index.get_terms_cf_vec(p_w_rm['term_id'])
+ _p_w_rm = p_w_rm['term_score'] / p_w_rm['term_score'].sum()
corpus_lm = np.array([terms_cf, ]) / self.index.total_terms
return np.log(_p_w_rm / corpus_lm).dot(_p_w_rm)[0]
@@ -66,3 +81,11 @@ def calc_uef(self, list_size_param, rm_results_df, predictor_result):
similarity = results_df.loc[self.qid, ['docNo', 'docScore']].set_index('docNo', drop=True).corrwith(
rm_results_df.loc[:, ['docNo', 'docScore']].set_index('docNo', drop=True))[0]
return similarity * predictor_result
+
+ def calc_qf(self, list_size_param, rm_results_df):
+ """
+ Zhou, Yun and Croft, W Bruce. Query Performance Prediction in Web Search Environments.
+ """
+ original_docs_set = set(self.results_df.loc[self.qid].head(list_size_param).docNo)
+ overlap = len(original_docs_set.intersection(rm_results_df.head(list_size_param).docNo)) / list_size_param
+ return overlap
diff --git a/code/qpptk/qpptk/pre_retrieval_predictors.py b/code/qpptk/qpptk/pre_retrieval_predictors.py
index 19f156f..b8666cb 100644
--- a/code/qpptk/qpptk/pre_retrieval_predictors.py
+++ b/code/qpptk/qpptk/pre_retrieval_predictors.py
@@ -1,6 +1,7 @@
import numpy as np
-from qpptk import IndexDB as Index
+# from qpptk import IndexDB as Index
+from qpptk import IndexTerrier as Index
class LocalManagerPredictorPre:
@@ -67,9 +68,9 @@ def _calc_w_d_t(self, term):
if not term_record:
# If the term is OOV, the w_d_t is set to 0
return 0
- term_posting = dict(self.index.get_posting_list(term).posting_list)
+ term_posting = dict(self.index.get_posting_list(term))
tf_vec = np.fromiter(term_posting.values(), dtype=int)
- assert len(term_posting) == term_record.df, f'{term}: number of docs in posting different from df'
+ assert len(term_posting) == term_record.df, f'For term: "{term}" the number of docs in posting different from df'
return 1 + np.log(tf_vec) * np.log(1 + self.total_docs / term_record.df)
def _calc_raw_var(self):
diff --git a/code/qpptk/qpptk/qpptk_main.py b/code/qpptk/qpptk/qpptk_main.py
index ecc2361..e094a1b 100644
--- a/code/qpptk/qpptk/qpptk_main.py
+++ b/code/qpptk/qpptk/qpptk_main.py
@@ -1,61 +1,88 @@
import argparse
import os
+import shutil
import subprocess as sp
import sys
+from pathlib import Path
from glob import glob
import pandas as pd
+from sklearn.metrics import pairwise_distances
from syct import timer
-from qpptk import Config, set_index_dump_paths, ensure_file, ensure_dir, parse_index_to_db, read_trec_res_file, \
- QueryParserCiff, QueryParserText
-from qpptk.global_manager import initialize_text_queries, initialize_ciff_queries, pre_ret_prediction_full, \
- retrieval_full, initialize_db_index, initialize_text_index, initialize_ciff_index, post_ret_prediction_full
+from qpptk import Config, set_index_dump_paths, ensure_file, ensure_dir, read_trec_res_file, \
+ QueryParserCiff, QueryParserText, QueryParserJsonl, add_topic_to_qdf, calc_ndcg
+from qpptk.score_replacement_prediction import replace_scores_in_run_file_with_reference_scores
+from qpptk.global_manager import pre_ret_prediction_full, \
+ retrieval_full, initialize_db_index, initialize_text_index, post_ret_prediction_full, \
+ initialize_terrier_index
-parser = argparse.ArgumentParser(description='Run QL retrieval or Query Performance Prediction')
-index_group = parser.add_mutually_exclusive_group()
-index_group.add_argument('-ti', '--text_index', metavar='INDEX', type=str, default=None, help='path to text index dir')
-index_group.add_argument('-ci', '--ciff_index', metavar='INDEX', type=str, default=None, help='path to ciff index file')
+def parse_args(args):
+ parser = argparse.ArgumentParser(description='Run QL retrieval or Query Performance Prediction')
+ index_group = parser.add_mutually_exclusive_group()
+ index_group.add_argument('--text_index', metavar='INDEX', type=str, default=None, help='path to text index dir')
+ index_group.add_argument('-ci', '--ciff_index', metavar='INDEX', type=str, default=None, help='path to ciff index file')
+ index_group.add_argument('-ti', '--terrier_index', metavar='INDEX', type=str, default=None,
+ help='path to terrier index dir')
+
-queries_group = parser.add_mutually_exclusive_group()
-queries_group.add_argument('-tq', '--text_queries', metavar='QUERIES', default=None, help='path to text queries file')
-queries_group.add_argument('-cq', '--ciff_queries', metavar='QUERIES', default=None, help='path to ciff queries file')
-parser.add_argument('-fq', '--filter_queries', metavar='FilterQUERIES', default=None,
- help='path to text queries file that will be used to filter the queries')
+ queries_group = parser.add_mutually_exclusive_group()
+ queries_group.add_argument('-tq', '--text_queries', metavar='QUERIES', default=None, help='path to text queries file')
+ queries_group.add_argument('-cq', '--ciff_queries', metavar='QUERIES', default=None, help='path to ciff queries file')
+ queries_group.add_argument('-jq', '--jsonl_queries', metavar='QUERIES', default=None, help='path to jsonl queries file')
-parser.add_argument('--retrieve', action='store_true', help='add this flag to run retrieval')
-parser.add_argument('--method', choices=['ql', 'rm', 'rm_rerank'], default='ql',
- help='the method to be used in retrieval')
-parser.add_argument('--predict', action='store_true', help='add this flag to run predictions using ALL PREDICTORS')
-parser.add_argument('--evaluate', action='store_true', help='add this flag to run evaluation')
+ parser.add_argument('-fq', '--filter_queries', metavar='FilterQUERIES', default=None,
+ help='path to text queries file that will be used to filter the queries')
+ parser.add_argument('-dq', '--drop_queries', metavar='DropQUERIES', default=None,
+ help='path to text query ids file that will be used to drop the queries')
-parser.add_argument('--predPre', action='store_true', help='add this flag to run only pre-retrieval predictors')
-parser.add_argument('--predPost', action='store_true', help='add this flag to run only post-retrieval predictors')
-# parser.add_argument('--results_file', help='add this flag to run only post-retrieval predictors')
+ parser.add_argument('--retrieve', action='store_true', help='add this flag to run retrieval')
+ parser.add_argument('--method', choices=['ql', 'rm', 'rm_rerank'], default='ql',
+ help='the method to be used in retrieval')
+ parser.add_argument('--predict', action='store_true', help='add this flag to run predictions using ALL PREDICTORS')
+ parser.add_argument('--evaluate', action='store_true', help='add this flag to run evaluation')
+ parser.add_argument('--pairs_sim', action='store_true', help='Generates a file with similarity between all query pairs')
+ parser.add_argument('--cluster_queries', action='store_true',
+ help='Splits the queries file into separate files by similarity')
+ parser.add_argument('--keep_duplicate_queries', action='store_true',
+ help='By default duplicate queries per topic will be removed, use this option to keep them')
+
+ parser.add_argument('--predPre', action='store_true', help='add this flag to run only pre-retrieval predictors')
+ parser.add_argument('--predPost', action='store_true', help='add this flag to run only post-retrieval predictors')
+
+ parser.add_argument('--output', default=None, required=False, help='The output directory')
+ parser.add_argument('--cleanOutput', action='store_true', help='Clean all temporary output files and output only a joined jsonl file')
+ parser.add_argument('--stats_index_path', type=str, default=None, help='location of the index statistics')
+ parser.add_argument('--run-file', type=Path, default=None, help='Path to run file to be used for prediction post retrieval predictions')
+ parser.add_argument('--use-scores-from-run-file', type=Path, default=None, help='Path to the run file containing retrieval scores: the --run-file run induces the ranking of documents, but this parameter induces the scores.')
+
+ return parser.parse_args(args)
logger = Config.logger
-IR_METRICS = {'ap@1000': 'map_cut.1000', 'ap@10': 'map_cut.10', 'ap@100': 'map_cut.100', 'ndcg@10': 'ndcg_cut.10',
- 'ndcg@100': 'ndcg_cut.100', 'R-precision': 'Rprec', 'P@1': 'P.1', 'P@5': 'P.5', 'P@10': 'P.10'}
+TREC_IR_METRICS = {'ap@1000': 'map_cut.1000', 'ap@10': 'map_cut.10', 'ap@100': 'map_cut.100', 'ndcg@10': 'ndcg_cut.10',
+ 'ndcg@100': 'ndcg_cut.100', 'R-precision': 'Rprec', 'P@1': 'P.1', 'P@5': 'P.5', 'P@10': 'P.10',
+ 'RR': 'recip_rank'}
PRECISION = 6
-def create_files_in_shell(prefix, eval_metric='ap@1000'):
+def generate_trec_eval(prefix, eval_metric='ap@1000'):
"""
:param prefix:
:param eval_metric:
"""
- corpus, _, stoplist, stemmer = prefix.rsplit('/', 1)[1].split('_')
- metric = IR_METRICS.get(eval_metric, 'map_cut.1000')
+ # corpus, _, stoplist, stemmer = prefix.rsplit('/', 1)[1].split('_')
+ metric = TREC_IR_METRICS.get(eval_metric, 'map_cut.1000')
try:
- QL_res_file = ensure_file(f"{prefix}_QL.res")
+ ql_res_file = ensure_file(f"{prefix}_QL.res")
except FileNotFoundError as err:
print(err)
sys.exit('The results file is not found, add --retrieve to create it')
trec_eval = Config.TREC_EVAL
- proc = sp.run([trec_eval, '-m', metric, '-qn', f'/research/local/olz/data/{corpus}_mod.qrels', QL_res_file],
+ qrels_file = ensure_file(Config.QREL_FILE)
+ proc = sp.run([trec_eval, '-m', metric, '-qn', qrels_file, ql_res_file],
stderr=sp.STDOUT, stdout=sp.PIPE)
_fp = open(f"{prefix}_QL.{eval_metric}", 'w')
sp.run(['awk', '{print $2,$3}'], stdout=_fp, input=proc.stdout)
@@ -63,23 +90,67 @@ def create_files_in_shell(prefix, eval_metric='ap@1000'):
# sp.run(["sed", "-i", "$ d", f"{prefix}_QL.ap"]) # Remove last line from the file
-def load_and_evaluate(prefix, ir_metric, method='pearson', title_only=False):
- # queries = get_queries_object()
- # qids = queries.get_query_ids()
- # from qpptk.utility_functions import duplicate_qrel_file_to_qids
+def generate_rbp_eval(prefix, eval_metric='rbp-0.95'):
+ """
+
+ :param eval_metric:
+ :param prefix:
+ """
# corpus, _, stoplist, stemmer = prefix.rsplit('/', 1)[1].split('_')
- # duplicate_qrel_file_to_qids(f'/research/local/olz/data/{corpus}.qrels', qids)
+ try:
+ ql_res_file = ensure_file(f"{prefix}_QL.res")
+ except FileNotFoundError as err:
+ print(err)
+ sys.exit('The results file is not found, add --retrieve to create it')
+ metric, p = eval_metric.split('-')
+ rbp_eval = Config.RBP_EVAL
+ qrels_file = ensure_file(Config.QREL_FILE)
+ proc = sp.run([rbp_eval, '-q', '-T', '-H', '-W', '-p', p, qrels_file, ql_res_file],
+ stderr=sp.STDOUT, stdout=sp.PIPE)
+ _fp = open(f"{prefix}_QL.{eval_metric}", 'w')
+ sp.run(['awk', '{print $4,$8}'], stdout=_fp, input=proc.stdout)
+ _fp.close()
+ # sp.run(["sed", "-i", "$ d", f"{prefix}_QL.ap"]) # Remove last line from the file
+
+
+@timer
+def create_ndcg_eval_files(prefix, ir_metric):
+ try:
+ ql_res_file = ensure_file(f"{prefix}_QL.res")
+ qrels_file = ensure_file(Config.QREL_FILE)
+ except FileNotFoundError as err:
+ print(err)
+ sys.exit('The results file or qrels file is not found, adding --retrieve will generate a results file')
+ k = int(ir_metric.rsplit('@', 1)[-1])
+ calc_ndcg(qrels_file, ql_res_file, k, original=False, logger=logger)
+
+
+def load_and_evaluate(prefix, ir_metric, method='pearson', title_only=False):
+ queries = get_queries_object()
+ qids = queries.get_query_ids()
+ _components = prefix.rsplit('/', 1)[1].split('_')
+ if len(_components) > 3:
+ corpus, _, stoplist, stemmer = _components
+ elif len(_components) == 3:
+ corpus, stoplist, stemmer = _components
+ else:
+ print('Unknown format of index name')
try:
eval_df = pd.read_table(f"{prefix}_QL.{ir_metric}", delim_whitespace=True, names=['qid', ir_metric],
index_col=0)
except FileNotFoundError:
- create_files_in_shell(prefix, ir_metric)
+ if ir_metric.startswith('ndcg'):
+ create_ndcg_eval_files(prefix, ir_metric)
+ elif ir_metric.startswith('rbp'):
+ generate_rbp_eval(prefix, ir_metric)
+ else:
+ generate_trec_eval(prefix, ir_metric)
eval_df = pd.read_table(f"{prefix}_QL.{ir_metric}", delim_whitespace=True, names=['qid', ir_metric],
index_col=0)
if title_only:
eval_df = eval_df.loc[eval_df.index.str.contains('-50-1')]
title_queries = eval_df.index
- assert len(title_queries) == 249, 'wrong numbers of title queries in ROBUST eval file'
+ # assert len(title_queries) == 249, 'wrong numbers of title queries in ROBUST eval file'
prediction_files = glob(f"{prefix}*.pre")
predictors = []
results = []
@@ -88,71 +159,167 @@ def load_and_evaluate(prefix, ir_metric, method='pearson', title_only=False):
index_col=[0, 1])
if title_only:
pr_df = pr_df.loc[(slice(None), title_queries), :]
- assert len(pr_df) == 249, 'wrong numbers of title queries in ROBUST predictions file'
- print(f"The correlation of {predictions_file}: {pr_df.corrwith(eval_df[ir_metric], method=method)}")
+ # assert len(pr_df) == 249, 'wrong numbers of title queries in ROBUST predictions file'
+ # print(f"The correlation of {predictions_file}: {pr_df.corrwith(eval_df[ir_metric], method=method)}")
collection, predictor = predictions_file.rsplit('/', 1)[1].replace('.pre', '').rsplit('_', 1)
# results[collection] = {predictor: pr_df.corrwith(ap_df[ir_metric])[0]}
results.append(pr_df.corrwith(eval_df[ir_metric], method=method)[0])
predictors.append(predictor)
sr = pd.Series(results, index=predictors)
- sr.name = f'{collection}_{method}'
+ sr.name = f'{collection}_{method}_{ir_metric}'
+ print(sr.sort_index())
+ print(sr.sort_values())
return sr
-def get_queries_object():
- queries_path, queries_type = (args.text_queries, 'text') if args.text_queries else (args.ciff_queries, 'ciff')
+def get_queries_object(args):
+ drop_duplicates = not args.keep_duplicate_queries
+ if args.text_queries:
+ queries_path, queries_type = args.text_queries, 'text'
+ elif args.ciff_queries:
+ queries_path, queries_type = args.ciff_queries, 'ciff'
+ elif args.jsonl_queries:
+ queries_path, queries_type = args.jsonl_queries, 'jsonl'
+ else:
+ queries_path, queries_type = None, None
+
if queries_path is None:
- queries_path, queries_type = (Config.TEXT_QUERIES, 'text') if Config.TEXT_QUERIES else \
- (Config.CIFF_QUERIES, 'ciff')
- if queries_path is None:
+ if Config.TEXT_QUERIES:
+ queries_path, queries_type = Config.TEXT_QUERIES, 'text'
+ elif Config.CIFF_QUERIES:
+ queries_path, queries_type = Config.CIFF_QUERIES, 'ciff'
+ elif Config.JSONL_QUERIES:
+ queries_path, queries_type = Config.JSONL_QUERIES, 'jsonl'
+ else:
raise AssertionError('No queries file was specified')
filter_queries = args.filter_queries
if filter_queries and filter_queries.lower() != 'none':
return QueryParserText(queries_path,
- filter_queries_file=filter_queries) if queries_type == 'text' else QueryParserCiff(
- queries_path, filter_queries_file=filter_queries)
+ filter_queries_file=filter_queries,
+ drop_duplicate_queries=drop_duplicates) if queries_type == 'text' else QueryParserCiff(
+ queries_path, filter_queries_file=filter_queries, drop_duplicate_queries=drop_duplicates)
+ drop_queries = args.drop_queries
+ if drop_queries and drop_queries.lower() != 'none':
+ if queries_type == 'text':
+ return QueryParserText(queries_path, drop_queries_file='duplicated_qids.txt',
+ drop_duplicate_queries=drop_duplicates)
+ elif queries_type == 'ciff':
+ QueryParserCiff(queries_path, drop_queries_file='duplicated_qids.txt',
+ drop_duplicate_queries=drop_duplicates)
+ elif queries_type == 'jsonl':
+ QueryParserJsonl(queries_path, args.terrier_index, drop_queries_file='duplicated_qids.txt',
+ drop_duplicate_queries=drop_duplicates)
else:
- return QueryParserText(queries_path) if queries_type == 'text' else QueryParserCiff(queries_path)
+ if queries_type == 'text':
+ return QueryParserText(queries_path, drop_duplicate_queries=drop_duplicates)
+ elif queries_type == 'ciff':
+ return QueryParserCiff(queries_path, drop_duplicate_queries=drop_duplicates)
+ elif queries_type == 'jsonl':
+ return QueryParserJsonl(queries_path, args.terrier_index, drop_duplicate_queries=drop_duplicates)
-def set_index():
- index_path, index_type = (args.text_index, 'text') if args.text_index else (args.ciff_index, 'ciff')
+def set_index_paths(args):
+ index_path, index_type = (args.ciff_index, 'ciff') if args.ciff_index else (
+ (args.text_index, 'text') if args.text_index else (args.terrier_index, 'terrier'))
if index_path is None:
- index_path, index_type = (Config.INDEX_DIR, 'text') if Config.INDEX_DIR else (Config.CIFF_INDEX, 'ciff')
+ if Config.CIFF_INDEX:
+ index_path, index_type = Config.CIFF_INDEX, 'ciff'
+ elif Config.TERRIER_INDEX:
+ index_path, index_type = Config.TERRIER_INDEX, 'terrier'
+ else:
+ index_path, index_type = Config.INDEX_DIR, 'text'
if index_path is None:
raise AssertionError('No index was specified')
return index_path, index_type
+def generate_pairs_similarity(queries):
+ try:
+ df = queries.get_queries_df()
+ except AttributeError:
+ df = add_topic_to_qdf(
+ pd.DataFrame.from_dict(queries.queries_dict, orient='index').rename_axis('qid')).set_index('topic').drop(
+ '672', errors='ignore').set_index('qid')
+ df = df.sort_index()
+ cos_sim_df = pd.DataFrame(1 - pairwise_distances(df.fillna(0).to_numpy(), metric='cosine', n_jobs=10),
+ index=df.index, columns=df.index)
+ jac_df = pd.DataFrame(1 - pairwise_distances(df.fillna(0).astype(bool).to_numpy(), metric='jaccard', n_jobs=10),
+ index=df.index, columns=df.index)
+ dsc_df = pd.DataFrame(1 - pairwise_distances(df.fillna(0).astype(bool).to_numpy(), metric='dice', n_jobs=10),
+ index=df.index, columns=df.index)
+ return cos_sim_df, jac_df, dsc_df
+
+
+def cluster_queries(queries):
+ queries.cluster_queries_by_similarity(3)
+
+
@timer
-def main():
+def main(args):
+ if args.output:
+ Config.RESULTS_DIR = args.output
results_dir = Config.RESULTS_DIR
- def init_index():
+ def init_db_index():
index = initialize_db_index(db_dir)
- queries = get_queries_object()
+ queries = get_queries_object(args)
qids = queries.get_query_ids()
return qids, index, queries
- index_path, index_type = set_index()
+ def init_readonly_index(): # TODO: should be init for terrier index
+ queries = get_queries_object(args)
+ qids = queries.get_query_ids()
+ index = initialize_terrier_index(index_path, partial_terms=queries.get_queries_df().columns, stats_index_path=args.stats_index_path)
+ index_hash = index().partial_terms_hash
+ return qids, index, queries, index_hash
+
+ def init_writeable_index():
+ queries = get_queries_object(args)
+ return initialize_terrier_index(index_path, partial_terms=queries.get_queries_df().columns, read_only=False, stats_index_path=args.stats_index_path)()
+
+ index_path, index_type = set_index_paths(args)
if index_type == 'text':
dump_files = set_index_dump_paths(index_path)
- prefix = '_'.join(index_path.split('/')[-2:]) if index_type == 'text' else \
- index_path.rsplit('/', 1)[-1].replace('.ciff', '')
+ if index_type == 'ciff':
+ prefix = index_path.rsplit('/', 1)[-1].replace('.ciff', '')
+ elif index_type == 'terrier':
+ prefix = index_path.rsplit('/', 1)[-1]
+ else:
+ prefix = '_'.join(index_path.split('/')[-2:])
prefix_path = os.path.join(results_dir, prefix)
if args.retrieve or args.predict or args.predPost or args.predPre:
- _db_dir = os.path.join(Config.DB_DIR, prefix)
+ if index_type == 'ciff' or index_type == 'text':
+ _db_dir = os.path.join(Config.DB_DIR, prefix)
+ try:
+ db_dir = ensure_dir(_db_dir, create_if_not=False)
+ qids, index, queries = init_db_index()
+ except FileNotFoundError:
+ logger.info(f"Relevant DB index wasn't found in {_db_dir}")
+ logger.info(f"Creating a new one")
+ if index_type == 'ciff':
+ index = initialize_ciff_index(index_path)
+ parse_index_to_db(index, prefix, Config.DB_DIR)
+ db_dir = ensure_dir(_db_dir, create_if_not=False)
+ else:
+ index = initialize_text_index(*dump_files)
+ parse_index_to_db(index, prefix, Config.DB_DIR)
+ db_dir = ensure_dir(_db_dir, create_if_not=False)
+ qids, index, queries = init_db_index()
+ elif index_type == 'terrier':
+ try:
+ qids, index, queries, index_hash = init_readonly_index()
+ except FileNotFoundError:
+ init_writeable_index()
+ qids, index, queries, index_hash = init_readonly_index()
+ else:
+ sys.exit('No known index type was specified')
try:
- db_dir = ensure_dir(_db_dir, create_if_not=False)
- qids, index, queries = init_index()
- except FileNotFoundError:
- logger.info(f"Relevant DB index wasn't found in {_db_dir}")
- logger.info(f"Creating a new one")
- index = initialize_text_index(*dump_files) if index_type == 'text' else initialize_ciff_index(index_path)
- parse_index_to_db(index, prefix, Config.DB_DIR)
- db_dir = ensure_dir(_db_dir, create_if_not=False)
- qids, index, queries = init_index()
+ path, collection = prefix_path.rsplit('/', 1)
+ prefix_path = os.path.join(ensure_dir(os.path.join(path, str(index_hash))), prefix)
+ except NameError:
+ pass
+
if args.retrieve:
method = args.method
if method == 'rm_rerank':
@@ -173,38 +340,83 @@ def init_index():
if args.predict:
args.predPre = True
args.predPost = True
+
+ combined_predictions = []
if args.predPre:
predictions_df = pre_ret_prediction_full(qids, index, queries)
+ combined_predictions += [predictions_df]
for col in predictions_df.columns:
- predictions_df.loc[:, col].to_csv(f"{prefix_path}_PRE_{col}.pre", sep=' ', index=True, header=False,
+ predictions_df.loc[:, col].to_csv(f"{prefix_path}_PRE_{col}.pre", sep=' ', index=True,
+ header=False,
float_format=f"%.{PRECISION}f")
if args.predPost:
- retrieval_method = 'QL'
+ retrieval_method = 'QL' if args.run_file is None else 'RUN'
+ if args.use_scores_from_run_file:
+ logger.info(f"Replace scores in run {args.run_file} with the scores from {args.use_scores_from_run_file}.")
+ args.run_file = replace_scores_in_run_file_with_reference_scores(args.run_file, args.use_scores_from_run_file)
+
try:
- results_file = ensure_file(f'{prefix_path}_{retrieval_method}.res')
+ results_file = ensure_file(f'{prefix_path}_{retrieval_method}.res' if args.run_file is None else args.run_file)
except FileNotFoundError:
error_msg = f"The file {prefix_path}_{retrieval_method}.res doesn't exist," \
f"add --retrieve option to create it first"
logger.error(error_msg)
sys.exit(error_msg)
- predictions_df = post_ret_prediction_full(qids, index, queries, read_trec_res_file(results_file))
- for col in predictions_df.columns:
- predictions_df.loc[:, col].to_csv(f"{prefix_path}_{retrieval_method}_{col}.pre", sep=' ', index=True,
- header=False,
- float_format=f"%.{PRECISION}f")
+ for list_size in [5, 10, 20, 50, 100, 1000]:
+ Config.WIG_LIST_SIZE = list_size
+ Config.NQC_LIST_SIZE = list_size
+ Config.SMV_LIST_SIZE = list_size
+ Config.CLARITY_LIST_SIZE = list_size
+
+ predictions_df = post_ret_prediction_full(qids, index, queries, read_trec_res_file(results_file))
+ combined_predictions += [predictions_df]
+ for col in predictions_df.columns:
+ predictions_df.loc[:, col].to_csv(f"{prefix_path}_{retrieval_method}_{col}.pre", sep=' ',
+ index=True, header=False, float_format=f"%.{PRECISION}f")
+
+ if combined_predictions:
+ qid_to_preds = {}
+ for df in combined_predictions:
+ for _, i in df.iterrows():
+ if i['qid'] not in qid_to_preds:
+ qid_to_preds[i['qid']] = {}
+ for k,v in i.items():
+ if k == 'topic':
+ continue
+ qid_to_preds[i['qid']][k] = v
+
+ pd.DataFrame([v for _, v in qid_to_preds.items()]).to_json(results_dir + '/queries.jsonl', lines=True, orient='records')
+
+ if args.cleanOutput:
+ for d in os.listdir(args.output):
+ if os.path.exists(args.output + '/' + d) and os.path.isdir(args.output + '/' + d):
+ shutil.rmtree(args.output + '/' + d)
+
if args.evaluate:
- # method = 'spearman'
- method = 'kendall'
- # method = 'pearson'
- # queries = 'title'
+ method = 'pearson'
queries = 'all'
ir_metric = 'ap@1000'
- # ir_metric = 'ndcg@10'
+
title_only = True if queries == 'title' else False
- load_and_evaluate(prefix_path, ir_metric, method=method, title_only=title_only).to_pickle(
+ if Config.BATCH_NAME:
+ _prefix = prefix_path[::-1].replace('/', ' ', 1)[::-1].replace(' ', '/' + Config.BATCH_NAME + '/')
+ else:
+ _prefix = prefix_path
+ load_and_evaluate(_prefix, ir_metric, method=method, title_only=title_only).to_pickle(
f'{prefix_path}.eval_{ir_metric}_{method}_{queries}_queries.pkl')
+ if args.pairs_sim:
+ cos_sim_df, jac_df, dsc_df = generate_pairs_similarity(get_queries_object(args))
+ cos_sim_df.to_csv(f"{prefix_path}_pairwise_sim-cos.tsv", sep=' ', index=True, header=True,
+ float_format=f"%.{PRECISION}f")
+ jac_df.to_csv(f"{prefix_path}_pairwise_sim-jac.tsv", sep=' ', index=True, header=True,
+ float_format=f"%.{PRECISION}f")
+ dsc_df.to_csv(f"{prefix_path}_pairwise_sim-dsc.tsv", sep=' ', index=True, header=True,
+ float_format=f"%.{PRECISION}f")
+
+ if args.cluster_queries:
+ cluster_queries(get_queries_object(args))
+
if __name__ == '__main__':
- args = parser.parse_args() # defined and used as a "global" variable
- main()
+ main(parse_args(sys.argv[1:]))
diff --git a/code/qpptk/qpptk/retrieval_local_manager.py b/code/qpptk/qpptk/retrieval_local_manager.py
index e178225..4ec8d01 100644
--- a/code/qpptk/qpptk/retrieval_local_manager.py
+++ b/code/qpptk/qpptk/retrieval_local_manager.py
@@ -1,7 +1,10 @@
+import sys
+
import numpy as np
from scipy.sparse import csr_matrix
-from qpptk import IndexDB as Index
+# from qpptk import IndexDB as Index
+from qpptk import IndexTerrier as Index
from qpptk import QueryParserText, Config
logger = Config.logger
@@ -21,7 +24,7 @@ def __init__(self, index_obj: Index, query_obj: QueryParserText, qid):
self._candidates_dict = {}
def _ql_score_documents(self):
- tf_mat = self.index.get_mat_by_terms(self.qry_terms_record.keys())
+ tf_mat = self.index.get_mat_by_terms(self.qry_terms_record)
nnz_rows = np.unique(tf_mat.nonzero()[0])
tf_mat = tf_mat[nnz_rows, :]
_doc_len = self.index.get_doc_len_vec(nnz_rows)
@@ -29,24 +32,25 @@ def _ql_score_documents(self):
_right_log = np.array([1 - _doc_len / (self.mu + _doc_len), ]).T * np.array(
[[v.cf for v in self.qry_terms_record.values()], ]) / self.index.total_terms
doc_scores = np.asarray(
- np.log(_left_log + _right_log) * np.array([[self.query[q] for q in self.qry_terms_record], ]).T).squeeze()
+ np.log(_left_log + _right_log) * np.array([[self.query[q] for q in self.qry_terms_record], ]).T)
+ doc_scores = doc_scores.reshape(doc_scores.shape[0])
return np.sort(
- np.array(list(zip(nnz_rows, doc_scores)), dtype=[('doc_id', np.uint32), ('doc_score', np.float)]),
+ np.array(list(zip(nnz_rows, doc_scores)), dtype=[('doc_id', np.uint32), ('doc_score', float)]),
order='doc_score')[::-1]
def rm_construction(self, ql_top_k):
"""
- Constructing the RM without smoothing
+ Constructing the RM without smoothing.
"""
- tf_mat = self.index.get_mat_by_docs(ql_top_k['doc_id'])
- nnz_cols = np.unique(tf_mat.nonzero()[1])
+ tf_mat = self.index.get_mat_by_docs(ql_top_k['doc_id']) # tf matrix by documents in results
+ nnz_cols = np.unique(tf_mat.nonzero()[1]) # all the columns (terms) that appear in the docs in the result
tf_mat = tf_mat[:, nnz_cols]
- exp_ql = np.exp(ql_top_k['doc_score'])
+ exp_ql = np.exp(ql_top_k['doc_score']) # transform ln(QL) -> QL scores for all the documents
sum_exp_ql = exp_ql.sum()
_doc_len = self.index.get_doc_len_vec(ql_top_k['doc_id'])
- _p_w_rm = np.array([exp_ql / _doc_len, ]) * tf_mat
- p_w_rm = np.asarray(_p_w_rm / sum_exp_ql).squeeze()
- return np.sort(np.array(list(zip(nnz_cols, p_w_rm)), dtype=[('term_id', np.uint32), ('term_score', np.float)]),
+ p_w_rm = ((np.array([exp_ql / _doc_len, ]) * tf_mat) / sum_exp_ql).reshape(nnz_cols.shape) # sum p(w|d)*p(d|q)
+ # p_w_rm = _p_w_rm.reshape(nnz_cols.shape)
+ return np.sort(np.array(list(zip(nnz_cols, p_w_rm)), dtype=[('term_id', np.uint32), ('term_score', float)]),
order='term_score')[::-1]
def rank_by_kl(self, p_w_rm_top_n, rank_doc_ids=None):
@@ -64,7 +68,7 @@ def rank_by_kl(self, p_w_rm_top_n, rank_doc_ids=None):
tf_mat = tf_mat[nnz_rows, :]
_doc_len = _doc_len[nnz_rows]
doc_indices = nnz_rows
- terms_cf = self.index.get_terms_cf_vec(p_w_rm_top_n['term_id'])
+ terms_cf = self.index.get_terms_cf_vec(p_w_rm_top_n['term_id']) # FIXME: I'm sending term_ids, but the function expects term indices
_left = tf_mat.multiply(csr_matrix(1 / (self.mu + _doc_len)).T)
_right = np.array([1 - _doc_len / (self.mu + _doc_len), ]).T * np.array([terms_cf, ]) / self.index.total_terms
doc_lm = np.log(_left + _right)
@@ -79,13 +83,13 @@ def _check_if_query_oov(self):
return True
return False
- def _generate_matching_postings(self):
- for term in self.query:
- term, cf, df, posting_list = self.index.get_posting_list(term)
- if cf == 0:
- self.oov_terms.add(term)
- continue
- self._candidates_dict[term] = dict(posting_list)
+ # def _generate_matching_postings(self):
+ # for term in self.query:
+ # term, cf, df, posting_list = self.index.get_posting_list(term)
+ # if cf == 0:
+ # self.oov_terms.add(term)
+ # continue
+ # self._candidates_dict[term] = dict(posting_list)
def translate_doc_id_to_doc_no(self, result_tuple):
return tuple(map(lambda x: (self.index.get_doc_name(x[0]), x[1]), result_tuple))
@@ -104,14 +108,14 @@ def _is_empty_query(self):
logger.info(f"Query: {self.qid}; terms {self.oov_terms} are out of vocabulary")
return False
- def _init_sorted_ql_docs(self, working_set_docs=None):
+ def _init_sorted_ql_docs(self, ranking_set_docs=None):
if self._is_empty_query():
return tuple()
- if working_set_docs.any():
- doc_scores = working_set_docs.T[1]
- doc_ids = self.index.get_doc_ids_by_name(working_set_docs.T[0])
+ if ranking_set_docs is not None:
+ doc_scores = ranking_set_docs.T[1]
+ doc_ids = self.index.get_doc_ids_by_name(ranking_set_docs.T[0])
sorted_ql_docs = np.array(list(zip(doc_ids, doc_scores)),
- dtype=[('doc_id', np.uint32), ('doc_score', np.float)])
+ dtype=[('doc_id', np.uint32), ('doc_score', float)])
else:
sorted_ql_docs = self._ql_score_documents()
return sorted_ql_docs
@@ -121,26 +125,47 @@ def run_ql_retrieval(self, working_set_docs=None):
if self._is_empty_query():
return tuple()
# self._generate_matching_postings()
- sorted_ql_scored_docs = self._ql_score_documents()
+ try:
+ sorted_ql_scored_docs = self._ql_score_documents()
+ except:
+ logger.error('*** The process crashed here!! ***')
+ print(sys.exc_info()[0])
+ print(self.qid)
+ print(self.query.items())
return self.translate_doc_id_to_doc_no_vec(sorted_ql_scored_docs[:self.num_docs])
- def run_rm_retrieval(self, re_rank_ql=False, working_set_docs=None):
+ def run_rm_retrieval(self, ranking_set_docs=None, initial_set_docs=None, _sorted_rm_terms=None):
"""
This method will use QL to retrieve an initial set of documents, then use the set to create a RM (RM1)
if the re_rank_ql param is True, it will use the RM to re-rank the top QL documents with the RM.
Otherwise, it will rank all the documents in the corpus.
"""
- sorted_ql_docs = self._init_sorted_ql_docs(working_set_docs)
- sorted_rm_terms = self.rm_construction(sorted_ql_docs[:self.fb_docs])
- if re_rank_ql or working_set_docs:
- sorted_rm_scored_docs = self.rank_by_kl(sorted_rm_terms[:self.fb_terms], sorted_ql_docs[:self.num_docs])
+ ranking_docs = None
+ if _sorted_rm_terms is not None:
+ sorted_rm_terms = _sorted_rm_terms
+ if ranking_set_docs is not None:
+ ranking_docs = self._init_sorted_ql_docs(ranking_set_docs)
+ else:
+ if initial_set_docs is not None:
+ sorted_ql_docs = self._init_sorted_ql_docs(initial_set_docs)
+ if ranking_set_docs is not None and ranking_set_docs != initial_set_docs:
+ ranking_docs = self._init_sorted_ql_docs(initial_set_docs)
+ else:
+ ranking_docs = sorted_ql_docs
+ else:
+ sorted_ql_docs = self._init_sorted_ql_docs(ranking_set_docs)
+ ranking_docs = sorted_ql_docs
+ sorted_rm_terms = self.rm_construction(sorted_ql_docs[:self.fb_docs])
+
+ if ranking_docs is not None: # FIXME: TODO Shit hits the fan here!!!
+ sorted_rm_scored_docs = self.rank_by_kl(sorted_rm_terms[:self.fb_terms], ranking_docs[:self.num_docs])
else:
sorted_rm_scored_docs = self.rank_by_kl(sorted_rm_terms[:self.fb_terms])
return self.translate_doc_id_to_doc_no_vec(sorted_rm_scored_docs[:self.num_docs]), sorted_rm_terms
- def generate_rm(self, working_set_docs):
+ def generate_rm(self, initial_set_docs):
"""
- This method will use QL to
+ This method will generate and return a RM based on the initial_set_docs passed to it, assuming the scores are QL
"""
- sorted_ql_docs = self._init_sorted_ql_docs(working_set_docs)
+ sorted_ql_docs = self._init_sorted_ql_docs(initial_set_docs)
return self.rm_construction(sorted_ql_docs)
diff --git a/code/qpptk/qpptk/score_replacement_prediction.py b/code/qpptk/qpptk/score_replacement_prediction.py
new file mode 100644
index 0000000..5a45bf5
--- /dev/null
+++ b/code/qpptk/qpptk/score_replacement_prediction.py
@@ -0,0 +1,29 @@
+from pathlib import Path
+import tempfile
+import pandas as pd
+
+
+def replace_scores_in_run_file_with_reference_scores(run_file: Path, reference_run_file: Path) -> Path:
+ """
+ This class is used to replace the retrieval scores of a base model (e.g., BM25) with the scores of other neural models.
+
+ The ranking comes from the base model, but the scores used in query used in query performance predictors like WIG come from another model with the intendion to vary them in their size, (e.g., use BM25 rankings as run that induces the ranking and monoT5 small vs base vs large vs 3b etc to induce the scores.).
+
+ :param run_file: The run file that induces the ranking of documents (e.g., BM25).
+ :param reference_run_file: The run file that induces the scores of documents (e.g., derived by monoT5 small).
+ """
+ from .utility_functions import read_trec_res_file
+ run_file_parsed = read_trec_res_file(run_file)
+ reference_scores = {}
+ min_score = None
+ for qid, i in read_trec_res_file(reference_run_file).iterrows():
+ reference_scores[(qid, i['docNo'])] = i['docScore']
+ min_score = i['docScore'] if min_score is None else min(min_score, i['docScore'])
+
+ merged_run = []
+ for qid, i in run_file_parsed.iterrows():
+ merged_run += [{'qid': qid, 'Q0': '0', 'docNo': i['docNo'], 'docRank': i['docRank'], 'docScore': reference_scores.get((qid, i['docNo']), min_score), 'system': 'merged'}]
+
+ ret = Path(tempfile.NamedTemporaryFile(delete=False).name)
+ pd.DataFrame(merged_run).to_csv(ret, sep=' ', header=False, index=False)
+ return ret
diff --git a/code/qpptk/qpptk/utility_functions.py b/code/qpptk/qpptk/utility_functions.py
index bbdc1f9..9972c22 100644
--- a/code/qpptk/qpptk/utility_functions.py
+++ b/code/qpptk/qpptk/utility_functions.py
@@ -1,5 +1,6 @@
import linecache
import os
+import pickle
from bisect import bisect_left
import matplotlib.pyplot as plt
@@ -7,6 +8,10 @@
import pandas as pd
from google.protobuf.internal.decoder import _DecodeVarint32
from sklearn.metrics import roc_curve, auc
+import numpy as np
+
+TREC_RES_COLUMNS = ['qid', 'iteration', 'docNo', 'rank', 'docScore', 'method']
+TREC_QREL_COLUMNS = ['qid', 'iteration', 'docNo', 'rel']
def get_file_len(file_path):
@@ -30,7 +35,7 @@ def binary_search(list_, target):
def ensure_file(file):
"""Ensure a single file exists, returns the absolute path of the file if True or raises FileNotFoundError if not"""
# tilde expansion
- file_path = os.path.normpath(os.path.expanduser(file))
+ file_path = os.path.abspath(os.path.normpath(os.path.expanduser(file)))
if not os.path.isfile(file_path):
raise FileNotFoundError(f"The file {file_path} doesn't exist")
return file_path
@@ -40,6 +45,7 @@ def ensure_dir(file_path, create_if_not=True):
"""
The function ensures the dir exists,
if it doesn't it creates it and returns the path or raises FileNotFoundError
+ In case file_path is an existing file, returns the path of the parent directory
"""
# tilde expansion
file_path = os.path.normpath(os.path.expanduser(file_path))
@@ -85,6 +91,10 @@ def overlap_coefficient(set_1, set_2):
return len(set_1.intersection(set_2)) / min(len(set_1), len(set_2))
+def sorensen_dice_similarity(set_1, set_2):
+ return 2 * len(set_1.intersection(set_2)) / (len(set_1) + len(set_2))
+
+
def duplicate_qrel_file_to_qids(qrel_file, qids):
qrels_df = pd.read_table(qrel_file, delim_whitespace=True, names=['qid', 'iter', 'doc', 'rel'], dtype=str)
topics_dict = {qid: qid.split('-', 1)[0] for qid in qids} # {qid:topic}
@@ -143,3 +153,92 @@ def plot_roc(y_test, y_pred, predictor_name):
plt.ylabel('True Positive Rate (Sensitivity/Recall)')
plt.xlabel('False Positive Rate (1-Specificity)')
plt.show()
+
+
+def pickle_save_obj(obj, file_name: str):
+ if not file_name.endswith('.pkl'):
+ file_name += '.pkl'
+ with open(file_name, 'wb') as f:
+ pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
+
+
+def pickle_load_obj(file_name: str):
+ if not file_name.endswith('.pkl'):
+ file_name += '.pkl'
+ with open(file_name, 'rb') as f:
+ return pickle.load(f)
+
+
+def load_generate_pickle_df(file_name: str, func, *args):
+ try:
+ _df = pd.read_pickle(file_name)
+ except FileNotFoundError:
+ _df = func(*args)
+ _df.to_pickle(file_name)
+ return _df
+
+
+def calc_ndcg(qrels_file, results_file, k, logger=None, base=2, gdeval=True):
+ """
+ Setting gdeval will yield identical results to the official evaluation script that was published for TREC.
+ Note that the calculation in that script differs from (probably) any published research version.
+ :param qrels_file:
+ :param results_file:
+ :param k:
+ :param logger:
+ :param base:
+ :param gdeval:
+ :return:
+ """
+ # Reading and sorting the qrels, to later speed-up indexing and locating
+ qrels_df = pd.read_csv(qrels_file, delim_whitespace=True, names=TREC_QREL_COLUMNS). \
+ sort_values(['qid', 'rel', 'docNo'], ascending=[True, False, True]).set_index(['qid', 'docNo'])
+ qrels_df['rel'].clip(lower=0, inplace=True)
+
+ # Store beginning and end indices for each query - used for speed up
+ qid_res_len = qrels_df.groupby('qid').apply(len)
+ qid_end_loc = qid_res_len.cumsum()
+ qid_start_loc = qid_end_loc - qid_res_len
+ qrels_df = qrels_df.droplevel(0)
+
+ if isinstance(results_file, str):
+ results_df = pd.read_csv(results_file, delim_whitespace=True, names=TREC_RES_COLUMNS)
+ elif isinstance(results_file, pd.DataFrame):
+ results_df = results_file
+ else:
+ raise TypeError
+ if gdeval:
+ results_df = results_df.sort_values(['qid', 'docScore', 'docNo'], ascending=[True, False, False]).groupby(
+ 'qid').head(k)
+ discount = np.log(np.arange(1, k + 1) + 1)
+ else:
+ results_df = results_df.sort_values(['qid', 'rank']).groupby('qid').head(k)
+ discount = np.concatenate((np.ones(base), np.log(np.arange(base, k) + 1) / np.log(base)))
+ result = {}
+ for qid, _df in results_df.groupby('qid'):
+ docs = _df['docNo'].to_numpy()
+ try:
+ _qrels_df = qrels_df.iloc[qid_start_loc.loc[qid]: qid_end_loc.loc[qid]]
+ except KeyError as err:
+ if logger is None:
+ print(f'query id {err} doesn\'t exist in the qrels file, skipping it')
+ else:
+ logger.warning(f'query id {err} doesn\'t exist in the qrels file, skipping it')
+ continue
+ if gdeval:
+ dcg = 2 ** _qrels_df.reindex(docs)['rel'].fillna(0).to_numpy() - 1
+ idcg = ((2 ** _qrels_df['rel'].head(k) - 1) / discount[:len(_qrels_df)]).sum()
+ else:
+ dcg = _qrels_df.reindex(docs)['rel'].fillna(0).to_numpy()
+ idcg = (_qrels_df['rel'].head(k) / discount[:len(_qrels_df)]).sum()
+ result[qid] = (dcg / discount[:len(dcg)]).sum() / idcg
+ res_df = pd.DataFrame.from_dict(result, orient='index', columns=[f'nDCG@{k}'])
+ # res_df.to_csv(rreplace(results_file, 'run', f'ndcg@{k}', 1), sep='\t', float_format='%.6f', header=False)
+ # print(res_df.to_string(float_format='%.5f'))
+ # print(f'Mean: {res_df.mean()[0]:.5f}')
+ return res_df
+
+
+def rreplace(string, old, new, count):
+ # TODO: Try and implement an extended version of str class
+ return new.join(string.rsplit(old, count))
diff --git a/code/qpptk/requirements.txt b/code/qpptk/requirements.txt
index 103cceb..6eebcc4 100644
--- a/code/qpptk/requirements.txt
+++ b/code/qpptk/requirements.txt
@@ -5,11 +5,15 @@ msgpack_python==0.5.6
numpy==1.21.4
pandas==1.3.4
protobuf==3.19.1
-scikit_learn==1.0.1
-scipy==1.7.2
+scikit_learn==1.3.1
+scipy==1.10.1
seaborn==0.11.2
setuptools==58.5.3
-statsmodels==0.13.0
+statsmodels==0.14.0
syct==0.4.3
toml==0.10.2
tqdm==4.62.3
+pytest==7.4.3
+approvaltests==10.2.0
+python-terrier==0.9.2
+tira==0.0.69
\ No newline at end of file
diff --git a/code/qpptk/setup.py b/code/qpptk/setup.py
index f86540d..9813a6f 100644
--- a/code/qpptk/setup.py
+++ b/code/qpptk/setup.py
@@ -10,16 +10,18 @@
'qpptk/global_manager.py', 'qpptk/parse_queries.py'],
author="Oleg Zendel",
author_email="oleg.zendel@rmit.edu.au",
- description="QPP framework package",
+ description="POC of QPP framework package",
# long_description="Proof of concept of QPP framework development in python",
long_description=long_description,
long_description_content_type="text/markdown",
+ url="https://github.com/Zendelo/qpptk",
packages=setuptools.find_packages(),
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
- python_requires='>=3.7',
- install_requires=['numpy', 'pandas', 'toml', 'protobuf', 'lmdb', 'lxml', 'syct'],
+ python_requires='>=3.8',
+ install_requires=['numpy', 'pandas', 'toml', 'protobuf', 'lmdb', 'lxml', 'msgpack', 'tqdm', 'matplotlib', 'seaborn',
+ 'statsmodels', 'scikit-learn', 'tabulate', 'msgpack', 'syct', 'python-terrier'],
)
diff --git a/code/qpptk/tests/CustomRunFileForPredictionTest.test_with_run_file_where_all_queries_are_highly_effective_approval.approved.jsonl b/code/qpptk/tests/CustomRunFileForPredictionTest.test_with_run_file_where_all_queries_are_highly_effective_approval.approved.jsonl
new file mode 100644
index 0000000..83a8121
--- /dev/null
+++ b/code/qpptk/tests/CustomRunFileForPredictionTest.test_with_run_file_where_all_queries_are_highly_effective_approval.approved.jsonl
@@ -0,0 +1,3 @@
+{"qid":"1","wig+5":12.4250979385,"nqc+5":0.0004338056,"smv+5":-0.0004338056,"clarity+5+100":2.6993897409,"wig+10":12.4250979385,"nqc+10":0.0004338056,"smv+10":-0.0004338056,"clarity+10+100":2.6993897409,"wig+20":12.4250979385,"nqc+20":0.0004338056,"smv+20":-0.0004338056,"clarity+20+100":2.6993897409,"wig+50":12.4250979385,"nqc+50":0.0004338056,"smv+50":-0.0004338056,"clarity+50+100":2.6993897409,"wig+100":12.4250979385,"nqc+100":0.0004338056,"smv+100":-0.0004338056,"clarity+100+100":2.6993897409,"wig+1000":12.4250979385,"nqc+1000":0.0004338056,"smv+1000":-0.0004338056,"clarity+1000+100":2.6993897409}
+{"qid":"2","wig+5":13.2004528045,"nqc+5":0.001559842,"smv+5":-0.001559842,"clarity+5+100":3.2054528045,"wig+10":13.2004528045,"nqc+10":0.001559842,"smv+10":-0.001559842,"clarity+10+100":3.2054528045,"wig+20":13.2004528045,"nqc+20":0.001559842,"smv+20":-0.001559842,"clarity+20+100":3.2054528045,"wig+50":13.2004528045,"nqc+50":0.001559842,"smv+50":-0.001559842,"clarity+50+100":3.2054528045,"wig+100":13.2004528045,"nqc+100":0.001559842,"smv+100":-0.001559842,"clarity+100+100":3.2054528045,"wig+1000":13.2004528045,"nqc+1000":0.001559842,"smv+1000":-0.001559842,"clarity+1000+100":3.2054528045}
+{"qid":"3","wig+5":11.8874342352,"nqc+5":0.0007335282,"smv+5":-0.0007335281,"clarity+5+100":2.6956075044,"wig+10":11.8874342352,"nqc+10":0.0007335282,"smv+10":-0.0007335281,"clarity+10+100":2.6956075044,"wig+20":11.8874342352,"nqc+20":0.0007335282,"smv+20":-0.0007335281,"clarity+20+100":2.6956075044,"wig+50":11.8874342352,"nqc+50":0.0007335282,"smv+50":-0.0007335281,"clarity+50+100":2.6956075044,"wig+100":11.8874342352,"nqc+100":0.0007335282,"smv+100":-0.0007335281,"clarity+100+100":2.6956075044,"wig+1000":11.8874342352,"nqc+1000":0.0007335282,"smv+1000":-0.0007335281,"clarity+1000+100":2.6956075044}
diff --git a/code/qpptk/tests/CustomRunFileForPredictionTest.test_with_run_file_where_one_query_is_highly_effective_approvaltest.approved.jsonl b/code/qpptk/tests/CustomRunFileForPredictionTest.test_with_run_file_where_one_query_is_highly_effective_approvaltest.approved.jsonl
new file mode 100644
index 0000000..d289f18
--- /dev/null
+++ b/code/qpptk/tests/CustomRunFileForPredictionTest.test_with_run_file_where_one_query_is_highly_effective_approvaltest.approved.jsonl
@@ -0,0 +1,3 @@
+{"qid":"1","wig+5":12.4250979385,"nqc+5":0.0004338056,"smv+5":-0.0004338056,"clarity+5+100":2.6993897409,"wig+10":12.4250979385,"nqc+10":0.0004338056,"smv+10":-0.0004338056,"clarity+10+100":2.6993897409,"wig+20":12.4250979385,"nqc+20":0.0004338056,"smv+20":-0.0004338056,"clarity+20+100":2.6993897409,"wig+50":12.4250979385,"nqc+50":0.0004338056,"smv+50":-0.0004338056,"clarity+50+100":2.6993897409,"wig+100":12.4250979385,"nqc+100":0.0004338056,"smv+100":-0.0004338056,"clarity+100+100":2.6993897409,"wig+1000":12.4250979385,"nqc+1000":0.0004338056,"smv+1000":-0.0004338056,"clarity+1000+100":2.6993897409}
+{"qid":"2","wig+5":4.2054528045,"nqc+5":0.2547211364,"smv+5":null,"clarity+5+100":2.240679245,"wig+10":4.2054528045,"nqc+10":0.2547211364,"smv+10":null,"clarity+10+100":2.240679245,"wig+20":4.2054528045,"nqc+20":0.2547211364,"smv+20":null,"clarity+20+100":2.240679245,"wig+50":4.2054528045,"nqc+50":0.2547211364,"smv+50":null,"clarity+50+100":2.240679245,"wig+100":4.2054528045,"nqc+100":0.2547211364,"smv+100":null,"clarity+100+100":2.240679245,"wig+1000":4.2054528045,"nqc+1000":0.2547211364,"smv+1000":null,"clarity+1000+100":2.240679245}
+{"qid":"3","wig+5":-20.8716444259,"nqc+5":6.6373379689,"smv+5":null,"clarity+5+100":3.2047245641,"wig+10":-20.8716444259,"nqc+10":6.6373379689,"smv+10":null,"clarity+10+100":3.2047245641,"wig+20":-20.8716444259,"nqc+20":6.6373379689,"smv+20":null,"clarity+20+100":3.2047245641,"wig+50":-20.8716444259,"nqc+50":6.6373379689,"smv+50":null,"clarity+50+100":3.2047245641,"wig+100":-20.8716444259,"nqc+100":6.6373379689,"smv+100":null,"clarity+100+100":3.2047245641,"wig+1000":-20.8716444259,"nqc+1000":6.6373379689,"smv+1000":null,"clarity+1000+100":3.2047245641}
diff --git a/code/qpptk/tests/TestEndToEnd.test_end_to_end_with_approvaltest.approved.jsonl b/code/qpptk/tests/TestEndToEnd.test_end_to_end_with_approvaltest.approved.jsonl
new file mode 100644
index 0000000..58d0037
--- /dev/null
+++ b/code/qpptk/tests/TestEndToEnd.test_end_to_end_with_approvaltest.approved.jsonl
@@ -0,0 +1,3 @@
+{"qid":"1","max-idf":1.7917594692,"avg-idf":1.3296613489,"scq":6.640310927,"max-scq":2.347200389,"avg-scq":2.2134369757,"var":0.0,"max-var":0.0,"avg-var":0.0,"wig+5":0.0470456283,"nqc+5":0.002581013,"smv+5":0.0025810101,"clarity+5+100":2.6980214786,"wig+10":0.0470456283,"nqc+10":0.002581013,"smv+10":0.0025810101,"clarity+10+100":2.6980214786,"wig+20":0.0470456283,"nqc+20":0.002581013,"smv+20":0.0025810101,"clarity+20+100":2.6980214786,"wig+50":0.0470456283,"nqc+50":0.002581013,"smv+50":0.0025810101,"clarity+50+100":2.6980214786,"wig+100":0.0470456283,"nqc+100":0.002581013,"smv+100":0.0025810101,"clarity+100+100":2.6980214786,"wig+1000":0.0470456283,"nqc+1000":0.002581013,"smv+1000":0.0025810101,"clarity+1000+100":2.6980214786}
+{"qid":"2","max-idf":1.0986122887,"avg-idf":1.0986122887,"scq":2.909294382,"max-scq":2.909294382,"avg-scq":2.909294382,"var":0.4804530139,"max-var":0.4804530139,"avg-var":0.1201132535,"wig+5":0.0238398045,"nqc+5":0.0041725774,"smv+5":0.0041725651,"clarity+5+100":3.2054528045,"wig+10":0.0238398045,"nqc+10":0.0041725774,"smv+10":0.0041725651,"clarity+10+100":3.2054528045,"wig+20":0.0238398045,"nqc+20":0.0041725774,"smv+20":0.0041725651,"clarity+20+100":3.2054528045,"wig+50":0.0238398045,"nqc+50":0.0041725774,"smv+50":0.0041725651,"clarity+50+100":3.2054528045,"wig+100":0.0238398045,"nqc+100":0.0041725774,"smv+100":0.0041725651,"clarity+100+100":3.2054528045,"wig+1000":0.0238398045,"nqc+1000":0.0041725774,"smv+1000":0.0041725651,"clarity+1000+100":3.2054528045}
+{"qid":"3","max-idf":1.0986122887,"avg-idf":1.0986122887,"scq":5.2564947709,"max-scq":2.909294382,"avg-scq":2.6282473855,"var":0.4804530139,"max-var":0.4804530139,"avg-var":0.1601510046,"wig+5":0.0295925724,"nqc+5":0.0030450955,"smv+5":0.0030450908,"clarity+5+100":2.6957656712,"wig+10":0.0295925724,"nqc+10":0.0030450955,"smv+10":0.0030450908,"clarity+10+100":2.6957656712,"wig+20":0.0295925724,"nqc+20":0.0030450955,"smv+20":0.0030450908,"clarity+20+100":2.6957656712,"wig+50":0.0295925724,"nqc+50":0.0030450955,"smv+50":0.0030450908,"clarity+50+100":2.6957656712,"wig+100":0.0295925724,"nqc+100":0.0030450955,"smv+100":0.0030450908,"clarity+100+100":2.6957656712,"wig+1000":0.0295925724,"nqc+1000":0.0030450955,"smv+1000":0.0030450908,"clarity+1000+100":2.6957656712}
diff --git a/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests.approved.jsonl b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests.approved.jsonl
new file mode 100644
index 0000000..b1984e6
--- /dev/null
+++ b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests.approved.jsonl
@@ -0,0 +1,225 @@
+{"qid":"1","max-idf":5.6347896032,"avg-idf":2.8835041438,"scq":174.8311418239,"max-scq":19.3615857554,"avg-scq":15.8937401658,"var":13.6583810321,"max-var":2.2871530231,"avg-var":0.9105587355,"wig+5":1.4707353276,"nqc+5":0.0086019904,"smv+5":0.0079606746,"clarity+5+100":2.0461781049,"wig+10":1.2238077878,"nqc+10":0.0127178598,"smv+10":0.0107414981,"clarity+10+100":1.9353483767,"wig+20":0.9916073887,"nqc+20":0.0135957072,"smv+20":0.0111754884,"clarity+20+100":1.8929626506,"wig+50":0.6814558084,"nqc+50":0.0142602173,"smv+50":0.0107610907,"clarity+50+100":1.8046900721,"wig+100":0.4729255151,"nqc+100":0.0136453024,"smv+100":0.0099078226,"clarity+100+100":1.7495527333,"wig+1000":-0.0517720176,"nqc+1000":0.0116318584,"smv+1000":0.0080168383,"clarity+1000+100":1.4922515366}
+{"qid":"2","max-idf":7.2442275156,"avg-idf":3.0365718619,"scq":133.8333482615,"max-scq":19.3615857554,"avg-scq":14.8703720291,"var":11.3192649272,"max-var":2.2871530231,"avg-var":0.8085189234,"wig+5":1.5585452986,"nqc+5":0.0207956868,"smv+5":0.0159250108,"clarity+5+100":2.7450644143,"wig+10":1.294356232,"nqc+10":0.019332573,"smv+10":0.013495886,"clarity+10+100":2.6781489539,"wig+20":1.048888882,"nqc+20":0.0180074797,"smv+20":0.0121556808,"clarity+20+100":2.6251845196,"wig+50":0.758986052,"nqc+50":0.0162078659,"smv+50":0.0109870688,"clarity+50+100":2.5314491004,"wig+100":0.536728912,"nqc+100":0.0156883124,"smv+100":0.0110084133,"clarity+100+100":2.4593392351,"wig+1000":-0.0188352424,"nqc+1000":0.0134258505,"smv+1000":0.0090615927,"clarity+1000+100":2.1479759141}
+{"qid":"4","max-idf":4.605170186,"avg-idf":2.898268571,"scq":114.7923894918,"max-scq":21.0234802999,"avg-scq":16.3989127845,"var":10.5511650804,"max-var":3.0239608854,"avg-var":0.8116280831,"wig+5":2.0975477487,"nqc+5":0.0072078717,"smv+5":0.0058282588,"clarity+5+100":2.6259064707,"wig+10":1.7323117963,"nqc+10":0.023609647,"smv+10":0.022433536,"clarity+10+100":2.4852882937,"wig+20":1.2787978946,"nqc+20":0.0304768413,"smv+20":0.0261558905,"clarity+20+100":2.4511383514,"wig+50":0.8087961318,"nqc+50":0.0287233606,"smv+50":0.0214949774,"clarity+50+100":2.3978312363,"wig+100":0.5715793922,"nqc+100":0.0241653822,"smv+100":0.0156918101,"clarity+100+100":2.34892485,"wig+1000":0.0279228457,"nqc+1000":0.017478917,"smv+1000":0.0112476724,"clarity+1000+100":2.1274527642}
+{"qid":"8","max-idf":5.4524680464,"avg-idf":2.957081878,"scq":313.3798347858,"max-scq":19.4413492607,"avg-scq":15.6689917393,"var":24.0482092629,"max-var":2.3913732905,"avg-var":0.9619283705,"wig+5":1.8457120568,"nqc+5":0.0135821955,"smv+5":0.0128184652,"clarity+5+100":2.4595780446,"wig+10":1.449546954,"nqc+10":0.0153407263,"smv+10":0.0134439664,"clarity+10+100":2.448374308,"wig+20":1.1409416894,"nqc+20":0.014274609,"smv+20":0.0106833163,"clarity+20+100":2.4393077273,"wig+50":0.7729107179,"nqc+50":0.0129309165,"smv+50":0.0087785938,"clarity+50+100":2.4355895737,"wig+100":0.5268496565,"nqc+100":0.0117695475,"smv+100":0.0080839521,"clarity+100+100":2.4319165154,"wig+1000":-0.0953708634,"nqc+1000":0.0082718361,"smv+1000":0.0054351271,"clarity+1000+100":2.4258508721}
+{"qid":"9","max-idf":4.0253516907,"avg-idf":2.5587152444,"scq":110.5167937626,"max-scq":18.7792703533,"avg-scq":15.7881133947,"var":8.7824868481,"max-var":1.8887404091,"avg-var":0.8782486848,"wig+5":1.5101762763,"nqc+5":0.0092068264,"smv+5":0.0074886114,"clarity+5+100":2.0955261495,"wig+10":1.2798985485,"nqc+10":0.015995718,"smv+10":0.0132387324,"clarity+10+100":1.9397823684,"wig+20":1.0145851205,"nqc+20":0.0190627138,"smv+20":0.0166108392,"clarity+20+100":1.8868582537,"wig+50":0.7152715431,"nqc+50":0.0187283396,"smv+50":0.0138129914,"clarity+50+100":1.775647919,"wig+100":0.5155107992,"nqc+100":0.0176614405,"smv+100":0.0122825476,"clarity+100+100":1.6327980809,"wig+1000":0.0400768309,"nqc+1000":0.0147713696,"smv+1000":0.0099476312,"clarity+1000+100":1.2257303781}
+{"qid":"10","max-idf":4.9416424226,"avg-idf":2.7756448358,"scq":107.6134942583,"max-scq":20.0153704155,"avg-scq":15.3733563226,"var":9.2847615774,"max-var":2.9406890884,"avg-var":0.6631972555,"wig+5":1.2417258813,"nqc+5":0.0108816811,"smv+5":0.0085505013,"clarity+5+100":2.2094451023,"wig+10":1.0961201706,"nqc+10":0.011558843,"smv+10":0.0081502606,"clarity+10+100":1.8875920487,"wig+20":0.9174252388,"nqc+20":0.0130553644,"smv+20":0.0105095098,"clarity+20+100":1.7167665299,"wig+50":0.6858642121,"nqc+50":0.01402651,"smv+50":0.0103791253,"clarity+50+100":1.5133933249,"wig+100":0.478226288,"nqc+100":0.0154938848,"smv+100":0.0122100852,"clarity+100+100":1.3931918466,"wig+1000":-0.0552258109,"nqc+1000":0.0133030948,"smv+1000":0.0088319241,"clarity+1000+100":1.0765863107}
+{"qid":"12","max-idf":7.2442275156,"avg-idf":2.9665863023,"scq":194.5357620946,"max-scq":21.1526695281,"avg-scq":14.9642893919,"var":17.4961568968,"max-var":3.9437623603,"avg-var":0.8331503284,"wig+5":3.0492418495,"nqc+5":0.0280982259,"smv+5":0.0214857543,"clarity+5+100":3.411386383,"wig+10":2.3966168776,"nqc+10":0.0274726763,"smv+10":0.0195394126,"clarity+10+100":3.4112010751,"wig+20":1.8664384794,"nqc+20":0.0250302268,"smv+20":0.0170286608,"clarity+20+100":3.4111259488,"wig+50":1.2133297645,"nqc+50":0.02228323,"smv+50":0.0153231543,"clarity+50+100":3.4110942514,"wig+100":0.7770827332,"nqc+100":0.0203044528,"smv+100":0.0134257838,"clarity+100+100":3.4110837943,"wig+1000":-0.1324460496,"nqc+1000":0.0120735265,"smv+1000":0.0071368873,"clarity+1000+100":3.4110605515}
+{"qid":"13","max-idf":7.2442275156,"avg-idf":2.8395055744,"scq":151.3599236902,"max-scq":18.7340747757,"avg-scq":12.6133269742,"var":11.3781588702,"max-var":2.0614482316,"avg-var":0.669303463,"wig+5":1.6222395251,"nqc+5":0.0052569514,"smv+5":0.0047829389,"clarity+5+100":1.7311738073,"wig+10":1.4327198247,"nqc+10":0.008704808,"smv+10":0.0071789635,"clarity+10+100":1.5906161357,"wig+20":1.1548905036,"nqc+20":0.0127778018,"smv+20":0.0109138236,"clarity+20+100":1.4960698198,"wig+50":0.7291847294,"nqc+50":0.0157130331,"smv+50":0.0129282539,"clarity+50+100":1.473198286,"wig+100":0.4679214899,"nqc+100":0.0149222237,"smv+100":0.0110502811,"clarity+100+100":1.4367850086,"wig+1000":-0.0646923973,"nqc+1000":0.0090203827,"smv+1000":0.0054179818,"clarity+1000+100":1.2984066302}
+{"qid":"15","max-idf":4.8463322428,"avg-idf":2.5631747335,"scq":120.8949618651,"max-scq":20.9551101915,"avg-scq":15.1118702331,"var":9.3847964254,"max-var":2.7911855683,"avg-var":1.1730995532,"wig+5":1.1548321126,"nqc+5":0.0046416142,"smv+5":0.0039255857,"clarity+5+100":1.8363751335,"wig+10":1.057928078,"nqc+10":0.0065983806,"smv+10":0.0056935403,"clarity+10+100":1.6396393235,"wig+20":0.9041542734,"nqc+20":0.0099443017,"smv+20":0.0085384684,"clarity+20+100":1.5488073232,"wig+50":0.659896094,"nqc+50":0.0132810803,"smv+50":0.0107770355,"clarity+50+100":1.4002659169,"wig+100":0.4732956597,"nqc+100":0.0140053224,"smv+100":0.0111441391,"clarity+100+100":1.3266222773,"wig+1000":-0.0414573644,"nqc+1000":0.0126983117,"smv+1000":0.0088637071,"clarity+1000+100":1.0526260738}
+{"qid":"18","max-idf":7.2442275156,"avg-idf":3.6908707888,"scq":165.4830406087,"max-scq":19.1850318701,"avg-scq":15.0439127826,"var":13.5469921019,"max-var":2.1939059335,"avg-var":0.8466870064,"wig+5":1.6474488642,"nqc+5":0.0124169245,"smv+5":0.0110156514,"clarity+5+100":1.8435531577,"wig+10":1.4090733921,"nqc+10":0.0129715225,"smv+10":0.0103403326,"clarity+10+100":1.8025066926,"wig+20":1.1145913172,"nqc+20":0.0146645872,"smv+20":0.0117036247,"clarity+20+100":1.7731082637,"wig+50":0.7424387079,"nqc+50":0.0152076546,"smv+50":0.0114261116,"clarity+50+100":1.750390224,"wig+100":0.5042631801,"nqc+100":0.0141679313,"smv+100":0.0102239884,"clarity+100+100":1.7312773047,"wig+1000":-0.033156067,"nqc+1000":0.0124729575,"smv+1000":0.0086144295,"clarity+1000+100":1.6665908599}
+{"qid":"22","max-idf":4.5361773145,"avg-idf":2.5674149585,"scq":171.2274468988,"max-scq":19.6978174,"avg-scq":15.5661315363,"var":14.8019488761,"max-var":2.4304904779,"avg-var":0.8223304931,"wig+5":1.3389547419,"nqc+5":0.0229748235,"smv+5":0.0181328895,"clarity+5+100":2.565723547,"wig+10":1.1173712205,"nqc+10":0.0191819762,"smv+10":0.0115792351,"clarity+10+100":2.5145634664,"wig+20":0.9210067865,"nqc+20":0.0163027082,"smv+20":0.0096943445,"clarity+20+100":2.4544146291,"wig+50":0.6955637058,"nqc+50":0.0135946348,"smv+50":0.0082523491,"clarity+50+100":2.3775823221,"wig+100":0.5059199415,"nqc+100":0.0130084525,"smv+100":0.0091482683,"clarity+100+100":2.3212818828,"wig+1000":-0.0469805419,"nqc+1000":0.0118438823,"smv+1000":0.0082047101,"clarity+1000+100":2.0962302939}
+{"qid":"23","max-idf":4.4110141715,"avg-idf":2.474436789,"scq":154.2131776012,"max-scq":21.3810360374,"avg-scq":15.4213177601,"var":14.4580019852,"max-var":2.9771038829,"avg-var":1.1121539989,"wig+5":1.4360432491,"nqc+5":0.0223475595,"smv+5":0.0169705939,"clarity+5+100":2.0714155825,"wig+10":1.1593194778,"nqc+10":0.0210107476,"smv+10":0.0152869658,"clarity+10+100":2.0269159417,"wig+20":0.8999376372,"nqc+20":0.0197449533,"smv+20":0.0135032632,"clarity+20+100":2.0022999435,"wig+50":0.623706612,"nqc+50":0.0169966649,"smv+50":0.0111251732,"clarity+50+100":1.9491782888,"wig+100":0.4412046839,"nqc+100":0.0151050014,"smv+100":0.0099247609,"clarity+100+100":1.9048595883,"wig+1000":-0.0398797174,"nqc+1000":0.010591487,"smv+1000":0.0069189834,"clarity+1000+100":1.6426008061}
+{"qid":"26","max-idf":7.2442275156,"avg-idf":4.4677129622,"scq":92.4179491297,"max-scq":22.0697405017,"avg-scq":18.4835898259,"var":9.2554093717,"max-var":4.2095227587,"avg-var":1.0283788191,"wig+5":2.0952204907,"nqc+5":0.0546773687,"smv+5":0.0413067534,"clarity+5+100":2.7275059076,"wig+10":1.5679799006,"nqc+10":0.0483537427,"smv+10":0.0331438149,"clarity+10+100":2.7162385711,"wig+20":1.1380274082,"nqc+20":0.0415102804,"smv+20":0.0260777576,"clarity+20+100":2.7075940963,"wig+50":0.7505872102,"nqc+50":0.0314623707,"smv+50":0.0177178551,"clarity+50+100":2.6896771588,"wig+100":0.5252655406,"nqc+100":0.0254526478,"smv+100":0.0134479297,"clarity+100+100":2.6723571318,"wig+1000":0.3867145361,"nqc+1000":0.0239414384,"smv+1000":0.0132034196,"clarity+1000+100":2.6610008751}
+{"qid":"27","max-idf":4.8463322428,"avg-idf":2.8051130695,"scq":96.9705948777,"max-scq":19.7853212362,"avg-scq":16.1617658129,"var":7.7241371926,"max-var":2.4913698568,"avg-var":1.2873561988,"wig+5":1.7842601132,"nqc+5":0.0158518816,"smv+5":0.0141736672,"clarity+5+100":2.1125019053,"wig+10":1.4589978816,"nqc+10":0.0234328941,"smv+10":0.0196592947,"clarity+10+100":1.9996301266,"wig+20":1.1869391387,"nqc+20":0.0234750908,"smv+20":0.0193000641,"clarity+20+100":1.8882658473,"wig+50":0.8525439683,"nqc+50":0.0227608034,"smv+50":0.0160753795,"clarity+50+100":1.7818772014,"wig+100":0.6024572587,"nqc+100":0.0222891666,"smv+100":0.0161630886,"clarity+100+100":1.6775972969,"wig+1000":0.1080345094,"nqc+1000":0.0191341189,"smv+1000":0.0127844514,"clarity+1000+100":1.4077608292}
+{"qid":"29","max-idf":7.2442275156,"avg-idf":4.2630152803,"scq":40.8804936099,"max-scq":17.5693276411,"avg-scq":13.6268312033,"var":2.845569121,"max-var":1.573632631,"avg-var":0.7113922802,"wig+5":2.8358198233,"nqc+5":0.0567828158,"smv+5":0.0438669517,"clarity+5+100":2.7636301472,"wig+10":2.3509671872,"nqc+10":0.0477824157,"smv+10":0.0285310949,"clarity+10+100":2.7203001038,"wig+20":1.9508363441,"nqc+20":0.0401625599,"smv+20":0.0231842273,"clarity+20+100":2.6752215114,"wig+50":1.3153585364,"nqc+50":0.0381360805,"smv+50":0.026681644,"clarity+50+100":2.6392108295,"wig+100":0.891819933,"nqc+100":0.0355266756,"smv+100":0.024655406,"clarity+100+100":2.6093307019,"wig+1000":0.5884928567,"nqc+1000":0.0350757636,"smv+1000":0.0241326099,"clarity+1000+100":2.5886157702}
+{"qid":"31","max-idf":4.2997885364,"avg-idf":2.5398699126,"scq":170.9076023866,"max-scq":18.9721498901,"avg-scq":15.5370547624,"var":14.2768367136,"max-var":2.1359251064,"avg-var":0.8398139243,"wig+5":1.3136066568,"nqc+5":0.0182874339,"smv+5":0.0137266841,"clarity+5+100":2.2064957816,"wig+10":1.0666684434,"nqc+10":0.0173784995,"smv+10":0.0127988263,"clarity+10+100":2.1542530505,"wig+20":0.8841371991,"nqc+20":0.0149422546,"smv+20":0.0100398814,"clarity+20+100":2.0941155352,"wig+50":0.668990948,"nqc+50":0.0127197439,"smv+50":0.0079295937,"clarity+50+100":1.9937289852,"wig+100":0.4984894545,"nqc+100":0.012056837,"smv+100":0.0083991726,"clarity+100+100":1.9155578002,"wig+1000":-0.0448751366,"nqc+1000":0.0112869853,"smv+1000":0.0080742584,"clarity+1000+100":1.6152733741}
+{"qid":"32","max-idf":3.1837845051,"avg-idf":2.1396925299,"scq":146.8717055984,"max-scq":18.48522908,"avg-scq":14.6871705598,"var":11.2825344258,"max-var":1.7770292982,"avg-var":0.6636784956,"wig+5":1.3043273792,"nqc+5":0.0061636935,"smv+5":0.0051272311,"clarity+5+100":1.6676164293,"wig+10":1.1334798578,"nqc+10":0.0088978907,"smv+10":0.0074865992,"clarity+10+100":1.5235207503,"wig+20":0.9298920426,"nqc+20":0.0112077109,"smv+20":0.0091551992,"clarity+20+100":1.4832651986,"wig+50":0.6936069025,"nqc+50":0.0111292862,"smv+50":0.0086604137,"clarity+50+100":1.4156251473,"wig+100":0.5443627719,"nqc+100":0.0103274261,"smv+100":0.0071169922,"clarity+100+100":1.3329478872,"wig+1000":0.0012526723,"nqc+1000":0.0110801429,"smv+1000":0.0083563698,"clarity+1000+100":1.0976330639}
+{"qid":"33","max-idf":7.2442275156,"avg-idf":3.1899191017,"scq":128.7359863059,"max-scq":18.0007117754,"avg-scq":12.8735986306,"var":8.5191162315,"max-var":1.7027750191,"avg-var":0.7099263526,"wig+5":1.2946634617,"nqc+5":0.0052536454,"smv+5":0.0041092596,"clarity+5+100":1.4932243566,"wig+10":1.111638104,"nqc+10":0.0090196912,"smv+10":0.0083815353,"clarity+10+100":1.3911387805,"wig+20":0.9111471547,"nqc+20":0.0109470827,"smv+20":0.0091467625,"clarity+20+100":1.3211873731,"wig+50":0.6913399067,"nqc+50":0.0107123471,"smv+50":0.0078008924,"clarity+50+100":1.2662828769,"wig+100":0.5085186455,"nqc+100":0.0112127957,"smv+100":0.0082899522,"clarity+100+100":1.2013191635,"wig+1000":-0.0813747199,"nqc+1000":0.0114635314,"smv+1000":0.0077117872,"clarity+1000+100":1.0589520111}
+{"qid":"34","max-idf":6.1456152269,"avg-idf":3.0668785878,"scq":184.2382631179,"max-scq":20.1921580424,"avg-scq":15.3531885932,"var":11.3320857468,"max-var":2.4038256997,"avg-var":0.5666042873,"wig+5":1.0564595508,"nqc+5":0.0056429095,"smv+5":0.0049107277,"clarity+5+100":1.8131945321,"wig+10":0.8918794479,"nqc+10":0.007807587,"smv+10":0.006849456,"clarity+10+100":1.6954205737,"wig+20":0.7236184052,"nqc+20":0.0086731648,"smv+20":0.0070789447,"clarity+20+100":1.6005929989,"wig+50":0.5388921872,"nqc+50":0.0081953031,"smv+50":0.0058817705,"clarity+50+100":1.4312205762,"wig+100":0.3953551305,"nqc+100":0.0081751539,"smv+100":0.0058326456,"clarity+100+100":1.3233176655,"wig+1000":-0.0861726603,"nqc+1000":0.0087334135,"smv+1000":0.0064480438,"clarity+1000+100":1.0314637065}
+{"qid":"35","max-idf":7.2442275156,"avg-idf":2.9372677667,"scq":214.4575019108,"max-scq":20.1788975701,"avg-scq":15.3183929936,"var":13.9024415514,"max-var":2.1177498058,"avg-var":0.6620210263,"wig+5":1.6025986705,"nqc+5":0.0208903679,"smv+5":0.0156689401,"clarity+5+100":2.9933790832,"wig+10":1.2620834206,"nqc+10":0.0201981043,"smv+10":0.0146679788,"clarity+10+100":2.9683973972,"wig+20":0.9360506566,"nqc+20":0.0191514861,"smv+20":0.0140070444,"clarity+20+100":2.9600633354,"wig+50":0.6015611321,"nqc+50":0.0161844745,"smv+50":0.0106590418,"clarity+50+100":2.9486280327,"wig+100":0.4068415374,"nqc+100":0.0137579033,"smv+100":0.0084571942,"clarity+100+100":2.9390073525,"wig+1000":-0.0705845472,"nqc+1000":0.0086158625,"smv+1000":0.0054951309,"clarity+1000+100":2.8795909029}
+{"qid":"39","max-idf":4.605170186,"avg-idf":2.5867687932,"scq":141.4287660504,"max-scq":19.2340431798,"avg-scq":15.7143073389,"var":11.8984200697,"max-var":2.1424497921,"avg-var":0.7932280046,"wig+5":1.2088267923,"nqc+5":0.0157061148,"smv+5":0.0142674175,"clarity+5+100":2.5495519255,"wig+10":1.0430163589,"nqc+10":0.0139566745,"smv+10":0.0104380482,"clarity+10+100":2.3253929202,"wig+20":0.8905540256,"nqc+20":0.0125876485,"smv+20":0.008171938,"clarity+20+100":2.1177228012,"wig+50":0.6897262656,"nqc+50":0.0118288679,"smv+50":0.008112822,"clarity+50+100":1.8705636356,"wig+100":0.5064472323,"nqc+100":0.0125893137,"smv+100":0.0095546188,"clarity+100+100":1.7125770248,"wig+1000":-0.0045354523,"nqc+1000":0.0130477639,"smv+1000":0.0093774016,"clarity+1000+100":1.310816623}
+{"qid":"40","max-idf":5.6347896032,"avg-idf":3.1249754686,"scq":148.2474688192,"max-scq":17.6705259755,"avg-scq":16.4719409799,"var":11.7642780696,"max-var":1.9200935112,"avg-var":0.5882139035,"wig+5":1.3680976184,"nqc+5":0.0088979699,"smv+5":0.0063782701,"clarity+5+100":1.84384821,"wig+10":1.1988979517,"nqc+10":0.010138721,"smv+10":0.0085086547,"clarity+10+100":1.7442381247,"wig+20":1.0210566851,"nqc+20":0.0113058929,"smv+20":0.0084856207,"clarity+20+100":1.6468825379,"wig+50":0.7633435117,"nqc+50":0.0124261847,"smv+50":0.0096436911,"clarity+50+100":1.5276802504,"wig+100":0.5646345251,"nqc+100":0.0128913658,"smv+100":0.0097674529,"clarity+100+100":1.4573793577,"wig+1000":0.0497141026,"nqc+1000":0.0143935903,"smv+1000":0.010565738,"clarity+1000+100":1.2647710617}
+{"qid":"41","max-idf":4.8463322428,"avg-idf":3.2161666734,"scq":97.3798276948,"max-scq":19.256493179,"avg-scq":16.2299712825,"var":6.360527651,"max-var":2.0551778005,"avg-var":0.6360527651,"wig+5":1.2971861177,"nqc+5":0.0090303325,"smv+5":0.0082158822,"clarity+5+100":2.0393052223,"wig+10":1.1899024678,"nqc+10":0.0089297334,"smv+10":0.00645555,"clarity+10+100":1.8569025724,"wig+20":1.0549311126,"nqc+20":0.0098807817,"smv+20":0.0076892432,"clarity+20+100":1.6218257419,"wig+50":0.8123287455,"nqc+50":0.0133961573,"smv+50":0.0108788115,"clarity+50+100":1.4174160994,"wig+100":0.574445455,"nqc+100":0.0165073327,"smv+100":0.0134360601,"clarity+100+100":1.3192725278,"wig+1000":0.0539402281,"nqc+1000":0.0171411938,"smv+1000":0.0121746586,"clarity+1000+100":1.0726327935}
+{"qid":"49","max-idf":7.2442275156,"avg-idf":3.6472484807,"scq":136.4815728673,"max-scq":19.2990305969,"avg-scq":15.1646192075,"var":13.0947036318,"max-var":3.2371723071,"avg-var":1.0072848948,"wig+5":1.6662854335,"nqc+5":0.0279318929,"smv+5":0.021725301,"clarity+5+100":3.4485065433,"wig+10":1.2860394335,"nqc+10":0.025926497,"smv+10":0.0170891017,"clarity+10+100":3.4235665512,"wig+20":0.9631497501,"nqc+20":0.0230394084,"smv+20":0.0157361893,"clarity+20+100":3.3986845309,"wig+50":0.5998044935,"nqc+50":0.0193927574,"smv+50":0.0125781569,"clarity+50+100":3.3689741853,"wig+100":0.4046106701,"nqc+100":0.0160897346,"smv+100":0.0096449643,"clarity+100+100":3.3399422463,"wig+1000":-0.0092021527,"nqc+1000":0.0117078169,"smv+1000":0.0075273062,"clarity+1000+100":3.1863336199}
+{"qid":"50","max-idf":5.0470029383,"avg-idf":3.0253390044,"scq":181.4943519485,"max-scq":21.3211854961,"avg-scq":16.4994865408,"var":16.8533657315,"max-var":3.8732540725,"avg-var":0.9913744548,"wig+5":1.7555047645,"nqc+5":0.0133930346,"smv+5":0.0101456561,"clarity+5+100":2.2873536307,"wig+10":1.4650746553,"nqc+10":0.0160441361,"smv+10":0.0124207317,"clarity+10+100":2.230404477,"wig+20":1.1452059282,"nqc+20":0.0181346807,"smv+20":0.0144252213,"clarity+20+100":2.2022236471,"wig+50":0.7437634033,"nqc+50":0.0183375902,"smv+50":0.0138900437,"clarity+50+100":2.1612933322,"wig+100":0.4956654357,"nqc+100":0.0168845466,"smv+100":0.0116962482,"clarity+100+100":2.125178101,"wig+1000":-0.0876710625,"nqc+1000":0.011672805,"smv+1000":0.0075887559,"clarity+1000+100":1.9904207085}
+{"qid":"51","max-idf":4.8463322428,"avg-idf":2.1071835599,"scq":184.4767140633,"max-scq":17.5390491401,"avg-scq":14.1905164664,"var":13.4930705828,"max-var":1.6528728082,"avg-var":0.6746535291,"wig+5":1.0319575672,"nqc+5":0.0018446044,"smv+5":0.0017628355,"clarity+5+100":1.5063862235,"wig+10":0.9384970464,"nqc+10":0.0046470894,"smv+10":0.0043200718,"clarity+10+100":1.4114020734,"wig+20":0.8240389044,"nqc+20":0.0064511856,"smv+20":0.0054402887,"clarity+20+100":1.3629468742,"wig+50":0.6418192797,"nqc+50":0.0082127624,"smv+50":0.0067564888,"clarity+50+100":1.2886782965,"wig+100":0.4973494275,"nqc+100":0.0089995538,"smv+100":0.0069841673,"clarity+100+100":1.2532536472,"wig+1000":-0.0017524944,"nqc+1000":0.0104512895,"smv+1000":0.0079057765,"clarity+1000+100":1.0750121964}
+{"qid":"52","max-idf":4.248495242,"avg-idf":2.4712221018,"scq":126.0621468265,"max-scq":20.2954719237,"avg-scq":15.7577683533,"var":11.0428155275,"max-var":2.6011123428,"avg-var":0.7887725377,"wig+5":1.871883063,"nqc+5":0.0071327271,"smv+5":0.0056773464,"clarity+5+100":2.3221450318,"wig+10":1.6550288989,"nqc+10":0.0122417498,"smv+10":0.0103601001,"clarity+10+100":2.1990360012,"wig+20":1.3248454404,"nqc+20":0.0188227632,"smv+20":0.0160036525,"clarity+20+100":2.147424118,"wig+50":0.8436368075,"nqc+50":0.0228215793,"smv+50":0.0183627527,"clarity+50+100":2.0840465879,"wig+100":0.5647913378,"nqc+100":0.0209929286,"smv+100":0.0157139185,"clarity+100+100":2.0117594262,"wig+1000":-0.0278984988,"nqc+1000":0.0145604742,"smv+1000":0.0092114367,"clarity+1000+100":1.7756502203}
+{"qid":"53","max-idf":2.4320431602,"avg-idf":1.9609019967,"scq":86.6356942517,"max-scq":15.7585129604,"avg-scq":14.4392823753,"var":6.8067399274,"max-var":1.4877529935,"avg-var":0.6806739927,"wig+5":0.8399986047,"nqc+5":0.0081265856,"smv+5":0.0075805307,"clarity+5+100":1.9489840256,"wig+10":0.7382436981,"nqc+10":0.0091746412,"smv+10":0.0076805232,"clarity+10+100":1.6810680815,"wig+20":0.6609764017,"nqc+20":0.0084850454,"smv+20":0.0062212124,"clarity+20+100":1.6281080402,"wig+50":0.5493349503,"nqc+50":0.0086365924,"smv+50":0.0062185667,"clarity+50+100":1.4275087454,"wig+100":0.4460732769,"nqc+100":0.0095606975,"smv+100":0.0074419227,"clarity+100+100":1.2559958745,"wig+1000":0.0355016457,"nqc+1000":0.014995775,"smv+1000":0.0114243963,"clarity+1000+100":1.0082460806}
+{"qid":"54","max-idf":4.8463322428,"avg-idf":2.3803739558,"scq":181.1831756553,"max-scq":19.7468753235,"avg-scq":15.0985979713,"var":14.3314457971,"max-var":1.9662439088,"avg-var":0.7961914332,"wig+5":1.5695202221,"nqc+5":0.0092889414,"smv+5":0.0088425245,"clarity+5+100":1.9856088686,"wig+10":1.4165894311,"nqc+10":0.0096777184,"smv+10":0.0078047988,"clarity+10+100":1.9274214018,"wig+20":1.240342797,"nqc+20":0.0110037867,"smv+20":0.0081371974,"clarity+20+100":1.8472828107,"wig+50":0.8843099472,"nqc+50":0.015530169,"smv+50":0.0130639925,"clarity+50+100":1.7885046903,"wig+100":0.6319165225,"nqc+100":0.0160736229,"smv+100":0.0125693448,"clarity+100+100":1.7572258404,"wig+1000":-0.0294166225,"nqc+1000":0.0126932639,"smv+1000":0.0083089545,"clarity+1000+100":1.6030880954}
+{"qid":"55","max-idf":5.1647859739,"avg-idf":2.8787597263,"scq":108.8694301544,"max-scq":18.5710234046,"avg-scq":15.5527757363,"var":8.5921008954,"max-var":2.0731172487,"avg-var":1.2274429851,"wig+5":1.8793796401,"nqc+5":0.0028125443,"smv+5":0.0025877035,"clarity+5+100":1.6324336761,"wig+10":1.7590242617,"nqc+10":0.0063535526,"smv+10":0.0056111522,"clarity+10+100":1.5339327292,"wig+20":1.3795112494,"nqc+20":0.0192344414,"smv+20":0.0176992671,"clarity+20+100":1.435353281,"wig+50":0.8412174483,"nqc+50":0.0240591455,"smv+50":0.0202903143,"clarity+50+100":1.4001115508,"wig+100":0.5477710851,"nqc+100":0.0219273591,"smv+100":0.0158229732,"clarity+100+100":1.3594855388,"wig+1000":-0.0838974126,"nqc+1000":0.0138978104,"smv+1000":0.0083605531,"clarity+1000+100":1.1972973223}
+{"qid":"56","max-idf":6.551080335,"avg-idf":2.6948356294,"scq":254.9754189412,"max-scq":18.6696357515,"avg-scq":14.9985540554,"var":20.4047454783,"max-var":2.3010608352,"avg-var":0.8871628469,"wig+5":0.9961851532,"nqc+5":0.0122327635,"smv+5":0.0091765283,"clarity+5+100":3.3021839195,"wig+10":0.7954032487,"nqc+10":0.0113466552,"smv+10":0.008441872,"clarity+10+100":3.151862102,"wig+20":0.6404252884,"nqc+20":0.0098338907,"smv+20":0.0064662417,"clarity+20+100":3.0255283484,"wig+50":0.4416867951,"nqc+50":0.0085986828,"smv+50":0.0057562007,"clarity+50+100":2.8345972768,"wig+100":0.318230375,"nqc+100":0.0075758708,"smv+100":0.0048619872,"clarity+100+100":2.6809403206,"wig+1000":-0.0638341397,"nqc+1000":0.0064621205,"smv+1000":0.004690556,"clarity+1000+100":2.0696104715}
+{"qid":"57","max-idf":3.7477199541,"avg-idf":2.2606760141,"scq":121.1343729936,"max-scq":18.3693860428,"avg-scq":15.1417966242,"var":9.8840876311,"max-var":1.7360433072,"avg-var":0.8236739693,"wig+5":1.166658452,"nqc+5":0.0279871228,"smv+5":0.0221197444,"clarity+5+100":2.7757036423,"wig+10":0.9781879783,"nqc+10":0.0225647681,"smv+10":0.0131366095,"clarity+10+100":2.6064627407,"wig+20":0.8178054124,"nqc+20":0.0184885855,"smv+20":0.0099164284,"clarity+20+100":2.4437806424,"wig+50":0.6463517957,"nqc+50":0.0143019754,"smv+50":0.0080590386,"clarity+50+100":2.2024101415,"wig+100":0.5056260558,"nqc+100":0.0130237604,"smv+100":0.0082991208,"clarity+100+100":2.0262474582,"wig+1000":-0.0129662457,"nqc+1000":0.0141049077,"smv+1000":0.0102493908,"clarity+1000+100":1.5192801349}
+{"qid":"58","max-idf":5.1647859739,"avg-idf":2.4239983702,"scq":231.1873049621,"max-scq":19.6859748596,"avg-scq":15.4124869975,"var":19.2639133734,"max-var":2.1362379154,"avg-var":0.9631956687,"wig+5":2.1311616946,"nqc+5":0.0232997519,"smv+5":0.017142177,"clarity+5+100":2.8529423755,"wig+10":1.7445895186,"nqc+10":0.0211736104,"smv+10":0.0160313811,"clarity+10+100":2.8489152966,"wig+20":1.3696777077,"nqc+20":0.0198059845,"smv+20":0.0132453193,"clarity+20+100":2.847393421,"wig+50":0.944198362,"nqc+50":0.0174417866,"smv+50":0.0117040024,"clarity+50+100":2.8460704739,"wig+100":0.6776663225,"nqc+100":0.0153581993,"smv+100":0.0100897322,"clarity+100+100":2.8451036902,"wig+1000":-0.0482100448,"nqc+1000":0.0115209768,"smv+1000":0.0078455831,"clarity+1000+100":2.8427884631}
+{"qid":"59","max-idf":4.8463322428,"avg-idf":2.8146994991,"scq":123.9422144438,"max-scq":19.6859748596,"avg-scq":15.4927768055,"var":9.070535079,"max-var":2.1362379154,"avg-var":0.8245940981,"wig+5":1.3618840315,"nqc+5":0.0034623658,"smv+5":0.0030345715,"clarity+5+100":1.7008525138,"wig+10":1.265643263,"nqc+10":0.0069448067,"smv+10":0.0052553704,"clarity+10+100":1.6719299504,"wig+20":1.0806542296,"nqc+20":0.0109638128,"smv+20":0.0099889138,"clarity+20+100":1.5637406269,"wig+50":0.8199668413,"nqc+50":0.0132263812,"smv+50":0.0106271809,"clarity+50+100":1.4807429267,"wig+100":0.6007506294,"nqc+100":0.0148664209,"smv+100":0.0115056307,"clarity+100+100":1.4126433711,"wig+1000":-0.0278963665,"nqc+1000":0.015395131,"smv+1000":0.0107562172,"clarity+1000+100":1.1505063299}
+{"qid":"61","max-idf":7.2442275156,"avg-idf":4.1014281911,"scq":130.358572506,"max-scq":22.0528189741,"avg-scq":16.2948215632,"var":12.8304194417,"max-var":3.6127315027,"avg-var":1.0692016201,"wig+5":1.3811956318,"nqc+5":0.0104956917,"smv+5":0.0092529234,"clarity+5+100":1.8792339776,"wig+10":1.1793074888,"nqc+10":0.0115717113,"smv+10":0.0092641613,"clarity+10+100":1.8415241755,"wig+20":1.0089998836,"nqc+20":0.0111993105,"smv+20":0.0083386698,"clarity+20+100":1.783892185,"wig+50":0.7282430265,"nqc+50":0.0124101928,"smv+50":0.0096478668,"clarity+50+100":1.6766813929,"wig+100":0.4896689745,"nqc+100":0.0137166508,"smv+100":0.0105061787,"clarity+100+100":1.5900737066,"wig+1000":0.0280387376,"nqc+1000":0.0136201742,"smv+1000":0.0094504736,"clarity+1000+100":1.3415222898}
+{"qid":"62","max-idf":5.2983173665,"avg-idf":3.0137667613,"scq":134.0828037598,"max-scq":19.4082615743,"avg-scq":14.8980893066,"var":9.5310795093,"max-var":2.03877188,"avg-var":0.7331599623,"wig+5":1.1642068495,"nqc+5":0.0071938584,"smv+5":0.0064060791,"clarity+5+100":1.5676929312,"wig+10":1.0102617495,"nqc+10":0.008485076,"smv+10":0.0075122575,"clarity+10+100":1.4800418241,"wig+20":0.8794263495,"nqc+20":0.0084083008,"smv+20":0.006273156,"clarity+20+100":1.3810917026,"wig+50":0.7058042229,"nqc+50":0.0084160542,"smv+50":0.0061025366,"clarity+50+100":1.2791597225,"wig+100":0.5413684862,"nqc+100":0.0094533791,"smv+100":0.0073808724,"clarity+100+100":1.2287907463,"wig+1000":-0.0658784962,"nqc+1000":0.0128262536,"smv+1000":0.0094851173,"clarity+1000+100":1.0455073277}
+{"qid":"66","max-idf":7.2442275156,"avg-idf":2.4785274361,"scq":69.7998145112,"max-scq":14.0780117531,"avg-scq":11.6333024185,"var":4.7236343158,"max-var":1.1490365903,"avg-var":0.5248482573,"wig+5":1.0244029102,"nqc+5":0.0330931891,"smv+5":0.0258568836,"clarity+5+100":2.099947229,"wig+10":0.8177857968,"nqc+10":0.0267158009,"smv+10":0.0160966823,"clarity+10+100":1.9518613215,"wig+20":0.6770740828,"nqc+20":0.020869514,"smv+20":0.0107125047,"clarity+20+100":1.7713454433,"wig+50":0.5038556069,"nqc+50":0.0161755991,"smv+50":0.0085645168,"clarity+50+100":1.5627828095,"wig+100":0.3588593435,"nqc+100":0.0146615491,"smv+100":0.0095658167,"clarity+100+100":1.4365970175,"wig+1000":-0.0256433787,"nqc+1000":0.0114232973,"smv+1000":0.0077685084,"clarity+1000+100":1.0223645884}
+{"qid":"67","max-idf":4.8463322428,"avg-idf":2.9906005134,"scq":134.7741624144,"max-scq":20.0678361505,"avg-scq":16.8467703018,"var":10.1774148872,"max-var":2.4633412821,"avg-var":0.8481179073,"wig+5":1.0352141299,"nqc+5":0.0099809776,"smv+5":0.008233197,"clarity+5+100":1.6435960552,"wig+10":0.8983554155,"nqc+10":0.0099878213,"smv+10":0.0070134993,"clarity+10+100":1.5168841888,"wig+20":0.787336239,"nqc+20":0.0091257268,"smv+20":0.006456573,"clarity+20+100":1.3265948729,"wig+50":0.6144988038,"nqc+50":0.0095445187,"smv+50":0.0070189522,"clarity+50+100":1.2553391262,"wig+100":0.4653868729,"nqc+100":0.0102958577,"smv+100":0.0079443141,"clarity+100+100":1.1695060942,"wig+1000":0.0407245069,"nqc+1000":0.0130209664,"smv+1000":0.0097425415,"clarity+1000+100":1.0057539705}
+{"qid":"68","max-idf":5.1647859739,"avg-idf":2.9130035669,"scq":106.1441568285,"max-scq":18.7270775768,"avg-scq":15.1634509755,"var":8.3011570567,"max-var":2.2614342106,"avg-var":0.9223507841,"wig+5":1.4841479937,"nqc+5":0.010444451,"smv+5":0.0097391661,"clarity+5+100":1.6620568849,"wig+10":1.3283650226,"nqc+10":0.0116546008,"smv+10":0.0087915218,"clarity+10+100":1.5661303476,"wig+20":1.074001849,"nqc+20":0.0166617794,"smv+20":0.0139468339,"clarity+20+100":1.4620210576,"wig+50":0.7410438736,"nqc+50":0.0186804286,"smv+50":0.0146352421,"clarity+50+100":1.4034493557,"wig+100":0.5196209842,"nqc+100":0.0181318183,"smv+100":0.0133980257,"clarity+100+100":1.3558164114,"wig+1000":-0.0067577678,"nqc+1000":0.0150572166,"smv+1000":0.0098306762,"clarity+1000+100":1.1253466134}
+{"qid":"69","max-idf":5.1647859739,"avg-idf":3.3718648396,"scq":118.5522921063,"max-scq":20.0678361505,"avg-scq":16.9360417295,"var":9.9573297994,"max-var":2.4633412821,"avg-var":1.1063699777,"wig+5":1.5766864213,"nqc+5":0.0169084726,"smv+5":0.0128928342,"clarity+5+100":1.869911763,"wig+10":1.3232238614,"nqc+10":0.0180468621,"smv+10":0.0137496345,"clarity+10+100":1.7476719646,"wig+20":1.056059428,"nqc+20":0.0187671389,"smv+20":0.0146645835,"clarity+20+100":1.689379075,"wig+50":0.744422523,"nqc+50":0.0181955344,"smv+50":0.0126960342,"clarity+50+100":1.6107361456,"wig+100":0.5112895572,"nqc+100":0.0177254872,"smv+100":0.0129961961,"clarity+100+100":1.5593060007,"wig+1000":0.0269759645,"nqc+1000":0.0154512786,"smv+1000":0.0102820252,"clarity+1000+100":1.3115640827}
+{"qid":"71","max-idf":5.1647859739,"avg-idf":2.6590977593,"scq":132.7900859695,"max-scq":22.7563206209,"avg-scq":16.5987607462,"var":14.7564261033,"max-var":4.4511484057,"avg-var":0.9837617402,"wig+5":2.0083615036,"nqc+5":0.0278949979,"smv+5":0.0239805638,"clarity+5+100":2.361246765,"wig+10":1.4923761748,"nqc+10":0.0348663992,"smv+10":0.0286469388,"clarity+10+100":2.343961016,"wig+20":1.1026553507,"nqc+20":0.0328929382,"smv+20":0.0247476744,"clarity+20+100":2.331432053,"wig+50":0.7123445803,"nqc+50":0.0273146342,"smv+50":0.0178069347,"clarity+50+100":2.3116015632,"wig+100":0.4907445594,"nqc+100":0.0229395312,"smv+100":0.0135473298,"clarity+100+100":2.2892286533,"wig+1000":-0.0196816387,"nqc+1000":0.0148981649,"smv+1000":0.009119108,"clarity+1000+100":2.1608850765}
+{"qid":"72","max-idf":4.5361773145,"avg-idf":2.6263542837,"scq":174.9932754768,"max-scq":19.6948135912,"avg-scq":15.9084795888,"var":15.0569036198,"max-var":2.5184981415,"avg-var":0.7169954105,"wig+5":2.1505028835,"nqc+5":0.0204147526,"smv+5":0.0168498904,"clarity+5+100":2.7456350266,"wig+10":1.6968795782,"nqc+10":0.0232976687,"smv+10":0.0188895183,"clarity+10+100":2.7292271634,"wig+20":1.3244656701,"nqc+20":0.0225316995,"smv+20":0.0164934327,"clarity+20+100":2.7130673915,"wig+50":0.9184279283,"nqc+50":0.0195824743,"smv+50":0.0135521989,"clarity+50+100":2.7018566573,"wig+100":0.6707583178,"nqc+100":0.0171516664,"smv+100":0.0108096424,"clarity+100+100":2.6923540888,"wig+1000":-0.0468184599,"nqc+1000":0.0127718993,"smv+1000":0.0085058203,"clarity+1000+100":2.6589470509}
+{"qid":"74","max-idf":3.9861309776,"avg-idf":2.5815811295,"scq":186.2897753523,"max-scq":19.6948135912,"avg-scq":15.524147946,"var":12.3824109522,"max-var":2.2226680193,"avg-var":0.7283771148,"wig+5":0.9602339869,"nqc+5":0.0065729908,"smv+5":0.005790241,"clarity+5+100":1.7041683956,"wig+10":0.8446932076,"nqc+10":0.0068785308,"smv+10":0.0054133091,"clarity+10+100":1.6366478501,"wig+20":0.722959856,"nqc+20":0.0073441923,"smv+20":0.0054210088,"clarity+20+100":1.5070615844,"wig+50":0.5566206131,"nqc+50":0.0076719333,"smv+50":0.0057497337,"clarity+50+100":1.3579992466,"wig+100":0.432874578,"nqc+100":0.0076836526,"smv+100":0.0057070078,"clarity+100+100":1.2613661238,"wig+1000":-0.0427194025,"nqc+1000":0.0094447058,"smv+1000":0.0071589376,"clarity+1000+100":1.0373871737}
+{"qid":"79","max-idf":7.2442275156,"avg-idf":4.4416766547,"scq":111.8603693265,"max-scq":18.5099055364,"avg-scq":13.9825461658,"var":6.944112646,"max-var":1.6942489898,"avg-var":0.6312829678,"wig+5":1.6076591066,"nqc+5":0.0214029759,"smv+5":0.0187551449,"clarity+5+100":2.3677432696,"wig+10":1.2638600772,"nqc+10":0.0199391744,"smv+10":0.014469211,"clarity+10+100":2.329901303,"wig+20":0.9982061053,"nqc+20":0.0173845895,"smv+20":0.0113487573,"clarity+20+100":2.298903038,"wig+50":0.6790775578,"nqc+50":0.0149789368,"smv+50":0.0096893319,"clarity+50+100":2.2320705583,"wig+100":0.4410725924,"nqc+100":0.0139360213,"smv+100":0.0095676445,"clarity+100+100":2.1930501368,"wig+1000":-0.0251456432,"nqc+1000":0.0112637124,"smv+1000":0.0074845218,"clarity+1000+100":1.9988304258}
+{"qid":"80","max-idf":4.8463322428,"avg-idf":2.3089739452,"scq":133.4896844829,"max-scq":17.5671445612,"avg-scq":14.8321871648,"var":9.9208308135,"max-var":1.7050451284,"avg-var":0.7631408318,"wig+5":1.3636635859,"nqc+5":0.0201069918,"smv+5":0.0177695562,"clarity+5+100":1.9089705538,"wig+10":1.1167394526,"nqc+10":0.0194804746,"smv+10":0.0167391324,"clarity+10+100":1.835446825,"wig+20":0.9376337359,"nqc+20":0.0168176918,"smv+20":0.0113319476,"clarity+20+100":1.7588217372,"wig+50":0.7138949926,"nqc+50":0.0148944229,"smv+50":0.0095467454,"clarity+50+100":1.6435936282,"wig+100":0.5140779492,"nqc+100":0.0151573252,"smv+100":0.0110697041,"clarity+100+100":1.5814697665,"wig+1000":-0.0397291957,"nqc+1000":0.013561568,"smv+1000":0.0092995122,"clarity+1000+100":1.2937333679}
+{"qid":"81","max-idf":4.8463322428,"avg-idf":2.1052571492,"scq":127.2273185555,"max-scq":17.5671445612,"avg-scq":14.1363687284,"var":9.4378091051,"max-var":1.6088654066,"avg-var":0.6741292218,"wig+5":1.0668126272,"nqc+5":0.0028084057,"smv+5":0.002397191,"clarity+5+100":1.6010660148,"wig+10":0.9903982272,"nqc+10":0.0051617542,"smv+10":0.0043148797,"clarity+10+100":1.5140072409,"wig+20":0.8404159772,"nqc+20":0.0093843954,"smv+20":0.0084633522,"clarity+20+100":1.4296670707,"wig+50":0.6202248206,"nqc+50":0.0121238632,"smv+50":0.0099867426,"clarity+50+100":1.3399267743,"wig+100":0.4586150206,"nqc+100":0.0126117714,"smv+100":0.0098848993,"clarity+100+100":1.2584248458,"wig+1000":-0.0124295974,"nqc+1000":0.0118781269,"smv+1000":0.0085793506,"clarity+1000+100":1.0206889135}
+{"qid":"82","max-idf":7.2442275156,"avg-idf":2.9059243226,"scq":132.0697011116,"max-scq":19.1454978363,"avg-scq":14.6744112346,"var":10.6121814163,"max-var":2.1500662383,"avg-var":0.7580129583,"wig+5":1.6506962483,"nqc+5":0.0064051044,"smv+5":0.005407518,"clarity+5+100":1.7101687346,"wig+10":1.4165051816,"nqc+10":0.0126787662,"smv+10":0.0113368107,"clarity+10+100":1.6347457325,"wig+20":1.1619739316,"nqc+20":0.0154367521,"smv+20":0.0130728231,"clarity+20+100":1.5843388246,"wig+50":0.8211534283,"nqc+50":0.01692645,"smv+50":0.0131843064,"clarity+50+100":1.5218110777,"wig+100":0.5893523783,"nqc+100":0.0165361786,"smv+100":0.0121284312,"clarity+100+100":1.4791490334,"wig+1000":0.0110263941,"nqc+1000":0.0144282366,"smv+1000":0.0099391588,"clarity+1000+100":1.3539514119}
+{"qid":"83","max-idf":3.7477199541,"avg-idf":2.6062154708,"scq":99.8060846333,"max-scq":19.1266837036,"avg-scq":16.6343474389,"var":9.5678414732,"max-var":2.0749439221,"avg-var":1.1959801842,"wig+5":2.0867378189,"nqc+5":0.0161665977,"smv+5":0.0110385296,"clarity+5+100":2.0005328693,"wig+10":1.6763080945,"nqc+10":0.0286804916,"smv+10":0.0259602651,"clarity+10+100":1.94867172,"wig+20":1.3090478304,"nqc+20":0.0312237725,"smv+20":0.0250561141,"clarity+20+100":1.9154929973,"wig+50":0.9113077162,"nqc+50":0.0287995275,"smv+50":0.0206283197,"clarity+50+100":1.8456441049,"wig+100":0.6676333951,"nqc+100":0.0256836799,"smv+100":0.0170001967,"clarity+100+100":1.7820597599,"wig+1000":0.0995984189,"nqc+1000":0.0222131021,"smv+1000":0.0152680049,"clarity+1000+100":1.6019384248}
+{"qid":"84","max-idf":4.8463322428,"avg-idf":2.4332099294,"scq":235.0324538491,"max-scq":20.2916857832,"avg-scq":14.6895283656,"var":16.5468434788,"max-var":2.3997942795,"avg-var":0.8273421739,"wig+5":1.317308642,"nqc+5":0.0027465963,"smv+5":0.002581851,"clarity+5+100":1.6912485214,"wig+10":1.226016167,"nqc+10":0.0040880597,"smv+10":0.0035189635,"clarity+10+100":1.6422603138,"wig+20":1.0635144295,"nqc+20":0.0069779365,"smv+20":0.005936993,"clarity+20+100":1.6312964909,"wig+50":0.784750752,"nqc+50":0.0096406935,"smv+50":0.0081694692,"clarity+50+100":1.5932701324,"wig+100":0.5802348395,"nqc+100":0.0102633419,"smv+100":0.0079316742,"clarity+100+100":1.5618016888,"wig+1000":-0.0286046163,"nqc+1000":0.0095057709,"smv+1000":0.0066628887,"clarity+1000+100":1.4308777777}
+{"qid":"85","max-idf":7.2442275156,"avg-idf":2.9215222591,"scq":183.6212006636,"max-scq":18.0007117754,"avg-scq":14.1247077434,"var":13.6680731857,"max-var":1.7590653644,"avg-var":0.8542545741,"wig+5":1.5272611026,"nqc+5":0.0088377864,"smv+5":0.0068610283,"clarity+5+100":1.8330631728,"wig+10":1.3698538279,"nqc+10":0.0086286442,"smv+10":0.0060143279,"clarity+10+100":1.7326689593,"wig+20":1.0950632275,"nqc+20":0.0120387234,"smv+20":0.0099850294,"clarity+20+100":1.6786805674,"wig+50":0.703045355,"nqc+50":0.0142270674,"smv+50":0.0113763979,"clarity+50+100":1.648546461,"wig+100":0.4628431657,"nqc+100":0.0133792381,"smv+100":0.0098929124,"clarity+100+100":1.6244593533,"wig+1000":-0.0973503358,"nqc+1000":0.0092931919,"smv+1000":0.0060141476,"clarity+1000+100":1.503604082}
+{"qid":"86","max-idf":7.2442275156,"avg-idf":3.0423430051,"scq":187.0751968753,"max-scq":18.6209144985,"avg-scq":14.3903997596,"var":13.1341197727,"max-var":1.9178638688,"avg-var":0.6254342749,"wig+5":1.3479664183,"nqc+5":0.005202971,"smv+5":0.0044651861,"clarity+5+100":1.6839055138,"wig+10":1.1488154854,"nqc+10":0.0091164445,"smv+10":0.0079233466,"clarity+10+100":1.5831026132,"wig+20":0.9376285151,"nqc+20":0.0106497704,"smv+20":0.0090436028,"clarity+20+100":1.53143884,"wig+50":0.6815463021,"nqc+50":0.0109844478,"smv+50":0.0081267711,"clarity+50+100":1.4622555449,"wig+100":0.4810211549,"nqc+100":0.0112372877,"smv+100":0.0084306197,"clarity+100+100":1.419971603,"wig+1000":-0.0799707568,"nqc+1000":0.0095564168,"smv+1000":0.0063910358,"clarity+1000+100":1.2466040856}
+{"qid":"87","max-idf":7.2442275156,"avg-idf":3.5858514984,"scq":137.3172862584,"max-scq":20.9551101915,"avg-scq":13.7317286258,"var":9.6637661339,"max-var":2.7911855683,"avg-var":0.6039853834,"wig+5":1.3148347988,"nqc+5":0.012391063,"smv+5":0.0093372581,"clarity+5+100":2.0292181573,"wig+10":1.1135165186,"nqc+10":0.0118502996,"smv+10":0.008831821,"clarity+10+100":1.8945923113,"wig+20":0.9631267834,"nqc+20":0.0103214264,"smv+20":0.0069843956,"clarity+20+100":1.7875036845,"wig+50":0.6636645154,"nqc+50":0.0123050372,"smv+50":0.009384796,"clarity+50+100":1.6860969732,"wig+100":0.4011421093,"nqc+100":0.0135040697,"smv+100":0.0110028067,"clarity+100+100":1.62835948,"wig+1000":-0.1064169656,"nqc+1000":0.0090052317,"smv+1000":0.0056383408,"clarity+1000+100":1.3618865903}
+{"qid":"93","max-idf":5.0470029383,"avg-idf":2.6838434094,"scq":189.4288678852,"max-scq":20.8518985498,"avg-scq":15.7857389904,"var":17.1485237429,"max-var":2.4450291782,"avg-var":0.8165963687,"wig+5":1.8176473541,"nqc+5":0.0218179948,"smv+5":0.0172198973,"clarity+5+100":3.0483282198,"wig+10":1.5735865575,"nqc+10":0.0184487266,"smv+10":0.0111274244,"clarity+10+100":3.0051506377,"wig+20":1.3473880688,"nqc+20":0.0161793428,"smv+20":0.0099222771,"clarity+20+100":2.9755936825,"wig+50":0.9027794224,"nqc+50":0.0184850516,"smv+50":0.0143691264,"clarity+50+100":2.9585176659,"wig+100":0.6195424799,"nqc+100":0.0174750352,"smv+100":0.013092984,"clarity+100+100":2.9479840708,"wig+1000":-0.0590849312,"nqc+1000":0.0122216229,"smv+1000":0.0078823213,"clarity+1000+100":2.9009413185}
+{"qid":"94","max-idf":3.1010927892,"avg-idf":2.2062170005,"scq":140.3242486883,"max-scq":17.7218406548,"avg-scq":15.5915831876,"var":12.659885524,"max-var":1.8473355016,"avg-var":0.7912428453,"wig+5":2.3094443682,"nqc+5":0.0218364669,"smv+5":0.0169671606,"clarity+5+100":1.9772575955,"wig+10":2.0472133682,"nqc+10":0.0192487807,"smv+10":0.0128247693,"clarity+10+100":1.927886896,"wig+20":1.6903364015,"nqc+20":0.0206884984,"smv+20":0.0151651578,"clarity+20+100":1.9118779458,"wig+50":1.2471087015,"nqc+50":0.020279388,"smv+50":0.0150308513,"clarity+50+100":1.8953072156,"wig+100":0.9249133182,"nqc+100":0.0199487686,"smv+100":0.0140901168,"clarity+100+100":1.8849961008,"wig+1000":-0.0122177958,"nqc+1000":0.0184893009,"smv+1000":0.0130053212,"clarity+1000+100":1.864803153}
+{"qid":"95","max-idf":7.2442275156,"avg-idf":2.5655613007,"scq":148.1948524288,"max-scq":17.7560439271,"avg-scq":13.4722593117,"var":9.1265874039,"max-var":1.2597600623,"avg-var":0.5704117127,"wig+5":1.0882585797,"nqc+5":0.0048054879,"smv+5":0.0046652457,"clarity+5+100":1.707168497,"wig+10":1.0103553147,"nqc+10":0.0046798063,"smv+10":0.0035768927,"clarity+10+100":1.5405201407,"wig+20":0.903103252,"nqc+20":0.0056679919,"smv+20":0.0043005242,"clarity+20+100":1.4557630604,"wig+50":0.7011328356,"nqc+50":0.0077843716,"smv+50":0.0064840803,"clarity+50+100":1.3697301214,"wig+100":0.5442347802,"nqc+100":0.0084004502,"smv+100":0.006692251,"clarity+100+100":1.3025657647,"wig+1000":-0.0234129511,"nqc+1000":0.0110209603,"smv+1000":0.008255914,"clarity+1000+100":1.1088653864}
+{"qid":"97","max-idf":7.2442275156,"avg-idf":2.9440409039,"scq":228.56220237,"max-scq":21.6399744337,"avg-scq":15.237480158,"var":16.0260374564,"max-var":2.2318493529,"avg-var":0.9427080857,"wig+5":1.403598421,"nqc+5":0.0172696359,"smv+5":0.0129324257,"clarity+5+100":2.5918509372,"wig+10":1.1285890795,"nqc+10":0.0158546682,"smv+10":0.011808739,"clarity+10+100":2.565971887,"wig+20":0.888159476,"nqc+20":0.0144225542,"smv+20":0.0093776122,"clarity+20+100":2.5503222132,"wig+50":0.5881369337,"nqc+50":0.0128786273,"smv+50":0.0090011945,"clarity+50+100":2.5308785329,"wig+100":0.4058236246,"nqc+100":0.0113328551,"smv+100":0.0073381884,"clarity+100+100":2.5109291871,"wig+1000":-0.094628956,"nqc+1000":0.0091542145,"smv+1000":0.0063780305,"clarity+1000+100":2.4241131722}
+{"qid":"98","max-idf":7.2442275156,"avg-idf":3.1754480588,"scq":138.8549091944,"max-scq":21.6399744337,"avg-scq":15.4283232438,"var":10.5102469509,"max-var":2.2318493529,"avg-var":0.8084805347,"wig+5":1.406748917,"nqc+5":0.0167229867,"smv+5":0.0148943333,"clarity+5+100":2.218949573,"wig+10":1.1236559837,"nqc+10":0.0168832054,"smv+10":0.0132436777,"clarity+10+100":2.1704574456,"wig+20":0.899791667,"nqc+20":0.0152970794,"smv+20":0.0107743609,"clarity+20+100":2.1008541648,"wig+50":0.6779942437,"nqc+50":0.0123842762,"smv+50":0.0078685875,"clarity+50+100":1.9968184968,"wig+100":0.515235657,"nqc+100":0.0112325752,"smv+100":0.0070566656,"clarity+100+100":1.9159541732,"wig+1000":-0.0748803208,"nqc+1000":0.0122789387,"smv+1000":0.0090716256,"clarity+1000+100":1.5187481332}
+{"qid":"99","max-idf":3.4375650258,"avg-idf":2.1706018537,"scq":241.0475519658,"max-scq":19.6476148595,"avg-scq":15.0654719979,"var":19.5312723113,"max-var":2.1177498058,"avg-var":0.8491857527,"wig+5":1.1223654379,"nqc+5":0.0089020883,"smv+5":0.0069364839,"clarity+5+100":1.9116255579,"wig+10":0.9743238129,"nqc+10":0.0086755585,"smv+10":0.0063458945,"clarity+10+100":1.8554890597,"wig+20":0.8275476629,"nqc+20":0.0084537015,"smv+20":0.0061622424,"clarity+20+100":1.7831021757,"wig+50":0.6358428229,"nqc+50":0.0082960309,"smv+50":0.0059850925,"clarity+50+100":1.6879582978,"wig+100":0.4983598654,"nqc+100":0.0080168515,"smv+100":0.0057656497,"clarity+100+100":1.6094563843,"wig+1000":-0.0082577021,"nqc+1000":0.0090774325,"smv+1000":0.0069085798,"clarity+1000+100":1.3797283616}
+{"qid":"100","max-idf":3.1010927892,"avg-idf":1.884578679,"scq":98.3942741442,"max-scq":17.8999132861,"avg-scq":14.0563248777,"var":7.8241898185,"max-var":1.4825716768,"avg-var":0.6520158182,"wig+5":0.8919422064,"nqc+5":0.0067472962,"smv+5":0.006493901,"clarity+5+100":1.8093386346,"wig+10":0.8175989001,"nqc+10":0.0069159608,"smv+10":0.0062329514,"clarity+10+100":1.6059646383,"wig+20":0.7497473416,"nqc+20":0.006799528,"smv+20":0.004780856,"clarity+20+100":1.4219034658,"wig+50":0.610791209,"nqc+50":0.0093918622,"smv+50":0.0076153676,"clarity+50+100":1.3547098479,"wig+100":0.4833052776,"nqc+100":0.0109817942,"smv+100":0.0091020906,"clarity+100+100":1.2712190646,"wig+1000":0.0055024937,"nqc+1000":0.0148378144,"smv+1000":0.0113303154,"clarity+1000+100":1.0034676347}
+{"qid":"101","max-idf":7.2442275156,"avg-idf":2.5615027471,"scq":166.2406890569,"max-scq":20.2916857832,"avg-scq":13.8533907547,"var":12.8000296466,"max-var":2.3997942795,"avg-var":0.5818195294,"wig+5":1.5720030132,"nqc+5":0.0072440337,"smv+5":0.0064096537,"clarity+5+100":1.9199529115,"wig+10":1.3397638963,"nqc+10":0.0112063009,"smv+10":0.0094982879,"clarity+10+100":1.8578606354,"wig+20":1.0599800569,"nqc+20":0.0141309186,"smv+20":0.0119037187,"clarity+20+100":1.8194333365,"wig+50":0.7417989027,"nqc+50":0.0141097884,"smv+50":0.0105752484,"clarity+50+100":1.7770151783,"wig+100":0.5329731752,"nqc+100":0.0131773985,"smv+100":0.0093329874,"clarity+100+100":1.7475943266,"wig+1000":-0.026556634,"nqc+1000":0.0105160192,"smv+1000":0.0073337097,"clarity+1000+100":1.5748510978}
+{"qid":"102","max-idf":3.633309603,"avg-idf":2.3132529621,"scq":140.2038332806,"max-scq":20.8934261194,"avg-scq":15.5782036978,"var":11.0339047602,"max-var":2.63707584,"avg-var":0.7355936507,"wig+5":1.5217077335,"nqc+5":0.0177225403,"smv+5":0.0154313302,"clarity+5+100":1.8427188784,"wig+10":1.2238203668,"nqc+10":0.0203618736,"smv+10":0.0157890086,"clarity+10+100":1.7899724294,"wig+20":0.9695290668,"nqc+20":0.0198955836,"smv+20":0.0149512654,"clarity+20+100":1.744188928,"wig+50":0.7034504868,"nqc+50":0.01723755,"smv+50":0.011655968,"clarity+50+100":1.6723550979,"wig+100":0.5296980235,"nqc+100":0.0153986586,"smv+100":0.0099568029,"clarity+100+100":1.6068195673,"wig+1000":0.0297212548,"nqc+1000":0.013973203,"smv+1000":0.009857533,"clarity+1000+100":1.3765896613}
+{"qid":"103","max-idf":4.5361773145,"avg-idf":2.0713435585,"scq":153.4035898658,"max-scq":17.6023274661,"avg-scq":13.9457808969,"var":10.71919013,"max-var":1.4753996319,"avg-var":0.4660517448,"wig+5":1.2118178272,"nqc+5":0.0069642885,"smv+5":0.0054759832,"clarity+5+100":1.7196258341,"wig+10":1.1053435281,"nqc+10":0.007085201,"smv+10":0.005024528,"clarity+10+100":1.5771564885,"wig+20":0.9554491983,"nqc+20":0.0092323385,"smv+20":0.0069585205,"clarity+20+100":1.5026067241,"wig+50":0.6740041724,"nqc+50":0.0125125466,"smv+50":0.0104417115,"clarity+50+100":1.4113559093,"wig+100":0.48958724,"nqc+100":0.0124012189,"smv+100":0.0095441105,"clarity+100+100":1.3588519281,"wig+1000":-0.0036188341,"nqc+1000":0.0104458315,"smv+1000":0.0074356929,"clarity+1000+100":1.1273848166}
+{"qid":"104","max-idf":7.2442275156,"avg-idf":3.0518209947,"scq":125.999063151,"max-scq":18.8135479746,"avg-scq":13.9998959057,"var":8.7512913563,"max-var":1.8694614397,"avg-var":0.7955719415,"wig+5":1.0744749322,"nqc+5":0.0139635546,"smv+5":0.0124720079,"clarity+5+100":1.8411740392,"wig+10":0.9071590989,"nqc+10":0.0126410718,"smv+10":0.0095680779,"clarity+10+100":1.6901429099,"wig+20":0.7718744489,"nqc+20":0.0110078126,"smv+20":0.0070844852,"clarity+20+100":1.5899041228,"wig+50":0.5704027122,"nqc+50":0.0106923737,"smv+50":0.0075415807,"clarity+50+100":1.4287713838,"wig+100":0.3965552156,"nqc+100":0.0112478428,"smv+100":0.0084658252,"clarity+100+100":1.3077596591,"wig+1000":-0.0780536501,"nqc+1000":0.0099819033,"smv+1000":0.0068393997,"clarity+1000+100":1.0208483919}
+{"qid":"105","max-idf":5.8579331545,"avg-idf":2.8058614891,"scq":206.5803975729,"max-scq":21.6399744337,"avg-scq":15.8907998133,"var":13.8075440411,"max-var":2.2318493529,"avg-var":0.575314335,"wig+5":1.1551152581,"nqc+5":0.0092607677,"smv+5":0.0070270021,"clarity+5+100":2.1796375746,"wig+10":0.9601462377,"nqc+10":0.0095507597,"smv+10":0.0077001346,"clarity+10+100":2.0580783617,"wig+20":0.8002102235,"nqc+20":0.0088673571,"smv+20":0.0062884143,"clarity+20+100":1.9700567982,"wig+50":0.5967649848,"nqc+50":0.0082390059,"smv+50":0.005789196,"clarity+50+100":1.793156197,"wig+100":0.4580624697,"nqc+100":0.0076744848,"smv+100":0.0053114384,"clarity+100+100":1.6778242493,"wig+1000":-0.0523233595,"nqc+1000":0.0093033446,"smv+1000":0.0068532198,"clarity+1000+100":1.3739810458}
+{"qid":"106","max-idf":4.8463322428,"avg-idf":2.0710150434,"scq":140.4161003129,"max-scq":17.6220053873,"avg-scq":14.0416100313,"var":10.8780218997,"max-var":1.854506655,"avg-var":0.7770015643,"wig+5":1.2354028302,"nqc+5":0.0212060534,"smv+5":0.0165246765,"clarity+5+100":2.2481811495,"wig+10":1.0688681497,"nqc+10":0.0175295801,"smv+10":0.0111535943,"clarity+10+100":2.0850763372,"wig+20":0.9337730866,"nqc+20":0.0144210955,"smv+20":0.0081164108,"clarity+20+100":1.9424489952,"wig+50":0.7442368142,"nqc+50":0.0127266222,"smv+50":0.0081904135,"clarity+50+100":1.7622425417,"wig+100":0.5755323874,"nqc+100":0.0129644943,"smv+100":0.0094347496,"clarity+100+100":1.646033348,"wig+1000":-0.0050179138,"nqc+1000":0.0135332969,"smv+1000":0.0098614031,"clarity+1000+100":1.3408147265}
+{"qid":"107","max-idf":4.5361773145,"avg-idf":2.437950489,"scq":193.4499573283,"max-scq":18.3897745966,"avg-scq":14.8807659483,"var":14.4687796857,"max-var":1.854506655,"avg-var":0.6889895088,"wig+5":1.5142688167,"nqc+5":0.0186094127,"smv+5":0.0145084656,"clarity+5+100":2.3012522741,"wig+10":1.2694705785,"nqc+10":0.0166464457,"smv+10":0.0109398889,"clarity+10+100":2.251594545,"wig+20":1.0323353433,"nqc+20":0.015425058,"smv+20":0.0103152794,"clarity+20+100":2.2226053396,"wig+50":0.7140187802,"nqc+50":0.0145331104,"smv+50":0.0104733326,"clarity+50+100":2.1961395077,"wig+100":0.5093503166,"nqc+100":0.0132816778,"smv+100":0.0090047051,"clarity+100+100":2.1757483552,"wig+1000":-0.0179459873,"nqc+1000":0.0098163175,"smv+1000":0.0066990149,"clarity+1000+100":2.0750655167}
+{"qid":"108","max-idf":4.8463322428,"avg-idf":2.1517036257,"scq":170.6092098429,"max-scq":17.6220053873,"avg-scq":14.2174341536,"var":12.3316013194,"max-var":1.854506655,"avg-var":0.7707250825,"wig+5":0.9104098294,"nqc+5":0.004360122,"smv+5":0.0035370784,"clarity+5+100":1.5232759869,"wig+10":0.8249219215,"nqc+10":0.0052204052,"smv+10":0.004268303,"clarity+10+100":1.5101582933,"wig+20":0.7332746677,"nqc+20":0.005768705,"smv+20":0.0045982459,"clarity+20+100":1.4546073919,"wig+50":0.5898032355,"nqc+50":0.0069911033,"smv+50":0.0054713473,"clarity+50+100":1.3645937044,"wig+100":0.4623498524,"nqc+100":0.0078971626,"smv+100":0.0063466477,"clarity+100+100":1.2834718301,"wig+1000":-0.0143808473,"nqc+1000":0.0099719408,"smv+1000":0.0074895978,"clarity+1000+100":1.0664701792}
+{"qid":"109","max-idf":7.2442275156,"avg-idf":3.7891322706,"scq":187.9678494776,"max-scq":21.5567745158,"avg-scq":15.6639874565,"var":16.9162688461,"max-var":2.5833824424,"avg-var":0.995074638,"wig+5":1.5635140792,"nqc+5":0.0254074074,"smv+5":0.019877311,"clarity+5+100":2.5775206069,"wig+10":1.2568690907,"nqc+10":0.0212673857,"smv+10":0.0133672839,"clarity+10+100":2.5688538768,"wig+20":0.9983182312,"nqc+20":0.0178872346,"smv+20":0.010335032,"clarity+20+100":2.5597873928,"wig+50":0.6546959296,"nqc+50":0.0154741824,"smv+50":0.0100944,"clarity+50+100":2.5504031276,"wig+100":0.4326696395,"nqc+100":0.0137150632,"smv+100":0.0089897956,"clarity+100+100":2.5444532789,"wig+1000":-0.0722131124,"nqc+1000":0.0106719774,"smv+1000":0.0070205304,"clarity+1000+100":2.5198491857}
+{"qid":"110","max-idf":4.2997885364,"avg-idf":2.2428611986,"scq":113.307844191,"max-scq":17.7702300348,"avg-scq":14.1634805239,"var":7.6233926478,"max-var":1.4144419248,"avg-var":0.6352827206,"wig+5":0.8944763342,"nqc+5":0.0034585582,"smv+5":0.0028618085,"clarity+5+100":1.6440680654,"wig+10":0.8599884737,"nqc+10":0.0031614979,"smv+10":0.0022083412,"clarity+10+100":1.477737218,"wig+20":0.7971853,"nqc+20":0.0044216399,"smv+20":0.0035451069,"clarity+20+100":1.3799513753,"wig+50":0.6665048604,"nqc+50":0.0070302199,"smv+50":0.0059326722,"clarity+50+100":1.2727392928,"wig+100":0.5421433321,"nqc+100":0.0087490961,"smv+100":0.0072416606,"clarity+100+100":1.2271258282,"wig+1000":0.0147515116,"nqc+1000":0.0145904259,"smv+1000":0.0110926481,"clarity+1000+100":1.0556065268}
+{"qid":"111","max-idf":3.3124018829,"avg-idf":1.7254744467,"scq":78.8140666847,"max-scq":16.7654659441,"avg-scq":13.1356777808,"var":5.805065696,"max-var":1.3099056858,"avg-var":0.725633212,"wig+5":1.097225603,"nqc+5":0.0091198341,"smv+5":0.0083198771,"clarity+5+100":1.5320082236,"wig+10":0.9317247263,"nqc+10":0.0138332526,"smv+10":0.0120968513,"clarity+10+100":1.4507621942,"wig+20":0.8005699007,"nqc+20":0.0137586118,"smv+20":0.0110263013,"clarity+20+100":1.4128443177,"wig+50":0.6364896708,"nqc+50":0.0134266294,"smv+50":0.0095691042,"clarity+50+100":1.3341507622,"wig+100":0.5025748541,"nqc+100":0.0137487039,"smv+100":0.0102471018,"clarity+100+100":1.239744879,"wig+1000":0.0403469672,"nqc+1000":0.0167241987,"smv+1000":0.0123952155,"clarity+1000+100":1.0277618029}
+{"qid":"112","max-idf":4.8463322428,"avg-idf":2.3772834563,"scq":86.8871078192,"max-scq":17.4889879483,"avg-scq":14.4811846365,"var":5.611464873,"max-var":1.7050451284,"avg-var":0.9352441455,"wig+5":1.1896131904,"nqc+5":0.0068375427,"smv+5":0.0052285323,"clarity+5+100":1.6262678964,"wig+10":1.0871164967,"nqc+10":0.0082621704,"smv+10":0.0071526321,"clarity+10+100":1.4282742673,"wig+20":0.962202134,"nqc+20":0.0101821614,"smv+20":0.0081139015,"clarity+20+100":1.3847810738,"wig+50":0.7404421811,"nqc+50":0.01375412,"smv+50":0.011265123,"clarity+50+100":1.2921283476,"wig+100":0.538243045,"nqc+100":0.0164285074,"smv+100":0.0132655884,"clarity+100+100":1.2261142399,"wig+1000":-0.0124842396,"nqc+1000":0.0158200891,"smv+1000":0.0108854691,"clarity+1000+100":0.9787310131}
+{"qid":"113","max-idf":3.5553480615,"avg-idf":1.9458210891,"scq":126.0908711771,"max-scq":17.4889879483,"avg-scq":14.0100967975,"var":10.1199401732,"max-var":1.7050451284,"avg-var":0.5952905984,"wig+5":1.0233052525,"nqc+5":0.004391747,"smv+5":0.0041674935,"clarity+5+100":1.6301090822,"wig+10":0.9471867858,"nqc+10":0.0052391057,"smv+10":0.0040195656,"clarity+10+100":1.454223333,"wig+20":0.8487989191,"nqc+20":0.0065855283,"smv+20":0.0052692293,"clarity+20+100":1.301470301,"wig+50":0.6865109325,"nqc+50":0.0083849893,"smv+50":0.0068295514,"clarity+50+100":1.2230985748,"wig+100":0.5548303058,"nqc+100":0.0092588099,"smv+100":0.0072391467,"clarity+100+100":1.1648682725,"wig+1000":-0.0051248749,"nqc+1000":0.013238271,"smv+1000":0.0100614703,"clarity+1000+100":0.9852955275}
+{"qid":"114","max-idf":5.0470029383,"avg-idf":2.9598973868,"scq":230.0163965391,"max-scq":21.7086289918,"avg-scq":16.4297426099,"var":20.9275213257,"max-var":3.964210686,"avg-var":0.9098922316,"wig+5":1.7988844707,"nqc+5":0.013800264,"smv+5":0.0130539705,"clarity+5+100":2.1391207684,"wig+10":1.4975508948,"nqc+10":0.0155716059,"smv+10":0.0124221231,"clarity+10+100":2.1116812557,"wig+20":1.2481558932,"nqc+20":0.0147178649,"smv+20":0.0110673765,"clarity+20+100":2.088829191,"wig+50":0.8800070256,"nqc+50":0.0156434376,"smv+50":0.0116637541,"clarity+50+100":2.0726262306,"wig+100":0.5908511307,"nqc+100":0.0159087532,"smv+100":0.0121353152,"clarity+100+100":2.0650408496,"wig+1000":-0.0884814058,"nqc+1000":0.0114465555,"smv+1000":0.007276033,"clarity+1000+100":2.0336099551}
+{"qid":"116","max-idf":5.0470029383,"avg-idf":2.6577106491,"scq":221.3495819804,"max-scq":20.2610739921,"avg-scq":15.8106844272,"var":18.034921219,"max-var":2.3480886295,"avg-var":0.8197691463,"wig+5":1.315977814,"nqc+5":0.0044613905,"smv+5":0.003485299,"clarity+5+100":1.9359340088,"wig+10":1.1338036517,"nqc+10":0.0080598865,"smv+10":0.0072787845,"clarity+10+100":1.8122314478,"wig+20":0.9067575295,"nqc+20":0.0108013752,"smv+20":0.0092049783,"clarity+20+100":1.7415935625,"wig+50":0.6728222625,"nqc+50":0.0103297991,"smv+50":0.0077314068,"clarity+50+100":1.651856983,"wig+100":0.5103383931,"nqc+100":0.0099069681,"smv+100":0.0067892256,"clarity+100+100":1.6030678148,"wig+1000":-0.0758853441,"nqc+1000":0.0110202903,"smv+1000":0.0080588982,"clarity+1000+100":1.35556003}
+{"qid":"118","max-idf":4.8463322428,"avg-idf":2.7426597633,"scq":262.9935510563,"max-scq":18.9183915698,"avg-scq":15.4702088857,"var":17.8958719163,"max-var":1.9537810521,"avg-var":0.7780813877,"wig+5":0.8242833316,"nqc+5":0.0012824893,"smv+5":0.0010109739,"clarity+5+100":1.5152186075,"wig+10":0.7684338771,"nqc+10":0.0022767884,"smv+10":0.0020264414,"clarity+10+100":1.430938498,"wig+20":0.7003213242,"nqc+20":0.0029612905,"smv+20":0.0024884287,"clarity+20+100":1.3578094522,"wig+50":0.563528702,"nqc+50":0.0047283315,"smv+50":0.0039453786,"clarity+50+100":1.2943123354,"wig+100":0.4405895887,"nqc+100":0.005567071,"smv+100":0.0046533085,"clarity+100+100":1.2326657946,"wig+1000":-0.063638678,"nqc+1000":0.0081179085,"smv+1000":0.0062416538,"clarity+1000+100":1.0591148398}
+{"qid":"119","max-idf":4.8463322428,"avg-idf":2.2845292207,"scq":218.7958890039,"max-scq":17.6023274661,"avg-scq":14.5863926003,"var":15.059970509,"max-var":1.4954606339,"avg-var":0.684544114,"wig+5":0.8452210647,"nqc+5":0.003172626,"smv+5":0.0029986936,"clarity+5+100":1.4079679607,"wig+10":0.760532526,"nqc+10":0.004314135,"smv+10":0.0035045207,"clarity+10+100":1.3337608321,"wig+20":0.6504361063,"nqc+20":0.0055888182,"smv+20":0.0045865472,"clarity+20+100":1.2515564167,"wig+50":0.5019480627,"nqc+50":0.0062398171,"smv+50":0.0049110071,"clarity+50+100":1.173334939,"wig+100":0.3952819805,"nqc+100":0.0063110465,"smv+100":0.0046838187,"clarity+100+100":1.1066484696,"wig+1000":-0.0286346593,"nqc+1000":0.0078662239,"smv+1000":0.0059497235,"clarity+1000+100":1.0039158709}
+{"qid":"120","max-idf":5.8579331545,"avg-idf":2.3787124193,"scq":179.1078488088,"max-scq":21.3277370638,"avg-scq":14.9256540674,"var":17.7773771701,"max-var":5.5125267904,"avg-var":0.987632065,"wig+5":1.7139794068,"nqc+5":0.0193583673,"smv+5":0.0153520564,"clarity+5+100":1.8151162947,"wig+10":1.3043931251,"nqc+10":0.0228800097,"smv+10":0.0176257352,"clarity+10+100":1.8077183221,"wig+20":0.9760210315,"nqc+20":0.0215827093,"smv+20":0.0167552129,"clarity+20+100":1.7754606923,"wig+50":0.6624826135,"nqc+50":0.017676588,"smv+50":0.0112722496,"clarity+50+100":1.7619090524,"wig+100":0.4779366039,"nqc+100":0.014882871,"smv+100":0.0089290041,"clarity+100+100":1.7577811928,"wig+1000":-0.0303878062,"nqc+1000":0.0103934954,"smv+1000":0.0070590039,"clarity+1000+100":1.7193445786}
+{"qid":"121","max-idf":6.551080335,"avg-idf":4.4090058376,"scq":142.7392082507,"max-scq":23.4910299236,"avg-scq":17.8424010313,"var":17.141290119,"max-var":4.0844232904,"avg-var":1.2243778656,"wig+5":2.5448072804,"nqc+5":0.0250630798,"smv+5":0.0215775441,"clarity+5+100":3.0530297019,"wig+10":1.9745793307,"nqc+10":0.0302702119,"smv+10":0.0259527483,"clarity+10+100":3.0416607735,"wig+20":1.5022343344,"nqc+20":0.029553037,"smv+20":0.0225406905,"clarity+20+100":3.0324511399,"wig+50":0.880940123,"nqc+50":0.0288081669,"smv+50":0.0208590976,"clarity+50+100":3.0276501069,"wig+100":0.5350612345,"nqc+100":0.0251246005,"smv+100":0.0170604785,"clarity+100+100":3.0241585603,"wig+1000":0.1695942344,"nqc+1000":0.0205934601,"smv+1000":0.0123849156,"clarity+1000+100":3.0183628032}
+{"qid":"122","max-idf":2.5168396969,"avg-idf":1.7933153778,"scq":135.453529152,"max-scq":15.8625923825,"avg-scq":13.5453529152,"var":9.4924104454,"max-var":1.2492797584,"avg-var":0.5932756528,"wig+5":0.9837043877,"nqc+5":0.0154107949,"smv+5":0.0141290182,"clarity+5+100":2.0102889978,"wig+10":0.8293630071,"nqc+10":0.0138078556,"smv+10":0.0103896331,"clarity+10+100":1.8812985316,"wig+20":0.696843967,"nqc+20":0.012195637,"smv+20":0.00790184,"clarity+20+100":1.6941208649,"wig+50":0.5318990266,"nqc+50":0.0107734612,"smv+50":0.0071569165,"clarity+50+100":1.4971102743,"wig+100":0.415933767,"nqc+100":0.0099876052,"smv+100":0.0067331619,"clarity+100+100":1.3406298556,"wig+1000":0.0074508515,"nqc+1000":0.0105594529,"smv+1000":0.0080055044,"clarity+1000+100":1.0308027665}
+{"qid":"123","max-idf":7.2442275156,"avg-idf":3.5584558258,"scq":181.8898904108,"max-scq":18.996919754,"avg-scq":13.9915300316,"var":10.3370183655,"max-var":2.2429042635,"avg-var":0.5742787981,"wig+5":1.1723370368,"nqc+5":0.003371577,"smv+5":0.002863616,"clarity+5+100":1.6389048724,"wig+10":0.999210973,"nqc+10":0.0068154947,"smv+10":0.0061437423,"clarity+10+100":1.5144062686,"wig+20":0.8164795127,"nqc+20":0.008187301,"smv+20":0.0069135474,"clarity+20+100":1.404523098,"wig+50":0.5646063702,"nqc+50":0.009145874,"smv+50":0.0071586806,"clarity+50+100":1.3768702408,"wig+100":0.3810214509,"nqc+100":0.0092515692,"smv+100":0.0069358289,"clarity+100+100":1.3251482762,"wig+1000":-0.1215032751,"nqc+1000":0.0086939386,"smv+1000":0.0060310814,"clarity+1000+100":1.1213157426}
+{"qid":"126","max-idf":7.2442275156,"avg-idf":3.6602555518,"scq":124.9233726417,"max-scq":20.1693904815,"avg-scq":15.6154215802,"var":10.3390467916,"max-var":2.1202426109,"avg-var":0.7385033423,"wig+5":1.8206277027,"nqc+5":0.0083289333,"smv+5":0.0073638608,"clarity+5+100":1.9503225949,"wig+10":1.5923669516,"nqc+10":0.0115675448,"smv+10":0.0100591207,"clarity+10+100":1.8320757099,"wig+20":1.3013690352,"nqc+20":0.014799796,"smv+20":0.0125691584,"clarity+20+100":1.8102084137,"wig+50":0.9764961926,"nqc+50":0.0146220663,"smv+50":0.0110579037,"clarity+50+100":1.7192457185,"wig+100":0.7304429272,"nqc+100":0.0146890935,"smv+100":0.010624692,"clarity+100+100":1.6681769279,"wig+1000":0.1101935054,"nqc+1000":0.016982996,"smv+1000":0.0126922624,"clarity+1000+100":1.5575850371}
+{"qid":"128","max-idf":7.2442275156,"avg-idf":2.5742498296,"scq":163.1445578167,"max-scq":18.8135479746,"avg-scq":13.5953798181,"var":11.2275640057,"max-var":1.8694614397,"avg-var":0.5103438184,"wig+5":1.2974732853,"nqc+5":0.005318289,"smv+5":0.0047204747,"clarity+5+100":1.8633181876,"wig+10":1.1437400929,"nqc+10":0.0080621745,"smv+10":0.0069160644,"clarity+10+100":1.7485223396,"wig+20":0.9706358031,"nqc+20":0.0096290256,"smv+20":0.0080836242,"clarity+20+100":1.6952461327,"wig+50":0.7317808266,"nqc+50":0.0108075313,"smv+50":0.0084120247,"clarity+50+100":1.5864813899,"wig+100":0.5212841175,"nqc+100":0.0121857944,"smv+100":0.0094608945,"clarity+100+100":1.5094686964,"wig+1000":-0.0311142815,"nqc+1000":0.0101923714,"smv+1000":0.0067977851,"clarity+1000+100":1.2431830558}
+{"qid":"130","max-idf":4.248495242,"avg-idf":2.1743666781,"scq":85.6920289398,"max-scq":20.0924487977,"avg-scq":14.2820048233,"var":7.8418895841,"max-var":2.8228699303,"avg-var":0.7841889584,"wig+5":1.4176934361,"nqc+5":0.0236334583,"smv+5":0.0219545881,"clarity+5+100":2.1867989831,"wig+10":1.1613005274,"nqc+10":0.0244279461,"smv+10":0.0185861707,"clarity+10+100":2.1090514031,"wig+20":0.9273262265,"nqc+20":0.0234485804,"smv+20":0.0175343991,"clarity+20+100":1.9503703367,"wig+50":0.6691267579,"nqc+50":0.0207704999,"smv+50":0.0139911359,"clarity+50+100":1.7873659858,"wig+100":0.4930639018,"nqc+100":0.0189534348,"smv+100":0.012687959,"clarity+100+100":1.6221356751,"wig+1000":-0.009202203,"nqc+1000":0.0141335542,"smv+1000":0.0089420943,"clarity+1000+100":1.1088787848}
+{"qid":"131","max-idf":7.2442275156,"avg-idf":2.6223108432,"scq":200.53976828,"max-scq":18.5710234046,"avg-scq":14.3242691629,"var":14.2702660098,"max-var":1.8923030736,"avg-var":0.7510666321,"wig+5":1.1474089278,"nqc+5":0.007372393,"smv+5":0.0063306062,"clarity+5+100":1.5306712806,"wig+10":0.9364817053,"nqc+10":0.0106172651,"smv+10":0.0086327796,"clarity+10+100":1.4495450494,"wig+20":0.7399571912,"nqc+20":0.011041184,"smv+20":0.0093023835,"clarity+20+100":1.371517375,"wig+50":0.5454565021,"nqc+50":0.0096593907,"smv+50":0.0065571934,"clarity+50+100":1.322290986,"wig+100":0.4057579926,"nqc+100":0.0089489648,"smv+100":0.0060616783,"clarity+100+100":1.271050228,"wig+1000":-0.0423102504,"nqc+1000":0.0085028503,"smv+1000":0.0063170993,"clarity+1000+100":1.1019465404}
+{"qid":"132","max-idf":6.551080335,"avg-idf":2.691678484,"scq":193.0767102877,"max-scq":18.7270775768,"avg-scq":14.8520546375,"var":13.7269165759,"max-var":2.2614342106,"avg-var":0.7626064764,"wig+5":1.0434409869,"nqc+5":0.0078827703,"smv+5":0.0071943118,"clarity+5+100":1.6492471341,"wig+10":0.9079225148,"nqc+10":0.0080786537,"smv+10":0.0060651463,"clarity+10+100":1.4755100642,"wig+20":0.7632863246,"nqc+20":0.0083243744,"smv+20":0.0063423692,"clarity+20+100":1.4330077892,"wig+50":0.6004959952,"nqc+50":0.0077708287,"smv+50":0.0054204079,"clarity+50+100":1.3746220699,"wig+100":0.4698041719,"nqc+100":0.0078843319,"smv+100":0.0056502375,"clarity+100+100":1.3032305421,"wig+1000":-0.0568460482,"nqc+1000":0.0095683935,"smv+1000":0.0070174566,"clarity+1000+100":1.0543963552}
+{"qid":"133","max-idf":5.4524680464,"avg-idf":2.7425011986,"scq":265.4883412561,"max-scq":20.233882923,"avg-scq":15.6169612504,"var":19.6206869712,"max-var":2.2213591696,"avg-var":0.9810343486,"wig+5":1.7717577573,"nqc+5":0.0221545637,"smv+5":0.016874597,"clarity+5+100":2.9192954171,"wig+10":1.4084940585,"nqc+10":0.02038622,"smv+10":0.014464003,"clarity+10+100":2.9147022491,"wig+20":1.0332928775,"nqc+20":0.0197184421,"smv+20":0.0137077969,"clarity+20+100":2.912424083,"wig+50":0.6797708355,"nqc+50":0.0161765486,"smv+50":0.0105630945,"clarity+50+100":2.9100268118,"wig+100":0.4854222831,"nqc+100":0.013400762,"smv+100":0.0078025164,"clarity+100+100":2.9082115171,"wig+1000":-0.0724586862,"nqc+1000":0.0093121892,"smv+1000":0.0061937547,"clarity+1000+100":2.9011922653}
+{"qid":"135","max-idf":4.4110141715,"avg-idf":2.24454812,"scq":176.9863426547,"max-scq":19.6118973976,"avg-scq":14.7488618879,"var":15.6705219321,"max-var":2.4582379634,"avg-var":0.8247643122,"wig+5":1.1787129677,"nqc+5":0.0080614446,"smv+5":0.0074091544,"clarity+5+100":1.6728772399,"wig+10":1.0326932327,"nqc+10":0.0088913266,"smv+10":0.006979531,"clarity+10+100":1.5807778297,"wig+20":0.8591856781,"nqc+20":0.0100712995,"smv+20":0.0081170844,"clarity+20+100":1.500093476,"wig+50":0.6598578763,"nqc+50":0.0098411328,"smv+50":0.0071854623,"clarity+50+100":1.3813486707,"wig+100":0.5079886045,"nqc+100":0.0097988844,"smv+100":0.00712806,"clarity+100+100":1.3240011156,"wig+1000":-0.0240279989,"nqc+1000":0.010334467,"smv+1000":0.0074660934,"clarity+1000+100":1.114610922}
+{"qid":"136","max-idf":5.1647859739,"avg-idf":3.4804427253,"scq":202.4832722275,"max-scq":22.4583740976,"avg-scq":18.4075702025,"var":22.8215133262,"max-var":3.012438931,"avg-var":1.0867387298,"wig+5":3.4809310091,"nqc+5":0.0324216307,"smv+5":0.0249633147,"clarity+5+100":2.910541911,"wig+10":2.7660359728,"nqc+10":0.0399263304,"smv+10":0.0291848456,"clarity+10+100":2.9094887441,"wig+20":1.8762173209,"nqc+20":0.0466698352,"smv+20":0.038883899,"clarity+20+100":2.9094357219,"wig+50":1.0744183933,"nqc+50":0.0400505412,"smv+50":0.0283023805,"clarity+50+100":2.9094253529,"wig+100":0.6631020744,"nqc+100":0.033046425,"smv+100":0.019575637,"clarity+100+100":2.90941843,"wig+1000":0.0194392156,"nqc+1000":0.0205198957,"smv+1000":0.0109341308,"clarity+1000+100":2.9093993393}
+{"qid":"137","max-idf":4.8463322428,"avg-idf":2.9371810957,"scq":179.2383564427,"max-scq":19.7468753235,"avg-scq":16.2943960402,"var":13.7750009721,"max-var":1.9662439088,"avg-var":0.7250000512,"wig+5":1.5279222296,"nqc+5":0.0055256974,"smv+5":0.0043990253,"clarity+5+100":1.8186975003,"wig+10":1.3528984218,"nqc+10":0.0082927819,"smv+10":0.0077767776,"clarity+10+100":1.7175286208,"wig+20":1.1575872573,"nqc+20":0.0100325549,"smv+20":0.0082987887,"clarity+20+100":1.6358159943,"wig+50":0.87599592,"nqc+50":0.0117462377,"smv+50":0.0092369477,"clarity+50+100":1.5634259831,"wig+100":0.6379362298,"nqc+100":0.0130408859,"smv+100":0.0102114211,"clarity+100+100":1.5216435809,"wig+1000":-0.0819867572,"nqc+1000":0.0127539016,"smv+1000":0.0088195533,"clarity+1000+100":1.3494413456}
+{"qid":"138","max-idf":4.8463322428,"avg-idf":2.3361739972,"scq":117.6296548062,"max-scq":17.1548371733,"avg-scq":14.7037068508,"var":8.4440783934,"max-var":1.6853923964,"avg-var":1.0555097992,"wig+5":1.1458990466,"nqc+5":0.0123666654,"smv+5":0.0097413639,"clarity+5+100":1.8204986385,"wig+10":1.0001507979,"nqc+10":0.0122948635,"smv+10":0.0082181264,"clarity+10+100":1.6276332341,"wig+20":0.8595986173,"nqc+20":0.0118476115,"smv+20":0.0088026255,"clarity+20+100":1.4965551636,"wig+50":0.6708003006,"nqc+50":0.0118476564,"smv+50":0.0085251654,"clarity+50+100":1.333959535,"wig+100":0.5041280941,"nqc+100":0.0127351127,"smv+100":0.0097485804,"clarity+100+100":1.2602009438,"wig+1000":0.0027946764,"nqc+1000":0.0140110932,"smv+1000":0.0100834142,"clarity+1000+100":1.026222274}
+{"qid":"139","max-idf":7.2442275156,"avg-idf":3.4215889592,"scq":86.6696764825,"max-scq":19.6859748596,"avg-scq":14.4449460804,"var":6.33695684,"max-var":2.1362379154,"avg-var":0.792119605,"wig+5":1.4529582115,"nqc+5":0.0135812797,"smv+5":0.012640896,"clarity+5+100":1.6608289436,"wig+10":1.2093611106,"nqc+10":0.0165042048,"smv+10":0.0135998154,"clarity+10+100":1.5976817396,"wig+20":0.9985991135,"nqc+20":0.0165072087,"smv+20":0.0124879026,"clarity+20+100":1.5281295032,"wig+50":0.7658729828,"nqc+50":0.014973304,"smv+50":0.0103246381,"clarity+50+100":1.4209426672,"wig+100":0.5415214861,"nqc+100":0.0165542164,"smv+100":0.0123692492,"clarity+100+100":1.3273313279,"wig+1000":-0.0276073469,"nqc+1000":0.0155604028,"smv+1000":0.0102438351,"clarity+1000+100":1.0841820828}
+{"qid":"140","max-idf":4.8463322428,"avg-idf":3.0581878542,"scq":281.0931903457,"max-scq":22.8103261426,"avg-scq":16.5348935497,"var":22.7240767192,"max-var":2.6913963194,"avg-var":0.7835888524,"wig+5":1.6437336745,"nqc+5":0.0057767182,"smv+5":0.0044632415,"clarity+5+100":2.3741042472,"wig+10":1.4143549523,"nqc+10":0.0080072869,"smv+10":0.0068077017,"clarity+10+100":2.305920958,"wig+20":1.1795056935,"nqc+20":0.0093153241,"smv+20":0.0071968137,"clarity+20+100":2.2614942151,"wig+50":0.8125893403,"nqc+50":0.0108061069,"smv+50":0.0088087015,"clarity+50+100":2.2244883407,"wig+100":0.5720445326,"nqc+100":0.0106006825,"smv+100":0.0077091878,"clarity+100+100":2.2063774689,"wig+1000":-0.1346031795,"nqc+1000":0.0095487419,"smv+1000":0.0064268311,"clarity+1000+100":2.1534051192}
+{"qid":"141","max-idf":6.551080335,"avg-idf":2.6436532354,"scq":226.6268647401,"max-scq":21.3195593793,"avg-scq":15.1084576493,"var":17.9486701018,"max-var":3.0768016081,"avg-var":0.8546985763,"wig+5":2.0284955418,"nqc+5":0.0486728777,"smv+5":0.0437998188,"clarity+5+100":2.9813992624,"wig+10":1.3670200148,"nqc+10":0.0420575437,"smv+10":0.0311735903,"clarity+10+100":2.9813849401,"wig+20":0.9637641496,"nqc+20":0.0332036475,"smv+20":0.0195129418,"clarity+20+100":2.9813722208,"wig+50":0.6217163762,"nqc+50":0.0233923882,"smv+50":0.0106766175,"clarity+50+100":2.9813489229,"wig+100":0.4287926755,"nqc+100":0.0179931756,"smv+100":0.0078917545,"clarity+100+100":2.9813299277,"wig+1000":-0.05309914,"nqc+1000":0.0092196202,"smv+1000":0.0054678368,"clarity+1000+100":2.9812294588}
+{"qid":"142","max-idf":2.3463877157,"avg-idf":1.9346421676,"scq":117.7622839555,"max-scq":16.4718545955,"avg-scq":14.7202854944,"var":9.9405954301,"max-var":1.4315460435,"avg-var":0.7100425307,"wig+5":1.5931957531,"nqc+5":0.0114747714,"smv+5":0.009676062,"clarity+5+100":1.6700999179,"wig+10":1.3972468827,"nqc+10":0.0147576662,"smv+10":0.0134240917,"clarity+10+100":1.5362661577,"wig+20":1.2028599228,"nqc+20":0.0162293432,"smv+20":0.0126146838,"clarity+20+100":1.5036781742,"wig+50":0.8970803952,"nqc+50":0.0190983626,"smv+50":0.0151508397,"clarity+50+100":1.4264050849,"wig+100":0.6678809139,"nqc+100":0.0198355429,"smv+100":0.0150108098,"clarity+100+100":1.3777518146,"wig+1000":0.0423113153,"nqc+1000":0.0188002448,"smv+1000":0.0130165088,"clarity+1000+100":1.2043707052}
+{"qid":"143","max-idf":3.8102403111,"avg-idf":2.0755127439,"scq":74.1239389412,"max-scq":20.2209316125,"avg-scq":14.8247877882,"var":6.8465060611,"max-var":2.5353779459,"avg-var":0.6846506061,"wig+5":1.5311092222,"nqc+5":0.0342029517,"smv+5":0.0307737994,"clarity+5+100":1.7344207494,"wig+10":1.3165405218,"nqc+10":0.0292912475,"smv+10":0.0217683322,"clarity+10+100":1.6662902594,"wig+20":1.0693234177,"nqc+20":0.0284020041,"smv+20":0.0187605623,"clarity+20+100":1.598313777,"wig+50":0.7690364869,"nqc+50":0.0261937695,"smv+50":0.0186994061,"clarity+50+100":1.4620764395,"wig+100":0.5693871808,"nqc+100":0.024199415,"smv+100":0.0162438576,"clarity+100+100":1.3792089245,"wig+1000":0.0598055037,"nqc+1000":0.0203852415,"smv+1000":0.0138175318,"clarity+1000+100":1.1029811002}
+{"qid":"145","max-idf":4.8463322428,"avg-idf":2.3294492103,"scq":134.0565732204,"max-scq":19.256493179,"avg-scq":14.8951748023,"var":10.2376855554,"max-var":2.0551778005,"avg-var":0.7875142735,"wig+5":1.3241972049,"nqc+5":0.012251228,"smv+5":0.0116604918,"clarity+5+100":1.9533502548,"wig+10":1.1307675716,"nqc+10":0.0139535676,"smv+10":0.0120702549,"clarity+10+100":1.8911283327,"wig+20":0.9395298049,"nqc+20":0.0143616543,"smv+20":0.0113553739,"clarity+20+100":1.8056549083,"wig+50":0.7229993716,"nqc+50":0.0135825316,"smv+50":0.009381295,"clarity+50+100":1.627684314,"wig+100":0.5362861749,"nqc+100":0.0140975619,"smv+100":0.0104960122,"clarity+100+100":1.5284026329,"wig+1000":-0.0266106161,"nqc+1000":0.0130881007,"smv+1000":0.0090982721,"clarity+1000+100":1.195540806}
+{"qid":"146","max-idf":7.2442275156,"avg-idf":4.2157673279,"scq":140.9544867608,"max-scq":21.2919846837,"avg-scq":17.6193108451,"var":15.6551136801,"max-var":3.232937779,"avg-var":0.92088904,"wig+5":1.7168884322,"nqc+5":0.0144292704,"smv+5":0.0107941455,"clarity+5+100":2.5347978775,"wig+10":1.3858317146,"nqc+10":0.0178096377,"smv+10":0.0143365808,"clarity+10+100":2.4448099223,"wig+20":1.0474284226,"nqc+20":0.0193310466,"smv+20":0.0153277866,"clarity+20+100":2.3948846266,"wig+50":0.7217991986,"nqc+50":0.0169515163,"smv+50":0.0116565879,"clarity+50+100":2.3096177381,"wig+100":0.501128574,"nqc+100":0.0153752939,"smv+100":0.0102618067,"clarity+100+100":2.2390471626,"wig+1000":0.1706080316,"nqc+1000":0.0152419131,"smv+1000":0.0106437819,"clarity+1000+100":2.1325072506}
+{"qid":"147","max-idf":5.0470029383,"avg-idf":2.8243610665,"scq":246.43245219,"max-scq":23.4463971727,"avg-scq":16.428830146,"var":22.091752452,"max-var":3.5293425619,"avg-var":1.004170566,"wig+5":1.582006113,"nqc+5":0.0200302108,"smv+5":0.0166317619,"clarity+5+100":2.5424845834,"wig+10":1.2232689133,"nqc+10":0.0196028935,"smv+10":0.0163579321,"clarity+10+100":2.5333979015,"wig+20":0.9533671073,"nqc+20":0.0172874791,"smv+20":0.0117645356,"clarity+20+100":2.5256401825,"wig+50":0.6684530187,"nqc+50":0.0141554451,"smv+50":0.0088012881,"clarity+50+100":2.5135836236,"wig+100":0.4714133747,"nqc+100":0.0125323864,"smv+100":0.0079675767,"clarity+100+100":2.5029349172,"wig+1000":-0.0961847017,"nqc+1000":0.0100603424,"smv+1000":0.0069069024,"clarity+1000+100":2.4596060497}
+{"qid":"148","max-idf":7.2442275156,"avg-idf":3.4120396941,"scq":171.3955721686,"max-scq":19.1585386773,"avg-scq":15.5814156517,"var":15.122371104,"max-var":3.8292477723,"avg-var":0.7201129097,"wig+5":2.9832226293,"nqc+5":0.0321028165,"smv+5":0.0254198024,"clarity+5+100":3.6263700326,"wig+10":2.2316732809,"nqc+10":0.0340661283,"smv+10":0.0270288039,"clarity+10+100":3.6261376838,"wig+20":1.5730631311,"nqc+20":0.0326503141,"smv+20":0.0238094828,"clarity+20+100":3.6260588839,"wig+50":0.9707996987,"nqc+50":0.0265070589,"smv+50":0.0167795164,"clarity+50+100":3.6259933681,"wig+100":0.6327885154,"nqc+100":0.0219043482,"smv+100":0.0127743231,"clarity+100+100":3.62594474,"wig+1000":-0.0827213466,"nqc+1000":0.013500928,"smv+1000":0.007962731,"clarity+1000+100":3.6257909341}
+{"qid":"149","max-idf":7.2442275156,"avg-idf":3.1213121688,"scq":172.3260575279,"max-scq":21.127909397,"avg-scq":15.6660052298,"var":13.7129105621,"max-var":2.8729337799,"avg-var":0.9141940375,"wig+5":2.0537452741,"nqc+5":0.0092599849,"smv+5":0.0079283696,"clarity+5+100":2.4377190073,"wig+10":1.7426063406,"nqc+10":0.0151724695,"smv+10":0.0136958282,"clarity+10+100":2.3769654444,"wig+20":1.4588394512,"nqc+20":0.0165911957,"smv+20":0.0133786895,"clarity+20+100":2.3621697187,"wig+50":1.0570084199,"nqc+50":0.0177409279,"smv+50":0.0139556352,"clarity+50+100":2.3377047759,"wig+100":0.7753380897,"nqc+100":0.017677382,"smv+100":0.0126283886,"clarity+100+100":2.3098246981,"wig+1000":-0.0561291232,"nqc+1000":0.0166553823,"smv+1000":0.0114145265,"clarity+1000+100":2.2705891354}
+{"qid":"150","max-idf":4.4110141715,"avg-idf":2.921736655,"scq":198.1327907155,"max-scq":20.5480095444,"avg-scq":16.511065893,"var":16.8798501314,"max-var":2.6964077947,"avg-var":0.8884131648,"wig+5":2.4725102522,"nqc+5":0.0063779832,"smv+5":0.0057194435,"clarity+5+100":2.4488360649,"wig+10":2.1422541781,"nqc+10":0.0140808654,"smv+10":0.0129040416,"clarity+10+100":2.4093466221,"wig+20":1.5693646903,"nqc+20":0.0254445403,"smv+20":0.0223622654,"clarity+20+100":2.4031387428,"wig+50":0.9768751885,"nqc+50":0.0249284413,"smv+50":0.0198043012,"clarity+50+100":2.3999800402,"wig+100":0.6557359196,"nqc+100":0.0217239804,"smv+100":0.0142889989,"clarity+100+100":2.3974198347,"wig+1000":-0.0569622672,"nqc+1000":0.0139828493,"smv+1000":0.0086402034,"clarity+1000+100":2.3869913722}
+{"qid":"152","max-idf":3.5306554489,"avg-idf":2.9552598789,"scq":102.7198742515,"max-scq":18.5084114182,"avg-scq":17.1199790419,"var":9.0852528905,"max-var":1.8839465666,"avg-var":1.0094725434,"wig+5":1.2217910305,"nqc+5":0.0095942113,"smv+5":0.0092881438,"clarity+5+100":2.2758164895,"wig+10":1.0656389172,"nqc+10":0.0116992368,"smv+10":0.0090329291,"clarity+10+100":1.9633839173,"wig+20":0.9189786378,"nqc+20":0.0119446588,"smv+20":0.0096131292,"clarity+20+100":1.8153684978,"wig+50":0.7094463499,"nqc+50":0.0128548667,"smv+50":0.0096826888,"clarity+50+100":1.6287543431,"wig+100":0.5479624281,"nqc+100":0.0131938993,"smv+100":0.0099982926,"clarity+100+100":1.4525968874,"wig+1000":0.1559447892,"nqc+1000":0.0163459121,"smv+1000":0.0124543111,"clarity+1000+100":1.2098247283}
+{"qid":"153","max-idf":7.2442275156,"avg-idf":4.550108843,"scq":82.9839605011,"max-scq":21.7434202162,"avg-scq":16.5967921002,"var":6.2872118322,"max-var":2.7505311002,"avg-var":0.6985790925,"wig+5":1.6906210693,"nqc+5":0.022845495,"smv+5":0.0218004605,"clarity+5+100":2.1941423739,"wig+10":1.3836880481,"nqc+10":0.022912174,"smv+10":0.0185822589,"clarity+10+100":2.1112186552,"wig+20":1.1641254029,"nqc+20":0.0199379283,"smv+20":0.013712165,"clarity+20+100":1.9839075033,"wig+50":0.8128765822,"nqc+50":0.0208974325,"smv+50":0.015115499,"clarity+50+100":1.8709393924,"wig+100":0.5368323715,"nqc+100":0.0207680308,"smv+100":0.0161788288,"clarity+100+100":1.8266169679,"wig+1000":0.3273519025,"nqc+1000":0.0201094831,"smv+1000":0.0141689285,"clarity+1000+100":1.7895400034}
+{"qid":"154","max-idf":4.9416424226,"avg-idf":2.5668486052,"scq":201.8773027976,"max-scq":20.8485246992,"avg-scq":15.5290232921,"var":17.2156065069,"max-var":2.9364198002,"avg-var":0.9564225837,"wig+5":1.5039989117,"nqc+5":0.0171544216,"smv+5":0.0132245777,"clarity+5+100":2.7865478294,"wig+10":1.2692446854,"nqc+10":0.0147852872,"smv+10":0.0098773546,"clarity+10+100":2.7540043775,"wig+20":1.0996166997,"nqc+20":0.0121353094,"smv+20":0.0071975836,"clarity+20+100":2.6891308441,"wig+50":0.8512392696,"nqc+50":0.0107803188,"smv+50":0.0070938267,"clarity+50+100":2.6238961524,"wig+100":0.6646500469,"nqc+100":0.0102423479,"smv+100":0.0071898863,"clarity+100+100":2.5766380532,"wig+1000":-0.0445452128,"nqc+1000":0.0107562284,"smv+1000":0.0076400222,"clarity+1000+100":2.4618207557}
+{"qid":"155","max-idf":6.1456152269,"avg-idf":3.5185899199,"scq":158.0300255228,"max-scq":21.0458867778,"avg-scq":17.5588917248,"var":15.5056190417,"max-var":2.7886425741,"avg-var":1.0337079361,"wig+5":2.2725893809,"nqc+5":0.0506821257,"smv+5":0.0473211746,"clarity+5+100":3.3176509153,"wig+10":1.5917191809,"nqc+10":0.0473190026,"smv+10":0.0368078871,"clarity+10+100":3.3164411154,"wig+20":1.1540716475,"nqc+20":0.0389165538,"smv+20":0.0249765904,"clarity+20+100":3.3154440703,"wig+50":0.8153053475,"nqc+50":0.0276539768,"smv+50":0.0137194252,"clarity+50+100":3.3132486142,"wig+100":0.6097039842,"nqc+100":0.0217245282,"smv+100":0.009945154,"clarity+100+100":3.3105712446,"wig+1000":-0.0604858971,"nqc+1000":0.0169452892,"smv+1000":0.0114987379,"clarity+1000+100":3.3045733679}
+{"qid":"156","max-idf":3.2188758249,"avg-idf":2.46674983,"scq":65.500833321,"max-scq":19.1667365778,"avg-scq":16.3752083303,"var":5.7268224082,"max-var":2.1841974055,"avg-var":1.1453644816,"wig+5":1.228451566,"nqc+5":0.0062000898,"smv+5":0.0051319818,"clarity+5+100":2.3579099556,"wig+10":1.114749916,"nqc+10":0.0102657577,"smv+10":0.0089708154,"clarity+10+100":2.2367942872,"wig+20":0.972584841,"nqc+20":0.0138330623,"smv+20":0.0113561294,"clarity+20+100":2.1020711105,"wig+50":0.746084526,"nqc+50":0.0177206082,"smv+50":0.0142565568,"clarity+50+100":1.8484058062,"wig+100":0.570052336,"nqc+100":0.0189215775,"smv+100":0.0148839337,"clarity+100+100":1.5867053658,"wig+1000":0.1283535055,"nqc+1000":0.021477539,"smv+1000":0.0160984339,"clarity+1000+100":1.1730013108}
+{"qid":"157","max-idf":5.0470029383,"avg-idf":3.0657634223,"scq":245.4998736524,"max-scq":21.8066122848,"avg-scq":16.3666582435,"var":17.5182136404,"max-var":2.67066373,"avg-var":0.7616614626,"wig+5":1.8356519348,"nqc+5":0.026838589,"smv+5":0.0238730735,"clarity+5+100":2.8444327577,"wig+10":1.4228873146,"nqc+10":0.0240812505,"smv+10":0.0178254572,"clarity+10+100":2.8426227004,"wig+20":1.0947458055,"nqc+20":0.0207343509,"smv+20":0.0131912163,"clarity+20+100":2.8409094066,"wig+50":0.7819932136,"nqc+50":0.0160604049,"smv+50":0.009340171,"clarity+50+100":2.8390997865,"wig+100":0.5666535864,"nqc+100":0.0138052962,"smv+100":0.0081051988,"clarity+100+100":2.8375032808,"wig+1000":-0.0826757768,"nqc+1000":0.0113458371,"smv+1000":0.0077546778,"clarity+1000+100":2.8327216709}
+{"qid":"158","max-idf":4.8463322428,"avg-idf":3.319555602,"scq":106.0861992667,"max-scq":22.0528189741,"avg-scq":17.6810332111,"var":10.2027094646,"max-var":3.6127315027,"avg-var":0.8502257887,"wig+5":2.1555190736,"nqc+5":0.0124435134,"smv+5":0.0116400207,"clarity+5+100":2.6350441872,"wig+10":1.8242171351,"nqc+10":0.0217695947,"smv+10":0.018825296,"clarity+10+100":2.5976709666,"wig+20":1.4271834252,"nqc+20":0.027682132,"smv+20":0.0237797243,"clarity+20+100":2.5437696329,"wig+50":0.976939817,"nqc+50":0.0279349548,"smv+50":0.0208671156,"clarity+50+100":2.4903235475,"wig+100":0.6262312164,"nqc+100":0.028164056,"smv+100":0.0211222928,"clarity+100+100":2.4492523518,"wig+1000":0.0955946269,"nqc+1000":0.0215950591,"smv+1000":0.0134192505,"clarity+1000+100":2.2700381704}
+{"qid":"160","max-idf":3.4375650258,"avg-idf":2.4185772965,"scq":67.1396097349,"max-scq":22.3500491198,"avg-scq":16.7849024337,"var":6.9243734778,"max-var":3.3404801664,"avg-var":1.3848746956,"wig+5":1.3637729119,"nqc+5":0.0107122397,"smv+5":0.009091704,"clarity+5+100":1.923722425,"wig+10":1.1526018619,"nqc+10":0.0192257795,"smv+10":0.0174774579,"clarity+10+100":1.8371105859,"wig+20":0.9821714869,"nqc+20":0.0197616819,"smv+20":0.0158552968,"clarity+20+100":1.7777460999,"wig+50":0.7339365219,"nqc+50":0.0215059016,"smv+50":0.0163603027,"clarity+50+100":1.6402641262,"wig+100":0.5301301319,"nqc+100":0.0229882455,"smv+100":0.0174782219,"clarity+100+100":1.4824697246,"wig+1000":0.1074283423,"nqc+1000":0.021914931,"smv+1000":0.0152527989,"clarity+1000+100":1.1059050348}
+{"qid":"161","max-idf":3.1498829534,"avg-idf":2.1664015319,"scq":152.62255944,"max-scq":18.1950620233,"avg-scq":15.262255944,"var":12.8978548473,"max-var":1.8826745384,"avg-var":0.8598569898,"wig+5":1.1757876736,"nqc+5":0.0050725498,"smv+5":0.0046840587,"clarity+5+100":2.2807974187,"wig+10":1.0720958301,"nqc+10":0.0061357059,"smv+10":0.0052082501,"clarity+10+100":2.0962590855,"wig+20":0.98034266,"nqc+20":0.006309674,"smv+20":0.004710819,"clarity+20+100":1.931917899,"wig+50":0.7912615216,"nqc+50":0.0089574562,"smv+50":0.0072919196,"clarity+50+100":1.8238996846,"wig+100":0.6254066264,"nqc+100":0.0102992375,"smv+100":0.0084436075,"clarity+100+100":1.7840504383,"wig+1000":-0.0142460808,"nqc+1000":0.0141311581,"smv+1000":0.0104432403,"clarity+1000+100":1.3837864179}
+{"qid":"163","max-idf":5.1647859739,"avg-idf":2.9473808034,"scq":164.9171345594,"max-scq":22.3500491198,"avg-scq":16.4917134559,"var":14.0173333722,"max-var":3.3404801664,"avg-var":0.8760833358,"wig+5":1.5168567754,"nqc+5":0.0211074838,"smv+5":0.0161032411,"clarity+5+100":2.2166832254,"wig+10":1.2340829977,"nqc+10":0.0198072093,"smv+10":0.0142598638,"clarity+10+100":2.1958439363,"wig+20":1.0267874119,"nqc+20":0.0170110838,"smv+20":0.0111596012,"clarity+20+100":2.1640635867,"wig+50":0.7688794963,"nqc+50":0.0147496775,"smv+50":0.0094240539,"clarity+50+100":2.1065154599,"wig+100":0.5367510469,"nqc+100":0.015060343,"smv+100":0.0109134551,"clarity+100+100":2.0718219281,"wig+1000":-0.0665478414,"nqc+1000":0.0134367015,"smv+1000":0.0093020618,"clarity+1000+100":1.9165607906}
+{"qid":"164","max-idf":4.9416424226,"avg-idf":2.4674309555,"scq":183.3850389259,"max-scq":21.0722973567,"avg-scq":15.2820865772,"var":16.5625498112,"max-var":3.5883717515,"avg-var":0.871713148,"wig+5":1.9909419596,"nqc+5":0.03408426,"smv+5":0.0302407754,"clarity+5+100":3.1051992645,"wig+10":1.5335028669,"nqc+10":0.0309330806,"smv+10":0.024084231,"clarity+10+100":3.1022541755,"wig+20":1.1930375512,"nqc+20":0.0262655769,"smv+20":0.0169129469,"clarity+20+100":3.0990762544,"wig+50":0.8304394956,"nqc+50":0.021075879,"smv+50":0.0123830166,"clarity+50+100":3.0950578942,"wig+100":0.5991339021,"nqc+100":0.0178830347,"smv+100":0.0109944756,"clarity+100+100":3.0923239081,"wig+1000":-0.0262676024,"nqc+1000":0.0120096323,"smv+1000":0.0078237295,"clarity+1000+100":3.0803826704}
+{"qid":"165","max-idf":4.8463322428,"avg-idf":2.4932558186,"scq":168.2125138136,"max-scq":19.8657910915,"avg-scq":15.2920467103,"var":13.1482506277,"max-var":2.1507539683,"avg-var":1.0114038944,"wig+5":1.413547978,"nqc+5":0.0019335409,"smv+5":0.0017207303,"clarity+5+100":1.6212903123,"wig+10":1.3284137171,"nqc+10":0.0039591791,"smv+10":0.0035193369,"clarity+10+100":1.4815750738,"wig+20":1.0751352027,"nqc+20":0.011561584,"smv+20":0.0108396937,"clarity+20+100":1.4191333039,"wig+50":0.7179765384,"nqc+50":0.0142592099,"smv+50":0.0119101899,"clarity+50+100":1.3413394255,"wig+100":0.5058138777,"nqc+100":0.0134350537,"smv+100":0.0098281794,"clarity+100+100":1.2847705747,"wig+1000":-0.0800712414,"nqc+1000":0.0112493375,"smv+1000":0.0076014832,"clarity+1000+100":1.119414278}
+{"qid":"167","max-idf":7.2442275156,"avg-idf":2.9239226349,"scq":281.1355585654,"max-scq":20.0938424252,"avg-scq":15.6186421425,"var":18.893332577,"max-var":2.5463532435,"avg-var":0.6094623412,"wig+5":1.9969455863,"nqc+5":0.0115259569,"smv+5":0.0088897867,"clarity+5+100":3.4322101963,"wig+10":1.7277491862,"nqc+10":0.0105657805,"smv+10":0.0072362019,"clarity+10+100":3.4082548168,"wig+20":1.3674579047,"nqc+20":0.0119567309,"smv+20":0.0089027056,"clarity+20+100":3.4017784291,"wig+50":0.8672929493,"nqc+50":0.0129847581,"smv+50":0.0098611989,"clarity+50+100":3.3987399221,"wig+100":0.5532209177,"nqc+100":0.0120120455,"smv+100":0.0089672145,"clarity+100+100":3.3977188404,"wig+1000":-0.1237834512,"nqc+1000":0.0075424816,"smv+1000":0.0047020605,"clarity+1000+100":3.3936504337}
+{"qid":"168","max-idf":7.2442275156,"avg-idf":2.8546800934,"scq":146.4659422627,"max-scq":19.3615857554,"avg-scq":13.3150856602,"var":9.370417659,"max-var":2.2871530231,"avg-var":0.5512010388,"wig+5":1.0526836143,"nqc+5":0.0074998359,"smv+5":0.0056441804,"clarity+5+100":2.0650991394,"wig+10":0.9005538342,"nqc+10":0.0088705581,"smv+10":0.0065153065,"clarity+10+100":1.8776293451,"wig+20":0.6930382443,"nqc+20":0.0105467482,"smv+20":0.0091237971,"clarity+20+100":1.7901968178,"wig+50":0.4843965879,"nqc+50":0.0097309751,"smv+50":0.0069753989,"clarity+50+100":1.6257822797,"wig+100":0.3495213673,"nqc+100":0.008838886,"smv+100":0.0060068145,"clarity+100+100":1.4686313139,"wig+1000":-0.0498540606,"nqc+1000":0.0074283374,"smv+1000":0.0053035579,"clarity+1000+100":1.0738690387}
+{"qid":"169","max-idf":3.2188758249,"avg-idf":2.466218848,"scq":129.6074704267,"max-scq":17.376141878,"avg-scq":16.2009338033,"var":10.8113963972,"max-var":1.8473355016,"avg-var":0.7207597598,"wig+5":1.4958986563,"nqc+5":0.011767532,"smv+5":0.0102358711,"clarity+5+100":1.5763221654,"wig+10":1.3228262106,"nqc+10":0.0120145275,"smv+10":0.0091075427,"clarity+10+100":1.476187465,"wig+20":1.0696310713,"nqc+20":0.0155338432,"smv+20":0.0125739711,"clarity+20+100":1.4423913787,"wig+50":0.754807206,"nqc+50":0.0162582788,"smv+50":0.0126554367,"clarity+50+100":1.3843255492,"wig+100":0.576043576,"nqc+100":0.0146107179,"smv+100":0.0100735893,"clarity+100+100":1.321514578,"wig+1000":0.0438319688,"nqc+1000":0.0148170165,"smv+1000":0.0108581562,"clarity+1000+100":1.105294975}
+{"qid":"170","max-idf":6.1456152269,"avg-idf":3.2335255251,"scq":164.2021998554,"max-scq":22.3028703493,"avg-scq":16.4202199855,"var":14.8608470284,"max-var":3.7905070658,"avg-var":0.7821498436,"wig+5":1.5992664622,"nqc+5":0.0057737616,"smv+5":0.0048421147,"clarity+5+100":1.5919704653,"wig+10":1.5029668855,"nqc+10":0.0055975314,"smv+10":0.0042113096,"clarity+10+100":1.4933759801,"wig+20":1.2766308465,"nqc+20":0.0107563718,"smv+20":0.0088194267,"clarity+20+100":1.3932918454,"wig+50":0.8328036273,"nqc+50":0.0159487776,"smv+50":0.013802813,"clarity+50+100":1.3549616013,"wig+100":0.536650996,"nqc+100":0.0161312195,"smv+100":0.0125505208,"clarity+100+100":1.34076004,"wig+1000":-0.0466819016,"nqc+1000":0.0129398056,"smv+1000":0.0085607162,"clarity+1000+100":1.246992199}
+{"qid":"171","max-idf":7.2442275156,"avg-idf":3.29289486,"scq":136.941466023,"max-scq":21.6773906909,"avg-scq":15.215718447,"var":12.5073415178,"max-var":3.9914877231,"avg-var":0.893381537,"wig+5":2.1577433738,"nqc+5":0.0148206431,"smv+5":0.0137111838,"clarity+5+100":2.4167931466,"wig+10":1.8205705738,"nqc+10":0.0160513713,"smv+10":0.0134249976,"clarity+10+100":2.3635994918,"wig+20":1.4767570904,"nqc+20":0.0170603445,"smv+20":0.01251144,"clarity+20+100":2.3251734204,"wig+50":1.0093635738,"nqc+50":0.017729174,"smv+50":0.0134503999,"clarity+50+100":2.2913305639,"wig+100":0.6993393271,"nqc+100":0.0169044016,"smv+100":0.0121279345,"clarity+100+100":2.2714307479,"wig+1000":-0.0936479308,"nqc+1000":0.0138530077,"smv+1000":0.0090657608,"clarity+1000+100":2.2224830831}
+{"qid":"173","max-idf":4.8463322428,"avg-idf":2.7779722541,"scq":241.0893988043,"max-scq":20.4761583223,"avg-scq":16.072626587,"var":20.7078721768,"max-var":2.5059186241,"avg-var":0.9860891513,"wig+5":1.4470322731,"nqc+5":0.0074486887,"smv+5":0.006458581,"clarity+5+100":2.0017590333,"wig+10":1.2422462131,"nqc+10":0.00911185,"smv+10":0.008230293,"clarity+10+100":1.958503224,"wig+20":1.0464178343,"nqc+20":0.0096570947,"smv+20":0.0074849214,"clarity+20+100":1.9249601575,"wig+50":0.7966653093,"nqc+50":0.0097292856,"smv+50":0.0071996719,"clarity+50+100":1.8707079845,"wig+100":0.5977248514,"nqc+100":0.0100046504,"smv+100":0.0074760291,"clarity+100+100":1.83647865,"wig+1000":-0.0721961165,"nqc+1000":0.0105577467,"smv+1000":0.007754238,"clarity+1000+100":1.6715590564}
+{"qid":"175","max-idf":7.2442275156,"avg-idf":3.3006518539,"scq":233.2322740621,"max-scq":18.3824914375,"avg-scq":15.5488182708,"var":15.6008047059,"max-var":1.8826745384,"avg-var":0.7428954622,"wig+5":1.7873684917,"nqc+5":0.0170276908,"smv+5":0.0145195619,"clarity+5+100":2.8370935922,"wig+10":1.4725780341,"nqc+10":0.0159192151,"smv+10":0.0129324878,"clarity+10+100":2.8140173773,"wig+20":1.2651211777,"nqc+20":0.0131864164,"smv+20":0.0087413583,"clarity+20+100":2.7894943283,"wig+50":0.9831545095,"nqc+50":0.0116875149,"smv+50":0.0074169956,"clarity+50+100":2.7636374445,"wig+100":0.7178109363,"nqc+100":0.0121696805,"smv+100":0.0090626045,"clarity+100+100":2.7539673341,"wig+1000":-0.041015605,"nqc+1000":0.0124786369,"smv+1000":0.0087025701,"clarity+1000+100":2.7344468586}
+{"qid":"176","max-idf":7.2442275156,"avg-idf":3.2979414512,"scq":139.4000669598,"max-scq":18.2420373701,"avg-scq":15.4888963289,"var":10.1778650791,"max-var":1.8188498531,"avg-var":0.6785243386,"wig+5":1.635103362,"nqc+5":0.006334069,"smv+5":0.0057128662,"clarity+5+100":2.1712589607,"wig+10":1.463058962,"nqc+10":0.009486135,"smv+10":0.0072399747,"clarity+10+100":2.1174370872,"wig+20":1.2257361954,"nqc+20":0.0120175533,"smv+20":0.0104932242,"clarity+20+100":2.0795534535,"wig+50":0.901432282,"nqc+50":0.0136571962,"smv+50":0.0107359294,"clarity+50+100":2.0454472449,"wig+100":0.676399532,"nqc+100":0.0134905005,"smv+100":0.0101263581,"clarity+100+100":1.9915431106,"wig+1000":0.0642662117,"nqc+1000":0.0147103095,"smv+1000":0.0107287338,"clarity+1000+100":1.790493363}
+{"qid":"177","max-idf":3.0395348962,"avg-idf":2.0064346919,"scq":129.1153224778,"max-scq":18.5710234046,"avg-scq":14.346146942,"var":9.5334142255,"max-var":1.8923030736,"avg-var":0.5607890721,"wig+5":1.013070153,"nqc+5":0.0084305824,"smv+5":0.0081835616,"clarity+5+100":2.3488223283,"wig+10":0.8743136863,"nqc+10":0.0099892378,"smv+10":0.0077461931,"clarity+10+100":2.1994384085,"wig+20":0.7249367363,"nqc+20":0.010929975,"smv+20":0.0087105133,"clarity+20+100":2.0828389566,"wig+50":0.562842633,"nqc+50":0.0102255384,"smv+50":0.0073169878,"clarity+50+100":1.7743250695,"wig+100":0.4421717996,"nqc+100":0.0099924929,"smv+100":0.0070172041,"clarity+100+100":1.5517280707,"wig+1000":-0.000765975,"nqc+1000":0.0110771707,"smv+1000":0.0082343724,"clarity+1000+100":1.0802465411}
+{"qid":"181","max-idf":4.8463322428,"avg-idf":2.8230463154,"scq":141.0778566717,"max-scq":21.3574859986,"avg-scq":15.675317408,"var":10.4603124947,"max-var":2.9771038829,"avg-var":0.6153124997,"wig+5":1.1455095733,"nqc+5":0.0112434056,"smv+5":0.008782379,"clarity+5+100":2.016132446,"wig+10":0.9828188066,"nqc+10":0.0112185848,"smv+10":0.0088254556,"clarity+10+100":1.8808717057,"wig+20":0.8325802233,"nqc+20":0.0109151383,"smv+20":0.0076566019,"clarity+20+100":1.7690387625,"wig+50":0.62979074,"nqc+50":0.0108177791,"smv+50":0.0078284403,"clarity+50+100":1.6414883916,"wig+100":0.46245698,"nqc+100":0.0112737919,"smv+100":0.008382109,"clarity+100+100":1.5150344955,"wig+1000":-0.0654879423,"nqc+1000":0.0118444137,"smv+1000":0.0084712001,"clarity+1000+100":1.1361856914}
+{"qid":"182","max-idf":4.4110141715,"avg-idf":2.2124929919,"scq":302.1051951907,"max-scq":21.3574859986,"avg-scq":15.1052597595,"var":25.6171085725,"max-var":2.9771038829,"avg-var":0.7762760173,"wig+5":0.8370578459,"nqc+5":0.0111518998,"smv+5":0.0088690056,"clarity+5+100":2.5890683717,"wig+10":0.6858505018,"nqc+10":0.0095430602,"smv+10":0.0056588497,"clarity+10+100":2.5037243044,"wig+20":0.5700747394,"nqc+20":0.0078980105,"smv+20":0.0046796491,"clarity+20+100":2.3966323911,"wig+50":0.444954024,"nqc+50":0.0062480175,"smv+50":0.0035619151,"clarity+50+100":2.2428618244,"wig+100":0.3527886216,"nqc+100":0.0055197185,"smv+100":0.0035207142,"clarity+100+100":2.0801743011,"wig+1000":-0.0262283884,"nqc+1000":0.0063328339,"smv+1000":0.0048673722,"clarity+1000+100":1.6604676591}
+{"qid":"183","max-idf":4.6792781581,"avg-idf":2.3479813852,"scq":106.7281833778,"max-scq":19.9257550372,"avg-scq":15.2468833397,"var":9.9424137766,"max-var":2.6484313571,"avg-var":1.2428017221,"wig+5":1.043471532,"nqc+5":0.0048289414,"smv+5":0.004112361,"clarity+5+100":1.6325311919,"wig+10":0.9512518668,"nqc+10":0.0066682943,"smv+10":0.006085209,"clarity+10+100":1.430214676,"wig+20":0.8453337865,"nqc+20":0.0083725833,"smv+20":0.0065442355,"clarity+20+100":1.3252933307,"wig+50":0.6424560943,"nqc+50":0.0120929599,"smv+50":0.0100811059,"clarity+50+100":1.2906760245,"wig+100":0.4559806694,"nqc+100":0.0145596782,"smv+100":0.0119023293,"clarity+100+100":1.235898048,"wig+1000":-0.0260376411,"nqc+1000":0.0130251209,"smv+1000":0.0089625233,"clarity+1000+100":0.9649071937}
+{"qid":"184","max-idf":4.7593208658,"avg-idf":3.4168091256,"scq":127.48025798,"max-scq":21.5567745158,"avg-scq":18.2114654257,"var":13.7473480696,"max-var":2.7561793566,"avg-var":1.7184185087,"wig+5":2.3820790002,"nqc+5":0.0306647988,"smv+5":0.0280116815,"clarity+5+100":2.4040874583,"wig+10":1.716471544,"nqc+10":0.0408741125,"smv+10":0.0371014929,"clarity+10+100":2.3939444278,"wig+20":1.2588950534,"nqc+20":0.0374688157,"smv+20":0.0286647874,"clarity+20+100":2.3864837575,"wig+50":0.8180710594,"nqc+50":0.0302978798,"smv+50":0.0187717563,"clarity+50+100":2.3746105718,"wig+100":0.548236409,"nqc+100":0.0256654391,"smv+100":0.0151712318,"clarity+100+100":2.364793552,"wig+1000":0.0922551467,"nqc+1000":0.0185477535,"smv+1000":0.0110079053,"clarity+1000+100":2.3293225882}
+{"qid":"187","max-idf":4.9416424226,"avg-idf":2.4113772705,"scq":158.2761364706,"max-scq":17.9128779795,"avg-scq":14.3887396791,"var":11.1989806465,"max-var":1.6364533853,"avg-var":0.589420034,"wig+5":1.3822140805,"nqc+5":0.0118614983,"smv+5":0.0110654512,"clarity+5+100":2.4187574311,"wig+10":1.130283774,"nqc+10":0.0137564254,"smv+10":0.0123782348,"clarity+10+100":2.3590462551,"wig+20":0.8907829259,"nqc+20":0.014263429,"smv+20":0.0107516438,"clarity+20+100":2.2539125302,"wig+50":0.6327091177,"nqc+50":0.012949168,"smv+50":0.0089981202,"clarity+50+100":2.1367844208,"wig+100":0.4628272572,"nqc+100":0.0117919819,"smv+100":0.0079623127,"clarity+100+100":2.0263079136,"wig+1000":-0.0207098738,"nqc+1000":0.009791509,"smv+1000":0.0068884943,"clarity+1000+100":1.5807853927}
+{"qid":"189","max-idf":6.1456152269,"avg-idf":2.9591254319,"scq":125.5752538528,"max-scq":19.6557559118,"avg-scq":15.6969067316,"var":8.9564093696,"max-var":1.8413658694,"avg-var":0.7463674475,"wig+5":2.0580870185,"nqc+5":0.036190615,"smv+5":0.0300046697,"clarity+5+100":2.886611172,"wig+10":1.6384340638,"nqc+10":0.0333765999,"smv+10":0.0244942989,"clarity+10+100":2.8755759203,"wig+20":1.2929182499,"nqc+20":0.0299604243,"smv+20":0.0192103851,"clarity+20+100":2.8637855357,"wig+50":0.8359227457,"nqc+50":0.0270863229,"smv+50":0.0189312172,"clarity+50+100":2.8554694004,"wig+100":0.5522927123,"nqc+100":0.0240684593,"smv+100":0.0157830648,"clarity+100+100":2.8488250414,"wig+1000":-0.0280700444,"nqc+1000":0.0155605614,"smv+1000":0.0095311458,"clarity+1000+100":2.7945267635}
+{"qid":"190","max-idf":6.1456152269,"avg-idf":2.8368437031,"scq":152.1612326272,"max-scq":19.6557559118,"avg-scq":15.2161232627,"var":10.9053603155,"max-var":2.3080785064,"avg-var":0.6815850197,"wig+5":1.9559354552,"nqc+5":0.0269319327,"smv+5":0.0245848876,"clarity+5+100":2.5283501985,"wig+10":1.377419589,"nqc+10":0.0314151875,"smv+10":0.0287101594,"clarity+10+100":2.5197258356,"wig+20":1.0123231698,"nqc+20":0.0272548126,"smv+20":0.0204890126,"clarity+20+100":2.5101870175,"wig+50":0.684742944,"nqc+50":0.0208075565,"smv+50":0.0118540203,"clarity+50+100":2.4880643976,"wig+100":0.4922146383,"nqc+100":0.0169609661,"smv+100":0.0091301121,"clarity+100+100":2.4684254387,"wig+1000":-0.0468401513,"nqc+1000":0.0113734208,"smv+1000":0.0076498997,"clarity+1000+100":2.3714512351}
+{"qid":"196","max-idf":7.2442275156,"avg-idf":3.2446778434,"scq":199.6086297855,"max-scq":22.3500491198,"avg-scq":16.6340524821,"var":19.1489094416,"max-var":3.3404801664,"avg-var":1.0638283023,"wig+5":1.6808705016,"nqc+5":0.0180748039,"smv+5":0.0175698385,"clarity+5+100":2.3326096122,"wig+10":1.3883040839,"nqc+10":0.017580126,"smv+10":0.013628851,"clarity+10+100":2.2924695061,"wig+20":1.1401653468,"nqc+20":0.0161285562,"smv+20":0.0111561723,"clarity+20+100":2.252681096,"wig+50":0.7710325031,"nqc+50":0.0163801471,"smv+50":0.0119816344,"clarity+50+100":2.2170710217,"wig+100":0.5166080497,"nqc+100":0.0156604351,"smv+100":0.0114450541,"clarity+100+100":2.1948060676,"wig+1000":-0.0518806453,"nqc+1000":0.0124760105,"smv+1000":0.0082976435,"clarity+1000+100":2.1006189592}
+{"qid":"200","max-idf":4.9416424226,"avg-idf":2.5397663095,"scq":190.5034446304,"max-scq":21.760835661,"avg-scq":15.8752870525,"var":16.7104560533,"max-var":2.6882825433,"avg-var":0.9283586696,"wig+5":2.284998377,"nqc+5":0.0192260825,"smv+5":0.0171267304,"clarity+5+100":3.1246801003,"wig+10":1.9594061094,"nqc+10":0.0192074493,"smv+10":0.0147393256,"clarity+10+100":3.0855858443,"wig+20":1.613241163,"nqc+20":0.0202159163,"smv+20":0.0144242129,"clarity+20+100":3.06535974,"wig+50":1.0267177593,"nqc+50":0.0238319027,"smv+50":0.0192326186,"clarity+50+100":3.0581019318,"wig+100":0.6802524291,"nqc+100":0.0221242553,"smv+100":0.0160869938,"clarity+100+100":3.0537591428,"wig+1000":-0.0464969695,"nqc+1000":0.0143220264,"smv+1000":0.008837633,"clarity+1000+100":3.0382495848}
+{"qid":"201","max-idf":3.6888794541,"avg-idf":2.4092876192,"scq":65.8765207447,"max-scq":21.760835661,"avg-scq":16.4691301862,"var":5.462275403,"max-var":2.2876730108,"avg-var":1.0924550806,"wig+5":1.4300267793,"nqc+5":0.0117678974,"smv+5":0.0090342102,"clarity+5+100":2.6940526425,"wig+10":1.3286459793,"nqc+10":0.0122281971,"smv+10":0.0088138134,"clarity+10+100":2.5606463233,"wig+20":1.1887337293,"nqc+20":0.0146104498,"smv+20":0.0118408899,"clarity+20+100":2.4230528033,"wig+50":0.8724539593,"nqc+50":0.0244387418,"smv+50":0.0206182933,"clarity+50+100":2.195067544,"wig+100":0.6155436693,"nqc+100":0.0272911539,"smv+100":0.0224994437,"clarity+100+100":2.0169041993,"wig+1000":0.1476441811,"nqc+1000":0.024176109,"smv+1000":0.0164266316,"clarity+1000+100":1.4368969734}
+{"qid":"202","max-idf":3.6888794541,"avg-idf":2.3176839709,"scq":64.4857772581,"max-scq":21.760835661,"avg-scq":16.1214443145,"var":5.3543915694,"max-var":2.2876730108,"avg-var":1.0708783139,"wig+5":1.3423261767,"nqc+5":0.0048693821,"smv+5":0.0045559168,"clarity+5+100":2.5738739125,"wig+10":1.2606676267,"nqc+10":0.0080655678,"smv+10":0.0067552674,"clarity+10+100":2.4843176334,"wig+20":1.1574246017,"nqc+20":0.0107728818,"smv+20":0.0089168946,"clarity+20+100":2.3393615418,"wig+50":0.8655078967,"nqc+50":0.0228922743,"smv+50":0.0195637954,"clarity+50+100":2.1090473588,"wig+100":0.6170357967,"nqc+100":0.02628808,"smv+100":0.0224812681,"clarity+100+100":1.9121560823,"wig+1000":0.1051722032,"nqc+1000":0.0237367399,"smv+1000":0.016036768,"clarity+1000+100":1.324171386}
+{"qid":"203","max-idf":4.8463322428,"avg-idf":2.8596076232,"scq":190.4735139951,"max-scq":21.760835661,"avg-scq":15.8727928329,"var":11.8491429707,"max-var":2.2876730108,"avg-var":0.6236391037,"wig+5":1.1148645236,"nqc+5":0.0063210091,"smv+5":0.0048966769,"clarity+5+100":2.2588881879,"wig+10":0.9988381062,"nqc+10":0.0067765697,"smv+10":0.0049455295,"clarity+10+100":2.1830383008,"wig+20":0.8506582873,"nqc+20":0.0079725403,"smv+20":0.0063233264,"clarity+20+100":2.1106482482,"wig+50":0.6487038622,"nqc+50":0.0087083036,"smv+50":0.0067216664,"clarity+50+100":1.9240315549,"wig+100":0.4926430303,"nqc+100":0.0090074818,"smv+100":0.0068610357,"clarity+100+100":1.7858114464,"wig+1000":-0.0694094241,"nqc+1000":0.0105645368,"smv+1000":0.0078445797,"clarity+1000+100":1.3415758397}
+{"qid":"204","max-idf":7.2442275156,"avg-idf":3.186361846,"scq":88.3370923804,"max-scq":21.760835661,"avg-scq":14.7228487301,"var":7.3950310835,"max-var":2.3795079708,"avg-var":0.7395031084,"wig+5":1.8748083276,"nqc+5":0.0067297749,"smv+5":0.0061835623,"clarity+5+100":2.3249075056,"wig+10":1.7688709581,"nqc+10":0.0078247814,"smv+10":0.0066639624,"clarity+10+100":2.3989893686,"wig+20":1.598545301,"nqc+20":0.0128696684,"smv+20":0.0101222397,"clarity+20+100":2.3329356746,"wig+50":1.0345433516,"nqc+50":0.03020716,"smv+50":0.0274795428,"clarity+50+100":2.2741028872,"wig+100":0.6430844395,"nqc+100":0.0313641462,"smv+100":0.0257076658,"clarity+100+100":2.2159505429,"wig+1000":-0.0377413663,"nqc+1000":0.0192944121,"smv+1000":0.0107915626,"clarity+1000+100":1.8674661426}
+{"qid":"205","max-idf":7.2442275156,"avg-idf":3.1784752419,"scq":121.8242057751,"max-scq":21.760835661,"avg-scq":15.2280257219,"var":11.4337339926,"max-var":2.5184981415,"avg-var":0.8795179994,"wig+5":1.2456774009,"nqc+5":0.01031242,"smv+5":0.0091004864,"clarity+5+100":1.9041767082,"wig+10":1.1102954437,"nqc+10":0.0100158822,"smv+10":0.0082668508,"clarity+10+100":1.8222966496,"wig+20":0.9757111206,"nqc+20":0.0099426285,"smv+20":0.0069757196,"clarity+20+100":1.8090225496,"wig+50":0.7489716425,"nqc+50":0.0116577157,"smv+50":0.009142477,"clarity+50+100":1.7117105328,"wig+100":0.5527331554,"nqc+100":0.013229847,"smv+100":0.0101798995,"clarity+100+100":1.6140865632,"wig+1000":-0.0819898888,"nqc+1000":0.0135933192,"smv+1000":0.0090941579,"clarity+1000+100":1.2205056928}
+{"qid":"206","max-idf":4.9416424226,"avg-idf":3.0937380522,"scq":387.1339041482,"max-scq":21.760835661,"avg-scq":16.831908876,"var":31.5990113288,"max-var":2.6882825433,"avg-var":0.8540273332,"wig+5":1.9936025604,"nqc+5":0.0192183662,"smv+5":0.0151801618,"clarity+5+100":2.7978864021,"wig+10":1.6180763995,"nqc+10":0.017197881,"smv+10":0.0107421671,"clarity+10+100":2.7974329054,"wig+20":1.2305524027,"nqc+20":0.0163433711,"smv+20":0.0110244867,"clarity+20+100":2.7972935357,"wig+50":0.8427980642,"nqc+50":0.0137320487,"smv+50":0.008917374,"clarity+50+100":2.7971856362,"wig+100":0.5772914729,"nqc+100":0.0122709297,"smv+100":0.0079591747,"clarity+100+100":2.797141829,"wig+1000":-0.1261408967,"nqc+1000":0.0091995182,"smv+1000":0.006308503,"clarity+1000+100":2.7970765402}
+{"qid":"208","max-idf":4.8463322428,"avg-idf":2.5891896042,"scq":160.8673236983,"max-scq":19.3584446073,"avg-scq":16.0867323698,"var":13.5380650593,"max-var":2.3075158493,"avg-var":0.9670046471,"wig+5":1.6189280036,"nqc+5":0.0033608948,"smv+5":0.0030488225,"clarity+5+100":2.3868910552,"wig+10":1.4002992257,"nqc+10":0.0121292643,"smv+10":0.0110616714,"clarity+10+100":2.2837986827,"wig+20":1.1760545432,"nqc+20":0.0140155118,"smv+20":0.0124500494,"clarity+20+100":2.216824244,"wig+50":0.8997966734,"nqc+50":0.0145278377,"smv+50":0.0108468044,"clarity+50+100":2.124755666,"wig+100":0.6620986561,"nqc+100":0.0158392497,"smv+100":0.0120667375,"clarity+100+100":2.0683661487,"wig+1000":-0.0543632718,"nqc+1000":0.015378606,"smv+1000":0.0104785151,"clarity+1000+100":1.7975070834}
+{"qid":"209","max-idf":4.8463322428,"avg-idf":2.5177669129,"scq":203.8069354467,"max-scq":19.3584446073,"avg-scq":15.6774565728,"var":16.4972683598,"max-var":2.3075158493,"avg-var":0.9165149089,"wig+5":1.4443142753,"nqc+5":0.0032028978,"smv+5":0.0030308413,"clarity+5+100":2.1392086849,"wig+10":1.3365754386,"nqc+10":0.0057923689,"smv+10":0.004774418,"clarity+10+100":2.0602306702,"wig+20":1.1219702393,"nqc+20":0.0106382216,"smv+20":0.0092477888,"clarity+20+100":2.0198308937,"wig+50":0.7959982921,"nqc+50":0.0135998923,"smv+50":0.0112247162,"clarity+50+100":1.9732199439,"wig+100":0.5708053527,"nqc+100":0.0137538223,"smv+100":0.0105354644,"clarity+100+100":1.946517932,"wig+1000":-0.046434249,"nqc+1000":0.0115078343,"smv+1000":0.0079071516,"clarity+1000+100":1.7159668314}
+{"qid":"210","max-idf":7.2442275156,"avg-idf":3.6666029833,"scq":87.7104167163,"max-scq":19.1989411974,"avg-scq":14.618402786,"var":8.0841774505,"max-var":2.0446605583,"avg-var":0.808417745,"wig+5":1.9307064308,"nqc+5":0.0167678244,"smv+5":0.0131742558,"clarity+5+100":2.497169769,"wig+10":1.4839765749,"nqc+10":0.0267507225,"smv+10":0.0236824407,"clarity+10+100":2.4396811878,"wig+20":1.1252299206,"nqc+20":0.0269897096,"smv+20":0.0214788901,"clarity+20+100":2.3874519716,"wig+50":0.7505968801,"nqc+50":0.02375551,"smv+50":0.0162024391,"clarity+50+100":2.310942968,"wig+100":0.5100483039,"nqc+100":0.0212869814,"smv+100":0.013737229,"clarity+100+100":2.2459957154,"wig+1000":-0.042805651,"nqc+1000":0.0156286527,"smv+1000":0.0097219644,"clarity+1000+100":1.8992463608}
+{"qid":"211","max-idf":7.2442275156,"avg-idf":3.3268370957,"scq":124.4474181757,"max-scq":18.3824914375,"avg-scq":13.8274909084,"var":9.6030260342,"max-var":1.7341323216,"avg-var":0.7386943103,"wig+5":1.1774746346,"nqc+5":0.0206072196,"smv+5":0.0180417347,"clarity+5+100":2.152007249,"wig+10":0.9496474346,"nqc+10":0.0179414729,"smv+10":0.0134734811,"clarity+10+100":2.1008062133,"wig+20":0.7666800846,"nqc+20":0.0152598136,"smv+20":0.0093364055,"clarity+20+100":2.0378127375,"wig+50":0.5713897079,"nqc+50":0.0121916328,"smv+50":0.0073006159,"clarity+50+100":1.9499521419,"wig+100":0.4312535846,"nqc+100":0.0108313083,"smv+100":0.0067401083,"clarity+100+100":1.8650885577,"wig+1000":-0.0287483638,"nqc+1000":0.0114044351,"smv+1000":0.0083667751,"clarity+1000+100":1.4642594288}
+{"qid":"212","max-idf":7.2442275156,"avg-idf":4.1034367159,"scq":180.1075566624,"max-scq":21.3429468307,"avg-scq":16.373414242,"var":13.5942890766,"max-var":2.7570873327,"avg-var":0.9710206483,"wig+5":1.4832188379,"nqc+5":0.0250788892,"smv+5":0.0198417613,"clarity+5+100":3.2762291207,"wig+10":1.2316082541,"nqc+10":0.0202082183,"smv+10":0.011747871,"clarity+10+100":3.2496231948,"wig+20":0.9710707334,"nqc+20":0.0174063287,"smv+20":0.0101939142,"clarity+20+100":3.2320020831,"wig+50":0.6428873998,"nqc+50":0.0151410315,"smv+50":0.0098315663,"clarity+50+100":3.2112582612,"wig+100":0.43737042,"nqc+100":0.0132655116,"smv+100":0.0087115508,"clarity+100+100":3.1930072799,"wig+1000":-0.1265723478,"nqc+1000":0.0108551882,"smv+1000":0.0072258023,"clarity+1000+100":3.1268883516}
+{"qid":"213","max-idf":7.2442275156,"avg-idf":3.2231429249,"scq":100.9554168913,"max-scq":18.3824914375,"avg-scq":12.6194271114,"var":7.3938125034,"max-var":1.7341323216,"avg-var":0.568754808,"wig+5":1.2181896946,"nqc+5":0.0202128478,"smv+5":0.0187365237,"clarity+5+100":1.9469234817,"wig+10":0.92871775,"nqc+10":0.0202311399,"smv+10":0.0157893424,"clarity+10+100":1.9226847346,"wig+20":0.7311448852,"nqc+20":0.0173453587,"smv+20":0.0119105402,"clarity+20+100":1.8824331754,"wig+50":0.5207715421,"nqc+50":0.014014333,"smv+50":0.0083635627,"clarity+50+100":1.7767302419,"wig+100":0.3953028648,"nqc+100":0.0117239023,"smv+100":0.0071089804,"clarity+100+100":1.7017573014,"wig+1000":-0.0624897241,"nqc+1000":0.0104563255,"smv+1000":0.0073406336,"clarity+1000+100":1.2431689921}
+{"qid":"214","max-idf":5.6347896032,"avg-idf":3.0803853849,"scq":245.4494770798,"max-scq":21.0722973567,"avg-scq":16.363298472,"var":21.6284180862,"max-var":3.5883717515,"avg-var":0.8010525217,"wig+5":1.6978748963,"nqc+5":0.0032316665,"smv+5":0.0029065121,"clarity+5+100":2.1665278649,"wig+10":1.5152058175,"nqc+10":0.0063758145,"smv+10":0.005458235,"clarity+10+100":2.0746653385,"wig+20":1.19688205,"nqc+20":0.0106395841,"smv+20":0.0095411034,"clarity+20+100":2.0400983335,"wig+50":0.8530406619,"nqc+50":0.0108792606,"smv+50":0.0084184722,"clarity+50+100":2.0189290378,"wig+100":0.603537335,"nqc+100":0.0107886514,"smv+100":0.007830749,"clarity+100+100":2.0044009646,"wig+1000":-0.1125958322,"nqc+1000":0.0095681041,"smv+1000":0.0067117577,"clarity+1000+100":1.9383717896}
+{"qid":"215","max-idf":7.2442275156,"avg-idf":3.1660046904,"scq":178.4056838004,"max-scq":18.636093769,"avg-scq":13.7235141385,"var":11.1471538407,"max-var":1.8338293968,"avg-var":0.6192863245,"wig+5":1.4454390275,"nqc+5":0.0063819427,"smv+5":0.0056302553,"clarity+5+100":2.0009562512,"wig+10":1.1403776885,"nqc+10":0.0125347887,"smv+10":0.0115868787,"clarity+10+100":1.9679198944,"wig+20":0.9326346299,"nqc+20":0.011915566,"smv+20":0.0097110585,"clarity+20+100":1.9256530516,"wig+50":0.6336111775,"nqc+50":0.0121713255,"smv+50":0.0090578651,"clarity+50+100":1.8770925722,"wig+100":0.4479540952,"nqc+100":0.0111852878,"smv+100":0.0079437289,"clarity+100+100":1.8263093917,"wig+1000":-0.0796372196,"nqc+1000":0.0090757303,"smv+1000":0.0062029258,"clarity+1000+100":1.5712127613}
+{"qid":"216","max-idf":4.9416424226,"avg-idf":2.482329466,"scq":153.6260248689,"max-scq":21.0722973567,"avg-scq":15.3626024869,"var":13.273539307,"max-var":3.5883717515,"avg-var":0.7807964298,"wig+5":2.110256368,"nqc+5":0.0109405714,"smv+5":0.0096417365,"clarity+5+100":2.691232891,"wig+10":1.693053408,"nqc+10":0.0216225687,"smv+10":0.0181896152,"clarity+10+100":2.6381673433,"wig+20":1.1699641895,"nqc+20":0.0273983162,"smv+20":0.0240850582,"clarity+20+100":2.6304613066,"wig+50":0.7283963577,"nqc+50":0.0234247272,"smv+50":0.0166025141,"clarity+50+100":2.6144318013,"wig+100":0.4916271329,"nqc+100":0.0195177582,"smv+100":0.0117664184,"clarity+100+100":2.6005621494,"wig+1000":-0.0603922305,"nqc+1000":0.0117245205,"smv+1000":0.0074464221,"clarity+1000+100":2.4933846461}
+{"qid":"217","max-idf":7.2442275156,"avg-idf":3.7122692765,"scq":166.1663970772,"max-scq":21.7434202162,"avg-scq":16.6166397077,"var":16.58206845,"max-var":2.7505311002,"avg-var":1.1844334607,"wig+5":2.5438641788,"nqc+5":0.0399584432,"smv+5":0.035315227,"clarity+5+100":2.8045554372,"wig+10":1.8706409742,"nqc+10":0.0397192075,"smv+10":0.0329227412,"clarity+10+100":2.8036923919,"wig+20":1.4341715688,"nqc+20":0.0334075148,"smv+20":0.022694805,"clarity+20+100":2.8024668998,"wig+50":0.9695982999,"nqc+50":0.0267629959,"smv+50":0.0151960733,"clarity+50+100":2.8011537864,"wig+100":0.6013677442,"nqc+100":0.0243642359,"smv+100":0.0161089307,"clarity+100+100":2.8006629271,"wig+1000":-0.0344342875,"nqc+1000":0.0155687298,"smv+1000":0.0090849307,"clarity+1000+100":2.7984934882}
+{"qid":"218","max-idf":4.8463322428,"avg-idf":2.699705955,"scq":126.731358285,"max-scq":21.7434202162,"avg-scq":15.8414197856,"var":9.6417282121,"max-var":2.7505311002,"avg-var":0.9641728212,"wig+5":1.4865289041,"nqc+5":0.0086593267,"smv+5":0.008159548,"clarity+5+100":2.4905307031,"wig+10":1.3371306055,"nqc+10":0.0104302702,"smv+10":0.007967277,"clarity+10+100":2.2855964602,"wig+20":1.1246433031,"nqc+20":0.0137725225,"smv+20":0.011442017,"clarity+20+100":2.1481959901,"wig+50":0.8098173129,"nqc+50":0.016675285,"smv+50":0.0134708779,"clarity+50+100":2.0117728514,"wig+100":0.5760982596,"nqc+100":0.0173292606,"smv+100":0.0131646178,"clarity+100+100":1.9360493738,"wig+1000":-0.0102681141,"nqc+1000":0.0153558504,"smv+1000":0.010579185,"clarity+1000+100":1.5536424518}
+{"qid":"219","max-idf":3.9483906496,"avg-idf":2.6420559258,"scq":145.5629955089,"max-scq":19.15759974,"avg-scq":16.1736661677,"var":10.8369132381,"max-var":1.8923030736,"avg-var":0.7224608825,"wig+5":1.2850882523,"nqc+5":0.0114783872,"smv+5":0.008669998,"clarity+5+100":2.125852186,"wig+10":1.0707940857,"nqc+10":0.0134896135,"smv+10":0.0114146895,"clarity+10+100":2.0741090741,"wig+20":0.8978008357,"nqc+20":0.012867389,"smv+20":0.0097586305,"clarity+20+100":2.0059438226,"wig+50":0.693340179,"nqc+50":0.0117670916,"smv+50":0.0080821083,"clarity+50+100":1.8626102568,"wig+100":0.519918519,"nqc+100":0.0121093656,"smv+100":0.0087164827,"clarity+100+100":1.7302610586,"wig+1000":0.0091048614,"nqc+1000":0.0134309958,"smv+1000":0.0098607558,"clarity+1000+100":1.3684560406}
+{"qid":"223","max-idf":3.4155861191,"avg-idf":1.989836648,"scq":144.9000953531,"max-scq":19.6859748596,"avg-scq":14.4900095353,"var":11.8292866174,"max-var":2.1362379154,"avg-var":0.7886191078,"wig+5":1.5473498596,"nqc+5":0.0201229037,"smv+5":0.0193789886,"clarity+5+100":1.8748161833,"wig+10":1.2355927004,"nqc+10":0.0223721828,"smv+10":0.0197750965,"clarity+10+100":1.8244085672,"wig+20":0.9973693276,"nqc+20":0.0205512854,"smv+20":0.0151490189,"clarity+20+100":1.7879900443,"wig+50":0.7149496206,"nqc+50":0.0183997204,"smv+50":0.0123329229,"clarity+50+100":1.7152142182,"wig+100":0.5133995424,"nqc+100":0.0171142317,"smv+100":0.0118346524,"clarity+100+100":1.6664088658,"wig+1000":-0.0195916969,"nqc+1000":0.0136000078,"smv+1000":0.009403859,"clarity+1000+100":1.432335215}
+{"qid":"224","max-idf":4.8463322428,"avg-idf":2.4832114091,"scq":126.8233341556,"max-scq":18.13160441,"avg-scq":14.0914815728,"var":7.6793035314,"max-var":1.5917249078,"avg-var":0.5119535688,"wig+5":0.8980002377,"nqc+5":0.0056604551,"smv+5":0.0044833307,"clarity+5+100":1.6850601913,"wig+10":0.8447375377,"nqc+10":0.004891572,"smv+10":0.0030242415,"clarity+10+100":1.498692432,"wig+20":0.7791550377,"nqc+20":0.0051035846,"smv+20":0.0034256268,"clarity+20+100":1.3066423539,"wig+50":0.5912968111,"nqc+50":0.0090660596,"smv+50":0.0077752103,"clarity+50+100":1.2175049494,"wig+100":0.4189758344,"nqc+100":0.0110667662,"smv+100":0.0092596821,"clarity+100+100":1.1620939988,"wig+1000":-0.0388299426,"nqc+1000":0.0100449384,"smv+1000":0.0069080213,"clarity+1000+100":0.9495946968}
+{"qid":"225","max-idf":4.8463322428,"avg-idf":1.9615022404,"scq":133.1147889601,"max-scq":16.493922829,"avg-scq":13.311478896,"var":8.1814511659,"max-var":1.4877529935,"avg-var":0.4812618333,"wig+5":0.9076339773,"nqc+5":0.0055350203,"smv+5":0.004989331,"clarity+5+100":1.5793539597,"wig+10":0.813584045,"nqc+10":0.0064528276,"smv+10":0.0051627231,"clarity+10+100":1.4603133731,"wig+20":0.6896940543,"nqc+20":0.008323956,"smv+20":0.0066599683,"clarity+20+100":1.3072811974,"wig+50":0.5066638993,"nqc+50":0.00989503,"smv+50":0.0079096922,"clarity+50+100":1.1711058523,"wig+100":0.3762565714,"nqc+100":0.0099644227,"smv+100":0.0076697107,"clarity+100+100":1.1186146244,"wig+1000":-0.0076173886,"nqc+1000":0.0091449046,"smv+1000":0.0065826364,"clarity+1000+100":0.9421729966}
+{"qid":"226","max-idf":4.2997885364,"avg-idf":2.9790752636,"scq":97.8452791786,"max-scq":19.2497761642,"avg-scq":16.3075465298,"var":7.8021749359,"max-var":2.2480687155,"avg-var":0.8669083262,"wig+5":2.3193402822,"nqc+5":0.0238917511,"smv+5":0.0220463266,"clarity+5+100":2.5195704819,"wig+10":1.9429306227,"nqc+10":0.0279113184,"smv+10":0.0224216443,"clarity+10+100":2.4402738485,"wig+20":1.5563535395,"nqc+20":0.0297118058,"smv+20":0.0234000621,"clarity+20+100":2.3754681325,"wig+50":0.9863617753,"nqc+50":0.0329126862,"smv+50":0.0256479759,"clarity+50+100":2.3373323899,"wig+100":0.6541118108,"nqc+100":0.030048831,"smv+100":0.0213588036,"clarity+100+100":2.3048784983,"wig+1000":0.0912678234,"nqc+1000":0.0217435111,"smv+1000":0.0137495713,"clarity+1000+100":2.1940879327}
+{"qid":"227","max-idf":4.0253516907,"avg-idf":2.7606884988,"scq":143.6047131799,"max-scq":19.342723965,"avg-scq":15.9560792422,"var":11.6351875243,"max-var":2.3223898931,"avg-var":0.8950144249,"wig+5":2.1049370933,"nqc+5":0.0454587131,"smv+5":0.0350827593,"clarity+5+100":3.0594389228,"wig+10":1.6818830933,"nqc+10":0.0380932242,"smv+10":0.0234080481,"clarity+10+100":3.0549701534,"wig+20":1.3285990266,"nqc+20":0.0320440619,"smv+20":0.0184087586,"clarity+20+100":3.0513231909,"wig+50":0.8988741266,"nqc+50":0.026754653,"smv+50":0.0165062475,"clarity+50+100":3.0484766687,"wig+100":0.6353942899,"nqc+100":0.0228640414,"smv+100":0.0144114046,"clarity+100+100":3.0459716116,"wig+1000":-0.0005043667,"nqc+1000":0.016256276,"smv+1000":0.0106078804,"clarity+1000+100":3.0345631497}
+{"qid":"230","max-idf":4.8463322428,"avg-idf":3.4656717133,"scq":101.431466117,"max-scq":23.2742893737,"avg-scq":16.9052443528,"var":5.5697050679,"max-var":2.4497761957,"avg-var":0.6962131335,"wig+5":1.3399215603,"nqc+5":0.0089943896,"smv+5":0.0077077419,"clarity+5+100":1.9628932276,"wig+10":1.2279760416,"nqc+10":0.0089285175,"smv+10":0.006403343,"clarity+10+100":1.6685473904,"wig+20":1.0929761703,"nqc+20":0.0099463938,"smv+20":0.0074692253,"clarity+20+100":1.5436662828,"wig+50":0.8209456292,"nqc+50":0.0150925459,"smv+50":0.0119964247,"clarity+50+100":1.4266017019,"wig+100":0.5432525864,"nqc+100":0.0185276952,"smv+100":0.0160863467,"clarity+100+100":1.3669328225,"wig+1000":0.0770611952,"nqc+1000":0.0176726242,"smv+1000":0.0122679279,"clarity+1000+100":1.1505301562}
+{"qid":"231","max-idf":7.2442275156,"avg-idf":4.3823043037,"scq":116.7376025152,"max-scq":23.2742893737,"avg-scq":16.6768003593,"var":6.8903897797,"max-var":2.4497761957,"avg-var":0.689038978,"wig+5":2.4310825297,"nqc+5":0.0120141316,"smv+5":0.0098106371,"clarity+5+100":1.9566331065,"wig+10":2.0385428773,"nqc+10":0.0183736888,"smv+10":0.016310281,"clarity+10+100":1.9279877059,"wig+20":1.5430933638,"nqc+20":0.0236245195,"smv+20":0.0201664304,"clarity+20+100":1.9079056518,"wig+50":1.0164836427,"nqc+50":0.0227370261,"smv+50":0.0168704904,"clarity+50+100":1.8901692965,"wig+100":0.7086162643,"nqc+100":0.0201674405,"smv+100":0.0134959357,"clarity+100+100":1.8655357256,"wig+1000":0.4197510613,"nqc+1000":0.0195941415,"smv+1000":0.0126982987,"clarity+1000+100":1.8527701343}
+{"qid":"232","max-idf":3.3124018829,"avg-idf":1.8906797978,"scq":195.7770353544,"max-scq":17.387886495,"avg-scq":13.9840739539,"var":14.8216596135,"max-var":1.7311794652,"avg-var":0.7057933149,"wig+5":1.0522733699,"nqc+5":0.00847131,"smv+5":0.0078073584,"clarity+5+100":1.6132568782,"wig+10":0.9419508691,"nqc+10":0.0077008794,"smv+10":0.0061646051,"clarity+10+100":1.5062046498,"wig+20":0.835826882,"nqc+20":0.0071786992,"smv+20":0.0048789582,"clarity+20+100":1.427803043,"wig+50":0.6552445758,"nqc+50":0.0081633514,"smv+50":0.0063306054,"clarity+50+100":1.3231366201,"wig+100":0.5126255183,"nqc+100":0.0085440592,"smv+100":0.0066126615,"clarity+100+100":1.2627081118,"wig+1000":0.0043812604,"nqc+1000":0.0097866005,"smv+1000":0.0073490796,"clarity+1000+100":1.0651439085}
+{"qid":"233","max-idf":7.2442275156,"avg-idf":3.7476800582,"scq":72.7290623321,"max-scq":16.0662244225,"avg-scq":12.1215103887,"var":4.7174938858,"max-var":1.2914262585,"avg-var":0.5241659873,"wig+5":1.388323603,"nqc+5":0.0206335483,"smv+5":0.0188210255,"clarity+5+100":1.7852327397,"wig+10":1.052601397,"nqc+10":0.0227622627,"smv+10":0.0191834266,"clarity+10+100":1.746716055,"wig+20":0.8102830931,"nqc+20":0.0204134279,"smv+20":0.0148106854,"clarity+20+100":1.7065027308,"wig+50":0.567993244,"nqc+50":0.0166137991,"smv+50":0.0101101002,"clarity+50+100":1.6150966244,"wig+100":0.4006325106,"nqc+100":0.0146433626,"smv+100":0.009254652,"clarity+100+100":1.4102686959,"wig+1000":0.0185836937,"nqc+1000":0.0125730286,"smv+1000":0.0086820203,"clarity+1000+100":1.1186769089}
+{"qid":"234","max-idf":5.2983173665,"avg-idf":3.0464488933,"scq":208.2343386266,"max-scq":19.9442204607,"avg-scq":17.3528615522,"var":20.8697933015,"max-var":2.6042265447,"avg-var":1.1594329612,"wig+5":1.7140616638,"nqc+5":0.04213309,"smv+5":0.0329138575,"clarity+5+100":2.3742671517,"wig+10":1.3554781584,"nqc+10":0.0333593659,"smv+10":0.0196801339,"clarity+10+100":2.3732922427,"wig+20":1.0780699999,"nqc+20":0.0263178685,"smv+20":0.0129266858,"clarity+20+100":2.3725925538,"wig+50":0.7693402487,"nqc+50":0.0198374612,"smv+50":0.0103171729,"clarity+50+100":2.3716371847,"wig+100":0.567448723,"nqc+100":0.0164178898,"smv+100":0.0091902063,"clarity+100+100":2.370730596,"wig+1000":-0.0087779744,"nqc+1000":0.0138850813,"smv+1000":0.0095943918,"clarity+1000+100":2.368405165}
+{"qid":"241","max-idf":7.2442275156,"avg-idf":3.0005843488,"scq":277.1475460013,"max-scq":21.4243550388,"avg-scq":15.397085889,"var":19.4474636527,"max-var":2.0087958929,"avg-var":0.6706021949,"wig+5":2.1360968731,"nqc+5":0.0175501648,"smv+5":0.017089027,"clarity+5+100":2.6620771921,"wig+10":1.7897564902,"nqc+10":0.0160986889,"smv+10":0.0125685389,"clarity+10+100":2.6531954174,"wig+20":1.4457620048,"nqc+20":0.0152778764,"smv+20":0.0103434764,"clarity+20+100":2.6497667372,"wig+50":1.0988872094,"nqc+50":0.0128839915,"smv+50":0.0083559642,"clarity+50+100":2.6463761282,"wig+100":0.8283973201,"nqc+100":0.0123002904,"smv+100":0.0081659619,"clarity+100+100":2.6446147626,"wig+1000":-0.0884632057,"nqc+1000":0.0113604445,"smv+1000":0.0078010733,"clarity+1000+100":2.6429331824}
+{"qid":"245","max-idf":3.3940799139,"avg-idf":2.0438555242,"scq":244.6619076139,"max-scq":16.9684079665,"avg-scq":14.3918769185,"var":17.7932238481,"max-var":1.6853923964,"avg-var":0.6354722803,"wig+5":1.2686763776,"nqc+5":0.0137698064,"smv+5":0.0123597401,"clarity+5+100":1.7057096118,"wig+10":1.0665234677,"nqc+10":0.0124904241,"smv+10":0.009267763,"clarity+10+100":1.6764130963,"wig+20":0.9013187866,"nqc+20":0.0109571963,"smv+20":0.0070668393,"clarity+20+100":1.646995473,"wig+50":0.7015172717,"nqc+50":0.0095015335,"smv+50":0.0062334712,"clarity+50+100":1.6109304374,"wig+100":0.5436307005,"nqc+100":0.0091552238,"smv+100":0.0063846059,"clarity+100+100":1.5753138993,"wig+1000":0.0055057524,"nqc+1000":0.0094599737,"smv+1000":0.0070300024,"clarity+1000+100":1.4666739935}
+{"qid":"246","max-idf":7.2442275156,"avg-idf":2.6279609986,"scq":199.4506477266,"max-scq":16.2480923662,"avg-scq":13.2967098484,"var":14.1808697072,"max-var":1.6853923964,"avg-var":0.6165595525,"wig+5":1.1109441919,"nqc+5":0.0039237642,"smv+5":0.0031329192,"clarity+5+100":1.5081332282,"wig+10":1.018260757,"nqc+10":0.0046731027,"smv+10":0.0036339669,"clarity+10+100":1.428537169,"wig+20":0.8734365995,"nqc+20":0.0068169059,"smv+20":0.0057583736,"clarity+20+100":1.3979688428,"wig+50":0.6925430022,"nqc+50":0.007439668,"smv+50":0.0057794689,"clarity+50+100":1.3188710977,"wig+100":0.5282075137,"nqc+100":0.0084329223,"smv+100":0.0066455282,"clarity+100+100":1.2852110471,"wig+1000":-0.0376520995,"nqc+1000":0.0102682108,"smv+1000":0.0077329359,"clarity+1000+100":1.1618000002}
+{"qid":"247","max-idf":5.1647859739,"avg-idf":2.3212630587,"scq":207.5330743997,"max-scq":21.1526695281,"avg-scq":14.8237910285,"var":18.4325052285,"max-var":3.9437623603,"avg-var":0.9701318541,"wig+5":1.6259515837,"nqc+5":0.0198566779,"smv+5":0.0157404374,"clarity+5+100":3.2430155269,"wig+10":1.3731133086,"nqc+10":0.0180048191,"smv+10":0.0107720182,"clarity+10+100":3.1838404485,"wig+20":1.0464860753,"nqc+20":0.0192508358,"smv+20":0.0142863717,"clarity+20+100":3.1605179945,"wig+50":0.6587724206,"nqc+50":0.0182591669,"smv+50":0.0136312232,"clarity+50+100":3.14418539,"wig+100":0.4467230083,"nqc+100":0.0157782516,"smv+100":0.0104083659,"clarity+100+100":3.1317395231,"wig+1000":-0.0334382853,"nqc+1000":0.0095114678,"smv+1000":0.0059801088,"clarity+1000+100":3.0613061446}
+{"qid":"250","max-idf":4.7593208658,"avg-idf":2.2227707775,"scq":101.1896055636,"max-scq":17.3505004801,"avg-scq":14.4556579377,"var":8.5391320055,"max-var":1.6853923964,"avg-var":0.8539132006,"wig+5":1.3793400264,"nqc+5":0.0168026314,"smv+5":0.0125966628,"clarity+5+100":1.8109473039,"wig+10":1.1599313097,"nqc+10":0.0182871693,"smv+10":0.0145834879,"clarity+10+100":1.6995181167,"wig+20":0.9850294404,"nqc+20":0.0171173566,"smv+20":0.0124472101,"clarity+20+100":1.577590801,"wig+50":0.7222051503,"nqc+50":0.0175708803,"smv+50":0.0130679724,"clarity+50+100":1.4604814759,"wig+100":0.5326749863,"nqc+100":0.0173474686,"smv+100":0.0125816038,"clarity+100+100":1.3619716285,"wig+1000":0.0037649669,"nqc+1000":0.0156688592,"smv+1000":0.0106775443,"clarity+1000+100":1.0964364648}
+{"qid":"251","max-idf":7.2442275156,"avg-idf":2.9187041163,"scq":146.2806504162,"max-scq":19.0703691355,"avg-scq":14.6280650416,"var":11.6292517704,"max-var":2.0431476918,"avg-var":0.8306608407,"wig+5":1.3160412436,"nqc+5":0.0154222157,"smv+5":0.0143874633,"clarity+5+100":1.6354881893,"wig+10":1.0324399928,"nqc+10":0.0170860547,"smv+10":0.0135938447,"clarity+10+100":1.6105606792,"wig+20":0.8121372,"nqc+20":0.0158026714,"smv+20":0.0116918843,"clarity+20+100":1.5778711533,"wig+50":0.5985077808,"nqc+50":0.0128552062,"smv+50":0.0081611091,"clarity+50+100":1.5203439123,"wig+100":0.4515388837,"nqc+100":0.011396729,"smv+100":0.0070501031,"clarity+100+100":1.4507363157,"wig+1000":-0.0340746526,"nqc+1000":0.0117702962,"smv+1000":0.0086106265,"clarity+1000+100":1.2302051201}
+{"qid":"252","max-idf":7.2442275156,"avg-idf":2.6320088856,"scq":148.9300452565,"max-scq":17.4218925035,"avg-scq":13.5390950233,"var":10.1342437973,"max-var":1.5531926491,"avg-var":0.6333902373,"wig+5":1.2245820245,"nqc+5":0.0100521896,"smv+5":0.0089913642,"clarity+5+100":1.5828440182,"wig+10":1.0421970886,"nqc+10":0.0113814683,"smv+10":0.0088040076,"clarity+10+100":1.5038390117,"wig+20":0.8076244585,"nqc+20":0.0135306809,"smv+20":0.0111499429,"clarity+20+100":1.4520823946,"wig+50":0.5528183368,"nqc+50":0.012896566,"smv+50":0.009552943,"clarity+50+100":1.3909368298,"wig+100":0.399237458,"nqc+100":0.0115435019,"smv+100":0.0078482943,"clarity+100+100":1.3381500626,"wig+1000":-0.0362781672,"nqc+1000":0.0091265804,"smv+1000":0.0063827481,"clarity+1000+100":1.0807596489}
+{"qid":"253","max-idf":5.0470029383,"avg-idf":2.7833273081,"scq":222.4040370139,"max-scq":23.2742893737,"avg-scq":15.8860026438,"var":19.3694935864,"max-var":2.6228744448,"avg-var":0.9684746793,"wig+5":1.3881560353,"nqc+5":0.0090870793,"smv+5":0.0078392207,"clarity+5+100":2.0514639049,"wig+10":1.1515926334,"nqc+10":0.0114208163,"smv+10":0.0103135344,"clarity+10+100":2.0290926486,"wig+20":0.8930666381,"nqc+20":0.0133937195,"smv+20":0.0103782461,"clarity+20+100":1.9743565849,"wig+50":0.5976089931,"nqc+50":0.0128927104,"smv+50":0.0097958725,"clarity+50+100":1.9067407477,"wig+100":0.4238090716,"nqc+100":0.0115156041,"smv+100":0.007747681,"clarity+100+100":1.855286871,"wig+1000":-0.0653293729,"nqc+1000":0.0089289131,"smv+1000":0.006131572,"clarity+1000+100":1.6053709608}
+{"qid":"254","max-idf":7.2442275156,"avg-idf":3.0788847758,"scq":177.1714113591,"max-scq":19.3168118807,"avg-scq":13.6285701045,"var":13.5162539251,"max-var":2.3006488246,"avg-var":0.6758126963,"wig+5":1.603351997,"nqc+5":0.010071983,"smv+5":0.008968779,"clarity+5+100":2.3477526071,"wig+10":1.3745671214,"nqc+10":0.0108374852,"smv+10":0.0092661442,"clarity+10+100":2.2707837334,"wig+20":1.0175254926,"nqc+20":0.0148058095,"smv+20":0.0124683493,"clarity+20+100":2.256404797,"wig+50":0.6715403368,"nqc+50":0.0136809808,"smv+50":0.0101576318,"clarity+50+100":2.2209401859,"wig+100":0.4737712037,"nqc+100":0.0119583808,"smv+100":0.0077285696,"clarity+100+100":2.1845104562,"wig+1000":-0.0598942394,"nqc+1000":0.008511184,"smv+1000":0.0056319893,"clarity+1000+100":1.9905232598}
+{"qid":"255","max-idf":7.2442275156,"avg-idf":3.0769278861,"scq":213.0138960253,"max-scq":19.3168118807,"avg-scq":13.3133685016,"var":15.6990434071,"max-var":2.3006488246,"avg-var":0.6279617363,"wig+5":1.5937192666,"nqc+5":0.0091159095,"smv+5":0.0069972501,"clarity+5+100":2.5315104585,"wig+10":1.3611950166,"nqc+10":0.0101619406,"smv+10":0.0087815942,"clarity+10+100":2.4821864048,"wig+20":0.9638068791,"nqc+20":0.0151052729,"smv+20":0.0131913722,"clarity+20+100":2.4665376778,"wig+50":0.6058108066,"nqc+50":0.0137285056,"smv+50":0.0101400028,"clarity+50+100":2.447515468,"wig+100":0.4106388366,"nqc+100":0.0117067793,"smv+100":0.0075383904,"clarity+100+100":2.4127804893,"wig+1000":-0.0699155247,"nqc+1000":0.0075243029,"smv+1000":0.0048979936,"clarity+1000+100":2.3131909252}
+{"qid":"257","max-idf":7.2442275156,"avg-idf":3.4858617157,"scq":243.9179701181,"max-scq":21.7034304963,"avg-scq":16.2611980079,"var":19.9727504356,"max-var":3.0524940381,"avg-var":0.6657583479,"wig+5":2.0014641029,"nqc+5":0.0049384245,"smv+5":0.0043209866,"clarity+5+100":2.658942229,"wig+10":1.6206119876,"nqc+10":0.0143353678,"smv+10":0.0129416843,"clarity+10+100":2.5937849597,"wig+20":1.1579934349,"nqc+20":0.0187398984,"smv+20":0.0163920694,"clarity+20+100":2.5883429698,"wig+50":0.7175635034,"nqc+50":0.0171785777,"smv+50":0.0123678036,"clarity+50+100":2.5798599827,"wig+100":0.4755180552,"nqc+100":0.0146993661,"smv+100":0.0096117553,"clarity+100+100":2.5714799371,"wig+1000":-0.1246236387,"nqc+1000":0.0107803948,"smv+1000":0.0071881782,"clarity+1000+100":2.5462684467}
+{"qid":"259","max-idf":5.1647859739,"avg-idf":2.3896967867,"scq":214.8259619909,"max-scq":19.6859748596,"avg-scq":15.3447115708,"var":17.8674053084,"max-var":2.1362379154,"avg-var":0.8933702654,"wig+5":2.1379987464,"nqc+5":0.0172372138,"smv+5":0.014893786,"clarity+5+100":2.4650877942,"wig+10":1.750386079,"nqc+10":0.0184734421,"smv+10":0.0155359009,"clarity+10+100":2.4514605045,"wig+20":1.3691758685,"nqc+20":0.0187910006,"smv+20":0.0142340531,"clarity+20+100":2.4452045765,"wig+50":0.9484256241,"nqc+50":0.0171651622,"smv+50":0.0119505109,"clarity+50+100":2.4406472719,"wig+100":0.6856768638,"nqc+100":0.0153008857,"smv+100":0.0103586486,"clarity+100+100":2.4362486938,"wig+1000":-0.0446410092,"nqc+1000":0.0122735353,"smv+1000":0.0084298977,"clarity+1000+100":2.4231196776}
+{"qid":"261","max-idf":4.4716387934,"avg-idf":1.9136653414,"scq":81.3896157681,"max-scq":20.2916857832,"avg-scq":13.5649359613,"var":7.0409176513,"max-var":2.3997942795,"avg-var":0.7040917651,"wig+5":1.7193371908,"nqc+5":0.0087229553,"smv+5":0.0069136542,"clarity+5+100":2.0791944992,"wig+10":1.447610762,"nqc+10":0.0213528326,"smv+10":0.0192214852,"clarity+10+100":1.9851587894,"wig+20":1.0907531134,"nqc+20":0.029921032,"smv+20":0.0260762208,"clarity+20+100":1.9193684024,"wig+50":0.7086404907,"nqc+50":0.0291845742,"smv+50":0.0223398563,"clarity+50+100":1.8345994452,"wig+100":0.4974078527,"nqc+100":0.0255661241,"smv+100":0.0167829587,"clarity+100+100":1.7441405899,"wig+1000":0.0078177753,"nqc+1000":0.0167966683,"smv+1000":0.0104559293,"clarity+1000+100":1.2981647362}
+{"qid":"264","max-idf":6.551080335,"avg-idf":2.9977770616,"scq":156.1593437038,"max-scq":19.3030994862,"avg-scq":15.6159343704,"var":10.5105428665,"max-var":1.7211656518,"avg-var":0.7507530619,"wig+5":1.7905518014,"nqc+5":0.0082049262,"smv+5":0.0074202689,"clarity+5+100":2.2394251074,"wig+10":1.6156949863,"nqc+10":0.0092986503,"smv+10":0.007354671,"clarity+10+100":1.9896226636,"wig+20":1.2661547439,"nqc+20":0.0169973777,"smv+20":0.0138910864,"clarity+20+100":1.9556178495,"wig+50":0.785780734,"nqc+50":0.0190419288,"smv+50":0.0161540283,"clarity+50+100":1.929194362,"wig+100":0.5358891385,"nqc+100":0.016789196,"smv+100":0.011621475,"clarity+100+100":1.9068558056,"wig+1000":-0.0726025796,"nqc+1000":0.0121050564,"smv+1000":0.0078768272,"clarity+1000+100":1.7661901467}
+{"qid":"265","max-idf":3.9483906496,"avg-idf":2.4071692271,"scq":120.6166043733,"max-scq":19.9380464066,"avg-scq":15.0770755467,"var":8.2382937049,"max-var":2.2921367276,"avg-var":0.7489357914,"wig+5":1.3256803259,"nqc+5":0.0030457963,"smv+5":0.002624532,"clarity+5+100":1.8962269836,"wig+10":1.2080735129,"nqc+10":0.007361533,"smv+10":0.0063524689,"clarity+10+100":1.8293617969,"wig+20":0.9713148232,"nqc+20":0.0143015883,"smv+20":0.0128166182,"clarity+20+100":1.7451431457,"wig+50":0.670572346,"nqc+50":0.0161578593,"smv+50":0.0133486392,"clarity+50+100":1.6202866078,"wig+100":0.4938553341,"nqc+100":0.0149578466,"smv+100":0.0105608767,"clarity+100+100":1.5019796228,"wig+1000":-0.0134530485,"nqc+1000":0.013346263,"smv+1000":0.009354149,"clarity+1000+100":1.1786017158}
+{"qid":"266","max-idf":4.8463322428,"avg-idf":2.4972007147,"scq":102.7215180284,"max-scq":21.3574859986,"avg-scq":14.6745025755,"var":7.903258702,"max-var":2.9771038829,"avg-var":0.8781398558,"wig+5":1.1128943052,"nqc+5":0.0055362497,"smv+5":0.0041567573,"clarity+5+100":1.9676748088,"wig+10":1.0180249957,"nqc+10":0.0068280788,"smv+10":0.0059983123,"clarity+10+100":1.6929642204,"wig+20":0.910476868,"nqc+20":0.0082726077,"smv+20":0.0063281104,"clarity+20+100":1.5192003908,"wig+50":0.6879527337,"nqc+50":0.0126255251,"smv+50":0.0104948154,"clarity+50+100":1.3461931036,"wig+100":0.4808301679,"nqc+100":0.0152846667,"smv+100":0.0126300599,"clarity+100+100":1.2431398323,"wig+1000":-0.0481291527,"nqc+1000":0.0134223742,"smv+1000":0.0090042791,"clarity+1000+100":1.0042683163}
+{"qid":"267","max-idf":5.2983173665,"avg-idf":2.3324868312,"scq":128.8625247606,"max-scq":18.4815225399,"avg-scq":14.3180583067,"var":11.1666728208,"max-var":3.0044536526,"avg-var":0.8589748324,"wig+5":1.5063842192,"nqc+5":0.0278820037,"smv+5":0.0224160529,"clarity+5+100":2.4025294376,"wig+10":1.1387331859,"nqc+10":0.0276472426,"smv+10":0.0226127593,"clarity+10+100":2.3618140126,"wig+20":0.8903003859,"nqc+20":0.023494783,"smv+20":0.0159451657,"clarity+20+100":2.3198694677,"wig+50":0.6247317325,"nqc+50":0.0189889533,"smv+50":0.0110140233,"clarity+50+100":2.2577891755,"wig+100":0.4602770359,"nqc+100":0.0160187427,"smv+100":0.0098396189,"clarity+100+100":2.1906439289,"wig+1000":-0.0204056498,"nqc+1000":0.0119188568,"smv+1000":0.008175476,"clarity+1000+100":1.8384632444}
+{"qid":"268","max-idf":4.4110141715,"avg-idf":3.2436697329,"scq":145.8822306998,"max-scq":23.4910299236,"avg-scq":18.2352788375,"var":15.4791784663,"max-var":3.7198909169,"avg-var":1.1907060359,"wig+5":2.4891503862,"nqc+5":0.0260175291,"smv+5":0.0236299675,"clarity+5+100":2.7246633698,"wig+10":1.9725738454,"nqc+10":0.031957613,"smv+10":0.0269831575,"clarity+10+100":2.7210925723,"wig+20":1.4087837671,"nqc+20":0.0363569976,"smv+20":0.0287145129,"clarity+20+100":2.7159585778,"wig+50":0.8501337542,"nqc+50":0.0324092424,"smv+50":0.0231393228,"clarity+50+100":2.7108830389,"wig+100":0.5606781861,"nqc+100":0.0270654473,"smv+100":0.0168855771,"clarity+100+100":2.7045587522,"wig+1000":0.0418841105,"nqc+1000":0.0182539699,"smv+1000":0.0109199948,"clarity+1000+100":2.6774371143}
+{"qid":"269","max-idf":4.8463322428,"avg-idf":3.3416967629,"scq":123.4509985196,"max-scq":23.4910299236,"avg-scq":17.6358569314,"var":11.8987240323,"max-var":3.3068232006,"avg-var":0.991560336,"wig+5":1.3714396318,"nqc+5":0.0265491245,"smv+5":0.0209004866,"clarity+5+100":3.2345676649,"wig+10":1.1794424105,"nqc+10":0.0212626037,"smv+10":0.0127391772,"clarity+10+100":2.9976910824,"wig+20":1.0207651009,"nqc+20":0.0171662938,"smv+20":0.0090472475,"clarity+20+100":2.8315064314,"wig+50":0.7517569832,"nqc+50":0.0162926244,"smv+50":0.0110673153,"clarity+50+100":2.592511367,"wig+100":0.539390818,"nqc+100":0.0159666547,"smv+100":0.0118648231,"clarity+100+100":2.4272847586,"wig+1000":0.0555610977,"nqc+1000":0.016023371,"smv+1000":0.0116241125,"clarity+1000+100":2.0598609962}
+{"qid":"272","max-idf":6.551080335,"avg-idf":3.0070400126,"scq":297.4870773499,"max-scq":20.0924487977,"avg-scq":14.8743538675,"var":22.9136738645,"max-var":2.8228699303,"avg-var":0.6739315843,"wig+5":1.3938423581,"nqc+5":0.0065861708,"smv+5":0.0062831781,"clarity+5+100":2.0708120692,"wig+10":1.1354886963,"nqc+10":0.0090138852,"smv+10":0.007552497,"clarity+10+100":2.0250375071,"wig+20":0.9102298692,"nqc+20":0.0092540694,"smv+20":0.0073326023,"clarity+20+100":1.9863925896,"wig+50":0.6404746488,"nqc+50":0.0088313205,"smv+50":0.0063992902,"clarity+50+100":1.951762846,"wig+100":0.4543804584,"nqc+100":0.0083291073,"smv+100":0.0058829587,"clarity+100+100":1.9297176625,"wig+1000":-0.085992652,"nqc+1000":0.0069568209,"smv+1000":0.0048477523,"clarity+1000+100":1.8583261988}
+{"qid":"273","max-idf":3.717866991,"avg-idf":3.1285340419,"scq":90.4692717237,"max-scq":20.1388036197,"avg-scq":18.0938543447,"var":9.4514422142,"max-var":2.6346788192,"avg-var":0.9451442214,"wig+5":2.3054906215,"nqc+5":0.0504752251,"smv+5":0.0403721873,"clarity+5+100":2.807257379,"wig+10":1.7366319317,"nqc+10":0.0507399339,"smv+10":0.0407290689,"clarity+10+100":2.7862885025,"wig+20":1.3434321682,"nqc+20":0.043704868,"smv+20":0.0299331642,"clarity+20+100":2.7619087989,"wig+50":0.9250997072,"nqc+50":0.0354255363,"smv+50":0.0209563476,"clarity+50+100":2.7273378888,"wig+100":0.6514041907,"nqc+100":0.0305958434,"smv+100":0.0187150748,"clarity+100+100":2.6955263269,"wig+1000":0.2569775013,"nqc+1000":0.026328133,"smv+1000":0.0170904904,"clarity+1000+100":2.6213592613}
+{"qid":"274","max-idf":3.4155861191,"avg-idf":2.020501022,"scq":89.3848520887,"max-scq":19.9257550372,"avg-scq":14.8974753481,"var":7.9888493786,"max-var":2.6484313571,"avg-var":1.1412641969,"wig+5":1.1758634607,"nqc+5":0.0084399826,"smv+5":0.008048723,"clarity+5+100":1.6424965202,"wig+10":1.0169080288,"nqc+10":0.0133770824,"smv+10":0.0113034024,"clarity+10+100":1.5272489437,"wig+20":0.8400643408,"nqc+20":0.015988092,"smv+20":0.0134573194,"clarity+20+100":1.5368810652,"wig+50":0.6297975285,"nqc+50":0.0161674292,"smv+50":0.012180631,"clarity+50+100":1.4070649907,"wig+100":0.4567370201,"nqc+100":0.0170293303,"smv+100":0.0127651984,"clarity+100+100":1.3249660022,"wig+1000":-0.007514276,"nqc+1000":0.0152829525,"smv+1000":0.0107699233,"clarity+1000+100":0.9793183319}
+{"qid":"275","max-idf":4.8463322428,"avg-idf":2.716073856,"scq":259.3160032393,"max-scq":21.6399744337,"avg-scq":16.2072502025,"var":22.1245368115,"max-var":2.5463532435,"avg-var":1.0056607642,"wig+5":2.3685495324,"nqc+5":0.0461549445,"smv+5":0.0425975235,"clarity+5+100":2.5504360797,"wig+10":1.6342950574,"nqc+10":0.0429589369,"smv+10":0.0337231204,"clarity+10+100":2.5504204129,"wig+20":1.1177143574,"nqc+20":0.0361503999,"smv+20":0.0231354517,"clarity+20+100":2.5504115713,"wig+50":0.7123619124,"nqc+50":0.0260887153,"smv+50":0.0136445134,"clarity+50+100":2.5503991395,"wig+100":0.5098430224,"nqc+100":0.0199986073,"smv+100":0.0090388644,"clarity+100+100":2.5503873403,"wig+1000":-0.0897412303,"nqc+1000":0.0116357261,"smv+1000":0.00746901,"clarity+1000+100":2.5503461978}
+{"qid":"277","max-idf":4.8463322428,"avg-idf":3.4612770306,"scq":138.7888808484,"max-scq":22.8103261426,"avg-scq":17.3486101061,"var":11.0199638322,"max-var":2.6913963194,"avg-var":0.8476895256,"wig+5":1.3727279109,"nqc+5":0.0028806493,"smv+5":0.002204523,"clarity+5+100":1.8620442452,"wig+10":1.1973305335,"nqc+10":0.0089334691,"smv+10":0.0081834092,"clarity+10+100":1.7687452018,"wig+20":0.9933428136,"nqc+20":0.011585049,"smv+20":0.0099978112,"clarity+20+100":1.6074790072,"wig+50":0.7345995023,"nqc+50":0.0126238003,"smv+50":0.0096854825,"clarity+50+100":1.4875139213,"wig+100":0.5143601033,"nqc+100":0.0137710738,"smv+100":0.0106391569,"clarity+100+100":1.3934331463,"wig+1000":0.0428125421,"nqc+1000":0.0138406709,"smv+1000":0.0098838964,"clarity+1000+100":1.1971211879}
+{"qid":"283","max-idf":4.8463322428,"avg-idf":3.0537714786,"scq":100.2936719777,"max-scq":20.1921580424,"avg-scq":16.7156119963,"var":7.445717208,"max-var":2.4038256997,"avg-var":1.0636738869,"wig+5":1.4094177175,"nqc+5":0.0134493872,"smv+5":0.0119499838,"clarity+5+100":1.9415475198,"wig+10":1.21126502,"nqc+10":0.0151591822,"smv+10":0.0122795236,"clarity+10+100":1.7930106797,"wig+20":1.0041991397,"nqc+20":0.0160534298,"smv+20":0.0126903231,"clarity+20+100":1.6713457452,"wig+50":0.7487989153,"nqc+50":0.0160287799,"smv+50":0.0116331163,"clarity+50+100":1.6149512289,"wig+100":0.5507999518,"nqc+100":0.0161747097,"smv+100":0.0119141798,"clarity+100+100":1.4710018636,"wig+1000":0.1089145558,"nqc+1000":0.0167738464,"smv+1000":0.0119994145,"clarity+1000+100":1.1982648489}
+{"qid":"284","max-idf":4.8463322428,"avg-idf":2.9369178188,"scq":85.6306096854,"max-scq":22.3500491198,"avg-scq":17.1261219371,"var":7.1554327037,"max-var":3.3404801664,"avg-var":1.4310865407,"wig+5":1.8150240955,"nqc+5":0.021742859,"smv+5":0.017837091,"clarity+5+100":2.2331494123,"wig+10":1.5639615135,"nqc+10":0.0232603451,"smv+10":0.018040495,"clarity+10+100":2.147322117,"wig+20":1.277364815,"nqc+20":0.0254230784,"smv+20":0.0199895313,"clarity+20+100":2.0254480792,"wig+50":0.9021574293,"nqc+50":0.0268972306,"smv+50":0.0198778885,"clarity+50+100":1.9360263131,"wig+100":0.6054379214,"nqc+100":0.0277567945,"smv+100":0.02104653,"clarity+100+100":1.8287584246,"wig+1000":0.0610746677,"nqc+1000":0.021774342,"smv+1000":0.0136283395,"clarity+1000+100":1.4711274235}
+{"qid":"285","max-idf":5.2983173665,"avg-idf":2.1482429659,"scq":140.0722629233,"max-scq":19.6859748596,"avg-scq":14.0072262923,"var":11.2120985803,"max-var":2.1362379154,"avg-var":1.0192816891,"wig+5":0.9770014919,"nqc+5":0.002393281,"smv+5":0.0018896028,"clarity+5+100":1.5695710987,"wig+10":0.9241817784,"nqc+10":0.0032949244,"smv+10":0.003081981,"clarity+10+100":1.501738308,"wig+20":0.8225643259,"nqc+20":0.0062451216,"smv+20":0.0053898491,"clarity+20+100":1.4928684928,"wig+50":0.5789334677,"nqc+50":0.0118746948,"smv+50":0.0103611434,"clarity+50+100":1.3510427666,"wig+100":0.407733694,"nqc+100":0.0123539899,"smv+100":0.0101637783,"clarity+100+100":1.2561084571,"wig+1000":-0.0153317768,"nqc+1000":0.0099147739,"smv+1000":0.006831937,"clarity+1000+100":1.0057877013}
+{"qid":"288","max-idf":4.8463322428,"avg-idf":2.3744903722,"scq":182.8735765842,"max-scq":18.636093769,"avg-scq":15.2394647154,"var":13.7916291083,"max-var":1.8338293968,"avg-var":0.7662016171,"wig+5":1.430170604,"nqc+5":0.0120236366,"smv+5":0.0101183443,"clarity+5+100":2.4498793167,"wig+10":1.2738873998,"nqc+10":0.0111521194,"smv+10":0.0083809312,"clarity+10+100":2.3151421196,"wig+20":1.1205204929,"nqc+20":0.0107044758,"smv+20":0.0072397076,"clarity+20+100":2.2291991524,"wig+50":0.8583016752,"nqc+50":0.0124950147,"smv+50":0.0097583332,"clarity+50+100":2.1580699525,"wig+100":0.642691216,"nqc+100":0.013514281,"smv+100":0.0105476709,"clarity+100+100":2.0938202665,"wig+1000":-0.0242614817,"nqc+1000":0.0128824254,"smv+1000":0.0089977912,"clarity+1000+100":1.8322080422}
+{"qid":"291","max-idf":5.0470029383,"avg-idf":3.388548261,"scq":170.8056541251,"max-scq":21.8066122848,"avg-scq":17.0805654125,"var":14.3355540359,"max-var":2.67066373,"avg-var":0.754502844,"wig+5":2.4630640404,"nqc+5":0.0269013583,"smv+5":0.0221272671,"clarity+5+100":3.0741194608,"wig+10":1.8875505986,"nqc+10":0.0309645191,"smv+10":0.0242199284,"clarity+10+100":3.0718531722,"wig+20":1.4127475417,"nqc+20":0.0298619208,"smv+20":0.0220904545,"clarity+20+100":3.0700554737,"wig+50":0.8753930325,"nqc+50":0.0266140813,"smv+50":0.0182492011,"clarity+50+100":3.0685763737,"wig+100":0.5800720422,"nqc+100":0.0226157794,"smv+100":0.0142772464,"clarity+100+100":3.0675298227,"wig+1000":-0.0115970508,"nqc+1000":0.0154790663,"smv+1000":0.0095477526,"clarity+1000+100":3.0635447838}
+{"qid":"292","max-idf":7.2442275156,"avg-idf":3.3865978076,"scq":177.3725575478,"max-scq":21.9972451821,"avg-scq":16.1247779589,"var":11.6672859087,"max-var":2.6550524261,"avg-var":0.6140676794,"wig+5":1.2880895194,"nqc+5":0.024374598,"smv+5":0.0186883837,"clarity+5+100":2.4201199964,"wig+10":1.0335255113,"nqc+10":0.0201262248,"smv+10":0.0134736629,"clarity+10+100":2.4081665075,"wig+20":0.8433128282,"nqc+20":0.0162409585,"smv+20":0.009121377,"clarity+20+100":2.3802200678,"wig+50":0.6087941627,"nqc+50":0.0131528462,"smv+50":0.0076437316,"clarity+50+100":2.348834024,"wig+100":0.4313119308,"nqc+100":0.0118420157,"smv+100":0.0078104572,"clarity+100+100":2.3218886796,"wig+1000":-0.0852037859,"nqc+1000":0.010726765,"smv+1000":0.0075583147,"clarity+1000+100":2.1794454205}
+{"qid":"293","max-idf":4.9416424226,"avg-idf":3.0449016636,"scq":278.0885194123,"max-scq":22.3500491198,"avg-scq":16.3581482007,"var":17.8663764434,"max-var":3.3404801664,"avg-var":0.6871683247,"wig+5":1.1454708099,"nqc+5":0.0029693428,"smv+5":0.002612513,"clarity+5+100":1.8564117693,"wig+10":0.9992137516,"nqc+10":0.0053690032,"smv+10":0.0046663158,"clarity+10+100":1.7174688672,"wig+20":0.8669957588,"nqc+20":0.0056969461,"smv+20":0.0048630439,"clarity+20+100":1.648184385,"wig+50":0.6700054646,"nqc+50":0.0064890609,"smv+50":0.0050468379,"clarity+50+100":1.5695227382,"wig+100":0.4939438363,"nqc+100":0.007377762,"smv+100":0.0057763841,"clarity+100+100":1.5021903465,"wig+1000":-0.1166795523,"nqc+1000":0.0088195099,"smv+1000":0.0065100142,"clarity+1000+100":1.3041315734}
+{"qid":"294","max-idf":5.8579331545,"avg-idf":3.8226896757,"scq":202.1723080932,"max-scq":22.3500491198,"avg-scq":18.3793007357,"var":20.0113172664,"max-var":3.6127315027,"avg-var":1.1117398481,"wig+5":1.4174772974,"nqc+5":0.0110232897,"smv+5":0.0081998167,"clarity+5+100":2.1546184049,"wig+10":1.1658145521,"nqc+10":0.0125618095,"smv+10":0.0110057155,"clarity+10+100":2.1009448767,"wig+20":0.9548311747,"nqc+20":0.0121857872,"smv+20":0.0089983691,"clarity+20+100":2.0395562366,"wig+50":0.7162416537,"nqc+50":0.011040421,"smv+50":0.0075284772,"clarity+50+100":1.94985424,"wig+100":0.523935508,"nqc+100":0.0109305959,"smv+100":0.0078063126,"clarity+100+100":1.8603059999,"wig+1000":0.0367462258,"nqc+1000":0.0136126892,"smv+1000":0.0104480416,"clarity+1000+100":1.7228893496}
+{"qid":"295","max-idf":6.1456152269,"avg-idf":3.5264468403,"scq":83.6987393055,"max-scq":19.1442871792,"avg-scq":16.7397478611,"var":6.0012171978,"max-var":2.1177412707,"avg-var":1.0002028663,"wig+5":2.2309727807,"nqc+5":0.0367609348,"smv+5":0.0343519691,"clarity+5+100":2.3907973457,"wig+10":1.6698935503,"nqc+10":0.0423681706,"smv+10":0.036652547,"clarity+10+100":2.3674394992,"wig+20":1.2365700513,"nqc+20":0.0394640905,"smv+20":0.0291819727,"clarity+20+100":2.3363882577,"wig+50":0.8437292482,"nqc+50":0.0315379668,"smv+50":0.0194190576,"clarity+50+100":2.2901357072,"wig+100":0.5704777433,"nqc+100":0.0277004236,"smv+100":0.0169119982,"clarity+100+100":2.25480809,"wig+1000":0.141897901,"nqc+1000":0.0212383041,"smv+1000":0.0129549751,"clarity+1000+100":2.1313913832}
+{"qid":"296","max-idf":3.8102403111,"avg-idf":2.0853184332,"scq":86.50415379,"max-scq":20.2209316125,"avg-scq":14.417358965,"var":7.2533380688,"max-var":2.4139890235,"avg-var":1.0361911527,"wig+5":1.6556512269,"nqc+5":0.0184169645,"smv+5":0.01544815,"clarity+5+100":2.2126560408,"wig+10":1.3655357846,"nqc+10":0.0242351381,"smv+10":0.0195635214,"clarity+10+100":2.1324608382,"wig+20":1.112021802,"nqc+20":0.0243356469,"smv+20":0.0194472091,"clarity+20+100":2.0740644841,"wig+50":0.8091875884,"nqc+50":0.023108891,"smv+50":0.016295789,"clarity+50+100":1.9563050549,"wig+100":0.5804777309,"nqc+100":0.0227649501,"smv+100":0.0161155648,"clarity+100+100":1.8499613662,"wig+1000":0.0157331211,"nqc+1000":0.0179315306,"smv+1000":0.0119155195,"clarity+1000+100":1.3883368919}
+{"qid":"297","max-idf":4.5361773145,"avg-idf":2.4310492662,"scq":217.5400012826,"max-scq":17.9347116635,"avg-scq":15.5385715202,"var":16.4407631952,"max-var":1.5557902289,"avg-var":0.747307418,"wig+5":1.7019993505,"nqc+5":0.0108351558,"smv+5":0.0081894034,"clarity+5+100":2.8323468126,"wig+10":1.4687347541,"nqc+10":0.0115240657,"smv+10":0.0090897784,"clarity+10+100":2.7654202413,"wig+20":1.2869373767,"nqc+20":0.0106957357,"smv+20":0.0076092668,"clarity+20+100":2.6884628589,"wig+50":0.9784169643,"nqc+50":0.0116849615,"smv+50":0.0090576181,"clarity+50+100":2.622707412,"wig+100":0.7425925077,"nqc+100":0.0121704256,"smv+100":0.0090753215,"clarity+100+100":2.581000751,"wig+1000":-0.0280256889,"nqc+1000":0.0129110271,"smv+1000":0.0095091634,"clarity+1000+100":2.4752368208}
+{"qid":"298","max-idf":5.1647859739,"avg-idf":2.663477153,"scq":234.8300117662,"max-scq":17.8999132861,"avg-scq":15.6553341177,"var":16.4693610087,"max-var":1.5067776729,"avg-var":0.8234680504,"wig+5":1.5755381938,"nqc+5":0.009601031,"smv+5":0.0070207305,"clarity+5+100":2.6498020746,"wig+10":1.3363473125,"nqc+10":0.0113120026,"smv+10":0.0093038175,"clarity+10+100":2.5639507101,"wig+20":1.1124382423,"nqc+20":0.0115162428,"smv+20":0.0090584268,"clarity+20+100":2.5251010424,"wig+50":0.8436882253,"nqc+50":0.0109188026,"smv+50":0.0079301878,"clarity+50+100":2.4542943453,"wig+100":0.6616876777,"nqc+100":0.0102959271,"smv+100":0.0070543424,"clarity+100+100":2.3953417813,"wig+1000":-0.0537296207,"nqc+1000":0.0125927138,"smv+1000":0.0092745458,"clarity+1000+100":2.2452915463}
+{"qid":"299","max-idf":5.0470029383,"avg-idf":2.2507849959,"scq":124.4319179556,"max-scq":19.3615857554,"avg-scq":13.8257686617,"var":9.8472874074,"max-var":2.2871530231,"avg-var":0.6564858272,"wig+5":1.0941575123,"nqc+5":0.0048909086,"smv+5":0.0046933443,"clarity+5+100":1.7887703528,"wig+10":0.958578579,"nqc+10":0.0079932181,"smv+10":0.0068117057,"clarity+10+100":1.6882996924,"wig+20":0.7938492956,"nqc+20":0.0101806471,"smv+20":0.0086744142,"clarity+20+100":1.5498585924,"wig+50":0.5303897323,"nqc+50":0.0126453929,"smv+50":0.0104124856,"clarity+50+100":1.3930104804,"wig+100":0.381180109,"nqc+100":0.0116504668,"smv+100":0.0086172971,"clarity+100+100":1.2884182072,"wig+1000":-0.0168159847,"nqc+1000":0.0089973883,"smv+1000":0.0062591147,"clarity+1000+100":0.9896896114}
+{"qid":"300","max-idf":5.0470029383,"avg-idf":3.0913684009,"scq":133.1682542003,"max-scq":21.9972451821,"avg-scq":16.646031775,"var":12.4877836156,"max-var":3.8322455563,"avg-var":1.135253056,"wig+5":1.871962085,"nqc+5":0.0158804698,"smv+5":0.0147787034,"clarity+5+100":3.1458470425,"wig+10":1.5387889968,"nqc+10":0.0215276478,"smv+10":0.0165744227,"clarity+10+100":2.9760278553,"wig+20":1.1282828572,"nqc+20":0.0255381942,"smv+20":0.0217137893,"clarity+20+100":2.9286238192,"wig+50":0.7377577593,"nqc+50":0.022616358,"smv+50":0.0162517321,"clarity+50+100":2.8617529576,"wig+100":0.5050776756,"nqc+100":0.019792697,"smv+100":0.0124228158,"clarity+100+100":2.7798388644,"wig+1000":-0.017067995,"nqc+1000":0.0141869061,"smv+1000":0.0090580709,"clarity+1000+100":2.4200158663}
+{"qid":"301","max-idf":7.2442275156,"avg-idf":2.976179051,"scq":130.3893705518,"max-scq":18.3824914375,"avg-scq":14.4877078391,"var":8.6970669011,"max-var":1.7341323216,"avg-var":0.5115921707,"wig+5":1.6875880576,"nqc+5":0.0095670209,"smv+5":0.0080765932,"clarity+5+100":1.8458138248,"wig+10":1.5594456242,"nqc+10":0.008783037,"smv+10":0.0061734897,"clarity+10+100":1.6314600213,"wig+20":1.3032631909,"nqc+20":0.0132091277,"smv+20":0.0108567909,"clarity+20+100":1.6099205319,"wig+50":0.8818693642,"nqc+50":0.0170845984,"smv+50":0.0140279945,"clarity+50+100":1.607031041,"wig+100":0.5955241776,"nqc+100":0.017099427,"smv+100":0.013089285,"clarity+100+100":1.5864082073,"wig+1000":-0.0847163657,"nqc+1000":0.0131071911,"smv+1000":0.0085595604,"clarity+1000+100":1.4466176741}
+{"qid":"303","max-idf":3.717866991,"avg-idf":2.6135787193,"scq":147.5119419265,"max-scq":18.5710234046,"avg-scq":16.3902157696,"var":11.7033532389,"max-var":1.8923030736,"avg-var":0.8359538028,"wig+5":1.2875813311,"nqc+5":0.0091936769,"smv+5":0.0088595411,"clarity+5+100":2.159750142,"wig+10":1.1103122977,"nqc+10":0.0112703347,"smv+10":0.0097600566,"clarity+10+100":2.0028119084,"wig+20":0.9370176644,"nqc+20":0.0119386688,"smv+20":0.0094449881,"clarity+20+100":1.9276879707,"wig+50":0.7020673977,"nqc+50":0.0124892226,"smv+50":0.0094753616,"clarity+50+100":1.81612553,"wig+100":0.5368309777,"nqc+100":0.0122242193,"smv+100":0.0089221853,"clarity+100+100":1.685902462,"wig+1000":0.0298971646,"nqc+1000":0.0138457269,"smv+1000":0.0101629446,"clarity+1000+100":1.3085766212}
+{"qid":"304","max-idf":7.2442275156,"avg-idf":3.7016237367,"scq":190.9836897251,"max-scq":21.4243550388,"avg-scq":14.6910530558,"var":12.1499079497,"max-var":2.0087958929,"avg-var":0.6074953975,"wig+5":1.4915142601,"nqc+5":0.0059372543,"smv+5":0.0049469734,"clarity+5+100":2.1584253643,"wig+10":1.2319880106,"nqc+10":0.0105859323,"smv+10":0.0088333707,"clarity+10+100":2.0708255693,"wig+20":0.9335518721,"nqc+20":0.0126848124,"smv+20":0.0111695563,"clarity+20+100":2.0502171962,"wig+50":0.6299447073,"nqc+50":0.0117550397,"smv+50":0.0084914492,"clarity+50+100":1.9886806379,"wig+100":0.445866324,"nqc+100":0.0104520644,"smv+100":0.0069788487,"clarity+100+100":1.9478231866,"wig+1000":-0.0845441041,"nqc+1000":0.0095505526,"smv+1000":0.0068113464,"clarity+1000+100":1.7258772102}
+{"qid":"306","max-idf":7.2442275156,"avg-idf":3.666965725,"scq":175.0777152612,"max-scq":21.0591875556,"avg-scq":15.9161559328,"var":16.2286488536,"max-var":2.6873040354,"avg-var":0.9546264032,"wig+5":1.4870224641,"nqc+5":0.0276156462,"smv+5":0.02136825,"clarity+5+100":1.8943977424,"wig+10":1.188094107,"nqc+10":0.0229196991,"smv+10":0.0147979612,"clarity+10+100":1.8928710931,"wig+20":0.9607961165,"nqc+20":0.0186424823,"smv+20":0.0104411106,"clarity+20+100":1.888992968,"wig+50":0.7012828147,"nqc+50":0.0147386284,"smv+50":0.0083859061,"clarity+50+100":1.8838910042,"wig+100":0.487120564,"nqc+100":0.0135194906,"smv+100":0.0089683408,"clarity+100+100":1.8794335758,"wig+1000":-0.0600319218,"nqc+1000":0.0119594653,"smv+1000":0.0082712036,"clarity+1000+100":1.8632524886}
+{"qid":"314","max-idf":7.2442275156,"avg-idf":2.7212607848,"scq":184.7485727424,"max-scq":18.228101425,"avg-scq":14.2114286725,"var":11.9537206797,"max-var":1.8473355016,"avg-var":0.7471075425,"wig+5":1.0417602914,"nqc+5":0.0076167813,"smv+5":0.0062275729,"clarity+5+100":1.7515588204,"wig+10":0.8682590839,"nqc+10":0.0089549833,"smv+10":0.0074204738,"clarity+10+100":1.6085184793,"wig+20":0.714404872,"nqc+20":0.0090671542,"smv+20":0.0068408627,"clarity+20+100":1.5068990099,"wig+50":0.5364328115,"nqc+50":0.0083145506,"smv+50":0.0060172762,"clarity+50+100":1.4047947295,"wig+100":0.4066209396,"nqc+100":0.0080487202,"smv+100":0.0054726495,"clarity+100+100":1.2890055147,"wig+1000":-0.0510055291,"nqc+1000":0.0084089258,"smv+1000":0.0061821973,"clarity+1000+100":1.0707042387}
+{"qid":"315","max-idf":7.2442275156,"avg-idf":2.6110907268,"scq":119.0892290753,"max-scq":17.6278890759,"avg-scq":13.2321365639,"var":8.0197201738,"max-var":1.8473355016,"avg-var":0.6169015518,"wig+5":0.9876645675,"nqc+5":0.0169188854,"smv+5":0.0131254676,"clarity+5+100":1.955607095,"wig+10":0.7847026342,"nqc+10":0.0156678188,"smv+10":0.0108723587,"clarity+10+100":1.8516511876,"wig+20":0.6515558175,"nqc+20":0.0129266095,"smv+20":0.0082852254,"clarity+20+100":1.7271188366,"wig+50":0.5024995475,"nqc+50":0.0102567363,"smv+50":0.0059618299,"clarity+50+100":1.5351188465,"wig+100":0.3920301442,"nqc+100":0.0092002889,"smv+100":0.0057511911,"clarity+100+100":1.3919019277,"wig+1000":-0.0373623651,"nqc+1000":0.0099598578,"smv+1000":0.0073962574,"clarity+1000+100":1.0223587041}
+{"qid":"316","max-idf":6.551080335,"avg-idf":2.5239113973,"scq":76.7132469581,"max-scq":16.4747852872,"avg-scq":12.7855411597,"var":5.0446571758,"max-var":1.4218011882,"avg-var":0.7206653108,"wig+5":1.2199851142,"nqc+5":0.0330204983,"smv+5":0.0307228263,"clarity+5+100":1.9855257036,"wig+10":0.9348055163,"nqc+10":0.0293817809,"smv+10":0.0222789296,"clarity+10+100":1.8988173221,"wig+20":0.7268601262,"nqc+20":0.0245394746,"smv+20":0.0152015481,"clarity+20+100":1.771002909,"wig+50":0.5246839867,"nqc+50":0.0187584635,"smv+50":0.0104208191,"clarity+50+100":1.585107655,"wig+100":0.3928803811,"nqc+100":0.0157008064,"smv+100":0.0089361412,"clarity+100+100":1.4217629995,"wig+1000":-0.0344655167,"nqc+1000":0.0125825237,"smv+1000":0.0085312496,"clarity+1000+100":1.0266358153}
+{"qid":"317","max-idf":4.1531850622,"avg-idf":1.875335937,"scq":124.4660142977,"max-scq":19.9442204607,"avg-scq":13.8295571442,"var":10.6432680323,"max-var":2.6042265447,"avg-var":0.8187129256,"wig+5":1.2237373715,"nqc+5":0.0196615519,"smv+5":0.0148009384,"clarity+5+100":2.076852156,"wig+10":0.9342292048,"nqc+10":0.0219537565,"smv+10":0.0191558866,"clarity+10+100":1.9676846423,"wig+20":0.7314295882,"nqc+20":0.0195450395,"smv+20":0.0142388724,"clarity+20+100":1.8304480489,"wig+50":0.5264897515,"nqc+50":0.0158566326,"smv+50":0.0097132044,"clarity+50+100":1.6800278933,"wig+100":0.4106417782,"nqc+100":0.0131309285,"smv+100":0.0077669963,"clarity+100+100":1.5400358642,"wig+1000":0.0017578535,"nqc+1000":0.0114528583,"smv+1000":0.0084158483,"clarity+1000+100":1.1128148413}
+{"qid":"321","max-idf":4.605170186,"avg-idf":2.6097501631,"scq":206.8952381509,"max-scq":21.6399744337,"avg-scq":15.9150183193,"var":15.6089621506,"max-var":2.2318493529,"avg-var":0.7804481075,"wig+5":1.940395892,"nqc+5":0.0421850524,"smv+5":0.0330458434,"clarity+5+100":2.6951640118,"wig+10":1.4931212378,"nqc+10":0.0340571668,"smv+10":0.0196004516,"clarity+10+100":2.6950062484,"wig+20":1.1795028162,"nqc+20":0.0266785254,"smv+20":0.0135358668,"clarity+20+100":2.6948016587,"wig+50":0.8533773695,"nqc+50":0.0195654224,"smv+50":0.0095709511,"clarity+50+100":2.6945728242,"wig+100":0.630795465,"nqc+100":0.0161098377,"smv+100":0.0086116844,"clarity+100+100":2.6944191632,"wig+1000":-0.0783940047,"nqc+1000":0.0122953043,"smv+1000":0.0081563233,"clarity+1000+100":2.693999629}
+{"qid":"323","max-idf":4.1531850622,"avg-idf":2.5464986251,"scq":160.4720262439,"max-scq":21.6399744337,"avg-scq":16.0472026244,"var":12.9901701431,"max-var":2.2318493529,"avg-var":0.9992438572,"wig+5":0.8429450371,"nqc+5":0.0030468384,"smv+5":0.0023988534,"clarity+5+100":1.5456880558,"wig+10":0.7785427227,"nqc+10":0.0039261216,"smv+10":0.0031652191,"clarity+10+100":1.433432124,"wig+20":0.678995392,"nqc+20":0.0057080617,"smv+20":0.0048951309,"clarity+20+100":1.3224573926,"wig+50":0.517016744,"nqc+50":0.0075227954,"smv+50":0.0063623034,"clarity+50+100":1.2190268897,"wig+100":0.4049217391,"nqc+100":0.0077505209,"smv+100":0.005777508,"clarity+100+100":1.1498008065,"wig+1000":-0.0562788601,"nqc+1000":0.0110722881,"smv+1000":0.0083147592,"clarity+1000+100":0.9676198427}
+{"qid":"327","max-idf":6.1456152269,"avg-idf":2.9878375469,"scq":274.1768561396,"max-scq":20.5824296677,"avg-scq":16.1280503612,"var":26.8820922532,"max-var":4.0175917857,"avg-var":1.0339266251,"wig+5":2.5146131761,"nqc+5":0.049779032,"smv+5":0.0390190485,"clarity+5+100":3.0906457046,"wig+10":1.7289784158,"nqc+10":0.0445289035,"smv+10":0.0350512651,"clarity+10+100":3.0906451257,"wig+20":1.1623053271,"nqc+20":0.0371161799,"smv+20":0.0232057181,"clarity+20+100":3.0906448999,"wig+50":0.7136390333,"nqc+50":0.026730135,"smv+50":0.0137655523,"clarity+50+100":3.0906445467,"wig+100":0.4809918185,"nqc+100":0.0205732162,"smv+100":0.0093237547,"clarity+100+100":3.0906442993,"wig+1000":-0.109487962,"nqc+1000":0.0105618934,"smv+1000":0.0060710716,"clarity+1000+100":3.0906432767}
+{"qid":"331","max-idf":7.2442275156,"avg-idf":2.4517006027,"scq":134.7816979217,"max-scq":16.923272444,"avg-scq":13.4781697922,"var":10.1119996315,"max-var":1.6853923964,"avg-var":0.722285688,"wig+5":1.1122728736,"nqc+5":0.0134583845,"smv+5":0.0126441708,"clarity+5+100":1.6418725482,"wig+10":0.9347758413,"nqc+10":0.0131382731,"smv+10":0.0098439817,"clarity+10+100":1.5365612352,"wig+20":0.7910573261,"nqc+20":0.0118375588,"smv+20":0.0082908446,"clarity+20+100":1.4523712267,"wig+50":0.6047076019,"nqc+50":0.0108326217,"smv+50":0.0074351842,"clarity+50+100":1.337361952,"wig+100":0.4700953111,"nqc+100":0.010293927,"smv+100":0.0071504858,"clarity+100+100":1.2670758602,"wig+1000":-0.0345014975,"nqc+1000":0.012047788,"smv+1000":0.0091512651,"clarity+1000+100":1.0575555361}
+{"qid":"332","max-idf":5.6347896032,"avg-idf":2.8899030588,"scq":280.9669743317,"max-scq":20.6635250563,"avg-scq":16.5274690783,"var":23.6929470594,"max-var":2.7098935652,"avg-var":1.0769521391,"wig+5":2.0984790693,"nqc+5":0.0275023263,"smv+5":0.0243484089,"clarity+5+100":2.9676728392,"wig+10":1.6093670302,"nqc+10":0.0260474905,"smv+10":0.0223999889,"clarity+10+100":2.9660531226,"wig+20":1.2604874402,"nqc+20":0.0222751529,"smv+20":0.0148161574,"clarity+20+100":2.9645290028,"wig+50":0.9114743684,"nqc+50":0.0174261562,"smv+50":0.0102889465,"clarity+50+100":2.9632385219,"wig+100":0.6595824368,"nqc+100":0.0153156448,"smv+100":0.0092831199,"clarity+100+100":2.9625933813,"wig+1000":-0.0847158758,"nqc+1000":0.012038105,"smv+1000":0.0083147859,"clarity+1000+100":2.9610809308}
+{"qid":"333","max-idf":7.2442275156,"avg-idf":3.5358319976,"scq":141.7413735636,"max-scq":18.3824914375,"avg-scq":14.1741373564,"var":8.8536513756,"max-var":1.7341323216,"avg-var":0.590243425,"wig+5":1.5738736151,"nqc+5":0.0202298929,"smv+5":0.0179021605,"clarity+5+100":2.2692838944,"wig+10":1.2645369581,"nqc+10":0.0192765427,"smv+10":0.0155802145,"clarity+10+100":2.2534476056,"wig+20":1.0542191835,"nqc+20":0.0162903621,"smv+20":0.0109852698,"clarity+20+100":2.2184976865,"wig+50":0.7865952457,"nqc+50":0.0138948798,"smv+50":0.0089763479,"clarity+50+100":2.1609788776,"wig+100":0.5915139668,"nqc+100":0.0129672752,"smv+100":0.0085520532,"clarity+100+100":2.1245028858,"wig+1000":-0.0653288902,"nqc+1000":0.0131960975,"smv+1000":0.0094311702,"clarity+1000+100":1.957931131}
+{"qid":"335","max-idf":4.8463322428,"avg-idf":2.8158638714,"scq":167.7618636508,"max-scq":20.9788649712,"avg-scq":16.7761863651,"var":14.7794431772,"max-var":2.6011123428,"avg-var":0.9852962118,"wig+5":2.0687858359,"nqc+5":0.0196105131,"smv+5":0.017894007,"clarity+5+100":2.5797803214,"wig+10":1.7136368829,"nqc+10":0.0221362777,"smv+10":0.0190504138,"clarity+10+100":2.516569211,"wig+20":1.408871741,"nqc+20":0.0215683317,"smv+20":0.0160750217,"clarity+20+100":2.4789285989,"wig+50":1.025333434,"nqc+50":0.0206263124,"smv+50":0.014631696,"clarity+50+100":2.450421782,"wig+100":0.7473728295,"nqc+100":0.0200384727,"smv+100":0.014132342,"clarity+100+100":2.4281278661,"wig+1000":-0.0410498518,"nqc+1000":0.0175477479,"smv+1000":0.0117177673,"clarity+1000+100":2.3630787798}
+{"qid":"336","max-idf":4.8463322428,"avg-idf":2.6236707237,"scq":157.2573073298,"max-scq":18.2420373701,"avg-scq":15.725730733,"var":11.5146988182,"max-var":1.5610392772,"avg-var":0.6773352246,"wig+5":1.4611871495,"nqc+5":0.0086742578,"smv+5":0.0082394595,"clarity+5+100":2.3403836379,"wig+10":1.2777907933,"nqc+10":0.0108853117,"smv+10":0.0094316239,"clarity+10+100":2.2847179135,"wig+20":1.0862783251,"nqc+20":0.0122087738,"smv+20":0.0096577909,"clarity+20+100":2.2031677813,"wig+50":0.8048036237,"nqc+50":0.0138387033,"smv+50":0.010730291,"clarity+50+100":2.1069162859,"wig+100":0.5817070567,"nqc+100":0.0146308459,"smv+100":0.0112503631,"clarity+100+100":2.0463864177,"wig+1000":-0.043623019,"nqc+1000":0.0141578632,"smv+1000":0.0099528832,"clarity+1000+100":1.7028942584}
+{"qid":"338","max-idf":4.9416424226,"avg-idf":2.8137979275,"scq":198.412134546,"max-scq":21.2664419022,"avg-scq":16.5343445455,"var":17.3608171623,"max-var":3.5119653124,"avg-var":1.021224539,"wig+5":1.7808634038,"nqc+5":0.0337274003,"smv+5":0.0266195795,"clarity+5+100":2.7824346888,"wig+10":1.3800595434,"nqc+10":0.0292695435,"smv+10":0.0199052603,"clarity+10+100":2.7794048886,"wig+20":1.0827526326,"nqc+20":0.0242600213,"smv+20":0.0144695086,"clarity+20+100":2.7767160901,"wig+50":0.7353313951,"nqc+50":0.0195741677,"smv+50":0.0117091598,"clarity+50+100":2.7741449253,"wig+100":0.5160537686,"nqc+100":0.0166969903,"smv+100":0.0099977002,"clarity+100+100":2.772033924,"wig+1000":-0.0374589768,"nqc+1000":0.0120538101,"smv+1000":0.0079098331,"clarity+1000+100":2.7618641958}
+{"qid":"339","max-idf":4.8463322428,"avg-idf":2.6252302292,"scq":208.1375424021,"max-scq":19.9233976155,"avg-scq":16.0105801848,"var":18.449160504,"max-var":3.0959117561,"avg-var":0.8385982047,"wig+5":1.3500700927,"nqc+5":0.0195598548,"smv+5":0.0167024554,"clarity+5+100":2.5680830652,"wig+10":1.0826792206,"nqc+10":0.0175403931,"smv+10":0.013094663,"clarity+10+100":2.5330709196,"wig+20":0.9012567418,"nqc+20":0.0144462455,"smv+20":0.0089617229,"clarity+20+100":2.4882310212,"wig+50":0.6465781698,"nqc+50":0.0125165529,"smv+50":0.0081859674,"clarity+50+100":2.4239833525,"wig+100":0.4797111323,"nqc+100":0.0111754555,"smv+100":0.0073070031,"clarity+100+100":2.3761378062,"wig+1000":-0.0576309192,"nqc+1000":0.0102888586,"smv+1000":0.0074263527,"clarity+1000+100":2.1962569468}
+{"qid":"340","max-idf":5.6347896032,"avg-idf":2.3658810728,"scq":143.015935643,"max-scq":19.6498315596,"avg-scq":14.3015935643,"var":12.8096212913,"max-var":2.3905104722,"avg-var":0.7116456273,"wig+5":1.0631006014,"nqc+5":0.0042028793,"smv+5":0.003482449,"clarity+5+100":1.7616888355,"wig+10":0.9143940201,"nqc+10":0.0082348159,"smv+10":0.0074396206,"clarity+10+100":1.6376296256,"wig+20":0.7713182695,"nqc+20":0.0093596796,"smv+20":0.0077499878,"clarity+20+100":1.5216990368,"wig+50":0.5647481513,"nqc+50":0.0105416638,"smv+50":0.0082947325,"clarity+50+100":1.3972057873,"wig+100":0.4065502466,"nqc+100":0.0109656849,"smv+100":0.0083009068,"clarity+100+100":1.2814411567,"wig+1000":-0.035627778,"nqc+1000":0.0098287619,"smv+1000":0.0069841313,"clarity+1000+100":0.991338988}
+{"qid":"347","max-idf":4.8463322428,"avg-idf":2.0946993555,"scq":143.0914663142,"max-scq":18.9183915698,"avg-scq":14.3091466314,"var":11.0211774224,"max-var":1.9537810521,"avg-var":0.6888235889,"wig+5":0.8361184789,"nqc+5":0.001571045,"smv+5":0.0014696053,"clarity+5+100":1.5523683157,"wig+10":0.7832544302,"nqc+10":0.0030849752,"smv+10":0.0028413252,"clarity+10+100":1.3312345189,"wig+20":0.7099889157,"nqc+20":0.0046476616,"smv+20":0.0039368034,"clarity+20+100":1.2502289912,"wig+50":0.5752709352,"nqc+50":0.0070048341,"smv+50":0.0058327836,"clarity+50+100":1.1920577119,"wig+100":0.4501735173,"nqc+100":0.0084727265,"smv+100":0.0070109079,"clarity+100+100":1.1174721608,"wig+1000":-0.0148404805,"nqc+1000":0.0110082805,"smv+1000":0.0081966091,"clarity+1000+100":0.9721950093}
+{"qid":"348","max-idf":5.0470029383,"avg-idf":2.6056597641,"scq":94.5796970084,"max-scq":18.9183915698,"avg-scq":15.7632828347,"var":8.3516500796,"max-var":1.9537810521,"avg-var":0.6424346215,"wig+5":1.1287198237,"nqc+5":0.0097501938,"smv+5":0.0088614829,"clarity+5+100":1.4756682111,"wig+10":1.0068398686,"nqc+10":0.0105759425,"smv+10":0.0080194324,"clarity+10+100":1.3717615595,"wig+20":0.8905827171,"nqc+20":0.0107592867,"smv+20":0.0080109433,"clarity+20+100":1.2689235016,"wig+50":0.6890400565,"nqc+50":0.0129723254,"smv+50":0.0103765494,"clarity+50+100":1.1948860354,"wig+100":0.5268864279,"nqc+100":0.0141303235,"smv+100":0.0108932895,"clarity+100+100":1.1335137077,"wig+1000":0.0777510185,"nqc+1000":0.0170698729,"smv+1000":0.0128767593,"clarity+1000+100":1.0177918058}
+{"qid":"349","max-idf":7.2442275156,"avg-idf":2.4297914868,"scq":108.5323201347,"max-scq":16.493922829,"avg-scq":12.0591466816,"var":6.597788132,"max-var":1.4047102152,"avg-var":0.507522164,"wig+5":1.0750157127,"nqc+5":0.0127682382,"smv+5":0.0099659243,"clarity+5+100":1.8014682595,"wig+10":0.9073952127,"nqc+10":0.0126572802,"smv+10":0.0087926865,"clarity+10+100":1.6697959359,"wig+20":0.7272022627,"nqc+20":0.0131735867,"smv+20":0.0096554506,"clarity+20+100":1.5409296331,"wig+50":0.4879645727,"nqc+50":0.0132442164,"smv+50":0.0100375967,"clarity+50+100":1.4141371182,"wig+100":0.346507926,"nqc+100":0.0119250702,"smv+100":0.0082838146,"clarity+100+100":1.3270397311,"wig+1000":-0.0268042033,"nqc+1000":0.0087037123,"smv+1000":0.0058801293,"clarity+1000+100":0.990931885}
+{"qid":"352","max-idf":3.7477199541,"avg-idf":2.0672823197,"scq":199.0034150063,"max-scq":18.3693860428,"avg-scq":14.2145296433,"var":14.3863582667,"max-var":1.7096095031,"avg-var":0.7193179133,"wig+5":0.8554612262,"nqc+5":0.007251093,"smv+5":0.0062288353,"clarity+5+100":1.6048742759,"wig+10":0.762072665,"nqc+10":0.0065817581,"smv+10":0.0052417845,"clarity+10+100":1.5480543175,"wig+20":0.6786092108,"nqc+20":0.0060344395,"smv+20":0.003914749,"clarity+20+100":1.4550069053,"wig+50":0.5608256287,"nqc+50":0.0057780409,"smv+50":0.0041697189,"clarity+50+100":1.3313235189,"wig+100":0.4603815791,"nqc+100":0.0062276349,"smv+100":0.0044917372,"clarity+100+100":1.2564396555,"wig+1000":-0.0009432108,"nqc+1000":0.0090769732,"smv+1000":0.007002346,"clarity+1000+100":1.0689233868}
+{"qid":"353","max-idf":2.7898802193,"avg-idf":1.8683070038,"scq":150.8105465528,"max-scq":16.71951553,"avg-scq":13.7100496866,"var":10.9456729444,"max-var":1.4284925413,"avg-var":0.7297115296,"wig+5":0.9260683754,"nqc+5":0.006261272,"smv+5":0.0054940306,"clarity+5+100":1.4504228719,"wig+10":0.8165608721,"nqc+10":0.0072040273,"smv+10":0.0061693707,"clarity+10+100":1.3850028185,"wig+20":0.7183328932,"nqc+20":0.0073486345,"smv+20":0.0054622585,"clarity+20+100":1.3201596267,"wig+50":0.5535868865,"nqc+50":0.0085365082,"smv+50":0.0067753333,"clarity+50+100":1.2549648478,"wig+100":0.4460637048,"nqc+100":0.0082725675,"smv+100":0.0061480077,"clarity+100+100":1.2048830611,"wig+1000":0.0137532559,"nqc+1000":0.0099604271,"smv+1000":0.0075323427,"clarity+1000+100":1.019824375}
+{"qid":"355","max-idf":3.6607085771,"avg-idf":2.3768967454,"scq":82.5562092236,"max-scq":20.9788649712,"avg-scq":16.5112418447,"var":7.8389700947,"max-var":2.3830919962,"avg-var":0.8709966772,"wig+5":1.8990327659,"nqc+5":0.0158246853,"smv+5":0.0150195985,"clarity+5+100":2.4875293772,"wig+10":1.5832568113,"nqc+10":0.0274181079,"smv+10":0.0234621129,"clarity+10+100":2.444206234,"wig+20":1.2444445044,"nqc+20":0.0324276635,"smv+20":0.0273186388,"clarity+20+100":2.3660117384,"wig+50":0.8704296808,"nqc+50":0.0308953724,"smv+50":0.023058691,"clarity+50+100":2.205087443,"wig+100":0.623465485,"nqc+100":0.028715395,"smv+100":0.0195847584,"clarity+100+100":2.1006529464,"wig+1000":0.0762799663,"nqc+1000":0.0232577626,"smv+1000":0.0157525626,"clarity+1000+100":1.6535668849}
+{"qid":"356","max-idf":5.6347896032,"avg-idf":3.2189074169,"scq":114.667835901,"max-scq":18.1913238481,"avg-scq":16.3811194144,"var":8.9194923856,"max-var":1.9146238862,"avg-var":0.9910547095,"wig+5":1.738249822,"nqc+5":0.0099064303,"smv+5":0.0084089736,"clarity+5+100":2.371111878,"wig+10":1.5651839718,"nqc+10":0.01116166,"smv+10":0.0080485612,"clarity+10+100":2.1898472871,"wig+20":1.2913133714,"nqc+20":0.0152029207,"smv+20":0.0127962458,"clarity+20+100":2.1242418277,"wig+50":0.9811745778,"nqc+50":0.0154695492,"smv+50":0.0117875246,"clarity+50+100":1.9678651046,"wig+100":0.7322093643,"nqc+100":0.0162166322,"smv+100":0.0120079895,"clarity+100+100":1.9046690234,"wig+1000":0.0965083708,"nqc+1000":0.0176091142,"smv+1000":0.0125916497,"clarity+1000+100":1.6945150962}
+{"qid":"360","max-idf":7.2442275156,"avg-idf":2.9487606764,"scq":217.9371127185,"max-scq":19.5785983512,"avg-scq":15.5669366228,"var":17.8382433599,"max-var":2.2696147466,"avg-var":0.7755757983,"wig+5":1.4721944963,"nqc+5":0.00718463,"smv+5":0.0056066275,"clarity+5+100":2.3373253897,"wig+10":1.2679873974,"nqc+10":0.0099480121,"smv+10":0.0078632548,"clarity+10+100":2.2547739772,"wig+20":0.9710677212,"nqc+20":0.0135200893,"smv+20":0.0119882,"clarity+20+100":2.2211708221,"wig+50":0.653786528,"nqc+50":0.0132576759,"smv+50":0.0099899308,"clarity+50+100":2.1714397091,"wig+100":0.4630388175,"nqc+100":0.0119734983,"smv+100":0.0081090685,"clarity+100+100":2.1140386245,"wig+1000":-0.0806833565,"nqc+1000":0.0102399612,"smv+1000":0.0073133685,"clarity+1000+100":1.8703675988}
+{"qid":"365","max-idf":3.1333536514,"avg-idf":2.1029550939,"scq":176.7348287969,"max-scq":18.7077638374,"avg-scq":14.7279023997,"var":14.1091148629,"max-var":2.0749439221,"avg-var":0.8818196789,"wig+5":1.182080344,"nqc+5":0.0201768824,"smv+5":0.0191389808,"clarity+5+100":2.0414480749,"wig+10":0.9521335386,"nqc+10":0.018012462,"smv+10":0.0138749852,"clarity+10+100":2.0175557898,"wig+20":0.7683496544,"nqc+20":0.0155104446,"smv+20":0.009763258,"clarity+20+100":1.9427953117,"wig+50":0.5730043715,"nqc+50":0.0125093218,"smv+50":0.0075541608,"clarity+50+100":1.8759930072,"wig+100":0.438801123,"nqc+100":0.01096418,"smv+100":0.0068067334,"clarity+100+100":1.793778704,"wig+1000":-0.0232381108,"nqc+1000":0.0103590326,"smv+1000":0.0075642207,"clarity+1000+100":1.4153905713}
diff --git a/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests_and_bm25_run.approved.jsonl b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests_and_bm25_run.approved.jsonl
new file mode 100644
index 0000000..4ce9151
--- /dev/null
+++ b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests_and_bm25_run.approved.jsonl
@@ -0,0 +1,225 @@
+{"qid":"1","wig+5":30.8857457564,"nqc+5":0.0327572048,"smv+5":-0.0304272471,"clarity+5+100":2.196140974,"wig+10":29.7277151385,"nqc+10":0.0563391239,"smv+10":-0.05078406,"clarity+10+100":2.1954414746,"wig+20":28.699643766,"nqc+20":0.0603106651,"smv+20":-0.0512500604,"clarity+20+100":2.1954364123,"wig+50":27.4318444294,"nqc+50":0.0603455675,"smv+50":-0.0471198342,"clarity+50+100":2.1954357566,"wig+100":26.6172594302,"nqc+100":0.0557392522,"smv+100":-0.0436913493,"clarity+100+100":2.1954356958,"wig+1000":24.5336711442,"nqc+1000":0.0453207946,"smv+1000":-0.0347458493,"clarity+1000+100":2.1954356739}
+{"qid":"2","wig+5":29.418477623,"nqc+5":0.1055913102,"smv+5":-0.0882991243,"clarity+5+100":3.1451479166,"wig+10":28.4068232822,"nqc+10":0.0887144993,"smv+10":-0.0666070338,"clarity+10+100":3.1451478097,"wig+20":27.5023394654,"nqc+20":0.0764181225,"smv+20":-0.0501289026,"clarity+20+100":3.1451477765,"wig+50":26.3986103821,"nqc+50":0.0653060262,"smv+50":-0.0456333894,"clarity+50+100":3.1451477699,"wig+100":25.4636531516,"nqc+100":0.0648583505,"smv+100":-0.0481470152,"clarity+100+100":3.1451477694,"wig+1000":22.8477590835,"nqc+1000":0.0595185158,"smv+1000":-0.0468063874,"clarity+1000+100":3.1451477694}
+{"qid":"4","wig+5":28.7821689329,"nqc+5":0.0485027138,"smv+5":-0.0369078789,"clarity+5+100":3.3681367493,"wig+10":27.0665050533,"nqc+10":0.1051244277,"smv+10":-0.0931522737,"clarity+10+100":3.3673229832,"wig+20":25.0522217376,"nqc+20":0.1353766012,"smv+20":-0.1183609939,"clarity+20+100":3.3673224338,"wig+50":23.0872091061,"nqc+50":0.1230775671,"smv+50":-0.1031543363,"clarity+50+100":3.3673224099,"wig+100":22.0651036968,"nqc+100":0.1037630213,"smv+100":-0.0764069856,"clarity+100+100":3.3673224046,"wig+1000":19.8821946332,"nqc+1000":0.0698475159,"smv+1000":-0.0519711576,"clarity+1000+100":3.3673224019}
+{"qid":"8","wig+5":42.3767570035,"nqc+5":0.0476238265,"smv+5":-0.0455609457,"clarity+5+100":2.6953761157,"wig+10":41.2776699526,"nqc+10":0.047512734,"smv+10":-0.0403341215,"clarity+10+100":2.6953758862,"wig+20":40.2302938535,"nqc+20":0.046609855,"smv+20":-0.0359819136,"clarity+20+100":2.6953758655,"wig+50":38.7392315907,"nqc+50":0.0473949985,"smv+50":-0.0383562066,"clarity+50+100":2.6953758655,"wig+100":37.7104501118,"nqc+100":0.0456121867,"smv+100":-0.0356153967,"clarity+100+100":2.6953758655,"wig+1000":34.9578756208,"nqc+1000":0.0354320507,"smv+1000":-0.0267300047,"clarity+1000+100":2.6953758655}
+{"qid":"9","wig+5":24.6837950481,"nqc+5":0.0349703798,"smv+5":-0.0289542406,"clarity+5+100":2.4919194054,"wig+10":23.8496054115,"nqc+10":0.0573107999,"smv+10":-0.0487168689,"clarity+10+100":2.485880251,"wig+20":22.9196335064,"nqc+20":0.0672019065,"smv+20":-0.0598981928,"clarity+20+100":2.4855707862,"wig+50":21.8946380028,"nqc+50":0.0655832769,"smv+50":-0.0501640392,"clarity+50+100":2.4853898348,"wig+100":21.1539081058,"nqc+100":0.0634832466,"smv+100":-0.0492688956,"clarity+100+100":2.485355716,"wig+1000":19.1525957236,"nqc+1000":0.0609004601,"smv+1000":-0.0477022303,"clarity+1000+100":2.485337631}
+{"qid":"10","wig+5":23.2125778446,"nqc+5":0.0667374554,"smv+5":-0.0564825935,"clarity+5+100":3.2578817173,"wig+10":22.6433891597,"nqc+10":0.0574891863,"smv+10":-0.0386480736,"clarity+10+100":3.2558258274,"wig+20":22.1670877278,"nqc+20":0.0488619461,"smv+20":-0.0333773682,"clarity+20+100":3.2546586394,"wig+50":21.5103123069,"nqc+50":0.0444639474,"smv+50":-0.03120317,"clarity+50+100":3.2536913911,"wig+100":20.9092771376,"nqc+100":0.046707116,"smv+100":-0.0364650512,"clarity+100+100":3.2535284438,"wig+1000":18.615191146,"nqc+1000":0.0592234232,"smv+1000":null,"clarity+1000+100":3.2534323189}
+{"qid":"12","wig+5":42.371460908,"nqc+5":0.0704748409,"smv+5":-0.0601150713,"clarity+5+100":3.4200160582,"wig+10":40.9756536431,"nqc+10":0.064232565,"smv+10":-0.0476481516,"clarity+10+100":3.4200160581,"wig+20":39.8200636564,"nqc+20":0.0568621227,"smv+20":-0.0410188034,"clarity+20+100":3.4200160581,"wig+50":38.5656035482,"nqc+50":0.0469115146,"smv+50":-0.0340354263,"clarity+50+100":3.4200160581,"wig+100":37.7816865897,"nqc+100":0.0405671957,"smv+100":-0.0280167662,"clarity+100+100":3.4200160581,"wig+1000":35.4504089655,"nqc+1000":0.0286469118,"smv+1000":-0.0212189248,"clarity+1000+100":3.4200160581}
+{"qid":"13","wig+5":30.1537498382,"nqc+5":0.0111204357,"smv+5":-0.009019332,"clarity+5+100":2.1614512828,"wig+10":29.8484274833,"nqc+10":0.014407997,"smv+10":-0.0125019988,"clarity+10+100":2.0855372672,"wig+20":29.4577758948,"nqc+20":0.018178126,"smv+20":-0.0155057345,"clarity+20+100":2.0533168009,"wig+50":28.9381604162,"nqc+50":0.0203119658,"smv+50":-0.0163890056,"clarity+50+100":2.039220449,"wig+100":28.545448056,"nqc+100":0.0209144036,"smv+100":-0.016710721,"clarity+100+100":2.0330316929,"wig+1000":27.1580062655,"nqc+1000":0.0220979642,"smv+1000":-0.0171342489,"clarity+1000+100":2.0296791931}
+{"qid":"15","wig+5":25.1139761765,"nqc+5":0.038036351,"smv+5":-0.0321986182,"clarity+5+100":2.4526265656,"wig+10":24.2715929671,"nqc+10":0.0578775962,"smv+10":-0.0483977143,"clarity+10+100":2.4449301208,"wig+20":23.2803352054,"nqc+20":0.0684819682,"smv+20":-0.0618320181,"clarity+20+100":2.4447849356,"wig+50":22.3621194235,"nqc+50":0.0599295326,"smv+50":-0.0467883594,"clarity+50+100":2.4446830157,"wig+100":21.7266059763,"nqc+100":0.0552399494,"smv+100":-0.0393085993,"clarity+100+100":2.4446569271,"wig+1000":19.3184024718,"nqc+1000":0.0635147767,"smv+1000":null,"clarity+1000+100":2.4446369728}
+{"qid":"18","wig+5":34.2005063349,"nqc+5":0.0328047112,"smv+5":-0.0289314734,"clarity+5+100":1.9589748005,"wig+10":33.2613546126,"nqc+10":0.0431699537,"smv+10":-0.0388626137,"clarity+10+100":1.9587467707,"wig+20":32.2841884213,"nqc+20":0.0496733422,"smv+20":-0.0397961462,"clarity+20+100":1.9587364037,"wig+50":30.8674982663,"nqc+50":0.055662012,"smv+50":-0.0460355566,"clarity+50+100":1.9587356207,"wig+100":29.9052829729,"nqc+100":0.0541776397,"smv+100":-0.0436547775,"clarity+100+100":1.9587355984,"wig+1000":27.6779540454,"nqc+1000":0.0479663716,"smv+1000":-0.0363385762,"clarity+1000+100":1.9587355935}
+{"qid":"22","wig+5":29.1387805581,"nqc+5":0.1077476252,"smv+5":-0.0939393424,"clarity+5+100":2.7098643272,"wig+10":28.3046890174,"nqc+10":0.085373229,"smv+10":-0.0577744906,"clarity+10+100":2.7098643124,"wig+20":27.6064693493,"nqc+20":0.0684262472,"smv+20":-0.0401846522,"clarity+20+100":2.7098643081,"wig+50":26.6730854917,"nqc+50":0.0564579583,"smv+50":-0.037102384,"clarity+50+100":2.7098643069,"wig+100":25.9133739023,"nqc+100":0.0534906578,"smv+100":-0.0388643316,"clarity+100+100":2.7098643068,"wig+1000":23.4250730642,"nqc+1000":0.0501247105,"smv+1000":-0.0384649703,"clarity+1000+100":2.7098643068}
+{"qid":"23","wig+5":27.5651541648,"nqc+5":0.089494512,"smv+5":-0.0790595117,"clarity+5+100":2.2797736198,"wig+10":26.1177229174,"nqc+10":0.0962666068,"smv+10":-0.0774346649,"clarity+10+100":2.2797735693,"wig+20":25.0327695927,"nqc+20":0.0870112717,"smv+20":-0.0696657242,"clarity+20+100":2.2797735402,"wig+50":24.0368385523,"nqc+50":0.0685614415,"smv+50":-0.0477449955,"clarity+50+100":2.2797735377,"wig+100":23.3893473144,"nqc+100":0.0586598502,"smv+100":-0.0388276538,"clarity+100+100":2.2797735369,"wig+1000":21.1293432042,"nqc+1000":0.0493331829,"smv+1000":null,"clarity+1000+100":2.2797735368}
+{"qid":"26","wig+5":27.9833237187,"nqc+5":0.1972597468,"smv+5":-0.1642453357,"clarity+5+100":2.7845215641,"wig+10":26.0261097609,"nqc+10":0.1757138669,"smv+10":-0.1362912017,"clarity+10+100":2.7845215629,"wig+20":24.1723176689,"nqc+20":0.1602141621,"smv+20":-0.1185047292,"clarity+20+100":2.7845215626,"wig+50":22.6886181578,"nqc+50":0.120984017,"smv+50":-0.08671495,"clarity+50+100":2.7845215626,"wig+100":21.8284530901,"nqc+100":0.0978036613,"smv+100":-0.0621678071,"clarity+100+100":2.7845215626,"wig+1000":21.3117370465,"nqc+1000":0.0907485056,"smv+1000":-0.0585510336,"clarity+1000+100":2.7845215626}
+{"qid":"27","wig+5":24.1108784289,"nqc+5":0.0675759173,"smv+5":-0.0562392635,"clarity+5+100":3.1571200448,"wig+10":23.4902291957,"nqc+10":0.060922406,"smv+10":-0.0415375831,"clarity+10+100":3.1534729355,"wig+20":22.8935326952,"nqc+20":0.0595140753,"smv+20":-0.0391170789,"clarity+20+100":3.1513283428,"wig+50":21.681175027,"nqc+50":0.0730710332,"smv+50":-0.0609177462,"clarity+50+100":3.1511563839,"wig+100":20.8074439761,"nqc+100":0.0743494303,"smv+100":-0.0613114566,"clarity+100+100":3.1511380671,"wig+1000":18.63542087,"nqc+1000":0.0809080437,"smv+1000":-0.0664052425,"clarity+1000+100":3.1511314462}
+{"qid":"29","wig+5":30.8221337124,"nqc+5":0.1310952809,"smv+5":-0.1108641329,"clarity+5+100":2.8724174448,"wig+10":29.5175925114,"nqc+10":0.1169865351,"smv+10":-0.0792523089,"clarity+10+100":2.8723727445,"wig+20":28.4180544195,"nqc+20":0.101664932,"smv+20":-0.0718886351,"clarity+20+100":2.8723572388,"wig+50":26.2694354119,"nqc+50":0.1199165837,"smv+50":-0.0965448981,"clarity+50+100":2.8723552143,"wig+100":24.2674824946,"nqc+100":0.1378241296,"smv+100":-0.1151817367,"clarity+100+100":2.8723552031,"wig+1000":22.9726164685,"nqc+1000":0.1408293304,"smv+1000":-0.1170885809,"clarity+1000+100":2.8723552023}
+{"qid":"31","wig+5":28.7664219842,"nqc+5":0.0615710442,"smv+5":-0.0559677365,"clarity+5+100":2.439401911,"wig+10":27.9225037503,"nqc+10":0.0588371661,"smv+10":-0.0478268157,"clarity+10+100":2.439373816,"wig+20":27.0949142707,"nqc+20":0.0567065647,"smv+20":-0.0430014561,"clarity+20+100":2.4393698815,"wig+50":25.9914128004,"nqc+50":0.0556027567,"smv+50":-0.0434311103,"clarity+50+100":2.4393697937,"wig+100":25.2665224306,"nqc+100":0.0520687785,"smv+100":-0.0392988489,"clarity+100+100":2.4393697434,"wig+1000":22.7725603812,"nqc+1000":0.0527590885,"smv+1000":null,"clarity+1000+100":2.439369731}
+{"qid":"32","wig+5":26.8174677581,"nqc+5":0.0159391351,"smv+5":-0.0122062071,"clarity+5+100":1.9392027962,"wig+10":26.3117124864,"nqc+10":0.024973145,"smv+10":-0.0236004598,"clarity+10+100":1.9248813593,"wig+20":25.8906377698,"nqc+20":0.0256972308,"smv+20":-0.0211919283,"clarity+20+100":1.9184148538,"wig+50":25.4432069113,"nqc+50":0.0231953715,"smv+50":-0.0170573414,"clarity+50+100":1.9073391022,"wig+100":25.1124401026,"nqc+100":0.0220932956,"smv+100":-0.0163546865,"clarity+100+100":1.9030973566,"wig+1000":23.6892678064,"nqc+1000":0.0295576462,"smv+1000":null,"clarity+1000+100":1.8970906652}
+{"qid":"33","wig+5":29.7626813127,"nqc+5":0.0183356711,"smv+5":-0.0158219154,"clarity+5+100":1.6726760784,"wig+10":29.2885043129,"nqc+10":0.0250941249,"smv+10":-0.022538279,"clarity+10+100":1.66186957,"wig+20":28.7019115667,"nqc+20":0.0322313266,"smv+20":-0.0268121502,"clarity+20+100":1.6593871717,"wig+50":27.7648944045,"nqc+50":0.0407176338,"smv+50":-0.0338284799,"clarity+50+100":1.6591610137,"wig+100":26.9947691183,"nqc+100":0.0448308332,"smv+100":-0.0371918351,"clarity+100+100":1.6591409281,"wig+1000":24.098628923,"nqc+1000":0.0537519395,"smv+1000":-0.0427606559,"clarity+1000+100":1.6591377}
+{"qid":"34","wig+5":29.9767030989,"nqc+5":0.0152044246,"smv+5":-0.0112076818,"clarity+5+100":2.5167081366,"wig+10":29.6224921646,"nqc+10":0.0178365735,"smv+10":-0.0154386754,"clarity+10+100":2.4748349764,"wig+20":29.2845983999,"nqc+20":0.018532519,"smv+20":-0.0147262006,"clarity+20+100":2.447784901,"wig+50":28.6705320224,"nqc+50":0.0238797737,"smv+50":-0.0198694267,"clarity+50+100":2.4396934372,"wig+100":28.1846336431,"nqc+100":0.0259091727,"smv+100":-0.021312691,"clarity+100+100":2.4363428595,"wig+1000":26.2335470235,"nqc+1000":0.0360809926,"smv+1000":-0.0268209004,"clarity+1000+100":2.4355369722}
+{"qid":"35","wig+5":34.4078142253,"nqc+5":0.0882742232,"smv+5":-0.0708816119,"clarity+5+100":3.0915598585,"wig+10":32.6882232599,"nqc+10":0.0915570584,"smv+10":-0.077414751,"clarity+10+100":3.0915598584,"wig+20":31.3313177088,"nqc+20":0.0838740755,"smv+20":-0.0655673386,"clarity+20+100":3.0915598584,"wig+50":29.9876674477,"nqc+50":0.0682482145,"smv+50":-0.049780929,"clarity+50+100":3.0915598584,"wig+100":29.2384671403,"nqc+100":0.0565098111,"smv+100":-0.0381970068,"clarity+100+100":3.0915598584,"wig+1000":27.1218112305,"nqc+1000":0.0388053542,"smv+1000":-0.0287409972,"clarity+1000+100":3.0915598584}
+{"qid":"39","wig+5":27.7828892266,"nqc+5":0.1315059229,"smv+5":-0.1111017801,"clarity+5+100":3.7041029022,"wig+10":26.5644424595,"nqc+10":0.1116319498,"smv+10":-0.0826312028,"clarity+10+100":3.7041028953,"wig+20":25.6395305999,"nqc+20":0.0922139129,"smv+20":-0.061035049,"clarity+20+100":3.7041028926,"wig+50":24.6040390725,"nqc+50":0.07281813,"smv+50":-0.0480389725,"clarity+50+100":3.704102892,"wig+100":23.8448800328,"nqc+100":0.0646202454,"smv+100":-0.044144851,"clarity+100+100":3.7041028919,"wig+1000":21.5846730103,"nqc+1000":0.0568812299,"smv+1000":-0.0444492581,"clarity+1000+100":3.7041028919}
+{"qid":"40","wig+5":28.9641829587,"nqc+5":0.0292061737,"smv+5":-0.0253302147,"clarity+5+100":2.2328856689,"wig+10":28.4012698825,"nqc+10":0.0342255902,"smv+10":-0.0272463337,"clarity+10+100":2.2243013051,"wig+20":27.7794486333,"nqc+20":0.0383890995,"smv+20":-0.0314798123,"clarity+20+100":2.2228407673,"wig+50":26.7391614233,"nqc+50":0.0482676564,"smv+50":-0.0402289019,"clarity+50+100":2.2225042109,"wig+100":25.8888695536,"nqc+100":0.0532076246,"smv+100":-0.0431935089,"clarity+100+100":2.2224885227,"wig+1000":23.5021810776,"nqc+1000":0.0624712508,"smv+1000":-0.0505553482,"clarity+1000+100":2.2224868921}
+{"qid":"41","wig+5":24.727424182,"nqc+5":0.0722984039,"smv+5":-0.0610303583,"clarity+5+100":3.0208471906,"wig+10":23.9311190221,"nqc+10":0.0680002139,"smv+10":-0.0475087198,"clarity+10+100":3.0202360523,"wig+20":23.2125798017,"nqc+20":0.0627049489,"smv+20":-0.0464658252,"clarity+20+100":3.0199822626,"wig+50":22.2481715078,"nqc+50":0.0605836639,"smv+50":-0.0449055055,"clarity+50+100":3.0199006833,"wig+100":21.4764782032,"nqc+100":0.0607233275,"smv+100":-0.0483454971,"clarity+100+100":3.0198898747,"wig+1000":19.6760816556,"nqc+1000":0.0612690915,"smv+1000":-0.0494984835,"clarity+1000+100":3.0198840238}
+{"qid":"49","wig+5":30.7912864162,"nqc+5":0.100893569,"smv+5":-0.0843793549,"clarity+5+100":3.5946596221,"wig+10":29.5472155208,"nqc+10":0.0890999826,"smv+10":-0.0733721795,"clarity+10+100":3.5946595397,"wig+20":28.5669207127,"nqc+20":0.076103406,"smv+20":-0.0533114038,"clarity+20+100":3.5946595217,"wig+50":27.4014793342,"nqc+50":0.0636106571,"smv+50":-0.0448673208,"clarity+50+100":3.5946595192,"wig+100":26.6697619246,"nqc+100":0.0550003402,"smv+100":-0.0389882706,"clarity+100+100":3.5946595188,"wig+1000":25.0420610772,"nqc+1000":0.0416762355,"smv+1000":-0.0306020749,"clarity+1000+100":3.5946595186}
+{"qid":"50","wig+5":31.130311184,"nqc+5":0.0357910425,"smv+5":-0.0323852865,"clarity+5+100":2.5374711464,"wig+10":30.2093897961,"nqc+10":0.0476433818,"smv+10":-0.0413811302,"clarity+10+100":2.5369798392,"wig+20":29.0006867898,"nqc+20":0.0627040542,"smv+20":-0.0534115387,"clarity+20+100":2.5369718934,"wig+50":27.6511913442,"nqc+50":0.0630842478,"smv+50":-0.050475041,"clarity+50+100":2.5369714185,"wig+100":26.7059599492,"nqc+100":0.0607098416,"smv+100":-0.0483447154,"clarity+100+100":2.5369713992,"wig+1000":24.2488869494,"nqc+1000":0.0476749915,"smv+1000":null,"clarity+1000+100":2.5369713943}
+{"qid":"51","wig+5":29.1428658724,"nqc+5":0.0174425651,"smv+5":-0.0158620322,"clarity+5+100":1.6492817949,"wig+10":28.5758721692,"nqc+10":0.0308440389,"smv+10":-0.0262115268,"clarity+10+100":1.64227216,"wig+20":27.8789319934,"nqc+20":0.0402461872,"smv+20":-0.0341749322,"clarity+20+100":1.641538384,"wig+50":26.8764090294,"nqc+50":0.0465730106,"smv+50":-0.0388989204,"clarity+50+100":1.6416185272,"wig+100":26.1226138796,"nqc+100":0.0484639299,"smv+100":-0.0385288927,"clarity+100+100":1.6416156666,"wig+1000":23.3765511335,"nqc+1000":0.0581618674,"smv+1000":-0.0456281273,"clarity+1000+100":1.6416152463}
+{"qid":"52","wig+5":25.6060826861,"nqc+5":0.0122630677,"smv+5":-0.010395391,"clarity+5+100":2.3906437701,"wig+10":25.2269202049,"nqc+10":0.0208695394,"smv+10":-0.0186516228,"clarity+10+100":2.3343518931,"wig+20":24.6866829867,"nqc+20":0.0317185654,"smv+20":-0.0261510152,"clarity+20+100":2.3023214733,"wig+50":23.827901096,"nqc+50":0.03969239,"smv+50":-0.0347002224,"clarity+50+100":2.2894029668,"wig+100":23.2393930772,"nqc+100":0.0400024079,"smv+100":-0.0322246053,"clarity+100+100":2.2881625662,"wig+1000":21.8082066487,"nqc+1000":0.0327540855,"smv+1000":-0.0236765202,"clarity+1000+100":2.286729284}
+{"qid":"53","wig+5":19.91569928,"nqc+5":0.0119297565,"smv+5":-0.0102567572,"clarity+5+100":2.1033614,"wig+10":19.6401480003,"nqc+10":0.0210534518,"smv+10":-0.0193852245,"clarity+10+100":1.9462603843,"wig+20":19.3412128779,"nqc+20":0.0269355249,"smv+20":-0.0211759272,"clarity+20+100":1.8548113955,"wig+50":18.7995883729,"nqc+50":0.0368702002,"smv+50":-0.0306636111,"clarity+50+100":1.7949002619,"wig+100":18.2845419513,"nqc+100":0.0449677118,"smv+100":-0.0379314733,"clarity+100+100":1.7798368158,"wig+1000":16.0876719526,"nqc+1000":0.0751424139,"smv+1000":-0.0580812659,"clarity+1000+100":1.7723988225}
+{"qid":"54","wig+5":31.5220011954,"nqc+5":0.05692159,"smv+5":-0.041866546,"clarity+5+100":2.5002301893,"wig+10":30.5667358585,"nqc+10":0.0597768952,"smv+10":-0.0511989781,"clarity+10+100":2.5002215371,"wig+20":29.5738315366,"nqc+20":0.0631406575,"smv+20":-0.0484920789,"clarity+20+100":2.5002208955,"wig+50":27.7995728859,"nqc+50":0.0798385948,"smv+50":-0.0676507319,"clarity+50+100":2.5002208881,"wig+100":26.5794574678,"nqc+100":0.0801330979,"smv+100":-0.0655872851,"clarity+100+100":2.5002208881,"wig+1000":23.1645016935,"nqc+1000":0.0678096534,"smv+1000":null,"clarity+1000+100":2.5002208881}
+{"qid":"55","wig+5":26.8118253708,"nqc+5":0.0188844911,"smv+5":-0.0173426304,"clarity+5+100":1.7354164687,"wig+10":26.3658654453,"nqc+10":0.025251526,"smv+10":-0.0220940394,"clarity+10+100":1.7293325299,"wig+20":25.9625013864,"nqc+20":0.0260817038,"smv+20":-0.0215909792,"clarity+20+100":1.7139174148,"wig+50":25.3746489964,"nqc+50":0.0300117647,"smv+50":-0.0225940114,"clarity+50+100":1.7027838838,"wig+100":24.7224347602,"nqc+100":0.0377535665,"smv+100":-0.0324570572,"clarity+100+100":1.701608888,"wig+1000":22.3046958796,"nqc+1000":0.0516321557,"smv+1000":null,"clarity+1000+100":1.7009794056}
+{"qid":"56","wig+5":33.3412088182,"nqc+5":0.0520185697,"smv+5":-0.0443255583,"clarity+5+100":3.8217844906,"wig+10":32.7158549793,"nqc+10":0.0432011208,"smv+10":-0.029769664,"clarity+10+100":3.8217828342,"wig+20":32.1581666266,"nqc+20":0.0368772605,"smv+20":-0.0234627115,"clarity+20+100":3.8217823427,"wig+50":31.3850820492,"nqc+50":0.0330434758,"smv+50":-0.0239817264,"clarity+50+100":3.8217822711,"wig+100":30.9046431558,"nqc+100":0.0291987433,"smv+100":-0.0211790821,"clarity+100+100":3.8217822561,"wig+1000":29.1368161666,"nqc+1000":0.0302697055,"smv+1000":-0.0239631384,"clarity+1000+100":3.8217822494}
+{"qid":"57","wig+5":24.6239204475,"nqc+5":0.1261126965,"smv+5":-0.1090138911,"clarity+5+100":3.128615197,"wig+10":23.6528661519,"nqc+10":0.1054757483,"smv+10":-0.0727496809,"clarity+10+100":3.1286144694,"wig+20":22.957377678,"nqc+20":0.0846591957,"smv+20":-0.0546310099,"clarity+20+100":3.1286141625,"wig+50":22.1913077426,"nqc+50":0.06511607,"smv+50":-0.039415578,"clarity+50+100":3.1286139409,"wig+100":21.5950482968,"nqc+100":0.0578068599,"smv+100":-0.0388354443,"clarity+100+100":3.1286139007,"wig+1000":19.0605719386,"nqc+1000":0.0671587071,"smv+1000":-0.0525389088,"clarity+1000+100":3.1286138897}
+{"qid":"58","wig+5":36.0571981564,"nqc+5":0.0588845409,"smv+5":-0.047899588,"clarity+5+100":2.9079194061,"wig+10":34.9793196117,"nqc+10":0.0557143874,"smv+10":-0.0439817471,"clarity+10+100":2.9079193882,"wig+20":34.0603189634,"nqc+20":0.0503960442,"smv+20":-0.0378771957,"clarity+20+100":2.9079193866,"wig+50":33.2000932577,"nqc+50":0.0400869004,"smv+50":-0.027493838,"clarity+50+100":2.9079193861,"wig+100":32.5863504997,"nqc+100":0.0354340272,"smv+100":-0.0241906792,"clarity+100+100":2.907919386,"wig+1000":30.6283587697,"nqc+1000":0.0300334835,"smv+1000":-0.0229863894,"clarity+1000+100":2.907919386}
+{"qid":"59","wig+5":26.546118955,"nqc+5":0.0103668422,"smv+5":-0.0100003459,"clarity+5+100":1.9484032126,"wig+10":26.2469600144,"nqc+10":0.0195523673,"smv+10":-0.0152166918,"clarity+10+100":1.8446788407,"wig+20":25.5329239261,"nqc+20":0.0408988566,"smv+20":-0.0364209099,"clarity+20+100":1.8416900607,"wig+50":24.4073973845,"nqc+50":0.0556330118,"smv+50":-0.0472158902,"clarity+50+100":1.8411055401,"wig+100":23.5532910798,"nqc+100":0.0594687446,"smv+100":-0.0491429857,"clarity+100+100":1.8410552688,"wig+1000":20.8317199289,"nqc+1000":0.0661618914,"smv+1000":-0.0536282431,"clarity+1000+100":1.8410429916}
+{"qid":"61","wig+5":29.1762819641,"nqc+5":0.0185671133,"smv+5":-0.0156972906,"clarity+5+100":2.3332508209,"wig+10":28.7571968126,"nqc+10":0.0235054994,"smv+10":-0.01876652,"clarity+10+100":2.3029515417,"wig+20":28.1783426924,"nqc+20":0.0304245476,"smv+20":-0.026416219,"clarity+20+100":2.2987838781,"wig+50":27.2214790517,"nqc+50":0.0404701695,"smv+50":-0.0337853506,"clarity+50+100":2.2975097443,"wig+100":26.3328817671,"nqc+100":0.0483857376,"smv+100":-0.040953257,"clarity+100+100":2.2974343677,"wig+1000":24.7923380374,"nqc+1000":0.0442205328,"smv+1000":-0.0346193893,"clarity+1000+100":2.2974080716}
+{"qid":"62","wig+5":28.9787478515,"nqc+5":0.0284136874,"smv+5":-0.0230506891,"clarity+5+100":2.346483552,"wig+10":28.5563678643,"nqc+10":0.0274522011,"smv+10":-0.0208143317,"clarity+10+100":2.3305139914,"wig+20":28.2053068853,"nqc+20":0.0248938173,"smv+20":-0.017677791,"clarity+20+100":2.318835974,"wig+50":27.6948879344,"nqc+50":0.0249546474,"smv+50":-0.0186745126,"clarity+50+100":2.3084573374,"wig+100":27.2477930345,"nqc+100":0.0270709647,"smv+100":-0.0208189322,"clarity+100+100":2.3059098924,"wig+1000":24.3286620071,"nqc+1000":0.0618342718,"smv+1000":-0.0510161607,"clarity+1000+100":2.3049563001}
+{"qid":"66","wig+5":20.4951514775,"nqc+5":0.0185438667,"smv+5":-0.0146060341,"clarity+5+100":1.6175478228,"wig+10":20.2289168118,"nqc+10":0.0221154376,"smv+10":-0.017579895,"clarity+10+100":1.5433738038,"wig+20":19.9111107399,"nqc+20":0.0253706379,"smv+20":-0.0215629971,"clarity+20+100":1.5030802393,"wig+50":19.3521679069,"nqc+50":0.0344137902,"smv+50":-0.0285655676,"clarity+50+100":1.4600154877,"wig+100":18.9056607607,"nqc+100":0.037381068,"smv+100":-0.0309231501,"clarity+100+100":1.4379468528,"wig+1000":17.183027395,"nqc+1000":0.0495495177,"smv+1000":-0.0394354499,"clarity+1000+100":1.4241612325}
+{"qid":"67","wig+5":25.8031474327,"nqc+5":0.0637576652,"smv+5":-0.0530958112,"clarity+5+100":2.4579375123,"wig+10":25.1572613902,"nqc+10":0.0562119864,"smv+10":-0.0396312926,"clarity+10+100":2.4575355898,"wig+20":24.603630692,"nqc+20":0.048889817,"smv+20":-0.0337509856,"clarity+20+100":2.4573835401,"wig+50":23.8442347955,"nqc+50":0.0454204592,"smv+50":-0.0326710629,"clarity+50+100":2.4572874349,"wig+100":23.2216027814,"nqc+100":0.0455328431,"smv+100":-0.0353282168,"clarity+100+100":2.4572723761,"wig+1000":21.5260293651,"nqc+1000":0.0509960783,"smv+1000":-0.04068525,"clarity+1000+100":2.4572637575}
+{"qid":"68","wig+5":24.4014520019,"nqc+5":0.0167115853,"smv+5":-0.0151358065,"clarity+5+100":1.6864597196,"wig+10":23.7682950419,"nqc+10":0.0389300028,"smv+10":-0.034866482,"clarity+10+100":1.6817429257,"wig+20":23.197008063,"nqc+20":0.0429263498,"smv+20":-0.0371968486,"clarity+20+100":1.6784200187,"wig+50":22.4041013316,"nqc+50":0.0455716,"smv+50":-0.0371671413,"clarity+50+100":1.677312842,"wig+100":21.6539608462,"nqc+100":0.0533606457,"smv+100":-0.0430344534,"clarity+100+100":1.6771014259,"wig+1000":19.6233417643,"nqc+1000":0.0550239061,"smv+1000":-0.0423051795,"clarity+1000+100":1.6770044919}
+{"qid":"69","wig+5":26.2661178106,"nqc+5":0.074540224,"smv+5":-0.0567530183,"clarity+5+100":2.4514646552,"wig+10":25.3687215615,"nqc+10":0.0702706636,"smv+10":-0.0576690158,"clarity+10+100":2.4513444266,"wig+20":24.7026265515,"nqc+20":0.0604317032,"smv+20":-0.0434109458,"clarity+20+100":2.4512710812,"wig+50":23.6725050953,"nqc+50":0.0587421587,"smv+50":-0.0450803945,"clarity+50+100":2.4512565876,"wig+100":22.9232586503,"nqc+100":0.0567525848,"smv+100":-0.0435224758,"clarity+100+100":2.4512547037,"wig+1000":21.1706979222,"nqc+1000":0.0555709386,"smv+1000":-0.0436658811,"clarity+1000+100":2.45125369}
+{"qid":"71","wig+5":27.891378923,"nqc+5":0.1095252691,"smv+5":-0.0855197371,"clarity+5+100":2.6980339928,"wig+10":26.2647868861,"nqc+10":0.1207635261,"smv+10":-0.0999773213,"clarity+10+100":2.6980337119,"wig+20":24.8810176949,"nqc+20":0.1152702895,"smv+20":-0.0941127854,"clarity+20+100":2.6980337063,"wig+50":23.3223741292,"nqc+50":0.1021461499,"smv+50":-0.0774086328,"clarity+50+100":2.6980337058,"wig+100":22.3219885879,"nqc+100":0.0912424184,"smv+100":-0.0672865886,"clarity+100+100":2.6980337057,"wig+1000":19.7555796554,"nqc+1000":0.0687551773,"smv+1000":-0.0517263817,"clarity+1000+100":2.6980337057}
+{"qid":"72","wig+5":30.7422701109,"nqc+5":0.0518731936,"smv+5":-0.043194153,"clarity+5+100":3.0671986166,"wig+10":29.8484820675,"nqc+10":0.0512516183,"smv+10":-0.0452547685,"clarity+10+100":3.0671627143,"wig+20":28.9964531247,"nqc+20":0.0501359005,"smv+20":-0.0376512059,"clarity+20+100":3.0671573447,"wig+50":28.0062382319,"nqc+50":0.0457169453,"smv+50":-0.0354560155,"clarity+50+100":3.0671562723,"wig+100":27.3743832507,"nqc+100":0.0413086476,"smv+100":-0.0305461778,"clarity+100+100":3.0671560655,"wig+1000":25.5872826492,"nqc+1000":0.0321194324,"smv+1000":null,"clarity+1000+100":3.0671559415}
+{"qid":"74","wig+5":29.3261537358,"nqc+5":0.0271981107,"smv+5":-0.0234582395,"clarity+5+100":1.8702811444,"wig+10":28.5926104332,"nqc+10":0.0372065064,"smv+10":-0.0322646083,"clarity+10+100":1.8699131979,"wig+20":27.9995282798,"nqc+20":0.0372242343,"smv+20":-0.0299209016,"clarity+20+100":1.8697455258,"wig+50":27.0592522979,"nqc+50":0.0411077887,"smv+50":-0.0340482563,"clarity+50+100":1.8697246561,"wig+100":26.4418748998,"nqc+100":0.0397890071,"smv+100":-0.0307824648,"clarity+100+100":1.869720933,"wig+1000":24.2630725442,"nqc+1000":0.0438264939,"smv+1000":null,"clarity+1000+100":1.8697194142}
+{"qid":"79","wig+5":29.7613142659,"nqc+5":0.0220843227,"smv+5":-0.0173264435,"clarity+5+100":2.517368808,"wig+10":29.2959296191,"nqc+10":0.0236231632,"smv+10":-0.0196778428,"clarity+10+100":2.4989593126,"wig+20":28.871567166,"nqc+20":0.023247876,"smv+20":-0.0184575254,"clarity+20+100":2.4869006372,"wig+50":28.3762103275,"nqc+50":0.0214136523,"smv+50":-0.0163250402,"clarity+50+100":2.4707230793,"wig+100":28.0524200687,"nqc+100":0.0195363394,"smv+100":-0.0145452422,"clarity+100+100":2.4638290871,"wig+1000":27.2939247732,"nqc+1000":0.0163478487,"smv+1000":-0.0123315452,"clarity+1000+100":2.4428610239}
+{"qid":"80","wig+5":27.3336917383,"nqc+5":0.0853840411,"smv+5":-0.0777230473,"clarity+5+100":2.1303180599,"wig+10":26.0904406019,"nqc+10":0.0901823475,"smv+10":-0.082444134,"clarity+10+100":2.130310794,"wig+20":25.1208141138,"nqc+20":0.0827121906,"smv+20":-0.063587802,"clarity+20+100":2.1303090583,"wig+50":23.9189675771,"nqc+50":0.0761086832,"smv+50":-0.0552125612,"clarity+50+100":2.1303087127,"wig+100":22.97470676,"nqc+100":0.0744232854,"smv+100":-0.0580990726,"clarity+100+100":2.1303086966,"wig+1000":20.1545264749,"nqc+1000":0.0670254916,"smv+1000":-0.0506864262,"clarity+1000+100":2.1303086929}
+{"qid":"81","wig+5":24.1253062467,"nqc+5":0.022790357,"smv+5":-0.020485382,"clarity+5+100":1.8273093901,"wig+10":23.6950985941,"nqc+10":0.0307947513,"smv+10":-0.0250116955,"clarity+10+100":1.8013353662,"wig+20":23.1491265664,"nqc+20":0.0384709515,"smv+20":-0.0328205338,"clarity+20+100":1.7956504814,"wig+50":22.3450503983,"nqc+50":0.0461811105,"smv+50":-0.0373003839,"clarity+50+100":1.7936390037,"wig+100":21.6463505402,"nqc+100":0.0520603815,"smv+100":-0.0428336197,"clarity+100+100":1.7934227009,"wig+1000":19.0537324493,"nqc+1000":0.0681180933,"smv+1000":null,"clarity+1000+100":1.7933599277}
+{"qid":"82","wig+5":30.3274325946,"nqc+5":0.0390220679,"smv+5":-0.0315281185,"clarity+5+100":2.4113361823,"wig+10":29.4258973719,"nqc+10":0.0534290011,"smv+10":-0.0441229711,"clarity+10+100":2.4107683087,"wig+20":28.2409014866,"nqc+20":0.0708624811,"smv+20":-0.0598520814,"clarity+20+100":2.4107053742,"wig+50":26.5339348252,"nqc+50":0.0821344139,"smv+50":-0.0697221356,"clarity+50+100":2.4106311328,"wig+100":25.4035806249,"nqc+100":0.0805516091,"smv+100":-0.0635976962,"clarity+100+100":2.4106311201,"wig+1000":22.4898764524,"nqc+1000":0.0708370736,"smv+1000":-0.0533720824,"clarity+1000+100":2.4106311187}
+{"qid":"83","wig+5":26.0298140771,"nqc+5":0.1007089143,"smv+5":-0.0983568958,"clarity+5+100":2.5352590877,"wig+10":24.469488303,"nqc+10":0.123115701,"smv+10":-0.1019344124,"clarity+10+100":2.5352215268,"wig+20":23.1581092371,"nqc+20":0.1209493998,"smv+20":-0.0991626802,"clarity+20+100":2.5352186816,"wig+50":21.5494046197,"nqc+50":0.1159308776,"smv+50":-0.0874803883,"clarity+50+100":2.5352181026,"wig+100":20.4516991457,"nqc+100":0.1080368532,"smv+100":-0.0842327828,"clarity+100+100":2.5352180678,"wig+1000":17.8865707144,"nqc+1000":0.099221507,"smv+1000":-0.0791323136,"clarity+1000+100":2.5352180585}
+{"qid":"84","wig+5":31.644870413,"nqc+5":0.0070338633,"smv+5":-0.0053083859,"clarity+5+100":2.0077172928,"wig+10":31.4048619398,"nqc+10":0.0105901249,"smv+10":-0.0088045294,"clarity+10+100":1.9927827689,"wig+20":30.9235170042,"nqc+20":0.0202589944,"smv+20":-0.0176049598,"clarity+20+100":1.9784188624,"wig+50":30.2411934595,"nqc+50":0.0242692011,"smv+50":-0.0212303175,"clarity+50+100":1.9771413303,"wig+100":29.798509793,"nqc+100":0.0238462981,"smv+100":-0.0184986668,"clarity+100+100":1.9767031457,"wig+1000":28.3295486063,"nqc+1000":0.023193917,"smv+1000":-0.0180190041,"clarity+1000+100":1.9764989795}
+{"qid":"85","wig+5":33.3609083661,"nqc+5":0.0079771976,"smv+5":-0.0063284019,"clarity+5+100":1.6914422932,"wig+10":33.0559854523,"nqc+10":0.0129571462,"smv+10":-0.0111320137,"clarity+10+100":1.6644451192,"wig+20":32.6034602132,"nqc+20":0.0191633156,"smv+20":-0.0166178342,"clarity+20+100":1.6575553999,"wig+50":31.8924741054,"nqc+50":0.0249580261,"smv+50":-0.0212157974,"clarity+50+100":1.6560065904,"wig+100":31.2890621299,"nqc+100":0.028743138,"smv+100":-0.0232973592,"clarity+100+100":1.6557917372,"wig+1000":28.9678046101,"nqc+1000":0.0376689297,"smv+1000":-0.0294945679,"clarity+1000+100":1.6557528548}
+{"qid":"86","wig+5":32.8429544941,"nqc+5":0.0558637817,"smv+5":-0.0526581799,"clarity+5+100":2.2496643333,"wig+10":31.5264463455,"nqc+10":0.0658824743,"smv+10":-0.0603484574,"clarity+10+100":2.2496594009,"wig+20":30.5269047943,"nqc+20":0.0616822417,"smv+20":-0.0495144527,"clarity+20+100":2.2496585495,"wig+50":29.4183415029,"nqc+50":0.0534915203,"smv+50":-0.0397863928,"clarity+50+100":2.2496581076,"wig+100":28.6837831888,"nqc+100":0.0481030846,"smv+100":-0.0344386844,"clarity+100+100":2.2496580948,"wig+1000":26.2747397077,"nqc+1000":0.043147731,"smv+1000":null,"clarity+1000+100":2.2496580917}
+{"qid":"87","wig+5":28.5536922413,"nqc+5":0.0135642181,"smv+5":-0.010950338,"clarity+5+100":2.1723365587,"wig+10":28.2487450217,"nqc+10":0.0161575147,"smv+10":-0.0121929645,"clarity+10+100":2.1101589247,"wig+20":27.7894547972,"nqc+20":0.0220662008,"smv+20":-0.018474347,"clarity+20+100":2.0933566089,"wig+50":27.1385936345,"nqc+50":0.0254146975,"smv+50":-0.0217465339,"clarity+50+100":2.086254013,"wig+100":26.8102229385,"nqc+100":0.0221066518,"smv+100":-0.0178213,"clarity+100+100":2.0819297716,"wig+1000":25.9816688419,"nqc+1000":0.015851583,"smv+1000":null,"clarity+1000+100":2.0656597031}
+{"qid":"93","wig+5":29.8119929225,"nqc+5":0.0428327894,"smv+5":-0.0330326049,"clarity+5+100":3.1622505528,"wig+10":29.2360586833,"nqc+10":0.0382625761,"smv+10":-0.030746712,"clarity+10+100":3.161947537,"wig+20":28.7008948067,"nqc+20":0.036285544,"smv+20":-0.0238509167,"clarity+20+100":3.161770715,"wig+50":27.7802817777,"nqc+50":0.0387380607,"smv+50":-0.0322059991,"clarity+50+100":3.1617556143,"wig+100":27.1324836851,"nqc+100":0.0382195922,"smv+100":-0.0301869345,"clarity+100+100":3.1617539364,"wig+1000":25.3850031051,"nqc+1000":0.0309440881,"smv+1000":null,"clarity+1000+100":3.1617530584}
+{"qid":"94","wig+5":28.4527810969,"nqc+5":0.0262162737,"smv+5":-0.022916602,"clarity+5+100":1.992185029,"wig+10":28.057011185,"nqc+10":0.0249937519,"smv+10":-0.0198091683,"clarity+10+100":1.9762281532,"wig+20":27.6746635473,"nqc+20":0.024385982,"smv+20":-0.0176163961,"clarity+20+100":1.9678395236,"wig+50":27.0736068773,"nqc+50":0.0266200982,"smv+50":-0.0208976327,"clarity+50+100":1.9637822965,"wig+100":26.5524206806,"nqc+100":0.0293276933,"smv+100":-0.0238652288,"clarity+100+100":1.9627523968,"wig+1000":24.7039182348,"nqc+1000":0.036170541,"smv+1000":-0.0284661156,"clarity+1000+100":1.9618377332}
+{"qid":"95","wig+5":28.5119301244,"nqc+5":0.0088961524,"smv+5":-0.0075622082,"clarity+5+100":2.1816631153,"wig+10":28.2155963144,"nqc+10":0.0136363871,"smv+10":-0.0119697562,"clarity+10+100":2.1031363116,"wig+20":27.9199881333,"nqc+20":0.0155685218,"smv+20":-0.0128248757,"clarity+20+100":2.0538349729,"wig+50":27.523742217,"nqc+50":0.0165827039,"smv+50":-0.0132746589,"clarity+50+100":2.008373562,"wig+100":27.2332629273,"nqc+100":0.0166830795,"smv+100":-0.0128726112,"clarity+100+100":1.9793242876,"wig+1000":25.9626317052,"nqc+1000":0.0243827252,"smv+1000":-0.0196146207,"clarity+1000+100":1.9502397487}
+{"qid":"97","wig+5":35.1734230582,"nqc+5":0.0697248136,"smv+5":-0.0579829156,"clarity+5+100":2.717904581,"wig+10":33.979583626,"nqc+10":0.0666491849,"smv+10":-0.0498433885,"clarity+10+100":2.7179045797,"wig+20":32.892124249,"nqc+20":0.0618410018,"smv+20":-0.0477495339,"clarity+20+100":2.7179045796,"wig+50":31.8707370402,"nqc+50":0.0499844191,"smv+50":-0.0348198594,"clarity+50+100":2.7179045796,"wig+100":31.177918803,"nqc+100":0.0438256398,"smv+100":-0.0299528584,"clarity+100+100":2.7179045796,"wig+1000":28.8446201385,"nqc+1000":0.039568648,"smv+1000":-0.0310138221,"clarity+1000+100":2.7179045796}
+{"qid":"98","wig+5":27.4456457214,"nqc+5":0.0258533591,"smv+5":-0.0211772053,"clarity+5+100":2.6148982663,"wig+10":27.0503887654,"nqc+10":0.0247259837,"smv+10":-0.0187864073,"clarity+10+100":2.598858706,"wig+20":26.6267204334,"nqc+20":0.0252470918,"smv+20":-0.0187213293,"clarity+20+100":2.5929832059,"wig+50":26.136923707,"nqc+50":0.0234169613,"smv+50":-0.0179503326,"clarity+50+100":2.5867905394,"wig+100":25.7829848099,"nqc+100":0.0226384268,"smv+100":-0.0165308822,"clarity+100+100":2.5833803336,"wig+1000":24.3051666166,"nqc+1000":0.0299676774,"smv+1000":null,"clarity+1000+100":2.58016397}
+{"qid":"99","wig+5":33.5709752877,"nqc+5":0.0477758812,"smv+5":-0.0399333177,"clarity+5+100":2.3995685476,"wig+10":32.9032933216,"nqc+10":0.0430297824,"smv+10":-0.0313156705,"clarity+10+100":2.3995572337,"wig+20":32.2647582848,"nqc+20":0.0398163573,"smv+20":-0.0282198067,"clarity+20+100":2.3995558283,"wig+50":31.3317607229,"nqc+50":0.040110882,"smv+50":-0.0305178281,"clarity+50+100":2.3995556764,"wig+100":30.5664335598,"nqc+100":0.0416896071,"smv+100":-0.0329510266,"clarity+100+100":2.3995556706,"wig+1000":27.6946122611,"nqc+1000":0.0525259517,"smv+1000":-0.0423604152,"clarity+1000+100":2.3995556699}
+{"qid":"100","wig+5":20.7194819062,"nqc+5":0.0234478711,"smv+5":-0.0219688177,"clarity+5+100":2.0710104618,"wig+10":20.4004549724,"nqc+10":0.0275917677,"smv+10":-0.0241764353,"clarity+10+100":2.0037779427,"wig+20":19.9964671582,"nqc+20":0.0341666137,"smv+20":-0.0280541657,"clarity+20+100":1.9494567116,"wig+50":19.2628641309,"nqc+50":0.0474070315,"smv+50":-0.0404560835,"clarity+50+100":1.9293318548,"wig+100":18.643143409,"nqc+100":0.0543848335,"smv+100":-0.0444719444,"clarity+100+100":1.9200994824,"wig+1000":16.1010053896,"nqc+1000":0.0789748012,"smv+1000":null,"clarity+1000+100":1.9192290554}
+{"qid":"101","wig+5":29.4238701794,"nqc+5":0.0264574108,"smv+5":-0.0226823907,"clarity+5+100":2.2727013239,"wig+10":28.6946993909,"nqc+10":0.0355640258,"smv+10":-0.0331636099,"clarity+10+100":2.270585241,"wig+20":28.0017907497,"nqc+20":0.0381391991,"smv+20":-0.0316923062,"clarity+20+100":2.2701581813,"wig+50":27.2847061247,"nqc+50":0.0343436834,"smv+50":-0.0262186062,"clarity+50+100":2.2699867655,"wig+100":26.8137504216,"nqc+100":0.0311575731,"smv+100":-0.0228319743,"clarity+100+100":2.2699270822,"wig+1000":25.3738907178,"nqc+1000":0.0271130096,"smv+1000":-0.0208413356,"clarity+1000+100":2.2698747435}
+{"qid":"102","wig+5":27.5841664972,"nqc+5":0.0475943098,"smv+5":-0.0379708168,"clarity+5+100":2.0266275907,"wig+10":26.3877710877,"nqc+10":0.0740651195,"smv+10":-0.0677448714,"clarity+10+100":2.0259793573,"wig+20":25.2690746615,"nqc+20":0.0795833961,"smv+20":-0.0682970908,"clarity+20+100":2.0259809283,"wig+50":24.1314380474,"nqc+50":0.0720233146,"smv+50":-0.0534201561,"clarity+50+100":2.0259674411,"wig+100":23.2889735286,"nqc+100":0.068264074,"smv+100":-0.0519358139,"clarity+100+100":2.0259671911,"wig+1000":20.727536197,"nqc+1000":0.0675933104,"smv+1000":-0.0539206481,"clarity+1000+100":2.0259671221}
+{"qid":"103","wig+5":25.3459071275,"nqc+5":0.0172625769,"smv+5":-0.0145937487,"clarity+5+100":1.8995583717,"wig+10":25.0114562013,"nqc+10":0.0200789858,"smv+10":-0.0167050015,"clarity+10+100":1.8711771084,"wig+20":24.6943956351,"nqc+20":0.0210122806,"smv+20":-0.0165610409,"clarity+20+100":1.8501716963,"wig+50":24.1321999266,"nqc+50":0.0257389075,"smv+50":-0.0217190002,"clarity+50+100":1.8433953243,"wig+100":23.7325016496,"nqc+100":0.0263048076,"smv+100":-0.0211602948,"clarity+100+100":1.8409770864,"wig+1000":22.4386766902,"nqc+1000":0.0276615114,"smv+1000":-0.0216316905,"clarity+1000+100":1.8380807133}
+{"qid":"104","wig+5":26.0307741496,"nqc+5":0.0119417011,"smv+5":-0.009030752,"clarity+5+100":1.9083140642,"wig+10":25.737780837,"nqc+10":0.016348434,"smv+10":-0.0149432532,"clarity+10+100":1.8128483697,"wig+20":25.3824707931,"nqc+20":0.0206581903,"smv+20":-0.0170672037,"clarity+20+100":1.7598563398,"wig+50":24.8325335471,"nqc+50":0.0261683284,"smv+50":-0.0210828714,"clarity+50+100":1.726623598,"wig+100":24.33243038,"nqc+100":0.0302425632,"smv+100":-0.0253910909,"clarity+100+100":1.7205462594,"wig+1000":22.5337884557,"nqc+1000":0.0377863769,"smv+1000":-0.0292792408,"clarity+1000+100":1.7170053445}
+{"qid":"105","wig+5":31.8676224186,"nqc+5":0.0082398404,"smv+5":-0.0056977617,"clarity+5+100":1.9661887191,"wig+10":31.498601739,"nqc+10":0.0144729072,"smv+10":-0.0132949552,"clarity+10+100":1.9399978103,"wig+20":31.1694466995,"nqc+20":0.0157490923,"smv+20":-0.0131479813,"clarity+20+100":1.9289872104,"wig+50":30.7090701529,"nqc+50":0.0171227266,"smv+50":-0.0135596583,"clarity+50+100":1.9175067615,"wig+100":30.3708925318,"nqc+100":0.0171416651,"smv+100":-0.0136686475,"clarity+100+100":1.9137323053,"wig+1000":29.2354079145,"nqc+1000":0.0196581585,"smv+1000":-0.0159573428,"clarity+1000+100":1.9098367367}
+{"qid":"106","wig+5":26.0196727902,"nqc+5":0.0775850895,"smv+5":-0.0687727851,"clarity+5+100":2.8028821515,"wig+10":25.2862082111,"nqc+10":0.0681667136,"smv+10":-0.0522301129,"clarity+10+100":2.8028016408,"wig+20":24.5213209123,"nqc+20":0.0638971071,"smv+20":-0.0461742491,"clarity+20+100":2.8027890338,"wig+50":23.6923851358,"nqc+50":0.0556621043,"smv+50":-0.0391275086,"clarity+50+100":2.8027828075,"wig+100":22.9136457237,"nqc+100":0.0583791206,"smv+100":-0.0451260434,"clarity+100+100":2.8027823874,"wig+1000":19.8854879426,"nqc+1000":0.0731469478,"smv+1000":null,"clarity+1000+100":2.8027823307}
+{"qid":"107","wig+5":28.4143318212,"nqc+5":0.0365335397,"smv+5":-0.031014245,"clarity+5+100":2.4507195116,"wig+10":27.829010921,"nqc+10":0.0353187427,"smv+10":-0.0255801221,"clarity+10+100":2.4504211026,"wig+20":27.4031566143,"nqc+20":0.0305478619,"smv+20":-0.0224877686,"clarity+20+100":2.4502227611,"wig+50":26.8441515877,"nqc+50":0.0272783733,"smv+50":-0.0198435252,"clarity+50+100":2.450120953,"wig+100":26.4621642232,"nqc+100":0.0249044113,"smv+100":-0.0185486266,"clarity+100+100":2.4500722923,"wig+1000":25.267993788,"nqc+1000":0.0221783274,"smv+1000":null,"clarity+1000+100":2.4500314439}
+{"qid":"108","wig+5":26.7469765369,"nqc+5":0.002946223,"smv+5":-0.0023455555,"clarity+5+100":2.1420502555,"wig+10":26.446543703,"nqc+10":0.014907881,"smv+10":-0.0142069373,"clarity+10+100":2.0023918557,"wig+20":26.091051434,"nqc+20":0.0202510561,"smv+20":-0.0176551491,"clarity+20+100":1.9603957496,"wig+50":25.5097767588,"nqc+50":0.0271349762,"smv+50":-0.0224866568,"clarity+50+100":1.9442718473,"wig+100":24.9648354824,"nqc+100":0.0328052901,"smv+100":-0.0272901234,"clarity+100+100":1.9419796965,"wig+1000":22.5501286921,"nqc+1000":0.0514965486,"smv+1000":null,"clarity+1000+100":1.9415294354}
+{"qid":"109","wig+5":35.0927085468,"nqc+5":0.1042736837,"smv+5":-0.0886405224,"clarity+5+100":2.607399669,"wig+10":33.9483499811,"nqc+10":0.0850453705,"smv+10":-0.0629337706,"clarity+10+100":2.607399669,"wig+20":32.9788866306,"nqc+20":0.0702062332,"smv+20":-0.0445834009,"clarity+20+100":2.607399669,"wig+50":31.6580912305,"nqc+50":0.0607625136,"smv+50":-0.0424841538,"clarity+50+100":2.607399669,"wig+100":30.7993109999,"nqc+100":0.0535142546,"smv+100":-0.0398015749,"clarity+100+100":2.607399669,"wig+1000":28.6415747718,"nqc+1000":0.0420077792,"smv+1000":-0.0315812679,"clarity+1000+100":2.6073996689}
+{"qid":"110","wig+5":23.1455947548,"nqc+5":0.0299484073,"smv+5":-0.0243670088,"clarity+5+100":2.2450593754,"wig+10":22.8083098454,"nqc+10":0.0293189151,"smv+10":-0.02024154,"clarity+10+100":2.1944978769,"wig+20":22.4458436902,"nqc+20":0.0292730102,"smv+20":-0.0225556412,"clarity+20+100":2.1734297533,"wig+50":21.9668263439,"nqc+50":0.0298270787,"smv+50":-0.0223348868,"clarity+50+100":2.1532941841,"wig+100":21.4379857866,"nqc+100":0.0374145219,"smv+100":-0.0308029575,"clarity+100+100":2.1493552727,"wig+1000":19.2587590292,"nqc+1000":0.0580840933,"smv+1000":-0.0465458764,"clarity+1000+100":2.1480618326}
+{"qid":"111","wig+5":19.3164556915,"nqc+5":0.0434612159,"smv+5":-0.0357983823,"clarity+5+100":1.886637962,"wig+10":18.8755074817,"nqc+10":0.0450654377,"smv+10":-0.0332734491,"clarity+10+100":1.8648350822,"wig+20":18.4597938662,"nqc+20":0.0450693555,"smv+20":-0.033939051,"clarity+20+100":1.8523868919,"wig+50":17.8065255371,"nqc+50":0.0494481534,"smv+50":-0.0396933532,"clarity+50+100":1.8446272812,"wig+100":17.2693011582,"nqc+100":0.0537429693,"smv+100":-0.0421896113,"clarity+100+100":1.8421033756,"wig+1000":15.2946883165,"nqc+1000":0.0705305743,"smv+1000":-0.0551030354,"clarity+1000+100":1.8392485355}
+{"qid":"112","wig+5":22.5813897831,"nqc+5":0.0255748589,"smv+5":-0.0208686009,"clarity+5+100":1.768003682,"wig+10":22.2590566188,"nqc+10":0.0279460508,"smv+10":-0.0216311631,"clarity+10+100":1.7386684304,"wig+20":21.7294565828,"nqc+20":0.0414850191,"smv+20":-0.033977039,"clarity+20+100":1.7134212637,"wig+50":20.5285547189,"nqc+50":0.0698595886,"smv+50":-0.0623073381,"clarity+50+100":1.7115917209,"wig+100":19.5451855146,"nqc+100":0.080730197,"smv+100":-0.0679793921,"clarity+100+100":1.7114487423,"wig+1000":16.7387275855,"nqc+1000":0.0814148463,"smv+1000":-0.056074274,"clarity+1000+100":1.7114014894}
+{"qid":"113","wig+5":25.2325344476,"nqc+5":0.0409247344,"smv+5":-0.03863029,"clarity+5+100":1.8552839437,"wig+10":24.663486474,"nqc+10":0.0417421502,"smv+10":-0.035895834,"clarity+10+100":1.8507855225,"wig+20":24.1354488983,"nqc+20":0.0408666388,"smv+20":-0.0302970455,"clarity+20+100":1.8488504583,"wig+50":23.4532713811,"nqc+50":0.0397883572,"smv+50":-0.0301272546,"clarity+50+100":1.8479459565,"wig+100":22.8729901995,"nqc+100":0.0426334337,"smv+100":-0.0323931014,"clarity+100+100":1.8477160625,"wig+1000":20.3365481872,"nqc+1000":0.0622405538,"smv+1000":null,"clarity+1000+100":1.8476763642}
+{"qid":"114","wig+5":34.9777756909,"nqc+5":0.0608370189,"smv+5":-0.0598112295,"clarity+5+100":2.2682831541,"wig+10":33.7282613718,"nqc+10":0.0666450356,"smv+10":-0.0528086146,"clarity+10+100":2.2682813858,"wig+20":32.4278889051,"nqc+20":0.0697609615,"smv+20":-0.0567907479,"clarity+20+100":2.2682813826,"wig+50":30.8919019516,"nqc+50":0.0671524203,"smv+50":-0.0521945546,"clarity+50+100":2.2682813824,"wig+100":29.8753098198,"nqc+100":0.0623063721,"smv+100":-0.0481194525,"clarity+100+100":2.2682813824,"wig+1000":26.7964270357,"nqc+1000":0.0525645869,"smv+1000":null,"clarity+1000+100":2.2682813824}
+{"qid":"116","wig+5":32.1573617821,"nqc+5":0.016275696,"smv+5":-0.0132254159,"clarity+5+100":1.843218473,"wig+10":31.5817264567,"nqc+10":0.027288526,"smv+10":-0.0230423745,"clarity+10+100":1.842208449,"wig+20":30.9345822044,"nqc+20":0.03276102,"smv+20":-0.0286714084,"clarity+20+100":1.8419525474,"wig+50":30.0812640295,"nqc+50":0.0353359138,"smv+50":-0.0285817787,"clarity+50+100":1.8419142256,"wig+100":29.3531268303,"nqc+100":0.0390377446,"smv+100":-0.0308554383,"clarity+100+100":1.841910897,"wig+1000":26.6233287506,"nqc+1000":0.0499137814,"smv+1000":-0.0377923624,"clarity+1000+100":1.8419105804}
+{"qid":"118","wig+5":33.8851471121,"nqc+5":0.0030342742,"smv+5":-0.0025008272,"clarity+5+100":1.4933422187,"wig+10":33.7204711537,"nqc+10":0.0072399686,"smv+10":-0.0059936266,"clarity+10+100":1.4177332004,"wig+20":33.3509655924,"nqc+20":0.0146856177,"smv+20":-0.013199411,"clarity+20+100":1.4056573986,"wig+50":32.7987530803,"nqc+50":0.0189231986,"smv+50":-0.016008524,"clarity+50+100":1.4034665898,"wig+100":32.286337109,"nqc+100":0.0233728284,"smv+100":-0.0187481153,"clarity+100+100":1.4031298247,"wig+1000":29.6874496551,"nqc+1000":0.0429747406,"smv+1000":-0.0331645018,"clarity+1000+100":1.4030921165}
+{"qid":"119","wig+5":30.4838146354,"nqc+5":0.030055214,"smv+5":-0.0275317032,"clarity+5+100":1.6362646207,"wig+10":29.9152689323,"nqc+10":0.031775303,"smv+10":-0.0286295753,"clarity+10+100":1.63519053,"wig+20":29.3870537111,"nqc+20":0.0314871126,"smv+20":-0.0241658222,"clarity+20+100":1.6350611032,"wig+50":28.813883915,"nqc+50":0.0280476832,"smv+50":-0.0202971546,"clarity+50+100":1.6349737916,"wig+100":28.3342964152,"nqc+100":0.02852793,"smv+100":-0.0210245901,"clarity+100+100":1.634956283,"wig+1000":26.1329957915,"nqc+1000":0.0416614406,"smv+1000":-0.0338368098,"clarity+1000+100":1.6349531064}
+{"qid":"120","wig+5":27.9039498535,"nqc+5":0.0197398272,"smv+5":-0.0167466857,"clarity+5+100":1.7160241658,"wig+10":27.1178557459,"nqc+10":0.0374052181,"smv+10":-0.0340811574,"clarity+10+100":1.6893379395,"wig+20":26.529278239,"nqc+20":0.0368963324,"smv+20":-0.0320736584,"clarity+20+100":1.6856999639,"wig+50":25.8410885326,"nqc+50":0.0339183463,"smv+50":-0.025921445,"clarity+50+100":1.6852596591,"wig+100":25.4100736742,"nqc+100":0.0305192439,"smv+100":-0.0221810281,"clarity+100+100":1.6851955436,"wig+1000":24.0632932554,"nqc+1000":0.0273630432,"smv+1000":-0.02096517,"clarity+1000+100":1.6851270268}
+{"qid":"121","wig+5":35.1917769488,"nqc+5":0.0683933381,"smv+5":-0.0618660724,"clarity+5+100":3.3815056994,"wig+10":33.5586640562,"nqc+10":0.0870091293,"smv+10":-0.0737692858,"clarity+10+100":3.3814966405,"wig+20":31.2700401189,"nqc+20":0.1180449783,"smv+20":-0.0988268202,"clarity+20+100":3.3814935806,"wig+50":28.5050633816,"nqc+50":0.1223912928,"smv+50":-0.1039378867,"clarity+50+100":3.3814929277,"wig+100":27.1025870821,"nqc+100":0.1049843069,"smv+100":-0.0845292262,"clarity+100+100":3.3814929277,"wig+1000":25.829996683,"nqc+1000":0.0799286263,"smv+1000":-0.0561780819,"clarity+1000+100":3.3814929277}
+{"qid":"122","wig+5":24.0566003963,"nqc+5":0.0206786026,"smv+5":-0.0184379964,"clarity+5+100":1.9927882551,"wig+10":23.6635357235,"nqc+10":0.0261594111,"smv+10":-0.0242973633,"clarity+10+100":1.9647413139,"wig+20":23.3242357299,"nqc+20":0.0267092546,"smv+20":-0.0209807004,"clarity+20+100":1.936870809,"wig+50":22.7124881239,"nqc+50":0.0332247122,"smv+50":-0.0272805259,"clarity+50+100":1.9292792911,"wig+100":22.2038561292,"nqc+100":0.0366985566,"smv+100":-0.0300481514,"clarity+100+100":1.9252318422,"wig+1000":20.1279373883,"nqc+1000":0.0537546219,"smv+1000":-0.0438336442,"clarity+1000+100":1.9207591522}
+{"qid":"123","wig+5":33.6945253619,"nqc+5":0.0423266774,"smv+5":-0.0391856007,"clarity+5+100":2.8293809803,"wig+10":32.9456198376,"nqc+10":0.0401001547,"smv+10":-0.0318600288,"clarity+10+100":2.829344856,"wig+20":32.3453056158,"nqc+20":0.0355420564,"smv+20":-0.0259381849,"clarity+20+100":2.8293355476,"wig+50":31.5653083942,"nqc+50":0.032414863,"smv+50":-0.0237436933,"clarity+50+100":2.8293320568,"wig+100":31.0083429557,"nqc+100":0.0305913177,"smv+100":-0.0229044339,"clarity+100+100":2.8293314936,"wig+1000":29.2653972287,"nqc+1000":0.0283175691,"smv+1000":-0.0214164285,"clarity+1000+100":2.8293313276}
+{"qid":"126","wig+5":29.1339007261,"nqc+5":0.0145429739,"smv+5":-0.0128444105,"clarity+5+100":1.9459734572,"wig+10":28.6050852763,"nqc+10":0.0253748631,"smv+10":-0.0218568158,"clarity+10+100":1.9374444241,"wig+20":27.961929835,"nqc+20":0.0323627058,"smv+20":-0.028435633,"clarity+20+100":1.9362763002,"wig+50":27.3178411978,"nqc+50":0.0301630324,"smv+50":-0.0238824066,"clarity+50+100":1.9342113056,"wig+100":26.8230524679,"nqc+100":0.0300406403,"smv+100":-0.0225020783,"clarity+100+100":1.9332512054,"wig+1000":25.4567112419,"nqc+1000":0.0371392338,"smv+1000":-0.0306195027,"clarity+1000+100":1.9328284354}
+{"qid":"128","wig+5":30.6016526776,"nqc+5":0.0154697982,"smv+5":-0.012890404,"clarity+5+100":2.2437115209,"wig+10":29.7499621535,"nqc+10":0.039356758,"smv+10":-0.0376484532,"clarity+10+100":2.2435716527,"wig+20":29.0442106858,"nqc+20":0.0424475647,"smv+20":-0.0356699942,"clarity+20+100":2.2408731396,"wig+50":27.9746277085,"nqc+50":0.0482641113,"smv+50":-0.0391570456,"clarity+50+100":2.2408457052,"wig+100":27.0559723474,"nqc+100":0.0537128881,"smv+100":-0.0435433727,"clarity+100+100":2.2408446186,"wig+1000":24.115353309,"nqc+1000":0.0545344608,"smv+1000":-0.0422738193,"clarity+1000+100":2.2408445472}
+{"qid":"130","wig+5":21.6754276104,"nqc+5":0.0438394909,"smv+5":-0.0375037118,"clarity+5+100":2.4117320838,"wig+10":20.5807946787,"nqc+10":0.0816441016,"smv+10":-0.0734869544,"clarity+10+100":2.4107517732,"wig+20":19.6343861047,"nqc+20":0.0858845041,"smv+20":-0.0757174746,"clarity+20+100":2.4105489566,"wig+50":18.7032090193,"nqc+50":0.0757219721,"smv+50":-0.0556334755,"clarity+50+100":2.4103280657,"wig+100":17.9991301254,"nqc+100":0.0720831884,"smv+100":-0.0541211448,"clarity+100+100":2.4102933327,"wig+1000":15.6454633733,"nqc+1000":0.0636002463,"smv+1000":null,"clarity+1000+100":2.4102804991}
+{"qid":"131","wig+5":31.2673203292,"nqc+5":0.048881396,"smv+5":-0.0411503509,"clarity+5+100":1.9090455559,"wig+10":30.6190048804,"nqc+10":0.0437200425,"smv+10":-0.0358810862,"clarity+10+100":1.9090002851,"wig+20":29.8970035248,"nqc+20":0.0431882044,"smv+20":-0.0317552874,"clarity+20+100":1.9089744985,"wig+50":29.0822518592,"nqc+50":0.0391301657,"smv+50":-0.0289443618,"clarity+50+100":1.9089739231,"wig+100":28.4499945448,"nqc+100":0.0382093925,"smv+100":-0.0284524041,"clarity+100+100":1.9089738701,"wig+1000":26.0503352348,"nqc+1000":0.0459642696,"smv+1000":-0.0353888335,"clarity+1000+100":1.9089738587}
+{"qid":"132","wig+5":30.6859540862,"nqc+5":0.0178605134,"smv+5":-0.0154314893,"clarity+5+100":1.7710223473,"wig+10":30.2443298477,"nqc+10":0.0230177518,"smv+10":-0.0191251568,"clarity+10+100":1.7641653978,"wig+20":29.7526931935,"nqc+20":0.0264077304,"smv+20":-0.0219346213,"clarity+20+100":1.7630947123,"wig+50":29.0275815128,"nqc+50":0.0305563608,"smv+50":-0.024733461,"clarity+50+100":1.7627706265,"wig+100":28.3724892237,"nqc+100":0.0355945224,"smv+100":-0.0284844862,"clarity+100+100":1.7627334707,"wig+1000":25.5394892136,"nqc+1000":0.0523340637,"smv+1000":null,"clarity+1000+100":1.7627307657}
+{"qid":"133","wig+5":37.5981859276,"nqc+5":0.0902168401,"smv+5":-0.072678572,"clarity+5+100":2.9572715464,"wig+10":35.9932183206,"nqc+10":0.0862485762,"smv+10":-0.0682454864,"clarity+10+100":2.9572715464,"wig+20":34.6928148127,"nqc+20":0.0766698089,"smv+20":-0.0585235664,"clarity+20+100":2.9572715464,"wig+50":33.2640047556,"nqc+50":0.0640535575,"smv+50":-0.0458156911,"clarity+50+100":2.9572715464,"wig+100":32.441986504,"nqc+100":0.0540701593,"smv+100":-0.0370247817,"clarity+100+100":2.9572715464,"wig+1000":29.8306811723,"nqc+1000":0.0425142674,"smv+1000":-0.032620076,"clarity+1000+100":2.9572715464}
+{"qid":"135","wig+5":29.1177710343,"nqc+5":0.0233235559,"smv+5":-0.0196274834,"clarity+5+100":2.211940407,"wig+10":28.6683132857,"nqc+10":0.0261024034,"smv+10":-0.020789951,"clarity+10+100":2.2033907075,"wig+20":28.1246293712,"nqc+20":0.0313182896,"smv+20":-0.0246523281,"clarity+20+100":2.1998183126,"wig+50":27.2891509174,"nqc+50":0.0377148811,"smv+50":-0.0306504776,"clarity+50+100":2.1993960412,"wig+100":26.5726817849,"nqc+100":0.0420829253,"smv+100":-0.0349637507,"clarity+100+100":2.1993739819,"wig+1000":24.0098087582,"nqc+1000":0.0500814661,"smv+1000":-0.0391527581,"clarity+1000+100":2.1993703285}
+{"qid":"136","wig+5":40.8057236433,"nqc+5":0.0874461727,"smv+5":-0.068922804,"clarity+5+100":2.921019707,"wig+10":38.3632030924,"nqc+10":0.1347760486,"smv+10":-0.1000188965,"clarity+10+100":2.921019704,"wig+20":34.5588976504,"nqc+20":0.185842254,"smv+20":-0.1659645486,"clarity+20+100":2.921019704,"wig+50":30.8442397301,"nqc+50":0.1720385833,"smv+50":-0.1465910522,"clarity+50+100":2.921019704,"wig+100":28.9964230849,"nqc+100":0.1435884134,"smv+100":-0.1104542753,"clarity+100+100":2.921019704,"wig+1000":26.2929891766,"nqc+1000":0.0858640136,"smv+1000":-0.0572722695,"clarity+1000+100":2.921019704}
+{"qid":"137","wig+5":28.5663474443,"nqc+5":0.0143279918,"smv+5":-0.0128094671,"clarity+5+100":2.2001084772,"wig+10":28.2925099511,"nqc+10":0.0152319499,"smv+10":-0.0126429517,"clarity+10+100":2.1216144015,"wig+20":27.957916707,"nqc+20":0.0185916611,"smv+20":-0.0140505785,"clarity+20+100":2.077595789,"wig+50":27.3688488849,"nqc+50":0.024200092,"smv+50":-0.0197829584,"clarity+50+100":2.0636691876,"wig+100":26.792406463,"nqc+100":0.0299731783,"smv+100":-0.0249777838,"clarity+100+100":2.0606071374,"wig+1000":24.9079284521,"nqc+1000":0.033825682,"smv+1000":null,"clarity+1000+100":2.0599677389}
+{"qid":"138","wig+5":24.2117507134,"nqc+5":0.0714101442,"smv+5":-0.069070637,"clarity+5+100":3.0803651497,"wig+10":23.6045242302,"nqc+10":0.0611729746,"smv+10":-0.0504981903,"clarity+10+100":3.0786029842,"wig+20":22.9986915541,"nqc+20":0.0557530515,"smv+20":-0.0375113307,"clarity+20+100":3.0779609645,"wig+50":22.2007872858,"nqc+50":0.0521251653,"smv+50":-0.038261153,"clarity+50+100":3.0777124643,"wig+100":21.528597228,"nqc+100":0.0534624433,"smv+100":-0.0419544631,"clarity+100+100":3.0776776807,"wig+1000":19.3413571824,"nqc+1000":0.0597670208,"smv+1000":-0.0468585522,"clarity+1000+100":3.0776634075}
+{"qid":"139","wig+5":25.3133094244,"nqc+5":0.0227346442,"smv+5":-0.0160702006,"clarity+5+100":1.9987008077,"wig+10":24.5007296284,"nqc+10":0.049774193,"smv+10":-0.0444168086,"clarity+10+100":1.9894183294,"wig+20":23.6942798298,"nqc+20":0.0569540578,"smv+20":-0.0504014932,"clarity+20+100":1.9871458464,"wig+50":22.6591403201,"nqc+50":0.0604989511,"smv+50":-0.0476133173,"clarity+50+100":1.9841714714,"wig+100":21.851538525,"nqc+100":0.0624789928,"smv+100":-0.049585102,"clarity+100+100":1.9840500006,"wig+1000":19.3475052185,"nqc+1000":0.0657618268,"smv+1000":-0.051492925,"clarity+1000+100":1.9840313955}
+{"qid":"140","wig+5":42.2554422604,"nqc+5":0.0252370933,"smv+5":-0.0211363283,"clarity+5+100":2.9667943773,"wig+10":41.2050042749,"nqc+10":0.0363298653,"smv+10":-0.0325942605,"clarity+10+100":2.9667836607,"wig+20":39.9768152101,"nqc+20":0.0461300378,"smv+20":-0.0379250761,"clarity+20+100":2.9667835789,"wig+50":38.4499470422,"nqc+50":0.0475619384,"smv+50":-0.0399839411,"clarity+50+100":2.9667323183,"wig+100":37.4810472601,"nqc+100":0.0445997688,"smv+100":-0.0342844401,"clarity+100+100":2.9667323182,"wig+1000":34.9640236265,"nqc+1000":0.033702244,"smv+1000":-0.0251344957,"clarity+1000+100":2.9667323182}
+{"qid":"141","wig+5":32.332729936,"nqc+5":0.0756218289,"smv+5":-0.0713724404,"clarity+5+100":2.9885314614,"wig+10":31.1799267928,"nqc+10":0.0680539235,"smv+10":-0.0575285813,"clarity+10+100":2.9885314579,"wig+20":30.3926729549,"nqc+20":0.0561940206,"smv+20":-0.0415228917,"clarity+20+100":2.9885314569,"wig+50":29.738864514,"nqc+50":0.0406115587,"smv+50":-0.0259034238,"clarity+50+100":2.9885314558,"wig+100":29.3443879195,"nqc+100":0.03220009,"smv+100":-0.0188421229,"clarity+100+100":2.9885314553,"wig+1000":28.1568976942,"nqc+1000":0.0213277627,"smv+1000":-0.0157039925,"clarity+1000+100":2.9885314549}
+{"qid":"142","wig+5":26.1996878931,"nqc+5":0.0452446855,"smv+5":-0.0429971134,"clarity+5+100":1.9205427386,"wig+10":25.5577231813,"nqc+10":0.0522809381,"smv+10":-0.0415621916,"clarity+10+100":1.9186689604,"wig+20":24.604346742,"nqc+20":0.0708203879,"smv+20":-0.0610720108,"clarity+20+100":1.9184738855,"wig+50":23.1522597865,"nqc+50":0.0892061691,"smv+50":-0.0743589435,"clarity+50+100":1.9180344756,"wig+100":21.962583871,"nqc+100":0.09884424,"smv+100":-0.0808444858,"clarity+100+100":1.9180339014,"wig+1000":18.2849081585,"nqc+1000":0.1062987125,"smv+1000":-0.08457861,"clarity+1000+100":1.9180338707}
+{"qid":"143","wig+5":21.3427917764,"nqc+5":0.0766780032,"smv+5":-0.0755824758,"clarity+5+100":1.9929564308,"wig+10":20.5609072213,"nqc+10":0.0827543247,"smv+10":-0.0645272062,"clarity+10+100":1.9900784482,"wig+20":19.627193116,"nqc+20":0.0938549275,"smv+20":-0.0770789438,"clarity+20+100":1.9891932284,"wig+50":18.4281814058,"nqc+50":0.0971774024,"smv+50":-0.0777621963,"clarity+50+100":1.9890059543,"wig+100":17.6038818152,"nqc+100":0.094448437,"smv+100":-0.0726639273,"clarity+100+100":1.9889582584,"wig+1000":14.8980934958,"nqc+1000":0.1040656017,"smv+1000":-0.0862458101,"clarity+1000+100":1.9889422492}
+{"qid":"145","wig+5":26.6321164036,"nqc+5":0.0554682587,"smv+5":-0.0504631641,"clarity+5+100":2.2136094412,"wig+10":25.6808638521,"nqc+10":0.065063644,"smv+10":-0.0577283815,"clarity+10+100":2.2133375303,"wig+20":24.8271768902,"nqc+20":0.0656677346,"smv+20":-0.052232735,"clarity+20+100":2.213272431,"wig+50":23.6428821088,"nqc+50":0.0681365601,"smv+50":-0.0541287552,"clarity+50+100":2.2132621096,"wig+100":22.8477172645,"nqc+100":0.0650228887,"smv+100":-0.0505888136,"clarity+100+100":2.2132609422,"wig+1000":19.7536335996,"nqc+1000":0.0737040518,"smv+1000":null,"clarity+1000+100":2.2132608021}
+{"qid":"146","wig+5":31.5150437747,"nqc+5":0.074620605,"smv+5":-0.060410365,"clarity+5+100":3.1957649966,"wig+10":29.9042442343,"nqc+10":0.0894296258,"smv+10":-0.0719355539,"clarity+10+100":3.1957634626,"wig+20":28.5779304273,"nqc+20":0.0854984685,"smv+20":-0.072364473,"clarity+20+100":3.1957627391,"wig+50":27.3045577314,"nqc+50":0.0706134249,"smv+50":-0.051948986,"clarity+50+100":3.195762735,"wig+100":26.4430074246,"nqc+100":0.062606821,"smv+100":-0.0442822659,"clarity+100+100":3.1957627344,"wig+1000":25.3646024836,"nqc+1000":0.0537192761,"smv+1000":-0.0388900576,"clarity+1000+100":3.1957627342}
+{"qid":"147","wig+5":34.9208255634,"nqc+5":0.0893737608,"smv+5":-0.0730985833,"clarity+5+100":2.7138902748,"wig+10":33.6732319508,"nqc+10":0.0792022132,"smv+10":-0.0601977623,"clarity+10+100":2.7138902747,"wig+20":32.6318717719,"nqc+20":0.0685889192,"smv+20":-0.0487431776,"clarity+20+100":2.7138902747,"wig+50":31.4488676022,"nqc+50":0.057892267,"smv+50":-0.0391472086,"clarity+50+100":2.7138902747,"wig+100":30.5578178988,"nqc+100":0.0533494946,"smv+100":-0.0394934747,"clarity+100+100":2.7138902747,"wig+1000":27.8688483013,"nqc+1000":0.0448495497,"smv+1000":-0.0329307132,"clarity+1000+100":2.7138902747}
+{"qid":"148","wig+5":36.8360860488,"nqc+5":0.0723690178,"smv+5":-0.0588604476,"clarity+5+100":3.6818323473,"wig+10":35.4478143618,"nqc+10":0.069680925,"smv+10":-0.0592957323,"clarity+10+100":3.6818323344,"wig+20":34.286407974,"nqc+20":0.0630741243,"smv+20":-0.0491426611,"clarity+20+100":3.6818323336,"wig+50":33.0945257632,"nqc+50":0.0516065912,"smv+50":-0.0382976769,"clarity+50+100":3.6818323335,"wig+100":32.410053721,"nqc+100":0.0431602522,"smv+100":-0.0299493199,"clarity+100+100":3.6818323335,"wig+1000":30.8490671363,"nqc+1000":0.0275001556,"smv+1000":-0.0196784907,"clarity+1000+100":3.6818323335}
+{"qid":"149","wig+5":35.0280163977,"nqc+5":0.0445916844,"smv+5":-0.0405969374,"clarity+5+100":2.8094955696,"wig+10":34.1239769903,"nqc+10":0.0508472299,"smv+10":-0.0444445363,"clarity+10+100":2.8093248032,"wig+20":32.9360536283,"nqc+20":0.0641796718,"smv+20":-0.0522694028,"clarity+20+100":2.8093197947,"wig+50":31.1047230328,"nqc+50":0.0777558657,"smv+50":-0.0654028971,"clarity+50+100":2.809319762,"wig+100":29.4356018439,"nqc+100":0.0919614335,"smv+100":-0.0754148266,"clarity+100+100":2.809319762,"wig+1000":24.8854533123,"nqc+1000":0.0855791409,"smv+1000":-0.0644763772,"clarity+1000+100":2.809319762}
+{"qid":"150","wig+5":31.6055574447,"nqc+5":0.0240211984,"smv+5":-0.021717952,"clarity+5+100":3.2759028662,"wig+10":31.0293571838,"nqc+10":0.0307673207,"smv+10":-0.0232185403,"clarity+10+100":3.2601409112,"wig+20":29.9733093052,"nqc+20":0.0483140604,"smv+20":-0.0423136546,"clarity+20+100":3.2599675275,"wig+50":28.721920241,"nqc+50":0.0507336787,"smv+50":-0.0437521107,"clarity+50+100":3.2599618168,"wig+100":28.021644523,"nqc+100":0.0453116083,"smv+100":-0.0354538568,"clarity+100+100":3.2599608492,"wig+1000":26.4279407676,"nqc+1000":0.0291800663,"smv+1000":-0.0212929515,"clarity+1000+100":3.2599601642}
+{"qid":"152","wig+5":23.5201522302,"nqc+5":0.0311670242,"smv+5":-0.0256475364,"clarity+5+100":3.4285542141,"wig+10":22.9595868091,"nqc+10":0.0403828431,"smv+10":-0.033585886,"clarity+10+100":3.3887324479,"wig+20":22.3860577945,"nqc+20":0.0444137312,"smv+20":-0.0367894707,"clarity+20+100":3.3637210613,"wig+50":21.5535343931,"nqc+50":0.0498308513,"smv+50":-0.0402260989,"clarity+50+100":3.3536820158,"wig+100":20.8239710002,"nqc+100":0.0556395001,"smv+100":-0.0454300788,"clarity+100+100":3.3538003499,"wig+1000":19.3392880502,"nqc+1000":0.0603124215,"smv+1000":-0.0471904563,"clarity+1000+100":3.353033792}
+{"qid":"153","wig+5":27.3405129619,"nqc+5":0.1000772594,"smv+5":-0.0834225125,"clarity+5+100":3.1396505891,"wig+10":26.0923523975,"nqc+10":0.0975253542,"smv+10":-0.0739381405,"clarity+10+100":3.1396209846,"wig+20":24.794983612,"nqc+20":0.0983534412,"smv+20":-0.076731449,"clarity+20+100":3.1396184646,"wig+50":23.1976472484,"nqc+50":0.0937301113,"smv+50":-0.0740573816,"clarity+50+100":3.1396181837,"wig+100":22.4294552862,"nqc+100":0.0776849146,"smv+100":-0.0586791857,"clarity+100+100":3.1396180344,"wig+1000":21.8843432949,"nqc+1000":0.0702146991,"smv+1000":-0.0471279598,"clarity+1000+100":3.1396179959}
+{"qid":"154","wig+5":31.7469812569,"nqc+5":0.0294893016,"smv+5":-0.025020335,"clarity+5+100":2.9674272577,"wig+10":31.4111174356,"nqc+10":0.0241463667,"smv+10":-0.0157524305,"clarity+10+100":2.963815422,"wig+20":31.0424127775,"nqc+20":0.0218685977,"smv+20":-0.0144045788,"clarity+20+100":2.9619970133,"wig+50":30.528106543,"nqc+50":0.0207136967,"smv+50":-0.0157254358,"clarity+50+100":2.9612679247,"wig+100":30.1338372544,"nqc+100":0.0206058081,"smv+100":-0.0155749572,"clarity+100+100":2.9610471505,"wig+1000":28.7215435667,"nqc+1000":0.0221920587,"smv+1000":-0.0175523219,"clarity+1000+100":2.9609078854}
+{"qid":"155","wig+5":34.004767998,"nqc+5":0.1910944326,"smv+5":-0.1858066522,"clarity+5+100":2.9256087598,"wig+10":31.3741243288,"nqc+10":0.1802830532,"smv+10":-0.1525014891,"clarity+10+100":2.9256087598,"wig+20":29.3944133232,"nqc+20":0.1564832255,"smv+20":-0.1193954112,"clarity+20+100":2.9256087598,"wig+50":27.5779932464,"nqc+50":0.1196984339,"smv+50":-0.083528707,"clarity+50+100":2.9256087598,"wig+100":26.5352633901,"nqc+100":0.0972066073,"smv+100":-0.0616014881,"clarity+100+100":2.9256087598,"wig+1000":23.3270836875,"nqc+1000":0.0764918435,"smv+1000":-0.0600549497,"clarity+1000+100":2.9256087598}
+{"qid":"156","wig+5":20.2857060951,"nqc+5":0.0410221789,"smv+5":-0.0361718679,"clarity+5+100":2.4615885816,"wig+10":19.8541463127,"nqc+10":0.0462484701,"smv+10":-0.0365488953,"clarity+10+100":2.4178050399,"wig+20":18.9672383156,"nqc+20":0.0822905361,"smv+20":-0.0700782131,"clarity+20+100":2.4076209402,"wig+50":17.6356254219,"nqc+50":0.1022865988,"smv+50":-0.0881415391,"clarity+50+100":2.4039054695,"wig+100":16.7707152418,"nqc+100":0.099765076,"smv+100":-0.0800608081,"clarity+100+100":2.4015127252,"wig+1000":14.5836015928,"nqc+1000":0.1083373083,"smv+1000":-0.0901060945,"clarity+1000+100":2.4012311709}
+{"qid":"157","wig+5":36.8724134043,"nqc+5":0.0738155933,"smv+5":-0.0604282171,"clarity+5+100":2.9158982945,"wig+10":35.8220146072,"nqc+10":0.0645001168,"smv+10":-0.0513951878,"clarity+10+100":2.9158982916,"wig+20":34.641450959,"nqc+20":0.0627595137,"smv+20":-0.0456206074,"clarity+20+100":2.9158982915,"wig+50":33.2001037524,"nqc+50":0.0583792193,"smv+50":-0.0447776984,"clarity+50+100":2.9158982915,"wig+100":32.265970862,"nqc+100":0.0537005132,"smv+100":-0.0395083176,"clarity+100+100":2.9158982915,"wig+1000":29.5002021831,"nqc+1000":0.0444210593,"smv+1000":-0.0336685496,"clarity+1000+100":2.9158982915}
+{"qid":"158","wig+5":29.0233563552,"nqc+5":0.0904854645,"smv+5":-0.0832486484,"clarity+5+100":3.3320447836,"wig+10":27.4912847052,"nqc+10":0.1193314973,"smv+10":-0.087135707,"clarity+10+100":3.3319991818,"wig+20":25.4062489718,"nqc+20":0.1472456283,"smv+20":-0.1328281024,"clarity+20+100":3.331999767,"wig+50":23.1558870649,"nqc+50":0.1421318703,"smv+50":-0.1151775256,"clarity+50+100":3.3319997651,"wig+100":21.6565781599,"nqc+100":0.1327043505,"smv+100":-0.1035681527,"clarity+100+100":3.331999765,"wig+1000":19.4853771462,"nqc+1000":0.0925645388,"smv+1000":-0.0663461152,"clarity+1000+100":3.331999765}
+{"qid":"160","wig+5":20.0946479798,"nqc+5":0.039467719,"smv+5":-0.033908602,"clarity+5+100":2.0812272689,"wig+10":19.5319124502,"nqc+10":0.0573896113,"smv+10":-0.0468956287,"clarity+10+100":2.04582503,"wig+20":18.6009709658,"nqc+20":0.0890238403,"smv+20":-0.0783020763,"clarity+20+100":2.0413262133,"wig+50":17.2876018727,"nqc+50":0.1086260089,"smv+50":-0.0906040879,"clarity+50+100":2.0404157179,"wig+100":16.2192660512,"nqc+100":0.1184736642,"smv+100":-0.0986744107,"clarity+100+100":2.0402438967,"wig+1000":14.1033180614,"nqc+1000":0.1043525214,"smv+1000":-0.0791907991,"clarity+1000+100":2.040151677}
+{"qid":"161","wig+5":25.4774926306,"nqc+5":0.0103609361,"smv+5":-0.009345107,"clarity+5+100":2.0521538579,"wig+10":25.2463118933,"nqc+10":0.0133845017,"smv+10":-0.0118370583,"clarity+10+100":2.0384080876,"wig+20":25.0032454276,"nqc+20":0.0153765643,"smv+20":-0.0122800713,"clarity+20+100":2.0016866,"wig+50":24.5310064437,"nqc+50":0.0219736341,"smv+50":-0.0184164196,"clarity+50+100":1.9571766369,"wig+100":24.0332042929,"nqc+100":0.0288522369,"smv+100":-0.0246723935,"clarity+100+100":1.9547164519,"wig+1000":22.052652629,"nqc+1000":0.0409369424,"smv+1000":-0.0330376861,"clarity+1000+100":1.9530922706}
+{"qid":"163","wig+5":30.1770996091,"nqc+5":0.0816220919,"smv+5":-0.0684260662,"clarity+5+100":2.3409230832,"wig+10":29.2447464368,"nqc+10":0.0723897187,"smv+10":-0.0508272332,"clarity+10+100":2.3409226331,"wig+20":28.4184581731,"nqc+20":0.0638435194,"smv+20":-0.0449980676,"clarity+20+100":2.3409225827,"wig+50":26.9968307987,"nqc+50":0.0698693002,"smv+50":-0.0556193142,"clarity+50+100":2.3409225722,"wig+100":25.9033391481,"nqc+100":0.0709940776,"smv+100":-0.0579698011,"clarity+100+100":2.3409225722,"wig+1000":23.068232633,"nqc+1000":0.0594737949,"smv+1000":-0.044025945,"clarity+1000+100":2.3409225721}
+{"qid":"164","wig+5":34.5293180212,"nqc+5":0.1275540055,"smv+5":-0.1091300155,"clarity+5+100":3.2349494894,"wig+10":32.580744568,"nqc+10":0.1229589455,"smv+10":-0.1007805905,"clarity+10+100":3.2349494894,"wig+20":31.0544197798,"nqc+20":0.1085029936,"smv+20":-0.0823742631,"clarity+20+100":3.2349494894,"wig+50":29.4922364995,"nqc+50":0.088546081,"smv+50":-0.060781853,"clarity+50+100":3.2349494894,"wig+100":28.431900175,"nqc+100":0.0772862182,"smv+100":-0.0549188945,"clarity+100+100":3.2349494894,"wig+1000":25.4219959218,"nqc+1000":0.0574434728,"smv+1000":-0.0427522993,"clarity+1000+100":3.2349494894}
+{"qid":"165","wig+5":29.9076190242,"nqc+5":0.0190128955,"smv+5":-0.0154229059,"clarity+5+100":1.8886928315,"wig+10":29.5614304803,"nqc+10":0.0197699052,"smv+10":-0.0160907205,"clarity+10+100":1.8658680946,"wig+20":29.250733146,"nqc+20":0.0191390525,"smv+20":-0.0142202967,"clarity+20+100":1.8524290376,"wig+50":28.6328760025,"nqc+50":0.0257412519,"smv+50":-0.0207973134,"clarity+50+100":1.8475179761,"wig+100":28.0524711438,"nqc+100":0.0306940723,"smv+100":-0.0256922339,"clarity+100+100":1.8469808094,"wig+1000":25.6726010414,"nqc+1000":0.0439544448,"smv+1000":-0.0341894656,"clarity+1000+100":1.8468751472}
+{"qid":"167","wig+5":45.3424963525,"nqc+5":0.0268395681,"smv+5":-0.0220553846,"clarity+5+100":3.6177271701,"wig+10":44.8568842026,"nqc+10":0.022464692,"smv+10":-0.0165099001,"clarity+10+100":3.6176807341,"wig+20":44.3432697606,"nqc+20":0.0206241868,"smv+20":-0.0139455296,"clarity+20+100":3.6176672557,"wig+50":43.5569714102,"nqc+50":0.0208348582,"smv+50":-0.0164847845,"clarity+50+100":3.6176658905,"wig+100":43.0364943423,"nqc+100":0.0195774416,"smv+100":-0.0153084987,"clarity+100+100":3.6176657411,"wig+1000":41.6620574192,"nqc+1000":0.0151079065,"smv+1000":-0.0113420232,"clarity+1000+100":3.6176656433}
+{"qid":"168","wig+5":27.4022264841,"nqc+5":0.0076704081,"smv+5":-0.0066203752,"clarity+5+100":2.1150815268,"wig+10":27.0734263932,"nqc+10":0.0145786065,"smv+10":-0.0134208612,"clarity+10+100":2.0412150605,"wig+20":26.8324635724,"nqc+20":0.0142660658,"smv+20":-0.012195951,"clarity+20+100":1.9676541304,"wig+50":26.4914905627,"nqc+50":0.0148906662,"smv+50":-0.0115555617,"clarity+50+100":1.8941915497,"wig+100":26.2408527451,"nqc+100":0.0147405297,"smv+100":-0.01164281,"clarity+100+100":1.857590798,"wig+1000":25.3073558377,"nqc+1000":0.0178700067,"smv+1000":-0.0137479757,"clarity+1000+100":1.7771762489}
+{"qid":"169","wig+5":24.734549616,"nqc+5":0.0188648485,"smv+5":-0.0173035832,"clarity+5+100":1.6532536643,"wig+10":24.3263960201,"nqc+10":0.0247030937,"smv+10":-0.0206295609,"clarity+10+100":1.6260255287,"wig+20":23.8259592976,"nqc+20":0.0312258414,"smv+20":-0.0257950217,"clarity+20+100":1.6211021164,"wig+50":23.1333564104,"nqc+50":0.0351993568,"smv+50":-0.0289105189,"clarity+50+100":1.6179393914,"wig+100":22.6628872147,"nqc+100":0.0343422125,"smv+100":-0.027431528,"clarity+100+100":1.6169304187,"wig+1000":21.2249886499,"nqc+1000":0.0383653875,"smv+1000":-0.029624925,"clarity+1000+100":1.6156195558}
+{"qid":"170","wig+5":33.3296327492,"nqc+5":0.0302601423,"smv+5":-0.027981812,"clarity+5+100":2.3705554863,"wig+10":32.5146827094,"nqc+10":0.0383400856,"smv+10":-0.0340072341,"clarity+10+100":2.3684579796,"wig+20":31.695490002,"nqc+20":0.0422913348,"smv+20":-0.0339757415,"clarity+20+100":2.3683589877,"wig+50":30.5641833217,"nqc+50":0.0458232792,"smv+50":-0.0367696731,"clarity+50+100":2.3683413157,"wig+100":29.7117806736,"nqc+100":0.0466023081,"smv+100":-0.0370521617,"clarity+100+100":2.3683401751,"wig+1000":27.5682209267,"nqc+1000":0.0440790077,"smv+1000":-0.0349393012,"clarity+1000+100":2.3683399397}
+{"qid":"171","wig+5":33.7427623188,"nqc+5":0.0179714083,"smv+5":-0.0157247754,"clarity+5+100":2.4000953452,"wig+10":33.1439264977,"nqc+10":0.0253238529,"smv+10":-0.0232077262,"clarity+10+100":2.374775373,"wig+20":32.4755480032,"nqc+20":0.030736205,"smv+20":-0.0248363897,"clarity+20+100":2.3632336296,"wig+50":31.5084515377,"nqc+50":0.0352968193,"smv+50":-0.029190686,"clarity+50+100":2.3587118519,"wig+100":30.8413694088,"nqc+100":0.0347917915,"smv+100":-0.0281410546,"clarity+100+100":2.3586441694,"wig+1000":28.8476003379,"nqc+1000":0.0340635722,"smv+1000":-0.0247640885,"clarity+1000+100":2.3586141113}
+{"qid":"173","wig+5":32.3011652051,"nqc+5":0.0130255805,"smv+5":-0.0102255524,"clarity+5+100":2.4503481176,"wig+10":32.019377886,"nqc+10":0.0140470984,"smv+10":-0.0103761009,"clarity+10+100":2.4039256997,"wig+20":31.5923280573,"nqc+20":0.0190162942,"smv+20":-0.0154916424,"clarity+20+100":2.3958426821,"wig+50":30.96063472,"nqc+50":0.0227405533,"smv+50":-0.0188688873,"clarity+50+100":2.3937840775,"wig+100":30.4403873035,"nqc+100":0.0249314024,"smv+100":-0.0204564275,"clarity+100+100":2.3934638593,"wig+1000":28.7176319765,"nqc+1000":0.0268453365,"smv+1000":-0.0207285788,"clarity+1000+100":2.3933469105}
+{"qid":"175","wig+5":36.3486532307,"nqc+5":0.0475249561,"smv+5":-0.0402049183,"clarity+5+100":3.028260611,"wig+10":35.5283195396,"nqc+10":0.0432146867,"smv+10":-0.0360538245,"clarity+10+100":3.0282583774,"wig+20":35.0179809432,"nqc+20":0.034920118,"smv+20":-0.0243131955,"clarity+20+100":3.0282567786,"wig+50":34.2643763463,"nqc+50":0.0312102412,"smv+50":-0.0216650721,"clarity+50+100":3.0282562797,"wig+100":33.5296354231,"nqc+100":0.0331744602,"smv+100":-0.0261821028,"clarity+100+100":3.0282562661,"wig+1000":31.3848597379,"nqc+1000":0.0323903881,"smv+1000":-0.0255947197,"clarity+1000+100":3.0282562651}
+{"qid":"176","wig+5":29.5874140227,"nqc+5":0.0114427022,"smv+5":-0.0095585218,"clarity+5+100":2.4841257722,"wig+10":28.9222062738,"nqc+10":0.0304593591,"smv+10":-0.0275052019,"clarity+10+100":2.4444558035,"wig+20":28.2724977116,"nqc+20":0.0347943735,"smv+20":-0.0309120427,"clarity+20+100":2.4426496234,"wig+50":27.5912852497,"nqc+50":0.0323014208,"smv+50":-0.0250079253,"clarity+50+100":2.440813852,"wig+100":27.060011359,"nqc+100":0.0323378041,"smv+100":-0.0242542598,"clarity+100+100":2.4400212274,"wig+1000":25.3508890982,"nqc+1000":0.0379414453,"smv+1000":-0.0314239345,"clarity+1000+100":2.4398993974}
+{"qid":"177","wig+5":25.0468482108,"nqc+5":0.0609384679,"smv+5":-0.0485478166,"clarity+5+100":3.3977780475,"wig+10":24.3241482998,"nqc+10":0.0587641702,"smv+10":-0.0454693852,"clarity+10+100":3.3972665247,"wig+20":23.652729423,"nqc+20":0.0566895602,"smv+20":-0.0406340842,"clarity+20+100":3.3971024732,"wig+50":22.711797392,"nqc+50":0.056783722,"smv+50":-0.0438500814,"clarity+50+100":3.3970707134,"wig+100":21.9872269839,"nqc+100":0.0571317561,"smv+100":-0.0448967171,"clarity+100+100":3.3970673784,"wig+1000":19.5324544379,"nqc+1000":0.0615584445,"smv+1000":-0.0459374773,"clarity+1000+100":3.3970662565}
+{"qid":"181","wig+5":26.211777187,"nqc+5":0.0504918163,"smv+5":-0.0421273796,"clarity+5+100":2.8824239421,"wig+10":25.5701037198,"nqc+10":0.0475603418,"smv+10":-0.0366726237,"clarity+10+100":2.8817599118,"wig+20":24.9738395412,"nqc+20":0.0445658358,"smv+20":-0.0328729835,"clarity+20+100":2.8815079937,"wig+50":24.2406497658,"nqc+50":0.0409650345,"smv+50":-0.030670883,"clarity+50+100":2.8814188062,"wig+100":23.6253283599,"nqc+100":0.042162837,"smv+100":-0.0320902512,"clarity+100+100":2.8813958221,"wig+1000":21.5565804033,"nqc+1000":0.0473047882,"smv+1000":null,"clarity+1000+100":2.8813852771}
+{"qid":"182","wig+5":34.4879152409,"nqc+5":0.0321956465,"smv+5":-0.0256312521,"clarity+5+100":2.9046087058,"wig+10":33.9137070001,"nqc+10":0.0307717543,"smv+10":-0.0232285598,"clarity+10+100":2.9045455346,"wig+20":33.3703469728,"nqc+20":0.0290608962,"smv+20":-0.0218075435,"clarity+20+100":2.9045381331,"wig+50":32.8015548146,"nqc+50":0.0248255736,"smv+50":-0.0173136318,"clarity+50+100":2.904534431,"wig+100":32.3173677167,"nqc+100":0.024768089,"smv+100":-0.0181665979,"clarity+100+100":2.9045339785,"wig+1000":30.2671113698,"nqc+1000":0.034357145,"smv+1000":-0.0276755959,"clarity+1000+100":2.9045334028}
+{"qid":"183","wig+5":22.1845067173,"nqc+5":0.0360242824,"smv+5":-0.0335353046,"clarity+5+100":1.9997961276,"wig+10":21.7890820968,"nqc+10":0.0354436157,"smv+10":-0.0306432749,"clarity+10+100":1.9608942599,"wig+20":21.2980293326,"nqc+20":0.0399476798,"smv+20":-0.0311932954,"clarity+20+100":1.9516181951,"wig+50":20.5753244173,"nqc+50":0.0461921091,"smv+50":-0.0367223405,"clarity+50+100":1.9452237797,"wig+100":19.8797871653,"nqc+100":0.0550188738,"smv+100":-0.0454840526,"clarity+100+100":1.9444729743,"wig+1000":17.2272793365,"nqc+1000":0.0705680793,"smv+1000":null,"clarity+1000+100":1.9442711046}
+{"qid":"184","wig+5":31.0689035208,"nqc+5":0.1563051415,"smv+5":-0.145531839,"clarity+5+100":2.7378436968,"wig+10":28.1034865273,"nqc+10":0.1900701893,"smv+10":-0.173951319,"clarity+10+100":2.7378436952,"wig+20":25.9461000594,"nqc+20":0.1750521528,"smv+20":-0.1472820633,"clarity+20+100":2.7378436952,"wig+50":24.0360369006,"nqc+50":0.137307125,"smv+50":-0.1003671587,"clarity+50+100":2.7378436952,"wig+100":23.0632264833,"nqc+100":0.1096483653,"smv+100":-0.0727815513,"clarity+100+100":2.7378436952,"wig+1000":21.1900097772,"nqc+1000":0.0760475035,"smv+1000":-0.0529701326,"clarity+1000+100":2.7378436952}
+{"qid":"187","wig+5":27.4090448943,"nqc+5":0.0201572642,"smv+5":-0.0172698589,"clarity+5+100":2.6269633312,"wig+10":26.7643101118,"nqc+10":0.031459037,"smv+10":-0.0293813853,"clarity+10+100":2.620001978,"wig+20":26.2206968006,"nqc+20":0.0323654682,"smv+20":-0.0271845023,"clarity+20+100":2.6157467861,"wig+50":25.682122989,"nqc+50":0.0282580847,"smv+50":-0.0207699839,"clarity+50+100":2.6132642649,"wig+100":25.3342933586,"nqc+100":0.0250892575,"smv+100":-0.0182058795,"clarity+100+100":2.6119994289,"wig+1000":24.1425041423,"nqc+1000":0.0245018996,"smv+1000":-0.0186819388,"clarity+1000+100":2.6100591407}
+{"qid":"189","wig+5":29.4801115286,"nqc+5":0.1518807551,"smv+5":-0.1267111432,"clarity+5+100":3.0299382735,"wig+10":27.573436823,"nqc+10":0.1454119389,"smv+10":-0.1121906646,"clarity+10+100":3.0299382735,"wig+20":26.1687465129,"nqc+20":0.1259629376,"smv+20":-0.0946057228,"clarity+20+100":3.0299382735,"wig+50":24.5356619083,"nqc+50":0.1052371223,"smv+50":-0.0764063246,"clarity+50+100":3.0299382735,"wig+100":23.5095451669,"nqc+100":0.0914108435,"smv+100":-0.0640887248,"clarity+100+100":3.0299382735,"wig+1000":21.0401564805,"nqc+1000":0.0637153995,"smv+1000":-0.0463731983,"clarity+1000+100":3.0299382735}
+{"qid":"190","wig+5":31.5792087576,"nqc+5":0.1182077777,"smv+5":-0.1006135729,"clarity+5+100":3.0293077703,"wig+10":29.7972422989,"nqc+10":0.1135527094,"smv+10":-0.1038682867,"clarity+10+100":3.0293077699,"wig+20":28.6245100297,"nqc+20":0.0950789536,"smv+20":-0.0744948666,"clarity+20+100":3.0293077697,"wig+50":27.5045692828,"nqc+50":0.0721540075,"smv+50":-0.047163237,"clarity+50+100":3.0293077697,"wig+100":26.7908720379,"nqc+100":0.0598200784,"smv+100":-0.037957138,"clarity+100+100":3.0293077697,"wig+1000":24.4904452344,"nqc+1000":0.0487573201,"smv+1000":null,"clarity+1000+100":3.0293077697}
+{"qid":"196","wig+5":34.1763119689,"nqc+5":0.0864493821,"smv+5":-0.0855236062,"clarity+5+100":2.4604868802,"wig+10":32.8618977139,"nqc+10":0.0817319905,"smv+10":-0.0676294992,"clarity+10+100":2.4604867458,"wig+20":31.7128792726,"nqc+20":0.0754004582,"smv+20":-0.0557250967,"clarity+20+100":2.4604867327,"wig+50":30.1726342,"nqc+50":0.0712147237,"smv+50":-0.0544848705,"clarity+50+100":2.4604867325,"wig+100":29.0549798811,"nqc+100":0.0685642719,"smv+100":-0.0522624281,"clarity+100+100":2.4604867325,"wig+1000":26.2906840666,"nqc+1000":0.0555160359,"smv+1000":-0.0423651662,"clarity+1000+100":2.4604867325}
+{"qid":"200","wig+5":31.0523453584,"nqc+5":0.041142066,"smv+5":-0.034303869,"clarity+5+100":3.4874445065,"wig+10":30.2781920669,"nqc+10":0.0436986229,"smv+10":-0.0347152399,"clarity+10+100":3.4871382898,"wig+20":29.4631245031,"nqc+20":0.0468887686,"smv+20":-0.0365120008,"clarity+20+100":3.4871109892,"wig+50":28.0622795243,"nqc+50":0.0567518501,"smv+50":-0.0481496619,"clarity+50+100":3.4871105636,"wig+100":27.1675460931,"nqc+100":0.05462037,"smv+100":-0.0447909573,"clarity+100+100":3.4871105479,"wig+1000":25.3096676689,"nqc+1000":0.0348834777,"smv+1000":-0.0249330007,"clarity+1000+100":3.4871105387}
+{"qid":"201","wig+5":21.5490291115,"nqc+5":0.0450702708,"smv+5":-0.0362988679,"clarity+5+100":2.8877018955,"wig+10":20.9352649326,"nqc+10":0.0597680739,"smv+10":-0.055559658,"clarity+10+100":2.8442472762,"wig+20":20.3914990436,"nqc+20":0.0617257264,"smv+20":-0.0497095985,"clarity+20+100":2.8105769828,"wig+50":18.6538909167,"nqc+50":0.1354754503,"smv+50":-0.1226222506,"clarity+50+100":2.8071239759,"wig+100":17.1931471089,"nqc+100":0.1543583466,"smv+100":-0.1347137424,"clarity+100+100":2.8070560664,"wig+1000":14.502970603,"nqc+1000":0.1347796391,"smv+1000":-0.1077179743,"clarity+1000+100":2.8070387978}
+{"qid":"202","wig+5":20.5319774433,"nqc+5":0.0216972984,"smv+5":-0.0209681287,"clarity+5+100":2.547449777,"wig+10":20.3137345239,"nqc+10":0.0241469605,"smv+10":-0.0192676311,"clarity+10+100":2.4898994688,"wig+20":20.0227462415,"nqc+20":0.0314354399,"smv+20":-0.024170189,"clarity+20+100":2.4197538,"wig+50":18.3599434836,"nqc+50":0.1292167523,"smv+50":-0.1172035333,"clarity+50+100":2.4066364419,"wig+100":16.8563647432,"nqc+100":0.1553881215,"smv+100":-0.1384558619,"clarity+100+100":2.4065150033,"wig+1000":14.0141060201,"nqc+1000":0.1317932986,"smv+1000":-0.1045423861,"clarity+1000+100":2.406469439}
+{"qid":"203","wig+5":31.1146178941,"nqc+5":0.025551777,"smv+5":-0.0231409392,"clarity+5+100":2.5678771631,"wig+10":30.2990515772,"nqc+10":0.0389714608,"smv+10":-0.0341838969,"clarity+10+100":2.5677328829,"wig+20":29.6319012761,"nqc+20":0.0393661181,"smv+20":-0.0330163935,"clarity+20+100":2.5674962794,"wig+50":28.6410380218,"nqc+50":0.0431150267,"smv+50":-0.0342197358,"clarity+50+100":2.5673865489,"wig+100":27.8170409796,"nqc+100":0.0464106189,"smv+100":-0.037605305,"clarity+100+100":2.5673855688,"wig+1000":25.1275034554,"nqc+1000":0.0480113052,"smv+1000":-0.0348973395,"clarity+1000+100":2.5673854692}
+{"qid":"204","wig+5":27.7869876472,"nqc+5":0.0081964082,"smv+5":-0.0073250895,"clarity+5+100":2.9134263051,"wig+10":27.4960400655,"nqc+10":0.0195684874,"smv+10":-0.0169091528,"clarity+10+100":2.6719592513,"wig+20":27.1495635362,"nqc+20":0.025480403,"smv+20":-0.0219845186,"clarity+20+100":2.6317372592,"wig+50":24.0522277853,"nqc+50":0.1654466509,"smv+50":-0.1553036476,"clarity+50+100":2.6286782836,"wig+100":21.9516499019,"nqc+100":0.1697595402,"smv+100":-0.1526367064,"clarity+100+100":2.6286782623,"wig+1000":18.1060268638,"nqc+1000":0.1045035634,"smv+1000":-0.0680929169,"clarity+1000+100":2.628678259}
+{"qid":"205","wig+5":26.7234506473,"nqc+5":0.0365085241,"smv+5":-0.0329719597,"clarity+5+100":2.584725625,"wig+10":26.1698227479,"nqc+10":0.0381532107,"smv+10":-0.0336096022,"clarity+10+100":2.5744673186,"wig+20":25.7178268726,"nqc+20":0.0356285215,"smv+20":-0.0265999899,"clarity+20+100":2.569432234,"wig+50":24.8349838021,"nqc+50":0.0472282939,"smv+50":-0.0374177567,"clarity+50+100":2.5676066073,"wig+100":23.7802654792,"nqc+100":0.0642805893,"smv+100":-0.0554664367,"clarity+100+100":2.5675694642,"wig+1000":20.6295599323,"nqc+1000":0.065506136,"smv+1000":-0.0524314991,"clarity+1000+100":2.5675644039}
+{"qid":"206","wig+5":42.0471911143,"nqc+5":0.0484196153,"smv+5":-0.0406323747,"clarity+5+100":2.8036284426,"wig+10":41.0261902254,"nqc+10":0.0446544335,"smv+10":-0.0338362622,"clarity+10+100":2.8036284424,"wig+20":40.1360528671,"nqc+20":0.0405157221,"smv+20":-0.0296563463,"clarity+20+100":2.8036284424,"wig+50":39.1936341347,"nqc+50":0.0336069257,"smv+50":-0.0243765574,"clarity+50+100":2.8036284424,"wig+100":38.5774121219,"nqc+100":0.0295345079,"smv+100":-0.0206074691,"clarity+100+100":2.8036284424,"wig+1000":36.7977536279,"nqc+1000":0.0214900353,"smv+1000":-0.0159740381,"clarity+1000+100":2.8036284424}
+{"qid":"208","wig+5":30.7130988343,"nqc+5":0.03371645,"smv+5":-0.031633465,"clarity+5+100":3.0520665987,"wig+10":29.7647066342,"nqc+10":0.0549067221,"smv+10":-0.0465621339,"clarity+10+100":3.050100868,"wig+20":28.6598405457,"nqc+20":0.0671020682,"smv+20":-0.0584711515,"clarity+20+100":3.0500745423,"wig+50":27.1484030235,"nqc+50":0.0758485247,"smv+50":-0.0615820173,"clarity+50+100":3.0500726887,"wig+100":25.7540929911,"nqc+100":0.0887936933,"smv+100":-0.0716783467,"clarity+100+100":3.0500726747,"wig+1000":21.8953491384,"nqc+1000":0.0782817149,"smv+1000":-0.0585737176,"clarity+1000+100":3.0500726746}
+{"qid":"209","wig+5":32.4200051236,"nqc+5":0.0145987969,"smv+5":-0.0115942153,"clarity+5+100":2.453223673,"wig+10":31.9434059393,"nqc+10":0.023752459,"smv+10":-0.0205201138,"clarity+10+100":2.4411972577,"wig+20":30.8442369308,"nqc+20":0.0510618822,"smv+20":-0.0471977507,"clarity+20+100":2.4403774235,"wig+50":29.2351497255,"nqc+50":0.0670332837,"smv+50":-0.0569886075,"clarity+50+100":2.440374976,"wig+100":28.063792973,"nqc+100":0.0697400704,"smv+100":-0.0573299807,"clarity+100+100":2.4403749672,"wig+1000":24.798600837,"nqc+1000":0.0593914025,"smv+1000":-0.044132152,"clarity+1000+100":2.4403749667}
+{"qid":"210","wig+5":26.6768918389,"nqc+5":0.0971949371,"smv+5":-0.076672467,"clarity+5+100":3.3321287297,"wig+10":25.2158564261,"nqc+10":0.1040772256,"smv+10":-0.0885640517,"clarity+10+100":3.3321233531,"wig+20":24.2016258965,"nqc+20":0.0915505673,"smv+20":-0.0719960375,"clarity+20+100":3.332120224,"wig+50":23.1590210266,"nqc+50":0.0747620706,"smv+50":-0.0509777919,"clarity+50+100":3.3321188031,"wig+100":22.2437871494,"nqc+100":0.0724230328,"smv+100":-0.0544871193,"clarity+100+100":3.3321186601,"wig+1000":19.8372488551,"nqc+1000":0.0651496473,"smv+1000":-0.054202192,"clarity+1000+100":3.3321186063}
+{"qid":"211","wig+5":28.5685517977,"nqc+5":0.0089577058,"smv+5":-0.0084815457,"clarity+5+100":1.90372789,"wig+10":28.0818107985,"nqc+10":0.0241552016,"smv+10":-0.0222799859,"clarity+10+100":1.8905262516,"wig+20":27.5629986253,"nqc+20":0.0298682633,"smv+20":-0.0257521926,"clarity+20+100":1.8787589838,"wig+50":26.7545112424,"nqc+50":0.0379009951,"smv+50":-0.0303009323,"clarity+50+100":1.8771865228,"wig+100":26.023355688,"nqc+100":0.0434925653,"smv+100":-0.0365421451,"clarity+100+100":1.8770852029,"wig+1000":23.4604061263,"nqc+1000":0.0555912307,"smv+1000":-0.0435770973,"clarity+1000+100":1.877054288}
+{"qid":"212","wig+5":33.4493851238,"nqc+5":0.0760901512,"smv+5":-0.0655810511,"clarity+5+100":3.3385284847,"wig+10":32.7391064415,"nqc+10":0.0601079513,"smv+10":-0.0408744667,"clarity+10+100":3.3385279883,"wig+20":31.6776776653,"nqc+20":0.0592749012,"smv+20":-0.042418514,"clarity+20+100":3.3385279709,"wig+50":30.5005804401,"nqc+50":0.0526238373,"smv+50":-0.0402867832,"clarity+50+100":3.3385279704,"wig+100":29.6359289437,"nqc+100":0.0495945333,"smv+100":-0.0375602934,"clarity+100+100":3.3385279703,"wig+1000":27.5566283689,"nqc+1000":0.0406279096,"smv+1000":-0.032375122,"clarity+1000+100":3.3385279703}
+{"qid":"213","wig+5":26.141764963,"nqc+5":0.0432507566,"smv+5":-0.0422920974,"clarity+5+100":2.1570440901,"wig+10":25.6398946085,"nqc+10":0.0395310187,"smv+10":-0.0321776697,"clarity+10+100":2.1530956087,"wig+20":25.2187466693,"nqc+20":0.0348815529,"smv+20":-0.0243647708,"clarity+20+100":2.1491721975,"wig+50":24.5796601829,"nqc+50":0.035914105,"smv+50":-0.0262829905,"clarity+50+100":2.1465581616,"wig+100":23.9308746076,"nqc+100":0.0414813151,"smv+100":-0.0344131295,"clarity+100+100":2.1462042128,"wig+1000":21.4665094921,"nqc+1000":0.0520522051,"smv+1000":-0.0422341381,"clarity+1000+100":2.1461143384}
+{"qid":"214","wig+5":38.5291043966,"nqc+5":0.0093304322,"smv+5":-0.0083838501,"clarity+5+100":2.4393584588,"wig+10":38.2202815579,"nqc+10":0.0114490244,"smv+10":-0.0101964128,"clarity+10+100":2.4014621664,"wig+20":37.6827623622,"nqc+20":0.0183637569,"smv+20":-0.016065046,"clarity+20+100":2.3968187088,"wig+50":36.8488191648,"nqc+50":0.0238221335,"smv+50":-0.0205783492,"clarity+50+100":2.3964403954,"wig+100":36.3332955044,"nqc+100":0.0228979625,"smv+100":-0.0185135053,"clarity+100+100":2.3963519402,"wig+1000":34.6641109229,"nqc+1000":0.0220829308,"smv+1000":-0.0169298844,"clarity+1000+100":2.3963157437}
+{"qid":"215","wig+5":33.2391921118,"nqc+5":0.023613575,"smv+5":-0.0172393333,"clarity+5+100":2.3721477078,"wig+10":32.7596196506,"nqc+10":0.0247630684,"smv+10":-0.0211158743,"clarity+10+100":2.3692757862,"wig+20":31.8834121128,"nqc+20":0.0399986212,"smv+20":-0.0340360172,"clarity+20+100":2.3689599466,"wig+50":30.7260687436,"nqc+50":0.0445363518,"smv+50":-0.0377957835,"clarity+50+100":2.3689555218,"wig+100":29.9843837272,"nqc+100":0.0426235152,"smv+100":-0.0332107137,"clarity+100+100":2.3689550568,"wig+1000":27.650180161,"nqc+1000":0.0392455004,"smv+1000":-0.0298733859,"clarity+1000+100":2.3689549817}
+{"qid":"216","wig+5":28.5222924491,"nqc+5":0.0269824253,"smv+5":-0.0254743129,"clarity+5+100":3.3316502346,"wig+10":27.5730894545,"nqc+10":0.0504153421,"smv+10":-0.0414413292,"clarity+10+100":3.3216517131,"wig+20":26.5511040045,"nqc+20":0.0571529745,"smv+20":-0.0524947794,"clarity+20+100":3.3215975267,"wig+50":25.5933558928,"nqc+50":0.0498439966,"smv+50":-0.0396571969,"clarity+50+100":3.3215751847,"wig+100":25.0692511881,"nqc+100":0.0420124931,"smv+100":-0.030680001,"clarity+100+100":3.3215665959,"wig+1000":23.7819392922,"nqc+1000":0.0267177927,"smv+1000":-0.0191324558,"clarity+1000+100":3.3215494894}
+{"qid":"217","wig+5":36.7698995282,"nqc+5":0.1825726626,"smv+5":-0.1700299311,"clarity+5+100":2.8969530764,"wig+10":33.9268956473,"nqc+10":0.1746408227,"smv+10":-0.1554092974,"clarity+10+100":2.8969530764,"wig+20":32.1289560187,"nqc+20":0.1445372427,"smv+20":-0.1120746551,"clarity+20+100":2.8969530764,"wig+50":29.9956495296,"nqc+50":0.1186645571,"smv+50":-0.0809157651,"clarity+50+100":2.8969530764,"wig+100":28.3549843279,"nqc+100":0.1083253095,"smv+100":-0.0815001443,"clarity+100+100":2.8969530764,"wig+1000":25.6641304908,"nqc+1000":0.0658569694,"smv+1000":-0.0443241411,"clarity+1000+100":2.8969530764}
+{"qid":"218","wig+5":28.3545348861,"nqc+5":0.0546928471,"smv+5":-0.0411818362,"clarity+5+100":2.7067573408,"wig+10":26.9993454612,"nqc+10":0.08241776,"smv+10":-0.0791928966,"clarity+10+100":2.706618932,"wig+20":25.7981616609,"nqc+20":0.0875021347,"smv+20":-0.07192206,"clarity+20+100":2.7065993969,"wig+50":24.3420798044,"nqc+50":0.0863420762,"smv+50":-0.0665323766,"clarity+50+100":2.7065891942,"wig+100":23.2086391774,"nqc+100":0.0865571611,"smv+100":-0.0689130637,"clarity+100+100":2.7065891352,"wig+1000":20.2737216731,"nqc+1000":0.0740009851,"smv+1000":-0.0565388512,"clarity+1000+100":2.7065891242}
+{"qid":"219","wig+5":27.9044820122,"nqc+5":0.0415252254,"smv+5":-0.0329518071,"clarity+5+100":2.7439692797,"wig+10":27.1276376398,"nqc+10":0.0492309162,"smv+10":-0.0394239522,"clarity+10+100":2.7430805284,"wig+20":26.1966195293,"nqc+20":0.0591629695,"smv+20":-0.0482217869,"clarity+20+100":2.7429809339,"wig+50":25.1659880841,"nqc+50":0.0567613632,"smv+50":-0.0451587142,"clarity+50+100":2.7429641134,"wig+100":24.3263479547,"nqc+100":0.0586550037,"smv+100":-0.0450227724,"clarity+100+100":2.7429626556,"wig+1000":21.8335766843,"nqc+1000":0.0602477999,"smv+1000":-0.0479662014,"clarity+1000+100":2.7429624269}
+{"qid":"223","wig+5":27.4137124858,"nqc+5":0.1003052792,"smv+5":-0.094278203,"clarity+5+100":2.039540998,"wig+10":25.9502694419,"nqc+10":0.1072723615,"smv+10":-0.099968459,"clarity+10+100":2.0395392794,"wig+20":24.9010498402,"nqc+20":0.0952210018,"smv+20":-0.074836651,"clarity+20+100":2.0395389775,"wig+50":23.7934784563,"nqc+50":0.0796459697,"smv+50":-0.053735062,"clarity+50+100":2.0395388465,"wig+100":22.8709446814,"nqc+100":0.0761110033,"smv+100":-0.0573495154,"clarity+100+100":2.039538842,"wig+1000":20.1181919126,"nqc+1000":0.0693683688,"smv+1000":-0.0521184203,"clarity+1000+100":2.0395388408}
+{"qid":"224","wig+5":24.0354688769,"nqc+5":0.0219497652,"smv+5":-0.0212773804,"clarity+5+100":1.9720147312,"wig+10":23.7576538729,"nqc+10":0.0214274755,"smv+10":-0.0166995964,"clarity+10+100":1.9206043302,"wig+20":23.4654242798,"nqc+20":0.0216014332,"smv+20":-0.0165140764,"clarity+20+100":1.8626418645,"wig+50":22.9945024948,"nqc+50":0.0248605845,"smv+50":-0.0198650334,"clarity+50+100":1.8442724457,"wig+100":22.5661615323,"nqc+100":0.0287317881,"smv+100":-0.023299165,"clarity+100+100":1.8378748333,"wig+1000":20.7637332778,"nqc+1000":0.043523071,"smv+1000":-0.0348028372,"clarity+1000+100":1.8279846065}
+{"qid":"225","wig+5":22.6038566093,"nqc+5":0.0225066873,"smv+5":-0.0170575813,"clarity+5+100":1.9187175712,"wig+10":22.3353593005,"nqc+10":0.0215517376,"smv+10":-0.0170628278,"clarity+10+100":1.876605167,"wig+20":22.0773508273,"nqc+20":0.0208296977,"smv+20":-0.0149668639,"clarity+20+100":1.8316122299,"wig+50":21.7368571582,"nqc+50":0.020411329,"smv+50":-0.0151843778,"clarity+50+100":1.7786374112,"wig+100":21.4431266975,"nqc+100":0.0216774885,"smv+100":-0.0169637563,"clarity+100+100":1.7562469673,"wig+1000":20.0106956008,"nqc+1000":0.0379652082,"smv+1000":-0.0306332854,"clarity+1000+100":1.7291182053}
+{"qid":"226","wig+5":27.6095355412,"nqc+5":0.1218439225,"smv+5":-0.0936922088,"clarity+5+100":3.4757831133,"wig+10":26.0705076052,"nqc+10":0.1230909554,"smv+10":-0.1037323709,"clarity+10+100":3.4757820358,"wig+20":24.5983453349,"nqc+20":0.1219494838,"smv+20":-0.093477531,"clarity+20+100":3.4757819588,"wig+50":22.3300825224,"nqc+50":0.1328939372,"smv+50":-0.1098327119,"clarity+50+100":3.4757819582,"wig+100":21.1577880429,"nqc+100":0.1152881024,"smv+100":-0.0939265172,"clarity+100+100":3.4757819581,"wig+1000":19.052355591,"nqc+1000":0.0840292608,"smv+1000":-0.0633823282,"clarity+1000+100":3.475781958}
+{"qid":"227","wig+5":30.3918777619,"nqc+5":0.1632955848,"smv+5":-0.1382871749,"clarity+5+100":3.0761892802,"wig+10":28.9968462128,"nqc+10":0.1339932254,"smv+10":-0.0994341326,"clarity+10+100":3.0761892802,"wig+20":27.637797832,"nqc+20":0.1156401712,"smv+20":-0.0769088818,"clarity+20+100":3.0761892802,"wig+50":25.8980921563,"nqc+50":0.1018371492,"smv+50":-0.0738823526,"clarity+50+100":3.0761892802,"wig+100":24.7774584271,"nqc+100":0.0905820031,"smv+100":-0.0670897772,"clarity+100+100":3.0761892802,"wig+1000":22.1117721562,"nqc+1000":0.0654112649,"smv+1000":-0.0489048343,"clarity+1000+100":3.0761892802}
+{"qid":"230","wig+5":25.3885881098,"nqc+5":0.0528274771,"smv+5":-0.0507922544,"clarity+5+100":2.3708760999,"wig+10":24.5097513541,"nqc+10":0.0607920303,"smv+10":-0.0510137599,"clarity+10+100":2.3688233889,"wig+20":23.7991307619,"nqc+20":0.0589971181,"smv+20":-0.0459716985,"clarity+20+100":2.3673327222,"wig+50":22.5915905215,"nqc+50":0.0657422979,"smv+50":-0.0548600794,"clarity+50+100":2.3672018464,"wig+100":21.741113285,"nqc+100":0.0659737041,"smv+100":-0.0520599518,"clarity+100+100":2.3671661696,"wig+1000":20.2355399217,"nqc+1000":0.0568383785,"smv+1000":-0.043063921,"clarity+1000+100":2.3671492295}
+{"qid":"231","wig+5":36.3079717888,"nqc+5":0.0413575881,"smv+5":-0.0334718971,"clarity+5+100":3.2318747646,"wig+10":35.0157510124,"nqc+10":0.0641370242,"smv+10":-0.0504987699,"clarity+10+100":3.2313954863,"wig+20":32.8585481364,"nqc+20":0.0964687057,"smv+20":-0.0870902003,"clarity+20+100":3.2313954344,"wig+50":30.841967391,"nqc+50":0.0893656494,"smv+50":-0.0734793161,"clarity+50+100":3.2313954275,"wig+100":29.550375396,"nqc+100":0.081414421,"smv+100":-0.0609463009,"clarity+100+100":3.2313954271,"wig+1000":28.5341521717,"nqc+1000":0.0771517106,"smv+1000":-0.0579243232,"clarity+1000+100":3.2313954271}
+{"qid":"232","wig+5":30.8906172755,"nqc+5":0.0178537176,"smv+5":-0.015208361,"clarity+5+100":1.7047556169,"wig+10":30.5226048079,"nqc+10":0.0206616315,"smv+10":-0.0174025774,"clarity+10+100":1.6988951157,"wig+20":30.0771279981,"nqc+20":0.0246315554,"smv+20":-0.020107457,"clarity+20+100":1.6731893674,"wig+50":29.2326415295,"nqc+50":0.0354064486,"smv+50":-0.0298955709,"clarity+50+100":1.6681404032,"wig+100":28.5176897576,"nqc+100":0.0406095289,"smv+100":-0.0333059587,"clarity+100+100":1.6681265097,"wig+1000":25.2807509591,"nqc+1000":0.0625465829,"smv+1000":-0.0503494121,"clarity+1000+100":1.668125814}
+{"qid":"233","wig+5":25.0599181687,"nqc+5":0.0439796878,"smv+5":-0.0352172607,"clarity+5+100":2.8567213663,"wig+10":24.575237777,"nqc+10":0.0399546627,"smv+10":-0.0301511054,"clarity+10+100":2.8410936262,"wig+20":24.1894060311,"nqc+20":0.0351167062,"smv+20":-0.0237274505,"clarity+20+100":2.8245291131,"wig+50":23.4431465814,"nqc+50":0.0402569384,"smv+50":-0.0317423481,"clarity+50+100":2.8180624161,"wig+100":22.7827743977,"nqc+100":0.0449448686,"smv+100":-0.0372112034,"clarity+100+100":2.816608208,"wig+1000":21.0358136722,"nqc+1000":0.0497532006,"smv+1000":-0.0398463434,"clarity+1000+100":2.816017687}
+{"qid":"234","wig+5":32.2603684949,"nqc+5":0.1133364233,"smv+5":-0.0982066892,"clarity+5+100":2.3772761751,"wig+10":31.1848195104,"nqc+10":0.0924852732,"smv+10":-0.0640356498,"clarity+10+100":2.377276175,"wig+20":30.1498918655,"nqc+20":0.0783386276,"smv+20":-0.0518958904,"clarity+20+100":2.377276175,"wig+50":29.2313964646,"nqc+50":0.0587791042,"smv+50":-0.0366555428,"clarity+50+100":2.377276175,"wig+100":28.565585314,"nqc+100":0.0504791154,"smv+100":-0.0316147457,"clarity+100+100":2.377276175,"wig+1000":26.0191204588,"nqc+1000":0.0564108892,"smv+1000":-0.0448602908,"clarity+1000+100":2.377276175}
+{"qid":"241","wig+5":40.6827716816,"nqc+5":0.03148584,"smv+5":-0.0291249103,"clarity+5+100":3.0998603624,"wig+10":40.0583968977,"nqc+10":0.0293524937,"smv+10":-0.0226465041,"clarity+10+100":3.0998199461,"wig+20":39.3729277064,"nqc+20":0.0291941606,"smv+20":-0.0224006394,"clarity+20+100":3.0998170186,"wig+50":38.5574822924,"nqc+50":0.0275813701,"smv+50":-0.0204188682,"clarity+50+100":3.0998164546,"wig+100":37.8185535204,"nqc+100":0.029718519,"smv+100":-0.0233319066,"clarity+100+100":3.0998164391,"wig+1000":35.0336848512,"nqc+1000":0.0327932655,"smv+1000":-0.025899789,"clarity+1000+100":3.0998164387}
+{"qid":"245","wig+5":30.4088058102,"nqc+5":0.0291451058,"smv+5":-0.0256538775,"clarity+5+100":1.8109710109,"wig+10":29.9117129472,"nqc+10":0.0281915903,"smv+10":-0.0247106615,"clarity+10+100":1.8103970589,"wig+20":29.5715338837,"nqc+20":0.0239519426,"smv+20":-0.0172783424,"clarity+20+100":1.8098977544,"wig+50":29.1174776275,"nqc+50":0.021434184,"smv+50":-0.0147747331,"clarity+50+100":1.8095708166,"wig+100":28.7545853879,"nqc+100":0.0208646317,"smv+100":-0.0156561413,"clarity+100+100":1.8094823559,"wig+1000":27.161447865,"nqc+1000":0.0281850033,"smv+1000":-0.0228564522,"clarity+1000+100":1.8094534159}
+{"qid":"246","wig+5":33.0876537757,"nqc+5":0.0183242096,"smv+5":-0.015520464,"clarity+5+100":1.9117521687,"wig+10":32.6468812818,"nqc+10":0.0224673848,"smv+10":-0.0182434408,"clarity+10+100":1.90257859,"wig+20":32.0908311775,"nqc+20":0.0273316608,"smv+20":-0.0233015683,"clarity+20+100":1.9016241651,"wig+50":31.2970117569,"nqc+50":0.0320882524,"smv+50":-0.0255725738,"clarity+50+100":1.9013918903,"wig+100":30.5647322998,"nqc+100":0.0369928029,"smv+100":-0.0306381116,"clarity+100+100":1.9013850255,"wig+1000":27.4982900289,"nqc+1000":0.0549256358,"smv+1000":-0.0445350211,"clarity+1000+100":1.901384271}
+{"qid":"247","wig+5":32.2887200125,"nqc+5":0.0714037586,"smv+5":-0.0588473463,"clarity+5+100":3.4200008904,"wig+10":31.37382343,"nqc+10":0.0640738138,"smv+10":-0.0466410122,"clarity+10+100":3.4200006906,"wig+20":29.9439651719,"nqc+20":0.0775565339,"smv+20":-0.062559842,"clarity+20+100":3.4200006826,"wig+50":28.4726436485,"nqc+50":0.0714933523,"smv+50":-0.057171707,"clarity+50+100":3.4200006826,"wig+100":27.5842215612,"nqc+100":0.0632949263,"smv+100":-0.0471824776,"clarity+100+100":3.4200006825,"wig+1000":25.079802433,"nqc+1000":0.0486415602,"smv+1000":-0.0365109997,"clarity+1000+100":3.4200006825}
+{"qid":"250","wig+5":23.7065696003,"nqc+5":0.0482745752,"smv+5":-0.0392625142,"clarity+5+100":2.266842788,"wig+10":22.8745438048,"nqc+10":0.0651229743,"smv+10":-0.0525589185,"clarity+10+100":2.264041963,"wig+20":21.9734693657,"nqc+20":0.0740669404,"smv+20":-0.0633119349,"clarity+20+100":2.2637812583,"wig+50":20.7775033244,"nqc+50":0.0781724109,"smv+50":-0.0636341865,"clarity+50+100":2.2637428495,"wig+100":20.0068497692,"nqc+100":0.0737341585,"smv+100":-0.0574150807,"clarity+100+100":2.2637349519,"wig+1000":17.6512103254,"nqc+1000":0.0701982821,"smv+1000":-0.0542721879,"clarity+1000+100":2.2637320116}
+{"qid":"251","wig+5":28.5036068457,"nqc+5":0.0650378672,"smv+5":-0.0513492592,"clarity+5+100":2.1471580815,"wig+10":27.6602242612,"nqc+10":0.0601091298,"smv+10":-0.0478361462,"clarity+10+100":2.1471469861,"wig+20":26.8961730044,"nqc+20":0.0557512998,"smv+20":-0.0395318649,"clarity+20+100":2.1471438804,"wig+50":26.0536625328,"nqc+50":0.0476452222,"smv+50":-0.0346371974,"clarity+50+100":2.1471428655,"wig+100":25.4803136708,"nqc+100":0.0431246964,"smv+100":-0.0303257221,"clarity+100+100":2.1471425679,"wig+1000":23.4407918994,"nqc+1000":0.046572385,"smv+1000":-0.0370732547,"clarity+1000+100":2.1471424559}
+{"qid":"252","wig+5":28.1255644071,"nqc+5":0.073758025,"smv+5":-0.0616215537,"clarity+5+100":2.1480253603,"wig+10":27.2713860457,"nqc+10":0.0654014203,"smv+10":-0.0482352911,"clarity+10+100":2.1480237855,"wig+20":26.546741243,"nqc+20":0.0571183028,"smv+20":-0.0403574912,"clarity+20+100":2.1480233441,"wig+50":25.7789791911,"nqc+50":0.0464817782,"smv+50":-0.0318860804,"clarity+50+100":2.1480232232,"wig+100":25.2741775277,"nqc+100":0.0403857889,"smv+100":-0.0275389316,"clarity+100+100":2.1480230855,"wig+1000":23.3590150496,"nqc+1000":0.0415075395,"smv+1000":-0.0313049052,"clarity+1000+100":2.1480230113}
+{"qid":"253","wig+5":33.3033018549,"nqc+5":0.0394616108,"smv+5":-0.0318371199,"clarity+5+100":2.3001212221,"wig+10":32.1272960303,"nqc+10":0.0548962952,"smv+10":-0.0525247653,"clarity+10+100":2.2882399341,"wig+20":30.9943870992,"nqc+20":0.0600919923,"smv+20":-0.0494569512,"clarity+20+100":2.2855206218,"wig+50":29.8454667271,"nqc+50":0.05368378,"smv+50":-0.0417440458,"clarity+50+100":2.281758073,"wig+100":29.0857592303,"nqc+100":0.0488961775,"smv+100":-0.0356724621,"clarity+100+100":2.2817580648,"wig+1000":26.7582203513,"nqc+1000":0.0418821663,"smv+1000":-0.0318248159,"clarity+1000+100":2.2817580629}
+{"qid":"254","wig+5":33.1363126262,"nqc+5":0.0240208252,"smv+5":-0.0181361891,"clarity+5+100":3.2073073364,"wig+10":32.3630263109,"nqc+10":0.0325168352,"smv+10":-0.0275712321,"clarity+10+100":3.20690977,"wig+20":31.6169747538,"nqc+20":0.0348736745,"smv+20":-0.0297672586,"clarity+20+100":3.2068525174,"wig+50":30.9873600188,"nqc+50":0.028591241,"smv+50":-0.0214653102,"clarity+50+100":3.2068028357,"wig+100":30.5792196628,"nqc+100":0.0249445099,"smv+100":-0.0170941007,"clarity+100+100":3.2067816896,"wig+1000":29.2599600421,"nqc+1000":0.020319982,"smv+1000":-0.0153861355,"clarity+1000+100":3.2067664314}
+{"qid":"255","wig+5":34.8248856565,"nqc+5":0.0278660572,"smv+5":-0.0215353629,"clarity+5+100":3.2677247046,"wig+10":33.9890383609,"nqc+10":0.03598654,"smv+10":-0.0291819521,"clarity+10+100":3.2675789549,"wig+20":33.1975993999,"nqc+20":0.0366777619,"smv+20":-0.0322120219,"clarity+20+100":3.2675740042,"wig+50":32.5090507535,"nqc+50":0.0299601152,"smv+50":-0.0222421031,"clarity+50+100":3.2675738336,"wig+100":32.1012375096,"nqc+100":0.0252719938,"smv+100":-0.0172991637,"clarity+100+100":3.2675729046,"wig+1000":30.8692726108,"nqc+1000":0.0188584281,"smv+1000":-0.0141930989,"clarity+1000+100":3.2675721166}
+{"qid":"257","wig+5":39.4845374504,"nqc+5":0.0289537143,"smv+5":-0.0207604999,"clarity+5+100":3.7087093475,"wig+10":37.6412091028,"nqc+10":0.0714215184,"smv+10":-0.0624132874,"clarity+10+100":3.7086614882,"wig+20":35.680382541,"nqc+20":0.0844807645,"smv+20":-0.0765882967,"clarity+20+100":3.7086611703,"wig+50":33.7778764407,"nqc+50":0.0754073599,"smv+50":-0.0617732579,"clarity+50+100":3.7086611703,"wig+100":32.7568554111,"nqc+100":0.0637253309,"smv+100":-0.0471127767,"clarity+100+100":3.7086611703,"wig+1000":30.579104994,"nqc+1000":0.0411522495,"smv+1000":-0.0270406153,"clarity+1000+100":3.7086611703}
+{"qid":"259","wig+5":35.0046258593,"nqc+5":0.0440226939,"smv+5":-0.0403418743,"clarity+5+100":2.886805613,"wig+10":34.0529618876,"nqc+10":0.0463591292,"smv+10":-0.0379103454,"clarity+10+100":2.8867984808,"wig+20":33.2268030482,"nqc+20":0.0440302335,"smv+20":-0.0351847146,"clarity+20+100":2.8867978328,"wig+50":32.3346522105,"nqc+50":0.0382684763,"smv+50":-0.0281384442,"clarity+50+100":2.886797662,"wig+100":31.7066467733,"nqc+100":0.0351392918,"smv+100":-0.0257214355,"clarity+100+100":2.8867976408,"wig+1000":29.7766382648,"nqc+1000":0.0311299549,"smv+1000":-0.0241812963,"clarity+1000+100":2.886797633}
+{"qid":"261","wig+5":23.7995922316,"nqc+5":0.0431214162,"smv+5":-0.0311958718,"clarity+5+100":2.8152611219,"wig+10":22.191239837,"nqc+10":0.1208755522,"smv+10":-0.1128365625,"clarity+10+100":2.8149515521,"wig+20":20.4428690897,"nqc+20":0.1511423061,"smv+20":-0.1340869199,"clarity+20+100":2.8149461196,"wig+50":18.8003447056,"nqc+50":0.1354721815,"smv+50":-0.1090070847,"clarity+50+100":2.8149448633,"wig+100":17.908696304,"nqc+100":0.114997051,"smv+100":-0.0838461872,"clarity+100+100":2.8149445175,"wig+1000":15.6095071154,"nqc+1000":0.0773101646,"smv+1000":-0.0568841786,"clarity+1000+100":2.8149442482}
+{"qid":"264","wig+5":32.7195735801,"nqc+5":0.0730124785,"smv+5":-0.0634498834,"clarity+5+100":3.6362686781,"wig+10":31.3135484467,"nqc+10":0.0765113874,"smv+10":-0.0687990695,"clarity+10+100":3.63626802,"wig+20":30.3203486438,"nqc+20":0.0671391202,"smv+20":-0.0523663112,"clarity+20+100":3.6362678152,"wig+50":29.3141033671,"nqc+50":0.0537959018,"smv+50":-0.0372131242,"clarity+50+100":3.6362677605,"wig+100":28.6853540569,"nqc+100":0.0457775578,"smv+100":-0.0304752299,"clarity+100+100":3.6362677457,"wig+1000":26.5232391377,"nqc+1000":0.0413767848,"smv+1000":-0.032020391,"clarity+1000+100":3.6362677403}
+{"qid":"265","wig+5":26.0009890641,"nqc+5":0.009864155,"smv+5":-0.0091194148,"clarity+5+100":2.1982633261,"wig+10":25.6553387869,"nqc+10":0.0230219299,"smv+10":-0.0189548932,"clarity+10+100":2.1077725622,"wig+20":24.5238758276,"nqc+20":0.0670128479,"smv+20":-0.0619466765,"clarity+20+100":2.1025940756,"wig+50":23.1190732357,"nqc+50":0.0759842535,"smv+50":-0.0658564335,"clarity+50+100":2.1025110255,"wig+100":22.2672060674,"nqc+100":0.0709731599,"smv+100":-0.0561302381,"clarity+100+100":2.1024982365,"wig+1000":19.9581587938,"nqc+1000":0.0590781522,"smv+1000":-0.043133862,"clarity+1000+100":2.1024916731}
+{"qid":"266","wig+5":22.4558796377,"nqc+5":0.025173363,"smv+5":-0.022011448,"clarity+5+100":2.1270838306,"wig+10":21.9739508031,"nqc+10":0.0351064539,"smv+10":-0.0301680489,"clarity+10+100":2.0917290057,"wig+20":21.3834532057,"nqc+20":0.0428889155,"smv+20":-0.0377961311,"clarity+20+100":2.0826675777,"wig+50":20.5956690331,"nqc+50":0.0483247664,"smv+50":-0.0385249462,"clarity+50+100":2.0786174906,"wig+100":19.8430265235,"nqc+100":0.0564405748,"smv+100":-0.0470662781,"clarity+100+100":2.0782021269,"wig+1000":17.7311726646,"nqc+1000":0.0570976647,"smv+1000":null,"clarity+1000+100":2.0777884534}
+{"qid":"267","wig+5":26.207292367,"nqc+5":0.0934171375,"smv+5":-0.0835708818,"clarity+5+100":2.6784738481,"wig+10":25.1391141469,"nqc+10":0.0866598594,"smv+10":-0.0762919352,"clarity+10+100":2.6784675926,"wig+20":24.3866233402,"nqc+20":0.0733072327,"smv+20":-0.0531243445,"clarity+20+100":2.678458729,"wig+50":23.3958740105,"nqc+50":0.0635564683,"smv+50":-0.0456554977,"clarity+50+100":2.6784558678,"wig+100":22.7409478995,"nqc+100":0.0569111009,"smv+100":-0.0409180844,"clarity+100+100":2.6784557391,"wig+1000":20.5530866141,"nqc+1000":0.0523359386,"smv+1000":-0.0408903827,"clarity+1000+100":2.6784556825}
+{"qid":"268","wig+5":31.6614186268,"nqc+5":0.0852648499,"smv+5":-0.0779335782,"clarity+5+100":2.8578854201,"wig+10":30.3615733701,"nqc+10":0.0895588596,"smv+10":-0.0781122967,"clarity+10+100":2.857889954,"wig+20":28.0058861145,"nqc+20":0.141675881,"smv+20":-0.1162692645,"clarity+20+100":2.8578898785,"wig+50":25.3101144345,"nqc+50":0.1417445521,"smv+50":-0.1252116719,"clarity+50+100":2.8578898785,"wig+100":23.9114622899,"nqc+100":0.122091936,"smv+100":-0.0957810439,"clarity+100+100":2.8578898785,"wig+1000":21.7789723343,"nqc+1000":0.0787593788,"smv+1000":-0.0547650936,"clarity+1000+100":2.8578898785}
+{"qid":"269","wig+5":26.7318572785,"nqc+5":0.1197051606,"smv+5":-0.1045056474,"clarity+5+100":3.6018054803,"wig+10":26.0461104496,"nqc+10":0.091755071,"smv+10":-0.0625392102,"clarity+10+100":3.6018009424,"wig+20":25.2769050269,"nqc+20":0.0772669615,"smv+20":-0.0446607667,"clarity+20+100":3.6017996621,"wig+50":23.9738660482,"nqc+50":0.0751868536,"smv+50":-0.0569238476,"clarity+50+100":3.6017995943,"wig+100":23.0270351971,"nqc+100":0.0724439243,"smv+100":-0.0567583507,"clarity+100+100":3.6017995889,"wig+1000":21.0966551448,"nqc+1000":0.0636240281,"smv+1000":-0.0489786376,"clarity+1000+100":3.6017995871}
+{"qid":"272","wig+5":38.3165388681,"nqc+5":0.0088664399,"smv+5":-0.0080807034,"clarity+5+100":2.1360918196,"wig+10":37.8456038177,"nqc+10":0.0165498277,"smv+10":-0.0143335896,"clarity+10+100":2.1069772506,"wig+20":37.2941238664,"nqc+20":0.0202420906,"smv+20":-0.017892632,"clarity+20+100":2.1060532851,"wig+50":36.7422283509,"nqc+50":0.018533209,"smv+50":-0.0146545511,"clarity+50+100":2.1057061409,"wig+100":36.3618607073,"nqc+100":0.0173332427,"smv+100":-0.0126929753,"clarity+100+100":2.1055965863,"wig+1000":35.0853536401,"nqc+1000":0.0168497625,"smv+1000":-0.0132708323,"clarity+1000+100":2.1055421415}
+{"qid":"273","wig+5":27.2691052669,"nqc+5":0.1447866709,"smv+5":-0.0938086338,"clarity+5+100":2.9166036732,"wig+10":24.7505923119,"nqc+10":0.1900239765,"smv+10":-0.1795797383,"clarity+10+100":2.916603521,"wig+20":22.9670816158,"nqc+20":0.1755541484,"smv+20":-0.1482714789,"clarity+20+100":2.916603512,"wig+50":21.1318384002,"nqc+50":0.1478236973,"smv+50":-0.1061874316,"clarity+50+100":2.9166035072,"wig+100":19.9379904387,"nqc+100":0.1295050021,"smv+100":-0.0952273683,"clarity+100+100":2.9166035067,"wig+1000":18.3107691847,"nqc+1000":0.1090530934,"smv+1000":-0.0803554404,"clarity+1000+100":2.9166035066}
+{"qid":"274","wig+5":20.6429669697,"nqc+5":0.0502479218,"smv+5":-0.0481753436,"clarity+5+100":2.1516540026,"wig+10":20.1771780673,"nqc+10":0.0489319212,"smv+10":-0.0382842827,"clarity+10+100":2.1314469124,"wig+20":19.6805338311,"nqc+20":0.050888068,"smv+20":-0.0375454834,"clarity+20+100":2.1188713775,"wig+50":18.7164583702,"nqc+50":0.0667085999,"smv+50":-0.0563256056,"clarity+50+100":2.1159314196,"wig+100":17.9054011841,"nqc+100":0.0758713657,"smv+100":-0.0623676928,"clarity+100+100":2.1155112103,"wig+1000":15.1184722314,"nqc+1000":0.0880557225,"smv+1000":null,"clarity+1000+100":2.1153782006}
+{"qid":"275","wig+5":38.7237668278,"nqc+5":0.1943746872,"smv+5":-0.1720986379,"clarity+5+100":2.5835435354,"wig+10":35.6727084968,"nqc+10":0.179602821,"smv+10":-0.1579945628,"clarity+10+100":2.5835435354,"wig+20":33.5430290146,"nqc+20":0.150475631,"smv+20":-0.1159891458,"clarity+20+100":2.5835435354,"wig+50":31.8899304658,"nqc+50":0.1081050946,"smv+50":-0.0705906107,"clarity+50+100":2.5835435354,"wig+100":30.9964606999,"nqc+100":0.0838220481,"smv+100":-0.04776518,"clarity+100+100":2.5835435354,"wig+1000":28.0168590929,"nqc+1000":0.0547125326,"smv+1000":-0.0388363467,"clarity+1000+100":2.5835435354}
+{"qid":"277","wig+5":28.5644435001,"nqc+5":0.0273718105,"smv+5":-0.0201971173,"clarity+5+100":2.4143492829,"wig+10":27.799510621,"nqc+10":0.0425803543,"smv+10":-0.0358259179,"clarity+10+100":2.4106357191,"wig+20":26.8455431449,"nqc+20":0.0549442206,"smv+20":-0.0480193201,"clarity+20+100":2.4104281231,"wig+50":25.4782473748,"nqc+50":0.063756786,"smv+50":-0.0539267714,"clarity+50+100":2.410409559,"wig+100":24.6454958362,"nqc+100":0.0596697722,"smv+100":-0.0482624741,"clarity+100+100":2.4104071292,"wig+1000":22.9770297006,"nqc+1000":0.0510706632,"smv+1000":-0.0392423528,"clarity+1000+100":2.4104057892}
+{"qid":"283","wig+5":24.321309337,"nqc+5":0.0599220331,"smv+5":-0.0565755027,"clarity+5+100":2.1573555006,"wig+10":23.4445408169,"nqc+10":0.0656892206,"smv+10":-0.0606541072,"clarity+10+100":2.1563966031,"wig+20":22.7957078891,"nqc+20":0.059821938,"smv+20":-0.0462092105,"clarity+20+100":2.1554187195,"wig+50":21.8090118444,"nqc+50":0.0606836516,"smv+50":-0.0474858398,"clarity+50+100":2.1550520756,"wig+100":21.101511545,"nqc+100":0.0596986539,"smv+100":-0.0460917094,"clarity+100+100":2.1549434697,"wig+1000":19.357788142,"nqc+1000":0.0636279269,"smv+1000":-0.0509562058,"clarity+1000+100":2.1549136835}
+{"qid":"284","wig+5":24.7487398702,"nqc+5":0.0568405669,"smv+5":-0.0524740196,"clarity+5+100":2.5849810171,"wig+10":24.0102858081,"nqc+10":0.0656672961,"smv+10":-0.0502295879,"clarity+10+100":2.5720433191,"wig+20":22.8863805629,"nqc+20":0.0962994884,"smv+20":-0.0753854473,"clarity+20+100":2.5695896173,"wig+50":20.8468498035,"nqc+50":0.1296900052,"smv+50":-0.1137744165,"clarity+50+100":2.5695767219,"wig+100":19.3276399714,"nqc+100":0.1390328826,"smv+100":-0.1133238666,"clarity+100+100":2.5695761356,"wig+1000":16.6377664955,"nqc+1000":0.1065582933,"smv+1000":-0.0823330565,"clarity+1000+100":2.5695760483}
+{"qid":"285","wig+5":25.468309353,"nqc+5":0.0138606628,"smv+5":-0.0108870337,"clarity+5+100":2.1750261397,"wig+10":24.9075475092,"nqc+10":0.032821605,"smv+10":-0.0294566553,"clarity+10+100":2.152862725,"wig+20":24.1374143893,"nqc+20":0.04779153,"smv+20":-0.0417770414,"clarity+20+100":2.1501611098,"wig+50":23.0453633069,"nqc+50":0.0571450248,"smv+50":-0.0481177147,"clarity+50+100":2.1500041991,"wig+100":22.3452445247,"nqc+100":0.0549688303,"smv+100":-0.0443337457,"clarity+100+100":2.149979156,"wig+1000":20.2728119827,"nqc+1000":0.0494272871,"smv+1000":-0.0376065214,"clarity+1000+100":2.1499660298}
+{"qid":"288","wig+5":31.3668160595,"nqc+5":0.0649496666,"smv+5":-0.0521050162,"clarity+5+100":2.9054837179,"wig+10":30.5795512598,"nqc+10":0.0586509461,"smv+10":-0.0427949022,"clarity+10+100":2.9054780811,"wig+20":29.7815805875,"nqc+20":0.0568889473,"smv+20":-0.0395442549,"clarity+20+100":2.9054764793,"wig+50":28.5260977462,"nqc+50":0.0617030341,"smv+50":-0.0480083459,"clarity+50+100":2.9054763635,"wig+100":27.1875024353,"nqc+100":0.0779820878,"smv+100":-0.0635455409,"clarity+100+100":2.9054763631,"wig+1000":23.3036334609,"nqc+1000":0.0722885334,"smv+1000":-0.0550387854,"clarity+1000+100":2.9054763631}
+{"qid":"291","wig+5":34.4170268504,"nqc+5":0.0754052044,"smv+5":-0.0603162106,"clarity+5+100":3.2144036582,"wig+10":32.63368751,"nqc+10":0.0958969021,"smv+10":-0.0767533966,"clarity+10+100":3.21440351,"wig+20":30.7374980456,"nqc+20":0.1061572327,"smv+20":-0.0911619444,"clarity+20+100":3.21440351,"wig+50":28.5784628471,"nqc+50":0.1006797455,"smv+50":-0.0824297118,"clarity+50+100":3.21440351,"wig+100":27.4463866099,"nqc+100":0.0860693539,"smv+100":-0.065122093,"clarity+100+100":3.21440351,"wig+1000":25.2003827969,"nqc+1000":0.0571882082,"smv+1000":-0.040430146,"clarity+1000+100":3.21440351}
+{"qid":"292","wig+5":31.119016507,"nqc+5":0.0821990767,"smv+5":-0.0673230504,"clarity+5+100":2.4909581967,"wig+10":30.1342488051,"nqc+10":0.0706805117,"smv+10":-0.0539492638,"clarity+10+100":2.4909579499,"wig+20":29.417874014,"nqc+20":0.0580348669,"smv+20":-0.0392751239,"clarity+20+100":2.4909579184,"wig+50":28.6082199136,"nqc+50":0.0462005043,"smv+50":-0.0296311967,"clarity+50+100":2.4909579106,"wig+100":27.8812459423,"nqc+100":0.0445145458,"smv+100":-0.032491194,"clarity+100+100":2.4909579102,"wig+1000":25.7968573791,"nqc+1000":0.0400061629,"smv+1000":-0.0306081839,"clarity+1000+100":2.49095791}
+{"qid":"293","wig+5":35.4796968448,"nqc+5":0.0179826091,"smv+5":-0.0143596483,"clarity+5+100":2.6690536166,"wig+10":34.9773690408,"nqc+10":0.0206075322,"smv+10":-0.0169507818,"clarity+10+100":2.6677230738,"wig+20":34.5849062087,"nqc+20":0.0196576613,"smv+20":-0.0151693967,"clarity+20+100":2.66688919,"wig+50":33.9699035108,"nqc+50":0.0208869153,"smv+50":-0.0165732338,"clarity+50+100":2.6666925065,"wig+100":33.4688998237,"nqc+100":0.0219319334,"smv+100":-0.0179373013,"clarity+100+100":2.6666668959,"wig+1000":32.0407918255,"nqc+1000":0.0199295873,"smv+1000":-0.0150304052,"clarity+1000+100":2.6666509842}
+{"qid":"294","wig+5":32.9907328696,"nqc+5":0.0164021341,"smv+5":-0.014126428,"clarity+5+100":2.0269916006,"wig+10":32.4247593231,"nqc+10":0.0255524368,"smv+10":-0.0221410976,"clarity+10+100":2.0114132294,"wig+20":31.8233663823,"nqc+20":0.0298908545,"smv+20":-0.0250923135,"clarity+20+100":2.0109798678,"wig+50":30.6708134233,"nqc+50":0.0454966807,"smv+50":-0.0385480272,"clarity+50+100":2.0108958095,"wig+100":29.6167662118,"nqc+100":0.0524913899,"smv+100":-0.0454955578,"clarity+100+100":2.0108948969,"wig+1000":27.5927545818,"nqc+1000":0.0544824205,"smv+1000":-0.0428167511,"clarity+1000+100":2.0108947045}
+{"qid":"295","wig+5":26.9866888861,"nqc+5":0.1136613476,"smv+5":-0.1015093227,"clarity+5+100":2.8113435743,"wig+10":24.792465744,"nqc+10":0.1535019404,"smv+10":-0.1397888197,"clarity+10+100":2.811339482,"wig+20":23.0924967075,"nqc+20":0.1480919611,"smv+20":-0.1261970792,"clarity+20+100":2.8113386946,"wig+50":21.486851365,"nqc+50":0.1223583818,"smv+50":-0.0904439395,"clarity+50+100":2.8113386009,"wig+100":20.4448344494,"nqc+100":0.1069679016,"smv+100":-0.0758739549,"clarity+100+100":2.8113385862,"wig+1000":18.8600457516,"nqc+1000":0.0789634603,"smv+1000":-0.0561095132,"clarity+1000+100":2.8113385789}
+{"qid":"296","wig+5":23.6219926511,"nqc+5":0.0464824674,"smv+5":-0.0337100731,"clarity+5+100":2.1760253854,"wig+10":22.4805292843,"nqc+10":0.085441809,"smv+10":-0.0792170759,"clarity+10+100":2.1751687802,"wig+20":21.3082584593,"nqc+20":0.1005296082,"smv+20":-0.0868114235,"clarity+20+100":2.1736823486,"wig+50":19.9345640873,"nqc+50":0.1010829045,"smv+50":-0.0797472635,"clarity+50+100":2.173668367,"wig+100":18.9051001702,"nqc+100":0.1009097901,"smv+100":-0.079689089,"clarity+100+100":2.1736668493,"wig+1000":16.2547468455,"nqc+1000":0.0812631972,"smv+1000":-0.0610601412,"clarity+1000+100":2.1736663146}
+{"qid":"297","wig+5":33.4544236628,"nqc+5":0.0305722445,"smv+5":-0.0247522749,"clarity+5+100":3.3931484855,"wig+10":32.9144410832,"nqc+10":0.0296186606,"smv+10":-0.0238166533,"clarity+10+100":3.392231041,"wig+20":32.3569745808,"nqc+20":0.0298374168,"smv+20":-0.0223272178,"clarity+20+100":3.3920124732,"wig+50":31.5539926844,"nqc+50":0.0314815766,"smv+50":-0.0247232158,"clarity+50+100":3.3919601682,"wig+100":30.8109373296,"nqc+100":0.0360663753,"smv+100":-0.0287795376,"clarity+100+100":3.3919576825,"wig+1000":28.3129831765,"nqc+1000":0.038206884,"smv+1000":-0.0295847759,"clarity+1000+100":3.3919575584}
+{"qid":"298","wig+5":32.9673317334,"nqc+5":0.0290481588,"smv+5":-0.0231987291,"clarity+5+100":3.3845480655,"wig+10":32.2442275202,"nqc+10":0.0334858781,"smv+10":-0.027904298,"clarity+10+100":3.3843459825,"wig+20":31.6936007746,"nqc+20":0.0312358885,"smv+20":-0.0245314917,"clarity+20+100":3.38425209,"wig+50":31.0584044952,"nqc+50":0.0278500998,"smv+50":-0.0200728105,"clarity+50+100":3.3842095311,"wig+100":30.5078589798,"nqc+100":0.0287102759,"smv+100":-0.0217127999,"clarity+100+100":3.3842035536,"wig+1000":28.5081971281,"nqc+1000":0.0316255326,"smv+1000":-0.0247022419,"clarity+1000+100":3.3842026976}
+{"qid":"299","wig+5":23.1675593824,"nqc+5":0.0131492674,"smv+5":-0.0118989806,"clarity+5+100":2.0822682498,"wig+10":22.8321537904,"nqc+10":0.0194235568,"smv+10":-0.0169393913,"clarity+10+100":2.030384402,"wig+20":22.4999036744,"nqc+20":0.0217076418,"smv+20":-0.0182665846,"clarity+20+100":1.9844820948,"wig+50":22.1019583425,"nqc+50":0.0214867299,"smv+50":-0.0169140234,"clarity+50+100":1.9413390004,"wig+100":21.8318273067,"nqc+100":0.0203814126,"smv+100":-0.0155677527,"clarity+100+100":1.9075827053,"wig+1000":20.9137848842,"nqc+1000":0.0209330905,"smv+1000":-0.016429574,"clarity+1000+100":1.8154185102}
+{"qid":"300","wig+5":29.5441849679,"nqc+5":0.0732062003,"smv+5":-0.0653360987,"clarity+5+100":4.3874032969,"wig+10":28.0082316972,"nqc+10":0.0926270743,"smv+10":-0.081356182,"clarity+10+100":4.3873928666,"wig+20":26.3590803974,"nqc+20":0.1064478129,"smv+20":-0.0875274465,"clarity+20+100":4.3873924736,"wig+50":24.5490430097,"nqc+50":0.0998499577,"smv+50":-0.0823973985,"clarity+50+100":4.387392467,"wig+100":23.6116793177,"nqc+100":0.084592831,"smv+100":-0.0635032531,"clarity+100+100":4.3873924658,"wig+1000":21.562231176,"nqc+1000":0.0566327362,"smv+1000":-0.0405230343,"clarity+1000+100":4.387392465}
+{"qid":"301","wig+5":31.7069295522,"nqc+5":0.0115589776,"smv+5":-0.0096683574,"clarity+5+100":2.0075087491,"wig+10":31.3006755691,"nqc+10":0.0206631705,"smv+10":-0.0172430506,"clarity+10+100":2.0158979611,"wig+20":30.6852968034,"nqc+20":0.0304858332,"smv+20":-0.0267973941,"clarity+20+100":2.0078992585,"wig+50":29.6430017604,"nqc+50":0.0426352062,"smv+50":-0.0354474272,"clarity+50+100":2.0095535533,"wig+100":28.615570553,"nqc+100":0.0534421904,"smv+100":-0.0453422905,"clarity+100+100":2.0095473483,"wig+1000":25.3115224667,"nqc+1000":0.0575155275,"smv+1000":-0.0440762907,"clarity+1000+100":2.0095468275}
+{"qid":"303","wig+5":27.5595254011,"nqc+5":0.0202048994,"smv+5":-0.0156750768,"clarity+5+100":2.342936904,"wig+10":26.8664609486,"nqc+10":0.0382132604,"smv+10":-0.0350221178,"clarity+10+100":2.3390425539,"wig+20":26.0839045613,"nqc+20":0.0492023403,"smv+20":-0.0411324339,"clarity+20+100":2.336712554,"wig+50":24.9252656943,"nqc+50":0.0579129685,"smv+50":-0.0488809121,"clarity+50+100":2.3366298746,"wig+100":24.1839089464,"nqc+100":0.0558635389,"smv+100":-0.0440894821,"clarity+100+100":2.3366180557,"wig+1000":21.7552669914,"nqc+1000":0.0604327216,"smv+1000":-0.0477441101,"clarity+1000+100":2.3366164384}
+{"qid":"304","wig+5":33.6099383352,"nqc+5":0.0342345405,"smv+5":-0.029214538,"clarity+5+100":3.0648212526,"wig+10":32.9534337356,"nqc+10":0.033087776,"smv+10":-0.0295344515,"clarity+10+100":3.0640783477,"wig+20":32.4449605902,"nqc+20":0.0291449385,"smv+20":-0.0217969373,"clarity+20+100":3.0634260572,"wig+50":31.9643059689,"nqc+50":0.0230034398,"smv+50":-0.0151990313,"clarity+50+100":3.0632835629,"wig+100":31.5969971986,"nqc+100":0.0207173628,"smv+100":-0.014310486,"clarity+100+100":3.0632328689,"wig+1000":30.2127108181,"nqc+1000":0.0215504263,"smv+1000":-0.0169253409,"clarity+1000+100":3.0632062738}
+{"qid":"306","wig+5":32.5206455726,"nqc+5":0.0740629635,"smv+5":-0.0617086488,"clarity+5+100":1.9077860422,"wig+10":31.5832685445,"nqc+10":0.0647690331,"smv+10":-0.0463989606,"clarity+10+100":1.9077860112,"wig+20":30.7998969914,"nqc+20":0.0555367493,"smv+20":-0.0385109385,"clarity+20+100":1.9077860023,"wig+50":29.9167221817,"nqc+50":0.0462597299,"smv+50":-0.0307062473,"clarity+50+100":1.907785999,"wig+100":29.093569216,"nqc+100":0.046858498,"smv+100":-0.0355282021,"clarity+100+100":1.9077859988,"wig+1000":26.6994177574,"nqc+1000":0.049468996,"smv+1000":-0.0391121331,"clarity+1000+100":1.9077859988}
+{"qid":"314","wig+5":30.8871718501,"nqc+5":0.0518267204,"smv+5":-0.0472771586,"clarity+5+100":3.3357048186,"wig+10":30.1780980079,"nqc+10":0.0471183596,"smv+10":-0.0367108622,"clarity+10+100":3.3356570423,"wig+20":29.5484069375,"nqc+20":0.0421618905,"smv+20":-0.030671997,"clarity+20+100":3.3356465136,"wig+50":28.7991592673,"nqc+50":0.0373236892,"smv+50":-0.0260885071,"clarity+50+100":3.3356426348,"wig+100":28.2148570801,"nqc+100":0.0360338329,"smv+100":-0.0267636034,"clarity+100+100":3.3356420837,"wig+1000":25.9797513414,"nqc+1000":0.0410883285,"smv+1000":-0.0319511249,"clarity+1000+100":3.3356419915}
+{"qid":"315","wig+5":24.9186757134,"nqc+5":0.0186393048,"smv+5":-0.0170901526,"clarity+5+100":2.5482997943,"wig+10":24.5209007911,"nqc+10":0.0259143524,"smv+10":-0.0198165797,"clarity+10+100":2.454840472,"wig+20":24.0624924697,"nqc+20":0.0295169033,"smv+20":-0.0260123204,"clarity+20+100":2.4346368854,"wig+50":23.540383689,"nqc+50":0.0286808774,"smv+50":-0.0222284125,"clarity+50+100":2.4196262923,"wig+100":23.1170654879,"nqc+100":0.0295486981,"smv+100":-0.0225805337,"clarity+100+100":2.4142914926,"wig+1000":21.2645608558,"nqc+1000":0.0419874611,"smv+1000":-0.0332950418,"clarity+1000+100":2.4086171959}
+{"qid":"316","wig+5":21.1259328324,"nqc+5":0.0529725485,"smv+5":-0.0436944827,"clarity+5+100":2.3548926692,"wig+10":20.5534245002,"nqc+10":0.0522170319,"smv+10":-0.0401105713,"clarity+10+100":2.3455555259,"wig+20":20.0215775609,"nqc+20":0.0501042175,"smv+20":-0.0379201831,"clarity+20+100":2.3393660142,"wig+50":19.3983907866,"nqc+50":0.0451666983,"smv+50":-0.034167874,"clarity+50+100":2.3346964602,"wig+100":18.9402258009,"nqc+100":0.0434138704,"smv+100":-0.0314381485,"clarity+100+100":2.3326409956,"wig+1000":17.0481664312,"nqc+1000":0.0516163592,"smv+1000":-0.0413581713,"clarity+1000+100":2.3311240808}
+{"qid":"317","wig+5":24.2601719653,"nqc+5":0.0703370898,"smv+5":-0.0585059883,"clarity+5+100":2.439351522,"wig+10":23.2444174715,"nqc+10":0.0775923377,"smv+10":-0.069479448,"clarity+10+100":2.4392749167,"wig+20":22.4285319704,"nqc+20":0.0732045567,"smv+20":-0.0571329432,"clarity+20+100":2.4392480045,"wig+50":21.5950153078,"nqc+50":0.0612929427,"smv+50":-0.044285571,"clarity+50+100":2.4392347986,"wig+100":21.0678230224,"nqc+100":0.0534850497,"smv+100":-0.0362380938,"clarity+100+100":2.439230537,"wig+1000":18.8931056739,"nqc+1000":0.0602563267,"smv+1000":-0.0486438979,"clarity+1000+100":2.4392281865}
+{"qid":"321","wig+5":33.0494624301,"nqc+5":0.074634361,"smv+5":-0.0650202976,"clarity+5+100":2.6956745454,"wig+10":32.1627775671,"nqc+10":0.0620247052,"smv+10":-0.043511866,"clarity+10+100":2.6956745224,"wig+20":31.4959410791,"nqc+20":0.0503441161,"smv+20":-0.032837089,"clarity+20+100":2.6956745122,"wig+50":30.7492319043,"nqc+50":0.0389530387,"smv+50":-0.0252846479,"clarity+50+100":2.6956745091,"wig+100":30.2112552136,"nqc+100":0.0342191438,"smv+100":-0.0223221207,"clarity+100+100":2.6956745084,"wig+1000":28.44234389,"nqc+1000":0.0288554027,"smv+1000":-0.0214041667,"clarity+1000+100":2.6956745082}
+{"qid":"323","wig+5":26.3642933661,"nqc+5":0.0113618807,"smv+5":-0.0101815662,"clarity+5+100":2.0442924129,"wig+10":26.05427007,"nqc+10":0.0189226422,"smv+10":-0.0152330537,"clarity+10+100":1.9836647112,"wig+20":25.5059285802,"nqc+20":0.0313659146,"smv+20":-0.0270670703,"clarity+20+100":1.9626585704,"wig+50":24.7074710571,"nqc+50":0.0385769163,"smv+50":-0.0323635238,"clarity+50+100":1.9607437166,"wig+100":24.1027019428,"nqc+100":0.0410342284,"smv+100":-0.0324045866,"clarity+100+100":1.9602864464,"wig+1000":21.8459005801,"nqc+1000":0.0514253566,"smv+1000":-0.0405156948,"clarity+1000+100":1.9601481175}
+{"qid":"327","wig+5":40.4855883065,"nqc+5":0.1483618103,"smv+5":-0.1232168606,"clarity+5+100":3.0910638804,"wig+10":37.9736953378,"nqc+10":0.1366317282,"smv+10":-0.1164281706,"clarity+10+100":3.0910638804,"wig+20":36.0186813065,"nqc+20":0.118168138,"smv+20":-0.0884285673,"clarity+20+100":3.0910638804,"wig+50":34.1369068197,"nqc+50":0.0922891619,"smv+50":-0.0634824039,"clarity+50+100":3.0910638804,"wig+100":33.1334465036,"nqc+100":0.0740484773,"smv+100":-0.0488448604,"clarity+100+100":3.0910638804,"wig+1000":30.3271245788,"nqc+1000":0.0465672327,"smv+1000":-0.0328793454,"clarity+1000+100":3.0910638804}
+{"qid":"331","wig+5":25.8378728899,"nqc+5":0.0189599221,"smv+5":-0.0152972303,"clarity+5+100":1.7608986717,"wig+10":25.5394149331,"nqc+10":0.0204945846,"smv+10":-0.0152398221,"clarity+10+100":1.6984608601,"wig+20":25.1773296341,"nqc+20":0.0236929875,"smv+20":-0.019157104,"clarity+20+100":1.6583345308,"wig+50":24.5334546277,"nqc+50":0.031512676,"smv+50":-0.0263177421,"clarity+50+100":1.6497001809,"wig+100":24.0114679314,"nqc+100":0.034826218,"smv+100":-0.0283669131,"clarity+100+100":1.6490826702,"wig+1000":21.3391131427,"nqc+1000":0.0639453462,"smv+1000":null,"clarity+1000+100":1.6489119995}
+{"qid":"332","wig+5":40.416610497,"nqc+5":0.1041635561,"smv+5":-0.0929208249,"clarity+5+100":3.0000489454,"wig+10":38.3643832861,"nqc+10":0.1034933216,"smv+10":-0.095503055,"clarity+10+100":3.0000489454,"wig+20":36.9923639229,"nqc+20":0.0880090431,"smv+20":-0.0676191286,"clarity+20+100":3.0000489454,"wig+50":35.3845550178,"nqc+50":0.0742281227,"smv+50":-0.0498833448,"clarity+50+100":3.0000489454,"wig+100":33.9164997904,"nqc+100":0.0745088356,"smv+100":-0.0575131289,"clarity+100+100":3.0000489454,"wig+1000":29.895295727,"nqc+1000":0.0602739619,"smv+1000":-0.0444064775,"clarity+1000+100":3.0000489454}
+{"qid":"333","wig+5":31.9265339312,"nqc+5":0.039297169,"smv+5":-0.0336693681,"clarity+5+100":2.5044734025,"wig+10":31.5193614703,"nqc+10":0.0326678458,"smv+10":-0.0242047223,"clarity+10+100":2.502525675,"wig+20":30.9164531204,"nqc+20":0.0353831428,"smv+20":-0.0257638624,"clarity+20+100":2.5021502685,"wig+50":29.9165157237,"nqc+50":0.0430059597,"smv+50":-0.0341552578,"clarity+50+100":2.5020732553,"wig+100":28.8156665364,"nqc+100":0.0563301968,"smv+100":-0.0477614281,"clarity+100+100":2.5020724573,"wig+1000":25.3048622615,"nqc+1000":0.0642976657,"smv+1000":-0.0497078722,"clarity+1000+100":2.5020724318}
+{"qid":"335","wig+5":33.6721330218,"nqc+5":0.0850791511,"smv+5":-0.0809336746,"clarity+5+100":2.8895060877,"wig+10":31.831057055,"nqc+10":0.1087686908,"smv+10":-0.0960168045,"clarity+10+100":2.8895044718,"wig+20":30.0834197439,"nqc+20":0.1141508325,"smv+20":-0.095820253,"clarity+20+100":2.8895044679,"wig+50":28.2470253185,"nqc+50":0.1028306555,"smv+50":-0.0779466172,"clarity+50+100":2.8895044677,"wig+100":26.6563889142,"nqc+100":0.1065561168,"smv+100":-0.0821970671,"clarity+100+100":2.8895044677,"wig+1000":22.4857205213,"nqc+1000":0.0887966786,"smv+1000":-0.0635246997,"clarity+1000+100":2.8895044677}
+{"qid":"336","wig+5":30.3811282366,"nqc+5":0.031210567,"smv+5":-0.0305297421,"clarity+5+100":2.7377639534,"wig+10":29.5212172897,"nqc+10":0.0492236091,"smv+10":-0.0412520585,"clarity+10+100":2.7351052263,"wig+20":28.3692142898,"nqc+20":0.0662419694,"smv+20":-0.0580858478,"clarity+20+100":2.7350778508,"wig+50":26.8231626135,"nqc+50":0.0750005032,"smv+50":-0.0619647043,"clarity+50+100":2.7350766929,"wig+100":25.6434810075,"nqc+100":0.0783892712,"smv+100":-0.062876117,"clarity+100+100":2.7350766671,"wig+1000":22.4417525446,"nqc+1000":0.0689946482,"smv+1000":-0.0492769752,"clarity+1000+100":2.7350766651}
+{"qid":"338","wig+5":32.1463509301,"nqc+5":0.1074526493,"smv+5":-0.0891336106,"clarity+5+100":2.8063428453,"wig+10":30.906635403,"nqc+10":0.0924498887,"smv+10":-0.0703300357,"clarity+10+100":2.8063428451,"wig+20":29.8646404526,"nqc+20":0.0793920565,"smv+20":-0.0541867181,"clarity+20+100":2.806342845,"wig+50":28.5500853876,"nqc+50":0.0683267405,"smv+50":-0.0494792001,"clarity+50+100":2.806342845,"wig+100":27.601530022,"nqc+100":0.0630687339,"smv+100":-0.046499665,"clarity+100+100":2.806342845,"wig+1000":25.2507517212,"nqc+1000":0.0488199467,"smv+1000":-0.0367323912,"clarity+1000+100":2.806342845}
+{"qid":"339","wig+5":29.0607885528,"nqc+5":0.0413969212,"smv+5":-0.0348159974,"clarity+5+100":2.7769620992,"wig+10":28.4275298515,"nqc+10":0.0390521919,"smv+10":-0.0275892199,"clarity+10+100":2.7768553941,"wig+20":27.9101317521,"nqc+20":0.0346956754,"smv+20":-0.0256509906,"clarity+20+100":2.7768109353,"wig+50":27.3739966311,"nqc+50":0.0283866252,"smv+50":-0.0195680165,"clarity+50+100":2.7767806018,"wig+100":26.9754027989,"nqc+100":0.0259362823,"smv+100":-0.0181465172,"clarity+100+100":2.7767710566,"wig+1000":25.5427770107,"nqc+1000":0.0266205966,"smv+1000":null,"clarity+1000+100":2.7767648824}
+{"qid":"340","wig+5":25.1452573932,"nqc+5":0.0214605223,"smv+5":-0.0175960649,"clarity+5+100":3.2896176747,"wig+10":24.9756594167,"nqc+10":0.0175132652,"smv+10":-0.0108913511,"clarity+10+100":3.0517188665,"wig+20":24.7056349275,"nqc+20":0.0191769784,"smv+20":-0.0137263746,"clarity+20+100":2.9413153184,"wig+50":24.0679913016,"nqc+50":0.030759661,"smv+50":-0.0261375777,"clarity+50+100":2.8998661845,"wig+100":23.5106860421,"nqc+100":0.0358365622,"smv+100":-0.0303883898,"clarity+100+100":2.895101166,"wig+1000":21.459776374,"nqc+1000":0.0461026791,"smv+1000":-0.0368265023,"clarity+1000+100":2.8930651967}
+{"qid":"347","wig+5":24.8687665234,"nqc+5":0.0171082752,"smv+5":-0.0153422653,"clarity+5+100":1.6270993593,"wig+10":24.5928837205,"nqc+10":0.0194015687,"smv+10":-0.0167881911,"clarity+10+100":1.6002758875,"wig+20":24.3034176058,"nqc+20":0.0212697505,"smv+20":-0.0166334566,"clarity+20+100":1.5670146228,"wig+50":23.7126556022,"nqc+50":0.0307815015,"smv+50":-0.0260961673,"clarity+50+100":1.5577845322,"wig+100":23.0695361847,"nqc+100":0.0418210487,"smv+100":-0.035383067,"clarity+100+100":1.5565057167,"wig+1000":20.3775917929,"nqc+1000":0.0655215486,"smv+1000":-0.0532390591,"clarity+1000+100":1.5563103897}
+{"qid":"348","wig+5":22.2079393182,"nqc+5":0.0238468709,"smv+5":-0.0195386475,"clarity+5+100":1.6111569791,"wig+10":21.932805893,"nqc+10":0.0247496934,"smv+10":-0.0188870474,"clarity+10+100":1.568975673,"wig+20":21.6515491016,"nqc+20":0.0258817721,"smv+20":-0.0195133792,"clarity+20+100":1.5309899776,"wig+50":20.8386710012,"nqc+50":0.052326778,"smv+50":-0.0443024192,"clarity+50+100":1.5189021591,"wig+100":19.9500977453,"nqc+100":0.0688849571,"smv+100":-0.0613793928,"clarity+100+100":1.5182871317,"wig+1000":17.737364216,"nqc+1000":0.0847785124,"smv+1000":-0.0682162518,"clarity+1000+100":1.5179275709}
+{"qid":"349","wig+5":23.2068572859,"nqc+5":0.0177340274,"smv+5":-0.0164224891,"clarity+5+100":2.1516233703,"wig+10":22.838858014,"nqc+10":0.023082594,"smv+10":-0.019975178,"clarity+10+100":2.1060144365,"wig+20":22.5426094988,"nqc+20":0.0224103186,"smv+20":-0.0183317645,"clarity+20+100":2.0630933779,"wig+50":22.185772781,"nqc+50":0.0214892892,"smv+50":-0.015317828,"clarity+50+100":2.0138090949,"wig+100":21.8445429954,"nqc+100":0.0235494489,"smv+100":-0.0189156894,"clarity+100+100":1.9909048923,"wig+1000":20.3968932761,"nqc+1000":0.036330826,"smv+1000":-0.0285317874,"clarity+1000+100":1.964395708}
+{"qid":"352","wig+5":28.35069751,"nqc+5":0.0280079883,"smv+5":-0.0224373165,"clarity+5+100":2.0769309556,"wig+10":27.97349235,"nqc+10":0.0259899617,"smv+10":-0.0184775743,"clarity+10+100":2.0726173281,"wig+20":27.6322382338,"nqc+20":0.0239701996,"smv+20":-0.0169952616,"clarity+20+100":2.0695677491,"wig+50":27.072911935,"nqc+50":0.0258514339,"smv+50":-0.0202999742,"clarity+50+100":2.0682558883,"wig+100":26.6007252069,"nqc+100":0.0283190028,"smv+100":-0.0220940904,"clarity+100+100":2.0680780222,"wig+1000":24.421334916,"nqc+1000":0.0444828343,"smv+1000":-0.0361079809,"clarity+1000+100":2.0680310584}
+{"qid":"353","wig+5":25.2153345972,"nqc+5":0.0276342216,"smv+5":-0.0263379605,"clarity+5+100":1.6073070278,"wig+10":24.7894966849,"nqc+10":0.0295638537,"smv+10":-0.0247833696,"clarity+10+100":1.6009943132,"wig+20":24.339124126,"nqc+20":0.0317572514,"smv+20":-0.0243684984,"clarity+20+100":1.5972537671,"wig+50":23.7118499274,"nqc+50":0.0339645665,"smv+50":-0.0268243478,"clarity+50+100":1.5950431789,"wig+100":23.1956272598,"nqc+100":0.0363854152,"smv+100":-0.0286954857,"clarity+100+100":1.5947752096,"wig+1000":20.9761069716,"nqc+1000":0.0514715253,"smv+1000":-0.0414709392,"clarity+1000+100":1.5946862655}
+{"qid":"355","wig+5":24.9249430917,"nqc+5":0.0523824001,"smv+5":-0.0403843953,"clarity+5+100":3.1500631813,"wig+10":23.6861661119,"nqc+10":0.1015049192,"smv+10":-0.092422489,"clarity+10+100":3.1446789543,"wig+20":21.970705933,"nqc+20":0.1474805538,"smv+20":-0.1298276829,"clarity+20+100":3.1446425105,"wig+50":19.992191158,"nqc+50":0.155929208,"smv+50":-0.1251263776,"clarity+50+100":3.1446358635,"wig+100":18.5861124543,"nqc+100":0.1529817089,"smv+100":-0.122731229,"clarity+100+100":3.1446356944,"wig+1000":15.4142039686,"nqc+1000":0.1282968251,"smv+1000":-0.0985837565,"clarity+1000+100":3.1446356664}
+{"qid":"356","wig+5":27.014674998,"nqc+5":0.0290618868,"smv+5":-0.0265373404,"clarity+5+100":2.6529056953,"wig+10":26.3879019525,"nqc+10":0.0367892977,"smv+10":-0.0314166627,"clarity+10+100":2.6439499429,"wig+20":25.6991700039,"nqc+20":0.0418023203,"smv+20":-0.0353047685,"clarity+20+100":2.6388267556,"wig+50":24.9242480147,"nqc+50":0.0406129078,"smv+50":-0.0313843287,"clarity+50+100":2.6350541855,"wig+100":24.3143200367,"nqc+100":0.0409214258,"smv+100":-0.0320802698,"clarity+100+100":2.6344113896,"wig+1000":22.6665898015,"nqc+1000":0.0442189182,"smv+1000":-0.035924653,"clarity+1000+100":2.6341888353}
+{"qid":"360","wig+5":34.142933202,"nqc+5":0.0451337751,"smv+5":-0.0346669069,"clarity+5+100":3.0764526431,"wig+10":33.0532760287,"nqc+10":0.0534562855,"smv+10":-0.0464594793,"clarity+10+100":3.0764503545,"wig+20":31.9503325764,"nqc+20":0.0574238902,"smv+20":-0.0471838026,"clarity+20+100":3.0764502534,"wig+50":30.7859426245,"nqc+50":0.0520327101,"smv+50":-0.040102185,"clarity+50+100":3.0764502436,"wig+100":30.0009453348,"nqc+100":0.0480844289,"smv+100":-0.0350966634,"clarity+100+100":3.0764502427,"wig+1000":27.2638839174,"nqc+1000":0.0486013942,"smv+1000":null,"clarity+1000+100":3.0764502426}
+{"qid":"365","wig+5":28.0485805388,"nqc+5":0.0608847114,"smv+5":-0.057475213,"clarity+5+100":1.9950483886,"wig+10":27.3125772405,"nqc+10":0.0556799245,"smv+10":-0.047472104,"clarity+10+100":1.9949000763,"wig+20":26.5566291672,"nqc+20":0.053680268,"smv+20":-0.0392788439,"clarity+20+100":1.9928923805,"wig+50":25.6494048297,"nqc+50":0.0494801729,"smv+50":-0.0370874286,"clarity+50+100":1.9878610424,"wig+100":25.0023050004,"nqc+100":0.0473328373,"smv+100":-0.034673724,"clarity+100+100":1.9878608836,"wig+1000":22.5368826421,"nqc+1000":0.0541601806,"smv+1000":-0.0419153572,"clarity+1000+100":1.9882608002}
diff --git a/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests_and_bm25_run_with_monot5_scores.approved.jsonl b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests_and_bm25_run_with_monot5_scores.approved.jsonl
new file mode 100644
index 0000000..aff0a15
--- /dev/null
+++ b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_approvaltests_and_bm25_run_with_monot5_scores.approved.jsonl
@@ -0,0 +1,225 @@
+{"qid":"1","wig+5":22.738484295,"nqc+5":0.0175580191,"smv+5":0.0151421722,"clarity+5+100":2.0878414283,"wig+10":22.5033999823,"nqc+10":0.0276076121,"smv+10":0.0213133877,"clarity+10+100":1.9667948939,"wig+20":22.3417080263,"nqc+20":0.0275363984,"smv+20":0.0199777432,"clarity+20+100":1.6950803222,"wig+50":21.9707803052,"nqc+50":0.0320951576,"smv+50":0.0233264845,"clarity+50+100":1.5821540647,"wig+100":21.6912063564,"nqc+100":0.0334861337,"smv+100":0.0255834647,"clarity+100+100":1.5174596303,"wig+1000":20.7225825812,"nqc+1000":0.0294649766,"smv+1000":0.0200946857,"clarity+1000+100":1.4054132271}
+{"qid":"2","wig+5":21.0513643376,"nqc+5":0.0121326269,"smv+5":0.0104345785,"clarity+5+100":2.0814123152,"wig+10":20.8855397361,"nqc+10":0.0176584763,"smv+10":0.0136071226,"clarity+10+100":1.9954599036,"wig+20":20.8581911089,"nqc+20":0.0161370583,"smv+20":0.0123983372,"clarity+20+100":1.8222040327,"wig+50":20.5579923586,"nqc+50":0.0311039083,"smv+50":0.0235496193,"clarity+50+100":1.7134177675,"wig+100":20.152890427,"nqc+100":0.0404756575,"smv+100":0.0300581477,"clarity+100+100":1.5862645952,"wig+1000":18.5475034274,"nqc+1000":0.044812096,"smv+1000":0.0295037924,"clarity+1000+100":1.5185623489}
+{"qid":"4","wig+5":18.1991496976,"nqc+5":0.0040448311,"smv+5":0.0035977775,"clarity+5+100":2.6677132468,"wig+10":18.1808420141,"nqc+10":0.0036154777,"smv+10":0.0027998854,"clarity+10+100":2.2762243842,"wig+20":17.2484065658,"nqc+20":0.0687338189,"smv+20":0.0549669667,"clarity+20+100":2.1622509603,"wig+50":16.5807625769,"nqc+50":0.0693025122,"smv+50":0.0500085765,"clarity+50+100":2.0239920947,"wig+100":16.0218295497,"nqc+100":0.0677426587,"smv+100":0.04524041,"clarity+100+100":1.9907370814,"wig+1000":15.115660546,"nqc+1000":0.0437363865,"smv+1000":0.0268629847,"clarity+1000+100":1.9728332518}
+{"qid":"8","wig+5":33.2787735777,"nqc+5":0.007171276,"smv+5":0.0057534289,"clarity+5+100":2.285298199,"wig+10":33.1376902299,"nqc+10":0.0078854319,"smv+10":0.0067905468,"clarity+10+100":2.1495771562,"wig+20":32.9050099331,"nqc+20":0.0135760062,"smv+20":0.0103248149,"clarity+20+100":2.0570594299,"wig+50":32.6841967486,"nqc+50":0.0146875236,"smv+50":0.0114310003,"clarity+50+100":1.9650684355,"wig+100":32.5321580933,"nqc+100":0.0136942865,"smv+100":0.0104942407,"clarity+100+100":1.8235878783,"wig+1000":31.9263555526,"nqc+1000":0.0115648176,"smv+1000":0.0082324863,"clarity+1000+100":1.6166379352}
+{"qid":"9","wig+5":16.9479583254,"nqc+5":0.0292133137,"smv+5":0.0239321199,"clarity+5+100":2.0610426901,"wig+10":16.6146573237,"nqc+10":0.0611405904,"smv+10":0.0469007907,"clarity+10+100":1.9219502439,"wig+20":16.5250242504,"nqc+20":0.0596858786,"smv+20":0.0479417593,"clarity+20+100":1.6395629149,"wig+50":16.4209530502,"nqc+50":0.0601361312,"smv+50":0.0476523529,"clarity+50+100":1.4027062527,"wig+100":16.3736141043,"nqc+100":0.0592177667,"smv+100":0.048431689,"clarity+100+100":1.2321926466,"wig+1000":15.610197699,"nqc+1000":0.0618370441,"smv+1000":0.0491010449,"clarity+1000+100":1.0704454726}
+{"qid":"10","wig+5":17.6072770865,"nqc+5":0.0161140747,"smv+5":0.0138305491,"clarity+5+100":2.1858397909,"wig+10":17.1756953701,"nqc+10":0.0372669366,"smv+10":0.0281892921,"clarity+10+100":1.986538494,"wig+20":16.70317303,"nqc+20":0.0570625365,"smv+20":0.0440411162,"clarity+20+100":1.7740063992,"wig+50":16.4714566374,"nqc+50":0.0625230251,"smv+50":0.0476261718,"clarity+50+100":1.4817073457,"wig+100":16.3811114166,"nqc+100":0.0596241143,"smv+100":0.0468606525,"clarity+100+100":1.3356409339,"wig+1000":15.4294279199,"nqc+1000":0.0488522708,"smv+1000":0.0352636044,"clarity+1000+100":1.1876742416}
+{"qid":"12","wig+5":34.3730439118,"nqc+5":0.0064334609,"smv+5":0.0049695848,"clarity+5+100":1.9488160216,"wig+10":34.3438779146,"nqc+10":0.0057188478,"smv+10":0.0043709324,"clarity+10+100":1.6401945884,"wig+20":34.2015783387,"nqc+20":0.0084693819,"smv+20":0.0070748278,"clarity+20+100":1.5394200434,"wig+50":33.861613052,"nqc+50":0.0121003015,"smv+50":0.0089766241,"clarity+50+100":1.479158932,"wig+100":33.6703952654,"nqc+100":0.0125130625,"smv+100":0.00900815,"clarity+100+100":1.421175726,"wig+1000":32.9462735079,"nqc+1000":0.0115303475,"smv+1000":0.0077975665,"clarity+1000+100":1.3011101325}
+{"qid":"13","wig+5":26.1281608057,"nqc+5":0.0088141195,"smv+5":0.0057502472,"clarity+5+100":2.0867979265,"wig+10":25.7612889613,"nqc+10":0.0260083165,"smv+10":0.0205209538,"clarity+10+100":1.8684225883,"wig+20":25.7061406643,"nqc+20":0.0306738334,"smv+20":0.0257253851,"clarity+20+100":1.6077308845,"wig+50":25.7347372346,"nqc+50":0.0264464919,"smv+50":0.0213623441,"clarity+50+100":1.4086269424,"wig+100":25.5573458532,"nqc+100":0.0244332262,"smv+100":0.0189942285,"clarity+100+100":1.3546717887,"wig+1000":24.463532514,"nqc+1000":0.0248369925,"smv+1000":0.0169892514,"clarity+1000+100":1.2361738953}
+{"qid":"15","wig+5":18.2511650348,"nqc+5":0.0008342056,"smv+5":0.0007109945,"clarity+5+100":1.8530177594,"wig+10":18.1609259693,"nqc+10":0.0085442737,"smv+10":0.0073554988,"clarity+10+100":1.6757866275,"wig+20":17.9218055083,"nqc+20":0.0292643167,"smv+20":0.0208717386,"clarity+20+100":1.5754266161,"wig+50":17.574965426,"nqc+50":0.0523125642,"smv+50":0.0437835645,"clarity+50+100":1.3824659818,"wig+100":17.4708446913,"nqc+100":0.0463353863,"smv+100":0.0375105087,"clarity+100+100":1.3266082108,"wig+1000":16.0705209712,"nqc+1000":0.050942008,"smv+1000":0.034025474,"clarity+1000+100":1.1831361167}
+{"qid":"18","wig+5":25.8262673353,"nqc+5":0.0053032023,"smv+5":0.0041785009,"clarity+5+100":1.7530767726,"wig+10":25.5885401512,"nqc+10":0.0115766499,"smv+10":0.0083122893,"clarity+10+100":1.7411678222,"wig+20":25.3684500229,"nqc+20":0.0179973732,"smv+20":0.0138409065,"clarity+20+100":1.6199431971,"wig+50":24.6290852252,"nqc+50":0.0297433551,"smv+50":0.0230563597,"clarity+50+100":1.6045888862,"wig+100":24.1539792195,"nqc+100":0.0299809509,"smv+100":0.0205567589,"clarity+100+100":1.5994530792,"wig+1000":23.344975032,"nqc+1000":0.0209027936,"smv+1000":0.0124060563,"clarity+1000+100":1.5908471706}
+{"qid":"22","wig+5":21.5528695441,"nqc+5":0.0239642486,"smv+5":0.0204054381,"clarity+5+100":2.0834422317,"wig+10":21.6269484019,"nqc+10":0.0176556523,"smv+10":0.012176466,"clarity+10+100":1.6842440454,"wig+20":21.3811565505,"nqc+20":0.027352192,"smv+20":0.0213552833,"clarity+20+100":1.497883692,"wig+50":21.1552223032,"nqc+50":0.0280175384,"smv+50":0.0218587925,"clarity+50+100":1.3964308009,"wig+100":20.7884418173,"nqc+100":0.0305082616,"smv+100":0.0224362731,"clarity+100+100":1.3722636056,"wig+1000":19.8273991183,"nqc+1000":0.0256242607,"smv+1000":0.0167562704,"clarity+1000+100":1.312465053}
+{"qid":"23","wig+5":19.8830088323,"nqc+5":0.0189962147,"smv+5":0.0164960486,"clarity+5+100":1.7931101555,"wig+10":19.9381615844,"nqc+10":0.0142139263,"smv+10":0.0109852802,"clarity+10+100":1.6622267614,"wig+20":19.5589582702,"nqc+20":0.0385722762,"smv+20":0.0304560706,"clarity+20+100":1.5550528426,"wig+50":19.2279474581,"nqc+50":0.0405852522,"smv+50":0.0314579325,"clarity+50+100":1.4673633741,"wig+100":18.9072267208,"nqc+100":0.0437172456,"smv+100":0.0335530106,"clarity+100+100":1.3768674569,"wig+1000":17.9386393334,"nqc+1000":0.0379580696,"smv+1000":0.0264926546,"clarity+1000+100":1.2000948329}
+{"qid":"26","wig+5":17.8511837581,"nqc+5":0.0288912793,"smv+5":0.0226885762,"clarity+5+100":2.0183687827,"wig+10":17.6579125655,"nqc+10":0.0378934116,"smv+10":0.0304012923,"clarity+10+100":1.8425868113,"wig+20":16.625483509,"nqc+20":0.0902933289,"smv+20":0.0735530493,"clarity+20+100":1.8025791682,"wig+50":15.9902326657,"nqc+50":0.0935513083,"smv+50":0.0803192898,"clarity+50+100":1.6941724558,"wig+100":15.6036661283,"nqc+100":0.0857713799,"smv+100":0.0702377006,"clarity+100+100":1.615498333,"wig+1000":15.3141121173,"nqc+1000":0.0794854454,"smv+1000":0.0614677848,"clarity+1000+100":1.6022155274}
+{"qid":"27","wig+5":16.3444381377,"nqc+5":0.0106456612,"smv+5":0.0090073012,"clarity+5+100":1.9475820089,"wig+10":16.3783695478,"nqc+10":0.0090308462,"smv+10":0.0079560727,"clarity+10+100":1.7129950225,"wig+20":16.1497222183,"nqc+20":0.0332806269,"smv+20":0.0250820188,"clarity+20+100":1.6922971465,"wig+50":15.4747374169,"nqc+50":0.065278195,"smv+50":0.0502102536,"clarity+50+100":1.5765683244,"wig+100":15.2374547411,"nqc+100":0.062206833,"smv+100":0.0469907188,"clarity+100+100":1.5043810974,"wig+1000":13.5703796483,"nqc+1000":0.0749773927,"smv+1000":0.0522603195,"clarity+1000+100":1.442185029}
+{"qid":"29","wig+5":15.7704954571,"nqc+5":0.1363146939,"smv+5":0.085996965,"clarity+5+100":2.7393574276,"wig+10":15.1213754071,"nqc+10":0.1089953515,"smv+10":0.0584355932,"clarity+10+100":2.7086283577,"wig+20":14.6196817684,"nqc+20":0.0911682117,"smv+20":0.0505374887,"clarity+20+100":2.6715667038,"wig+50":13.8964129432,"nqc+50":0.0710267178,"smv+50":0.0370591955,"clarity+50+100":2.6666723381,"wig+100":13.5637143448,"nqc+100":0.0566981939,"smv+100":0.0290192485,"clarity+100+100":2.6626894813,"wig+1000":13.3779248265,"nqc+1000":0.0473320452,"smv+1000":0.023038908,"clarity+1000+100":2.6601940204}
+{"qid":"31","wig+5":21.1617489989,"nqc+5":0.0309951193,"smv+5":0.0255705364,"clarity+5+100":2.0181697163,"wig+10":21.2381125988,"nqc+10":0.0237449602,"smv+10":0.0178156327,"clarity+10+100":1.7510588636,"wig+20":21.1048196865,"nqc+20":0.0202509044,"smv+20":0.0148573063,"clarity+20+100":1.6415966895,"wig+50":20.6185501827,"nqc+50":0.044619801,"smv+50":0.0367352492,"clarity+50+100":1.4653637817,"wig+100":20.2806368907,"nqc+100":0.0466546836,"smv+100":0.0388295555,"clarity+100+100":1.3405886025,"wig+1000":19.0477851383,"nqc+1000":0.0318776159,"smv+1000":0.0184722464,"clarity+1000+100":1.3038744151}
+{"qid":"32","wig+5":22.661939536,"nqc+5":0.004043284,"smv+5":0.0035629544,"clarity+5+100":1.7869629427,"wig+10":22.5015417821,"nqc+10":0.0091597707,"smv+10":0.0079144176,"clarity+10+100":1.6433276923,"wig+20":22.0996805022,"nqc+20":0.0249647559,"smv+20":0.0183049686,"clarity+20+100":1.6122237964,"wig+50":21.800924735,"nqc+50":0.0296750808,"smv+50":0.0241484321,"clarity+50+100":1.4054086175,"wig+100":21.5263814606,"nqc+100":0.0324180624,"smv+100":0.0259316122,"clarity+100+100":1.3001606057,"wig+1000":20.3627084238,"nqc+1000":0.0288469344,"smv+1000":0.0190432957,"clarity+1000+100":1.2589955497}
+{"qid":"33","wig+5":22.7599937214,"nqc+5":0.0000749765,"smv+5":0.0000652035,"clarity+5+100":1.5311924028,"wig+10":22.7523432418,"nqc+10":0.0006135367,"smv+10":0.0005030879,"clarity+10+100":1.4390871911,"wig+20":22.7279854959,"nqc+20":0.002286386,"smv+20":0.0018769409,"clarity+20+100":1.4261628892,"wig+50":22.6585265624,"nqc+50":0.0052974377,"smv+50":0.0041754065,"clarity+50+100":1.3110501885,"wig+100":22.4013641106,"nqc+100":0.0187428339,"smv+100":0.0147784679,"clarity+100+100":1.229768679,"wig+1000":20.5412996328,"nqc+1000":0.0438458039,"smv+1000":0.0284736129,"clarity+1000+100":1.1507655795}
+{"qid":"34","wig+5":23.9113238334,"nqc+5":0.0277179524,"smv+5":0.013594123,"clarity+5+100":2.3061242508,"wig+10":24.1690972012,"nqc+10":0.0273234053,"smv+10":0.0169804401,"clarity+10+100":2.0384614716,"wig+20":24.0260223769,"nqc+20":0.0264370669,"smv+20":0.015921108,"clarity+20+100":1.8999632317,"wig+50":23.9507678834,"nqc+50":0.0249830357,"smv+50":0.0155351554,"clarity+50+100":1.7785186691,"wig+100":23.711975595,"nqc+100":0.0268156203,"smv+100":0.0172649722,"clarity+100+100":1.7603970302,"wig+1000":23.1681851695,"nqc+1000":0.019327956,"smv+1000":0.0122890239,"clarity+1000+100":1.4984218531}
+{"qid":"35","wig+5":25.7705884125,"nqc+5":0.0006360903,"smv+5":0.0005461688,"clarity+5+100":2.2681540105,"wig+10":25.3158944651,"nqc+10":0.0232955219,"smv+10":0.0181609187,"clarity+10+100":2.2027148805,"wig+20":25.2481932571,"nqc+20":0.0205544069,"smv+20":0.0154487131,"clarity+20+100":2.0344758955,"wig+50":24.9147064745,"nqc+50":0.0224943899,"smv+50":0.016123446,"clarity+50+100":1.8814770695,"wig+100":24.576029198,"nqc+100":0.0246364039,"smv+100":0.0176546423,"clarity+100+100":1.8607178261,"wig+1000":23.9458696291,"nqc+1000":0.0191617913,"smv+1000":0.0132434223,"clarity+1000+100":1.6650464336}
+{"qid":"39","wig+5":19.5219582507,"nqc+5":0.0125925709,"smv+5":0.0087571625,"clarity+5+100":2.0542098695,"wig+10":19.4008194059,"nqc+10":0.0121544912,"smv+10":0.0076790755,"clarity+10+100":1.820598664,"wig+20":18.985306098,"nqc+20":0.0324856642,"smv+20":0.0229971223,"clarity+20+100":1.7447468379,"wig+50":18.7575565284,"nqc+50":0.0329632734,"smv+50":0.0261218548,"clarity+50+100":1.5469038601,"wig+100":18.3617148409,"nqc+100":0.043035804,"smv+100":0.0355914365,"clarity+100+100":1.4155579005,"wig+1000":17.2900710958,"nqc+1000":0.0370106075,"smv+1000":0.0252849947,"clarity+1000+100":1.306037363}
+{"qid":"40","wig+5":21.2979358241,"nqc+5":0.0079837845,"smv+5":0.0072748706,"clarity+5+100":1.6838207872,"wig+10":21.0923523143,"nqc+10":0.0278146176,"smv+10":0.0211078587,"clarity+10+100":1.5475849046,"wig+20":21.1420605381,"nqc+20":0.0214701549,"smv+20":0.0155808204,"clarity+20+100":1.5010000474,"wig+50":20.6663087178,"nqc+50":0.0346142424,"smv+50":0.0276400066,"clarity+50+100":1.4350296042,"wig+100":20.299060129,"nqc+100":0.0377638472,"smv+100":0.0295667498,"clarity+100+100":1.3906108083,"wig+1000":19.1316919706,"nqc+1000":0.0378778558,"smv+1000":0.02573873,"clarity+1000+100":1.3625822287}
+{"qid":"41","wig+5":17.8665731755,"nqc+5":0.0315558301,"smv+5":0.0273897866,"clarity+5+100":1.9174256231,"wig+10":17.878217551,"nqc+10":0.0273105757,"smv+10":0.0240901633,"clarity+10+100":1.7602276217,"wig+20":17.5077919726,"nqc+20":0.0529380186,"smv+20":0.043648673,"clarity+20+100":1.619592263,"wig+50":16.9635955918,"nqc+50":0.0668501937,"smv+50":0.053178553,"clarity+50+100":1.4595217396,"wig+100":16.3711627045,"nqc+100":0.067187187,"smv+100":0.0500445031,"clarity+100+100":1.4467013407,"wig+1000":15.3336718324,"nqc+1000":0.0585772228,"smv+1000":0.0414461093,"clarity+1000+100":1.3769302029}
+{"qid":"49","wig+5":22.6096364714,"nqc+5":0.0202266901,"smv+5":0.0144811113,"clarity+5+100":3.1728714347,"wig+10":21.9801578986,"nqc+10":0.0365326136,"smv+10":0.02665954,"clarity+10+100":3.0862692958,"wig+20":21.4956242842,"nqc+20":0.0415790689,"smv+20":0.0300264346,"clarity+20+100":2.6897662563,"wig+50":21.1330349159,"nqc+50":0.0341633109,"smv+50":0.022950595,"clarity+50+100":2.6254157124,"wig+100":20.9018916152,"nqc+100":0.0291613256,"smv+100":0.0181781046,"clarity+100+100":2.5986565484,"wig+1000":20.4581604511,"nqc+1000":0.0186471318,"smv+1000":0.0118370536,"clarity+1000+100":2.5416057719}
+{"qid":"50","wig+5":23.2429526839,"nqc+5":0.0016137251,"smv+5":0.0012765779,"clarity+5+100":2.1734768211,"wig+10":23.1987332082,"nqc+10":0.0073985996,"smv+10":0.0059657798,"clarity+10+100":1.8113515585,"wig+20":23.0166051031,"nqc+20":0.0129050961,"smv+20":0.0098280427,"clarity+20+100":1.673993207,"wig+50":22.6132670193,"nqc+50":0.0257166803,"smv+50":0.0200763383,"clarity+50+100":1.4307546616,"wig+100":22.0697269139,"nqc+100":0.0382895578,"smv+100":0.0297559029,"clarity+100+100":1.3794259488,"wig+1000":21.2792441607,"nqc+1000":0.0310372865,"smv+1000":0.0223927848,"clarity+1000+100":1.2046907564}
+{"qid":"51","wig+5":21.6091101414,"nqc+5":0.0013723377,"smv+5":0.00118372,"clarity+5+100":1.5413174899,"wig+10":21.606516398,"nqc+10":0.0010706334,"smv+10":0.0008647586,"clarity+10+100":1.4212072234,"wig+20":21.5993294613,"nqc+20":0.0012215975,"smv+20":0.0010071895,"clarity+20+100":1.3586163086,"wig+50":21.5088449285,"nqc+50":0.0131453408,"smv+50":0.0081599357,"clarity+50+100":1.2633933762,"wig+100":21.3799359826,"nqc+100":0.0186832223,"smv+100":0.0142424575,"clarity+100+100":1.2507430125,"wig+1000":20.1214442145,"nqc+1000":0.0387492036,"smv+1000":0.0276777929,"clarity+1000+100":1.1741008791}
+{"qid":"52","wig+5":19.3647630852,"nqc+5":0.0345143541,"smv+5":0.0246534554,"clarity+5+100":2.951376543,"wig+10":18.9725126373,"nqc+10":0.0489949784,"smv+10":0.0341580969,"clarity+10+100":2.2951985829,"wig+20":19.1834196064,"nqc+20":0.0521109965,"smv+20":0.0344034619,"clarity+20+100":1.8407698229,"wig+50":19.3739271362,"nqc+50":0.0564684093,"smv+50":0.0428116293,"clarity+50+100":1.5460488534,"wig+100":19.2673124169,"nqc+100":0.050748908,"smv+100":0.0388897673,"clarity+100+100":1.4360679281,"wig+1000":18.2421374119,"nqc+1000":0.0416597945,"smv+1000":0.0286561,"clarity+1000+100":1.3566550007}
+{"qid":"53","wig+5":12.4984296421,"nqc+5":0.0910345497,"smv+5":0.0757368866,"clarity+5+100":2.4569195791,"wig+10":12.9452019214,"nqc+10":0.1011914313,"smv+10":0.0847194671,"clarity+10+100":1.7152981379,"wig+20":12.4711648521,"nqc+20":0.1065698676,"smv+20":0.0856363261,"clarity+20+100":1.7187075,"wig+50":12.6543817707,"nqc+50":0.1000795087,"smv+50":0.084095851,"clarity+50+100":1.5424089649,"wig+100":12.4350945422,"nqc+100":0.0949441905,"smv+100":0.0759608842,"clarity+100+100":1.4613132585,"wig+1000":10.9147767493,"nqc+1000":0.0763557147,"smv+1000":0.0502676117,"clarity+1000+100":1.4342041596}
+{"qid":"54","wig+5":21.7439999423,"nqc+5":0.0001604929,"smv+5":0.0001405568,"clarity+5+100":1.8564548939,"wig+10":21.7222113293,"nqc+10":0.0010729612,"smv+10":0.0009073384,"clarity+10+100":1.7699796404,"wig+20":21.723481917,"nqc+20":0.0012178208,"smv+20":0.0010756582,"clarity+20+100":1.6644585169,"wig+50":21.3762424354,"nqc+50":0.0245121426,"smv+50":0.0202036317,"clarity+50+100":1.4603198039,"wig+100":21.1658797783,"nqc+100":0.0297997311,"smv+100":0.0235625241,"clarity+100+100":1.3913409209,"wig+1000":19.8594179782,"nqc+1000":0.0362373576,"smv+1000":0.024660765,"clarity+1000+100":1.2840464265}
+{"qid":"55","wig+5":21.3382754392,"nqc+5":0.0059039577,"smv+5":0.0048800892,"clarity+5+100":1.6117295299,"wig+10":21.1520305867,"nqc+10":0.0224608098,"smv+10":0.0179264648,"clarity+10+100":1.6972741832,"wig+20":21.1663646455,"nqc+20":0.0193180172,"smv+20":0.0153505415,"clarity+20+100":1.5471729487,"wig+50":21.0999431133,"nqc+50":0.0205063688,"smv+50":0.0163116676,"clarity+50+100":1.5027179393,"wig+100":20.8042885799,"nqc+100":0.0305271598,"smv+100":0.0235935262,"clarity+100+100":1.4297777042,"wig+1000":19.3807532876,"nqc+1000":0.0437783459,"smv+1000":0.0306760026,"clarity+1000+100":1.2299590567}
+{"qid":"56","wig+5":27.1659639423,"nqc+5":0.010657787,"smv+5":0.0068546976,"clarity+5+100":2.8580785173,"wig+10":26.7485021022,"nqc+10":0.0210591652,"smv+10":0.0152274574,"clarity+10+100":2.7637386496,"wig+20":26.7083710738,"nqc+20":0.0180297128,"smv+20":0.0132889783,"clarity+20+100":2.3144578938,"wig+50":26.4922254937,"nqc+50":0.0190555781,"smv+50":0.0144367693,"clarity+50+100":1.856809905,"wig+100":26.4396969358,"nqc+100":0.0176049137,"smv+100":0.0135608623,"clarity+100+100":1.6123507602,"wig+1000":25.9836512019,"nqc+1000":0.0174799926,"smv+1000":0.0126427819,"clarity+1000+100":1.1813647937}
+{"qid":"57","wig+5":17.4231164065,"nqc+5":0.0045456492,"smv+5":0.0036630789,"clarity+5+100":1.8899323614,"wig+10":17.224029152,"nqc+10":0.0266742474,"smv+10":0.0215640827,"clarity+10+100":1.7614114965,"wig+20":17.2584358798,"nqc+20":0.0215288089,"smv+20":0.0171247571,"clarity+20+100":1.598440045,"wig+50":17.0695432372,"nqc+50":0.0322582441,"smv+50":0.0252410352,"clarity+50+100":1.4630729031,"wig+100":16.9084016012,"nqc+100":0.0399149246,"smv+100":0.0306418216,"clarity+100+100":1.3021354933,"wig+1000":15.0968411729,"nqc+1000":0.0584922469,"smv+1000":0.0391011248,"clarity+1000+100":1.2039389143}
+{"qid":"58","wig+5":29.383029176,"nqc+5":0.0004887622,"smv+5":0.0003595995,"clarity+5+100":1.9475829323,"wig+10":29.3292914576,"nqc+10":0.0025153694,"smv+10":0.001986568,"clarity+10+100":1.7761965555,"wig+20":29.27340336,"nqc+20":0.0058445587,"smv+20":0.0041253889,"clarity+20+100":1.6407277512,"wig+50":29.0373898438,"nqc+50":0.0137922409,"smv+50":0.0108304064,"clarity+50+100":1.5557605751,"wig+100":28.7882014605,"nqc+100":0.0202196987,"smv+100":0.0156665131,"clarity+100+100":1.4375333944,"wig+1000":27.3846732443,"nqc+1000":0.0234777622,"smv+1000":0.0148722118,"clarity+1000+100":1.3936606732}
+{"qid":"59","wig+5":19.5145748126,"nqc+5":0.0037865314,"smv+5":0.0034065361,"clarity+5+100":1.7714208288,"wig+10":19.4407541848,"nqc+10":0.01032056,"smv+10":0.0082163603,"clarity+10+100":1.639469188,"wig+20":19.331155799,"nqc+20":0.0169277132,"smv+20":0.0131002443,"clarity+20+100":1.5848265862,"wig+50":18.9384188925,"nqc+50":0.0357624064,"smv+50":0.0261037945,"clarity+50+100":1.504188046,"wig+100":18.5785799578,"nqc+100":0.0461257821,"smv+100":0.0352499239,"clarity+100+100":1.3932967364,"wig+1000":16.3839884233,"nqc+1000":0.0571659676,"smv+1000":0.0341339156,"clarity+1000+100":1.3739294851}
+{"qid":"61","wig+5":21.8471200651,"nqc+5":0.0285092913,"smv+5":0.0264438307,"clarity+5+100":2.2398949846,"wig+10":21.851023173,"nqc+10":0.0335488557,"smv+10":0.0275539149,"clarity+10+100":2.0821456262,"wig+20":21.5819992215,"nqc+20":0.0337976596,"smv+20":0.024589838,"clarity+20+100":2.1908120615,"wig+50":21.0554512,"nqc+50":0.0356137291,"smv+50":0.0246735652,"clarity+50+100":2.1422724229,"wig+100":20.7000462494,"nqc+100":0.0350206823,"smv+100":0.022508403,"clarity+100+100":2.0582357385,"wig+1000":20.1456145128,"nqc+1000":0.0268969496,"smv+1000":0.0180264767,"clarity+1000+100":2.0328227226}
+{"qid":"62","wig+5":22.584213825,"nqc+5":0.0060497071,"smv+5":0.0050242826,"clarity+5+100":1.7923735193,"wig+10":22.3880381434,"nqc+10":0.0133892973,"smv+10":0.0109288193,"clarity+10+100":1.5791135554,"wig+20":22.1361168816,"nqc+20":0.0185608723,"smv+20":0.0137148153,"clarity+20+100":1.4750753027,"wig+50":21.8958867993,"nqc+50":0.023892065,"smv+50":0.0187239459,"clarity+50+100":1.3354240226,"wig+100":21.6836541103,"nqc+100":0.0258640849,"smv+100":0.0194661741,"clarity+100+100":1.2892870852,"wig+1000":20.0808255227,"nqc+1000":0.0368316524,"smv+1000":0.0247284665,"clarity+1000+100":1.2668675536}
+{"qid":"66","wig+5":15.7378728129,"nqc+5":0.0238241167,"smv+5":0.0193235358,"clarity+5+100":1.5932806752,"wig+10":14.8462855624,"nqc+10":0.0705352955,"smv+10":0.0563079799,"clarity+10+100":1.5398028796,"wig+20":14.426257104,"nqc+20":0.0788930045,"smv+20":0.0565777295,"clarity+20+100":1.5683748119,"wig+50":14.0207779528,"nqc+50":0.076038447,"smv+50":0.0505733035,"clarity+50+100":1.4471640967,"wig+100":13.7580152206,"nqc+100":0.0697846832,"smv+100":0.0442114154,"clarity+100+100":1.4240044323,"wig+1000":12.5558656048,"nqc+1000":0.0489723027,"smv+1000":0.0300049443,"clarity+1000+100":1.4097050172}
+{"qid":"67","wig+5":19.5849253329,"nqc+5":0.0018956981,"smv+5":0.0012670442,"clarity+5+100":1.7233640965,"wig+10":19.1936719125,"nqc+10":0.0351204833,"smv+10":0.0305027551,"clarity+10+100":1.5381832671,"wig+20":19.1886007051,"nqc+20":0.0314487366,"smv+20":0.0252084068,"clarity+20+100":1.3816642811,"wig+50":18.8649483623,"nqc+50":0.0399938325,"smv+50":0.0333633946,"clarity+50+100":1.2731616446,"wig+100":18.4920495123,"nqc+100":0.0515963157,"smv+100":0.0409727457,"clarity+100+100":1.2183174845,"wig+1000":17.1102579,"nqc+1000":0.0586305799,"smv+1000":0.0421279318,"clarity+1000+100":1.1600225312}
+{"qid":"68","wig+5":18.0403062539,"nqc+5":0.0120479368,"smv+5":0.010008346,"clarity+5+100":1.6557648568,"wig+10":17.7939881732,"nqc+10":0.0464964194,"smv+10":0.0368802897,"clarity+10+100":1.5909045619,"wig+20":17.5157348659,"nqc+20":0.0571509943,"smv+20":0.0447439077,"clarity+20+100":1.4865196742,"wig+50":17.3934007523,"nqc+50":0.0523972031,"smv+50":0.0405812593,"clarity+50+100":1.4319658428,"wig+100":16.7073671259,"nqc+100":0.0641580623,"smv+100":0.0479194461,"clarity+100+100":1.4082042867,"wig+1000":15.20338161,"nqc+1000":0.0621703322,"smv+1000":0.0452820809,"clarity+1000+100":1.3633334917}
+{"qid":"69","wig+5":19.4631998316,"nqc+5":0.0040486192,"smv+5":0.0036091839,"clarity+5+100":1.6134040605,"wig+10":19.0435261098,"nqc+10":0.0428363607,"smv+10":0.0362036659,"clarity+10+100":1.5157149097,"wig+20":18.8334035326,"nqc+20":0.0469668849,"smv+20":0.0378462995,"clarity+20+100":1.4652781693,"wig+50":18.4661380824,"nqc+50":0.0488211543,"smv+50":0.0367225811,"clarity+50+100":1.3966570718,"wig+100":18.0688826051,"nqc+100":0.0532052797,"smv+100":0.040617611,"clarity+100+100":1.3344002907,"wig+1000":16.7444918413,"nqc+1000":0.0614266887,"smv+1000":0.0469794107,"clarity+1000+100":1.2799645545}
+{"qid":"71","wig+5":18.1098839836,"nqc+5":0.0023019978,"smv+5":0.0018966588,"clarity+5+100":1.9484161488,"wig+10":18.0413528009,"nqc+10":0.0054577079,"smv+10":0.0042324707,"clarity+10+100":1.8618747224,"wig+20":17.7222555809,"nqc+20":0.0256719455,"smv+20":0.021006182,"clarity+20+100":1.7829870775,"wig+50":17.2213996785,"nqc+50":0.0396747366,"smv+50":0.0299252366,"clarity+50+100":1.6409202105,"wig+100":16.8419659413,"nqc+100":0.0434928938,"smv+100":0.029606382,"clarity+100+100":1.5670974262,"wig+1000":15.3333533143,"nqc+1000":0.0468476707,"smv+1000":0.0316524116,"clarity+1000+100":1.5307757132}
+{"qid":"72","wig+5":24.9717821097,"nqc+5":0.0004091712,"smv+5":0.0003610039,"clarity+5+100":1.9689883384,"wig+10":24.9229302325,"nqc+10":0.0042358835,"smv+10":0.0032582497,"clarity+10+100":1.7306687895,"wig+20":24.719452856,"nqc+20":0.0154489844,"smv+20":0.0124120371,"clarity+20+100":1.6569753213,"wig+50":24.4629132236,"nqc+50":0.01934938,"smv+50":0.0140987236,"clarity+50+100":1.4951105741,"wig+100":24.282379394,"nqc+100":0.0202037052,"smv+100":0.0146390427,"clarity+100+100":1.3905589538,"wig+1000":23.3496647521,"nqc+1000":0.0232574506,"smv+1000":0.0165470289,"clarity+1000+100":1.2355838308}
+{"qid":"74","wig+5":23.1338291545,"nqc+5":0.0004860659,"smv+5":0.0004194031,"clarity+5+100":1.7413881672,"wig+10":23.09861832,"nqc+10":0.003900178,"smv+10":0.0030866455,"clarity+10+100":1.6816193799,"wig+20":22.9748892899,"nqc+20":0.0137749479,"smv+20":0.011520442,"clarity+20+100":1.5608356361,"wig+50":22.7610243382,"nqc+50":0.0227317879,"smv+50":0.0174999338,"clarity+50+100":1.3758006133,"wig+100":22.4287666811,"nqc+100":0.0342012995,"smv+100":0.026420299,"clarity+100+100":1.2668880507,"wig+1000":21.528675891,"nqc+1000":0.0349293451,"smv+1000":0.0255337553,"clarity+1000+100":1.1114563342}
+{"qid":"79","wig+5":24.9429346324,"nqc+5":0.0336173685,"smv+5":0.0242431346,"clarity+5+100":2.5889075872,"wig+10":24.8592981185,"nqc+10":0.0301194684,"smv+10":0.0217303269,"clarity+10+100":2.2583889451,"wig+20":24.6303752812,"nqc+20":0.0326741042,"smv+20":0.0233203636,"clarity+20+100":2.1586802217,"wig+50":24.2722614095,"nqc+50":0.0275605144,"smv+50":0.018646785,"clarity+50+100":2.0869267715,"wig+100":23.9891360585,"nqc+100":0.0245481024,"smv+100":0.0167578836,"clarity+100+100":2.0626171017,"wig+1000":23.5085593942,"nqc+1000":0.0158973632,"smv+1000":0.0097003124,"clarity+1000+100":1.9983633656}
+{"qid":"80","wig+5":18.6382019078,"nqc+5":0.0007270215,"smv+5":0.0006656618,"clarity+5+100":1.6177702228,"wig+10":18.5935080735,"nqc+10":0.0043352771,"smv+10":0.0035962125,"clarity+10+100":1.4905445601,"wig+20":18.6016624975,"nqc+20":0.0032216472,"smv+20":0.0023426368,"clarity+20+100":1.4251206289,"wig+50":18.3937022006,"nqc+50":0.0172353659,"smv+50":0.0136346886,"clarity+50+100":1.2866912534,"wig+100":18.1929654217,"nqc+100":0.025995596,"smv+100":0.0204661894,"clarity+100+100":1.2220972841,"wig+1000":16.585537854,"nqc+1000":0.0524416551,"smv+1000":0.0369392558,"clarity+1000+100":1.1054687511}
+{"qid":"81","wig+5":17.5345183499,"nqc+5":0.0177223206,"smv+5":0.0156325272,"clarity+5+100":1.7040508032,"wig+10":17.5026564058,"nqc+10":0.0188241308,"smv+10":0.0162793227,"clarity+10+100":1.5473947578,"wig+20":17.3600961571,"nqc+20":0.0246995317,"smv+20":0.0204679016,"clarity+20+100":1.4494315611,"wig+50":17.2771578576,"nqc+50":0.030802231,"smv+50":0.0244923428,"clarity+50+100":1.2751899373,"wig+100":16.8949219304,"nqc+100":0.0470723422,"smv+100":0.0371352971,"clarity+100+100":1.2049771989,"wig+1000":15.4622126493,"nqc+1000":0.0598833734,"smv+1000":0.0424786288,"clarity+1000+100":1.1103561495}
+{"qid":"82","wig+5":20.642232372,"nqc+5":0.0001172006,"smv+5":0.000098665,"clarity+5+100":1.7022175092,"wig+10":20.6394222254,"nqc+10":0.0002297896,"smv+10":0.0001889411,"clarity+10+100":1.5824747782,"wig+20":20.6150430113,"nqc+20":0.001890068,"smv+20":0.0015683938,"clarity+20+100":1.435397139,"wig+50":20.4450932152,"nqc+50":0.0133237103,"smv+50":0.0101510386,"clarity+50+100":1.3348845052,"wig+100":20.1634362078,"nqc+100":0.0256987953,"smv+100":0.0199332609,"clarity+100+100":1.2840284001,"wig+1000":18.8097931561,"nqc+1000":0.0444119259,"smv+1000":0.0320961583,"clarity+1000+100":1.1811501293}
+{"qid":"83","wig+5":15.7603268315,"nqc+5":0.0001935568,"smv+5":0.0001512669,"clarity+5+100":1.8751675489,"wig+10":15.6799745941,"nqc+10":0.0065360917,"smv+10":0.0052613358,"clarity+10+100":1.7112436198,"wig+20":15.3772812432,"nqc+20":0.0367873523,"smv+20":0.0262809156,"clarity+20+100":1.5924916803,"wig+50":15.1108552182,"nqc+50":0.0465070392,"smv+50":0.036537596,"clarity+50+100":1.4337639018,"wig+100":14.5911613686,"nqc+100":0.0702383859,"smv+100":0.055272896,"clarity+100+100":1.34414965,"wig+1000":12.8024751676,"nqc+1000":0.0813004702,"smv+1000":0.0544738374,"clarity+1000+100":1.3090517486}
+{"qid":"84","wig+5":27.2899674077,"nqc+5":0.0046544732,"smv+5":0.0040005592,"clarity+5+100":1.8270207605,"wig+10":27.1486970599,"nqc+10":0.0152980359,"smv+10":0.0116140171,"clarity+10+100":1.9259067753,"wig+20":26.7307847053,"nqc+20":0.0243334308,"smv+20":0.0194195602,"clarity+20+100":1.8592499779,"wig+50":26.2693629923,"nqc+50":0.0244070103,"smv+50":0.0164567658,"clarity+50+100":1.8267487368,"wig+100":26.0284517596,"nqc+100":0.0236306493,"smv+100":0.0156620438,"clarity+100+100":1.7872326289,"wig+1000":25.1628419911,"nqc+1000":0.0162545434,"smv+1000":0.0097583319,"clarity+1000+100":1.7707939946}
+{"qid":"85","wig+5":27.3189822664,"nqc+5":0.0053039877,"smv+5":0.0047024673,"clarity+5+100":1.6878801577,"wig+10":27.3258790686,"nqc+10":0.0049327904,"smv+10":0.0043080799,"clarity+10+100":1.6346437855,"wig+20":27.265514829,"nqc+20":0.0066556108,"smv+20":0.00485263,"clarity+20+100":1.4270629396,"wig+50":27.0331238484,"nqc+50":0.0179677873,"smv+50":0.0137910227,"clarity+50+100":1.2741264628,"wig+100":26.7684215557,"nqc+100":0.0223334086,"smv+100":0.0174289601,"clarity+100+100":1.1886775121,"wig+1000":25.5951848848,"nqc+1000":0.0298781074,"smv+1000":0.0212973601,"clarity+1000+100":1.1035130836}
+{"qid":"86","wig+5":25.0910502523,"nqc+5":0.0009100791,"smv+5":0.0007775548,"clarity+5+100":1.6969231718,"wig+10":25.072019239,"nqc+10":0.001725666,"smv+10":0.0013689708,"clarity+10+100":1.5465217129,"wig+20":25.0490016567,"nqc+20":0.0023095989,"smv+20":0.0018217763,"clarity+20+100":1.4207682332,"wig+50":24.7794075769,"nqc+50":0.0208347286,"smv+50":0.015916312,"clarity+50+100":1.2921831314,"wig+100":24.6452972562,"nqc+100":0.0202442861,"smv+100":0.015525901,"clarity+100+100":1.1893859431,"wig+1000":23.6706052632,"nqc+1000":0.0317084949,"smv+1000":0.024850341,"clarity+1000+100":1.0594742063}
+{"qid":"87","wig+5":25.5438213277,"nqc+5":0.0003580801,"smv+5":0.0003207048,"clarity+5+100":1.8663492939,"wig+10":25.4953386184,"nqc+10":0.004870165,"smv+10":0.0039504319,"clarity+10+100":1.7607646181,"wig+20":25.1969972841,"nqc+20":0.0213206515,"smv+20":0.0154269341,"clarity+20+100":1.5661666588,"wig+50":24.7687232612,"nqc+50":0.0316255883,"smv+50":0.0249650982,"clarity+50+100":1.3799379148,"wig+100":24.9588490392,"nqc+100":0.0274684586,"smv+100":0.0217993033,"clarity+100+100":1.2601750296,"wig+1000":23.8161526461,"nqc+1000":0.0341897596,"smv+1000":0.0250701897,"clarity+1000+100":1.1313064939}
+{"qid":"93","wig+5":24.4670139718,"nqc+5":0.0064360659,"smv+5":0.0056494454,"clarity+5+100":2.0734989034,"wig+10":24.4308513988,"nqc+10":0.0060436973,"smv+10":0.0045663097,"clarity+10+100":2.0246412161,"wig+20":24.3823227558,"nqc+20":0.0093527124,"smv+20":0.0072101095,"clarity+20+100":1.8401956493,"wig+50":24.2635525866,"nqc+50":0.0135584816,"smv+50":0.0104215493,"clarity+50+100":1.5455334962,"wig+100":24.0019339375,"nqc+100":0.0222959397,"smv+100":0.0166984342,"clarity+100+100":1.3965918359,"wig+1000":22.8683950561,"nqc+1000":0.031284825,"smv+1000":0.0227805283,"clarity+1000+100":1.192988179}
+{"qid":"94","wig+5":23.8288156397,"nqc+5":0.0004198713,"smv+5":0.0003288823,"clarity+5+100":1.5967947597,"wig+10":23.4099976313,"nqc+10":0.0307867387,"smv+10":0.0250570546,"clarity+10+100":1.5484057064,"wig+20":23.3612428268,"nqc+20":0.027203954,"smv+20":0.0218286164,"clarity+20+100":1.3884538963,"wig+50":23.1323041636,"nqc+50":0.0295234473,"smv+50":0.0237960555,"clarity+50+100":1.2939192991,"wig+100":22.7900215791,"nqc+100":0.0365307072,"smv+100":0.0287497273,"clarity+100+100":1.2350291751,"wig+1000":21.3156867881,"nqc+1000":0.0385226414,"smv+1000":0.0236945186,"clarity+1000+100":1.1920740882}
+{"qid":"95","wig+5":24.9461882667,"nqc+5":0.0001018523,"smv+5":0.0000929022,"clarity+5+100":1.902802875,"wig+10":24.847769973,"nqc+10":0.0057538056,"smv+10":0.0048059607,"clarity+10+100":1.7063674542,"wig+20":24.7596885441,"nqc+20":0.0132817487,"smv+20":0.0107542148,"clarity+20+100":1.5791478205,"wig+50":24.576232389,"nqc+50":0.0188345739,"smv+50":0.0147004613,"clarity+50+100":1.3862066322,"wig+100":24.3750682587,"nqc+100":0.0231042047,"smv+100":0.0177069722,"clarity+100+100":1.335212982,"wig+1000":23.1808411129,"nqc+1000":0.0290622891,"smv+1000":0.0198315224,"clarity+1000+100":1.2536009426}
+{"qid":"97","wig+5":27.169099197,"nqc+5":0.0060218019,"smv+5":0.0047438355,"clarity+5+100":1.832943826,"wig+10":27.1121925071,"nqc+10":0.011850672,"smv+10":0.0091647605,"clarity+10+100":1.6689115997,"wig+20":26.9576840224,"nqc+20":0.0204514217,"smv+20":0.0154196789,"clarity+20+100":1.4715616065,"wig+50":26.7726357457,"nqc+50":0.023414914,"smv+50":0.0189660454,"clarity+50+100":1.4190185951,"wig+100":26.6090703568,"nqc+100":0.0239008713,"smv+100":0.0188250134,"clarity+100+100":1.3831001497,"wig+1000":25.554443248,"nqc+1000":0.0235751604,"smv+1000":0.0152968974,"clarity+1000+100":1.3576809097}
+{"qid":"98","wig+5":23.3943445349,"nqc+5":0.0214733233,"smv+5":0.0170760773,"clarity+5+100":1.9917647492,"wig+10":23.4137544274,"nqc+10":0.0164762124,"smv+10":0.0126383438,"clarity+10+100":1.8121271535,"wig+20":23.006367923,"nqc+20":0.0343709447,"smv+20":0.0280971984,"clarity+20+100":1.6564375683,"wig+50":22.4938918882,"nqc+50":0.0413371753,"smv+50":0.0323445179,"clarity+50+100":1.6031529179,"wig+100":22.1854627935,"nqc+100":0.041255144,"smv+100":0.0310673404,"clarity+100+100":1.5671620664,"wig+1000":21.3651272926,"nqc+1000":0.031102515,"smv+1000":0.0204333589,"clarity+1000+100":1.4477202127}
+{"qid":"99","wig+5":25.4289263359,"nqc+5":0.004615407,"smv+5":0.0040795949,"clarity+5+100":1.857147853,"wig+10":25.2451653861,"nqc+10":0.0150631039,"smv+10":0.0117333122,"clarity+10+100":1.6948801087,"wig+20":25.1019922277,"nqc+20":0.0165579397,"smv+20":0.0123320277,"clarity+20+100":1.5646576156,"wig+50":24.9906206229,"nqc+50":0.0201302856,"smv+50":0.0146274569,"clarity+50+100":1.4265376711,"wig+100":24.7794978696,"nqc+100":0.023263035,"smv+100":0.0176576604,"clarity+100+100":1.3492284237,"wig+1000":23.9381703816,"nqc+1000":0.0228751734,"smv+1000":0.0162824584,"clarity+1000+100":1.22207749}
+{"qid":"100","wig+5":13.6449658932,"nqc+5":0.0438759512,"smv+5":0.0356551845,"clarity+5+100":2.2563739212,"wig+10":13.8526355176,"nqc+10":0.044393212,"smv+10":0.0366255787,"clarity+10+100":1.7272044278,"wig+20":13.9444389371,"nqc+20":0.0493565934,"smv+20":0.0398981261,"clarity+20+100":1.5704684478,"wig+50":13.4259685608,"nqc+50":0.0627504054,"smv+50":0.0472715807,"clarity+50+100":1.445377386,"wig+100":13.4079990949,"nqc+100":0.0646187193,"smv+100":0.0496534655,"clarity+100+100":1.3281561061,"wig+1000":12.3343065344,"nqc+1000":0.0705005156,"smv+1000":0.0538317757,"clarity+1000+100":1.1366049501}
+{"qid":"101","wig+5":24.4178671675,"nqc+5":0.0002019947,"smv+5":0.0001825974,"clarity+5+100":2.1439230391,"wig+10":24.2743727781,"nqc+10":0.0080814001,"smv+10":0.0069483231,"clarity+10+100":1.9931786416,"wig+20":24.0013194641,"nqc+20":0.0154771519,"smv+20":0.0108336028,"clarity+20+100":1.8722328167,"wig+50":23.6195093585,"nqc+50":0.0225191151,"smv+50":0.0157309772,"clarity+50+100":1.776523613,"wig+100":23.4110373468,"nqc+100":0.0224428742,"smv+100":0.0158585986,"clarity+100+100":1.6732568268,"wig+1000":22.3886696663,"nqc+1000":0.0223080028,"smv+1000":0.0153878953,"clarity+1000+100":1.5863059882}
+{"qid":"102","wig+5":18.7463106586,"nqc+5":0.0011039889,"smv+5":0.0010139941,"clarity+5+100":1.6653205181,"wig+10":18.6961692694,"nqc+10":0.0046982535,"smv+10":0.0037883534,"clarity+10+100":1.4940760165,"wig+20":18.1869740822,"nqc+20":0.0419711076,"smv+20":0.035126671,"clarity+20+100":1.4506104007,"wig+50":17.9555142917,"nqc+50":0.0400076698,"smv+50":0.0317888825,"clarity+50+100":1.3572891649,"wig+100":17.605307894,"nqc+100":0.0419301382,"smv+100":0.0306856728,"clarity+100+100":1.321724482,"wig+1000":16.4171574092,"nqc+1000":0.0411755432,"smv+1000":0.0284065077,"clarity+1000+100":1.2718121728}
+{"qid":"103","wig+5":21.2893612687,"nqc+5":0.0118025012,"smv+5":0.0106273125,"clarity+5+100":1.7626911774,"wig+10":21.095407489,"nqc+10":0.0151175941,"smv+10":0.0123600409,"clarity+10+100":1.6544797374,"wig+20":20.9597174569,"nqc+20":0.0156762784,"smv+20":0.0118519574,"clarity+20+100":1.5772670777,"wig+50":20.7511906623,"nqc+50":0.0222692242,"smv+50":0.0170373872,"clarity+50+100":1.3745590565,"wig+100":20.4865007708,"nqc+100":0.0247412399,"smv+100":0.0193434503,"clarity+100+100":1.3318510531,"wig+1000":19.7408983251,"nqc+1000":0.0222204302,"smv+1000":0.0161819101,"clarity+1000+100":1.2112626442}
+{"qid":"104","wig+5":20.0707650984,"nqc+5":0.0304891759,"smv+5":0.0293668501,"clarity+5+100":1.8257816791,"wig+10":19.7473512615,"nqc+10":0.0425402751,"smv+10":0.0357778076,"clarity+10+100":1.6918842384,"wig+20":19.7473169352,"nqc+20":0.044884788,"smv+20":0.0371257492,"clarity+20+100":1.4690767558,"wig+50":19.7213907697,"nqc+50":0.0462715038,"smv+50":0.0366034358,"clarity+50+100":1.4006407429,"wig+100":19.5392596927,"nqc+100":0.044600106,"smv+100":0.034941543,"clarity+100+100":1.2505605082,"wig+1000":18.5675476236,"nqc+1000":0.0365423022,"smv+1000":0.0255951981,"clarity+1000+100":1.1646619128}
+{"qid":"105","wig+5":27.9623572186,"nqc+5":0.0141014764,"smv+5":0.012892774,"clarity+5+100":1.8300782341,"wig+10":27.7088495357,"nqc+10":0.0166090064,"smv+10":0.0137205629,"clarity+10+100":1.8095068004,"wig+20":27.503782829,"nqc+20":0.0194619762,"smv+20":0.0140036803,"clarity+20+100":1.7235512296,"wig+50":27.2105913176,"nqc+50":0.0232343943,"smv+50":0.0165421182,"clarity+50+100":1.6400049335,"wig+100":27.0010264669,"nqc+100":0.0233384055,"smv+100":0.0164615739,"clarity+100+100":1.5754315297,"wig+1000":26.3473218205,"nqc+1000":0.0184505717,"smv+1000":0.0111536471,"clarity+1000+100":1.49698033}
+{"qid":"106","wig+5":18.5061003648,"nqc+5":0.0001158743,"smv+5":0.0000785749,"clarity+5+100":1.7342598129,"wig+10":18.4967415052,"nqc+10":0.0006294056,"smv+10":0.0005257904,"clarity+10+100":1.6852487612,"wig+20":18.4832290105,"nqc+20":0.0013220824,"smv+20":0.0010488029,"clarity+20+100":1.4752095561,"wig+50":18.3548639594,"nqc+50":0.0176656652,"smv+50":0.0134945527,"clarity+50+100":1.3168212247,"wig+100":18.2198233538,"nqc+100":0.0243874054,"smv+100":0.0194513775,"clarity+100+100":1.2431102776,"wig+1000":16.4396333229,"nqc+1000":0.0570784009,"smv+1000":0.0387614844,"clarity+1000+100":1.1657469015}
+{"qid":"107","wig+5":24.2317854137,"nqc+5":0.0122922175,"smv+5":0.0097759216,"clarity+5+100":1.8239263693,"wig+10":24.1011475333,"nqc+10":0.0173616066,"smv+10":0.015227706,"clarity+10+100":1.5873358663,"wig+20":24.0315731506,"nqc+20":0.0194535953,"smv+20":0.0160947939,"clarity+20+100":1.424481135,"wig+50":23.7405218481,"nqc+50":0.0244548938,"smv+50":0.0196722924,"clarity+50+100":1.4081382074,"wig+100":23.571768325,"nqc+100":0.0262183882,"smv+100":0.0215672136,"clarity+100+100":1.3518890202,"wig+1000":22.6579971042,"nqc+1000":0.0255181744,"smv+1000":0.0180180292,"clarity+1000+100":1.2440021854}
+{"qid":"108","wig+5":21.0794043118,"nqc+5":0.0005260949,"smv+5":0.000430338,"clarity+5+100":2.1922049949,"wig+10":21.0500112335,"nqc+10":0.0034383877,"smv+10":0.0028044222,"clarity+10+100":1.7998827601,"wig+20":20.9296288198,"nqc+20":0.0155647005,"smv+20":0.011785722,"clarity+20+100":1.5404752115,"wig+50":20.8467738732,"nqc+50":0.0173236571,"smv+50":0.013375907,"clarity+50+100":1.3583055127,"wig+100":20.6662955599,"nqc+100":0.0252158611,"smv+100":0.0205664059,"clarity+100+100":1.2891172972,"wig+1000":19.152480835,"nqc+1000":0.0431759641,"smv+1000":0.0302771786,"clarity+1000+100":1.2227706721}
+{"qid":"109","wig+5":27.015568287,"nqc+5":0.005236482,"smv+5":0.0035638791,"clarity+5+100":1.8350418996,"wig+10":27.0568834816,"nqc+10":0.00402621,"smv+10":0.0030693114,"clarity+10+100":1.6145614728,"wig+20":26.9336864526,"nqc+20":0.0091289542,"smv+20":0.0073145287,"clarity+20+100":1.4840454351,"wig+50":26.4688513139,"nqc+50":0.0239605384,"smv+50":0.0191544033,"clarity+50+100":1.4088312835,"wig+100":26.0171670201,"nqc+100":0.0281708481,"smv+100":0.021562067,"clarity+100+100":1.3938747989,"wig+1000":25.0992878601,"nqc+1000":0.0221429873,"smv+1000":0.0139274547,"clarity+1000+100":1.3616855358}
+{"qid":"110","wig+5":17.3863990717,"nqc+5":0.0240956728,"smv+5":0.0216682469,"clarity+5+100":1.6581647102,"wig+10":17.3428566986,"nqc+10":0.0303349784,"smv+10":0.0272048211,"clarity+10+100":1.5045609784,"wig+20":17.3073280086,"nqc+20":0.0275859365,"smv+20":0.0236152959,"clarity+20+100":1.4729372397,"wig+50":17.2276573866,"nqc+50":0.0288283594,"smv+50":0.0225405144,"clarity+50+100":1.3551462989,"wig+100":16.9328792029,"nqc+100":0.0426787413,"smv+100":0.0345077864,"clarity+100+100":1.302473393,"wig+1000":15.4649910092,"nqc+1000":0.0536245313,"smv+1000":0.0374138664,"clarity+1000+100":1.2622545514}
+{"qid":"111","wig+5":13.5988984083,"nqc+5":0.0023697064,"smv+5":0.0017712014,"clarity+5+100":1.6954554104,"wig+10":13.3048383273,"nqc+10":0.0604363243,"smv+10":0.0496123969,"clarity+10+100":1.4993142364,"wig+20":13.0895179976,"nqc+20":0.0708501375,"smv+20":0.0587378089,"clarity+20+100":1.3971190031,"wig+50":12.7781393603,"nqc+50":0.0769776393,"smv+50":0.0621098267,"clarity+50+100":1.3505093209,"wig+100":12.3487391148,"nqc+100":0.0930763326,"smv+100":0.0763056655,"clarity+100+100":1.3185038544,"wig+1000":10.5539002682,"nqc+1000":0.0855827752,"smv+1000":0.0548261574,"clarity+1000+100":1.3020042432}
+{"qid":"112","wig+5":15.7012022765,"nqc+5":0.0001963124,"smv+5":0.0001812185,"clarity+5+100":1.7206019114,"wig+10":15.6861201962,"nqc+10":0.0019071703,"smv+10":0.0015896824,"clarity+10+100":1.6843427186,"wig+20":15.6855167735,"nqc+20":0.0014996034,"smv+20":0.0011358549,"clarity+20+100":1.4513277357,"wig+50":15.5534933528,"nqc+50":0.0161089869,"smv+50":0.012604815,"clarity+50+100":1.288227831,"wig+100":15.2882994041,"nqc+100":0.043989232,"smv+100":0.0340160607,"clarity+100+100":1.1724514215,"wig+1000":13.243170557,"nqc+1000":0.0880349834,"smv+1000":0.0612638882,"clarity+1000+100":1.0647636497}
+{"qid":"113","wig+5":18.9204501895,"nqc+5":0.0053992475,"smv+5":0.0047281222,"clarity+5+100":1.5810279798,"wig+10":18.9324299798,"nqc+10":0.0045232415,"smv+10":0.0038262567,"clarity+10+100":1.450046682,"wig+20":18.8613025798,"nqc+20":0.0126304796,"smv+20":0.0097547396,"clarity+20+100":1.2585609647,"wig+50":18.818320961,"nqc+50":0.012523783,"smv+50":0.0099769022,"clarity+50+100":1.1746799748,"wig+100":18.7154447136,"nqc+100":0.0171939006,"smv+100":0.0135680962,"clarity+100+100":1.1242927301,"wig+1000":17.4929933504,"nqc+1000":0.0487471174,"smv+1000":0.0370209093,"clarity+1000+100":1.0128232716}
+{"qid":"114","wig+5":25.5665636862,"nqc+5":0.0008227671,"smv+5":0.0007486863,"clarity+5+100":1.9981966461,"wig+10":25.503558601,"nqc+10":0.0051531317,"smv+10":0.0043481309,"clarity+10+100":1.8609982129,"wig+20":25.2880994556,"nqc+20":0.0143932697,"smv+20":0.0118157598,"clarity+20+100":1.6379228047,"wig+50":25.1470951713,"nqc+50":0.0196804236,"smv+50":0.0159116168,"clarity+50+100":1.3914235493,"wig+100":25.0155602225,"nqc+100":0.0234029628,"smv+100":0.0188830985,"clarity+100+100":1.2968136406,"wig+1000":24.1178201374,"nqc+1000":0.0268724224,"smv+1000":0.019397086,"clarity+1000+100":1.1266809546}
+{"qid":"116","wig+5":24.7771582406,"nqc+5":0.0075656632,"smv+5":0.0060206969,"clarity+5+100":1.8544335688,"wig+10":24.8578935587,"nqc+10":0.0063238431,"smv+10":0.0054239498,"clarity+10+100":1.685635467,"wig+20":24.7470690637,"nqc+20":0.0136748607,"smv+20":0.0109381135,"clarity+20+100":1.4986939326,"wig+50":24.5704463551,"nqc+50":0.0160368974,"smv+50":0.0128043249,"clarity+50+100":1.3754500813,"wig+100":24.4099882267,"nqc+100":0.0206387654,"smv+100":0.0164234558,"clarity+100+100":1.2355435693,"wig+1000":23.314382779,"nqc+1000":0.0296257836,"smv+1000":0.0218904559,"clarity+1000+100":1.1273846917}
+{"qid":"118","wig+5":27.6253415644,"nqc+5":0.0167851108,"smv+5":0.0118780316,"clarity+5+100":1.7669711843,"wig+10":27.7029686961,"nqc+10":0.0131689555,"smv+10":0.0094260467,"clarity+10+100":1.6150895476,"wig+20":27.6728380958,"nqc+20":0.0160622671,"smv+20":0.0120709705,"clarity+20+100":1.5425670158,"wig+50":27.6245055667,"nqc+50":0.0165032467,"smv+50":0.0127404467,"clarity+50+100":1.4321924859,"wig+100":27.4428502332,"nqc+100":0.0175533096,"smv+100":0.0138205793,"clarity+100+100":1.3658782119,"wig+1000":26.5320761592,"nqc+1000":0.0179796988,"smv+1000":0.0124198238,"clarity+1000+100":1.2807374667}
+{"qid":"119","wig+5":24.2321238037,"nqc+5":0.0010500329,"smv+5":0.0008931372,"clarity+5+100":1.5292575515,"wig+10":24.1101978902,"nqc+10":0.0078721085,"smv+10":0.006727602,"clarity+10+100":1.3527331344,"wig+20":24.0093532663,"nqc+20":0.0099098982,"smv+20":0.0076566442,"clarity+20+100":1.2834388618,"wig+50":23.9101436117,"nqc+50":0.014186769,"smv+50":0.0108601577,"clarity+50+100":1.1799850131,"wig+100":23.7659231565,"nqc+100":0.0185685109,"smv+100":0.0147312889,"clarity+100+100":1.1258457841,"wig+1000":22.8987999181,"nqc+1000":0.0268023671,"smv+1000":0.0199699046,"clarity+1000+100":1.040736809}
+{"qid":"120","wig+5":23.0402347492,"nqc+5":0.0037413868,"smv+5":0.0031560224,"clarity+5+100":1.576153471,"wig+10":22.9122259145,"nqc+10":0.0097170242,"smv+10":0.0075213983,"clarity+10+100":1.4575531779,"wig+20":22.9059005894,"nqc+20":0.0089390198,"smv+20":0.0070779385,"clarity+20+100":1.3675900193,"wig+50":22.628476873,"nqc+50":0.022013423,"smv+50":0.0166512541,"clarity+50+100":1.2327432158,"wig+100":22.4813600231,"nqc+100":0.0237110433,"smv+100":0.0188012505,"clarity+100+100":1.1633206972,"wig+1000":21.432693072,"nqc+1000":0.0294452728,"smv+1000":0.0211232581,"clarity+1000+100":1.0844576213}
+{"qid":"121","wig+5":23.5774186538,"nqc+5":0.0034734199,"smv+5":0.0025128134,"clarity+5+100":2.7808400007,"wig+10":23.5009530897,"nqc+10":0.0065526819,"smv+10":0.0050269113,"clarity+10+100":2.4652265485,"wig+20":22.7208490994,"nqc+20":0.047810357,"smv+20":0.0386620304,"clarity+20+100":2.4047874295,"wig+50":21.3180684012,"nqc+50":0.0603450883,"smv+50":0.0406525515,"clarity+50+100":2.4036982375,"wig+100":20.8647574673,"nqc+100":0.0506352963,"smv+100":0.0307884061,"clarity+100+100":2.3991737251,"wig+1000":20.4496092247,"nqc+1000":0.0380827644,"smv+1000":0.0203171459,"clarity+1000+100":2.3827740101}
+{"qid":"122","wig+5":18.3285417388,"nqc+5":0.0012065463,"smv+5":0.0009958769,"clarity+5+100":1.7406576196,"wig+10":18.260353717,"nqc+10":0.0102512922,"smv+10":0.0079259477,"clarity+10+100":1.4785587199,"wig+20":18.1906572837,"nqc+20":0.0224367903,"smv+20":0.0166580693,"clarity+20+100":1.3365813581,"wig+50":18.1736662593,"nqc+50":0.0211858944,"smv+50":0.0149608607,"clarity+50+100":1.1552289454,"wig+100":18.1141858079,"nqc+100":0.0232775702,"smv+100":0.0176295208,"clarity+100+100":1.0895637388,"wig+1000":16.9735005335,"nqc+1000":0.0580202912,"smv+1000":0.0455152343,"clarity+1000+100":1.0135924642}
+{"qid":"123","wig+5":27.3682971214,"nqc+5":0.0305643356,"smv+5":0.0257318181,"clarity+5+100":1.8817417473,"wig+10":27.4360157692,"nqc+10":0.0296125438,"smv+10":0.0245171948,"clarity+10+100":1.7117252447,"wig+20":27.1892981625,"nqc+20":0.0336378108,"smv+20":0.0252177732,"clarity+20+100":1.6309265059,"wig+50":27.0206432656,"nqc+50":0.0309080219,"smv+50":0.0218952267,"clarity+50+100":1.5654691961,"wig+100":26.9854971235,"nqc+100":0.0289683538,"smv+100":0.0209565986,"clarity+100+100":1.4454991989,"wig+1000":26.102136472,"nqc+1000":0.0225726765,"smv+1000":0.0149265105,"clarity+1000+100":1.3783813704}
+{"qid":"126","wig+5":24.1761056932,"nqc+5":0.0024103652,"smv+5":0.0021870129,"clarity+5+100":1.9699867439,"wig+10":24.0556679905,"nqc+10":0.0101514502,"smv+10":0.0081853636,"clarity+10+100":1.8168375336,"wig+20":23.9432922319,"nqc+20":0.0107571135,"smv+20":0.0087364636,"clarity+20+100":1.6922261724,"wig+50":23.7919903488,"nqc+50":0.0126673853,"smv+50":0.009395877,"clarity+50+100":1.5236603592,"wig+100":23.6074620052,"nqc+100":0.0202030097,"smv+100":0.0150797247,"clarity+100+100":1.3532252866,"wig+1000":22.692458802,"nqc+1000":0.0373027463,"smv+1000":0.0285752716,"clarity+1000+100":1.1930520286}
+{"qid":"128","wig+5":22.6407347605,"nqc+5":0.0002664952,"smv+5":0.0002543373,"clarity+5+100":1.9035209597,"wig+10":22.6364275032,"nqc+10":0.0005097838,"smv+10":0.0004162348,"clarity+10+100":1.7488110299,"wig+20":22.6278630773,"nqc+20":0.0008544947,"smv+20":0.0006996109,"clarity+20+100":1.5944207905,"wig+50":22.5981474293,"nqc+50":0.0027290776,"smv+50":0.0018792291,"clarity+50+100":1.468870255,"wig+100":22.5072150305,"nqc+100":0.0078083117,"smv+100":0.0061117079,"clarity+100+100":1.3567440755,"wig+1000":21.2744759821,"nqc+1000":0.0351718415,"smv+1000":0.0261058146,"clarity+1000+100":1.1761385491}
+{"qid":"130","wig+5":13.7253168692,"nqc+5":0.0792343717,"smv+5":0.0680707672,"clarity+5+100":1.9749818389,"wig+10":13.718453497,"nqc+10":0.0786232338,"smv+10":0.0619837718,"clarity+10+100":1.8677837572,"wig+20":13.0925074425,"nqc+20":0.0779899542,"smv+20":0.0543651839,"clarity+20+100":1.851221232,"wig+50":12.6045958527,"nqc+50":0.0782716633,"smv+50":0.055696364,"clarity+50+100":1.7546793632,"wig+100":12.1984361384,"nqc+100":0.0758586032,"smv+100":0.0552608509,"clarity+100+100":1.7038177155,"wig+1000":11.5607858759,"nqc+1000":0.0492027244,"smv+1000":0.0342673108,"clarity+1000+100":1.5679497181}
+{"qid":"131","wig+5":24.3659338004,"nqc+5":0.00165732,"smv+5":0.0014233038,"clarity+5+100":1.5837626583,"wig+10":24.3545155777,"nqc+10":0.0018302923,"smv+10":0.001658076,"clarity+10+100":1.4557337536,"wig+20":24.2981281736,"nqc+20":0.0040045942,"smv+20":0.0028966534,"clarity+20+100":1.3563511478,"wig+50":24.2303656121,"nqc+50":0.0093200608,"smv+50":0.0067202339,"clarity+50+100":1.2199816086,"wig+100":24.096209173,"nqc+100":0.0136257927,"smv+100":0.0104825409,"clarity+100+100":1.1903816813,"wig+1000":23.2291529172,"nqc+1000":0.0254878106,"smv+1000":0.0193033409,"clarity+1000+100":1.0625754155}
+{"qid":"132","wig+5":24.0790255455,"nqc+5":0.0011189921,"smv+5":0.0009516388,"clarity+5+100":1.5715353307,"wig+10":24.0693170151,"nqc+10":0.0011453521,"smv+10":0.0009146143,"clarity+10+100":1.4764441903,"wig+20":23.9678911843,"nqc+20":0.0118093242,"smv+20":0.0081783835,"clarity+20+100":1.419456887,"wig+50":23.9265140559,"nqc+50":0.0093713893,"smv+50":0.0068216127,"clarity+50+100":1.3313510787,"wig+100":23.7643158677,"nqc+100":0.0135870804,"smv+100":0.0104256254,"clarity+100+100":1.2405317,"wig+1000":22.4283043281,"nqc+1000":0.0327822176,"smv+1000":0.0235730035,"clarity+1000+100":1.141069089}
+{"qid":"133","wig+5":28.1688340751,"nqc+5":0.0003441067,"smv+5":0.0003001983,"clarity+5+100":2.0600311368,"wig+10":28.1611840122,"nqc+10":0.0005511553,"smv+10":0.0004344872,"clarity+10+100":1.7290291395,"wig+20":28.1300412842,"nqc+20":0.0021758472,"smv+20":0.0016857634,"clarity+20+100":1.5857144052,"wig+50":28.0431908977,"nqc+50":0.0078504207,"smv+50":0.0057592755,"clarity+50+100":1.3699054284,"wig+100":27.9942334212,"nqc+100":0.0080690209,"smv+100":0.0060761528,"clarity+100+100":1.2451441964,"wig+1000":26.9536217361,"nqc+1000":0.0263080881,"smv+1000":0.0197744765,"clarity+1000+100":1.095866714}
+{"qid":"135","wig+5":22.4406702673,"nqc+5":0.0005107896,"smv+5":0.0004185047,"clarity+5+100":1.5243407966,"wig+10":22.417194553,"nqc+10":0.0016867369,"smv+10":0.0014681222,"clarity+10+100":1.5233370139,"wig+20":22.2973914169,"nqc+20":0.0208828523,"smv+20":0.014504685,"clarity+20+100":1.3713792329,"wig+50":22.1563838354,"nqc+50":0.0256907935,"smv+50":0.020762251,"clarity+50+100":1.2609668402,"wig+100":22.0013539218,"nqc+100":0.0299544409,"smv+100":0.0238810926,"clarity+100+100":1.1773147254,"wig+1000":20.9702143345,"nqc+1000":0.0400366829,"smv+1000":0.0304568906,"clarity+1000+100":1.0714361839}
+{"qid":"136","wig+5":24.2932476135,"nqc+5":0.0013576939,"smv+5":0.001161933,"clarity+5+100":2.6056398728,"wig+10":24.1413727038,"nqc+10":0.0118692124,"smv+10":0.0101777938,"clarity+10+100":2.6250184641,"wig+20":23.4613495781,"nqc+20":0.0368468361,"smv+20":0.0258816216,"clarity+20+100":2.6042347303,"wig+50":22.8523927268,"nqc+50":0.0388159293,"smv+50":0.0271970914,"clarity+50+100":2.4889787712,"wig+100":22.2845498233,"nqc+100":0.0384807297,"smv+100":0.0252497364,"clarity+100+100":2.4845343141,"wig+1000":21.5657811939,"nqc+1000":0.0252755266,"smv+1000":0.0138337072,"clarity+1000+100":2.4818921817}
+{"qid":"137","wig+5":24.2877335773,"nqc+5":0.0021328592,"smv+5":0.0018477097,"clarity+5+100":2.099647622,"wig+10":24.2829014891,"nqc+10":0.002397391,"smv+10":0.0021334773,"clarity+10+100":1.7496727483,"wig+20":24.2778577425,"nqc+20":0.0019844173,"smv+20":0.0016328134,"clarity+20+100":1.5896150211,"wig+50":24.1779754655,"nqc+50":0.0082780922,"smv+50":0.0064552415,"clarity+50+100":1.4696544945,"wig+100":23.8153303038,"nqc+100":0.0246900674,"smv+100":0.019472612,"clarity+100+100":1.4322673792,"wig+1000":22.3525937912,"nqc+1000":0.0325628543,"smv+1000":0.0207608756,"clarity+1000+100":1.3331088474}
+{"qid":"138","wig+5":17.6367941846,"nqc+5":0.0003624511,"smv+5":0.0002605197,"clarity+5+100":1.7380830519,"wig+10":17.5854773215,"nqc+10":0.0055085891,"smv+10":0.0041933276,"clarity+10+100":1.5345267913,"wig+20":17.5259013212,"nqc+20":0.0096998075,"smv+20":0.0082321943,"clarity+20+100":1.4537530849,"wig+50":17.0414808288,"nqc+50":0.0393331029,"smv+50":0.0289575901,"clarity+50+100":1.3766015752,"wig+100":16.9497475233,"nqc+100":0.0406062073,"smv+100":0.030678333,"clarity+100+100":1.2800102438,"wig+1000":15.2306238726,"nqc+1000":0.0600704834,"smv+1000":0.042084481,"clarity+1000+100":1.1976769122}
+{"qid":"139","wig+5":18.186007449,"nqc+5":0.0028861419,"smv+5":0.0024489195,"clarity+5+100":1.8340893899,"wig+10":18.0945685788,"nqc+10":0.0138516452,"smv+10":0.0105025481,"clarity+10+100":1.7107542647,"wig+20":18.0211821932,"nqc+20":0.016172192,"smv+20":0.0134700516,"clarity+20+100":1.5568521197,"wig+50":17.7988938596,"nqc+50":0.0310191655,"smv+50":0.0225783814,"clarity+50+100":1.4059870323,"wig+100":17.1085226117,"nqc+100":0.0716552604,"smv+100":0.0547792873,"clarity+100+100":1.3187758427,"wig+1000":15.4243394891,"nqc+1000":0.0672780524,"smv+1000":0.0447848607,"clarity+1000+100":1.2221080717}
+{"qid":"140","wig+5":33.5462776139,"nqc+5":0.0018985325,"smv+5":0.0015248559,"clarity+5+100":2.0648165262,"wig+10":33.3420163286,"nqc+10":0.0108990755,"smv+10":0.0090681694,"clarity+10+100":1.9130086628,"wig+20":33.0489136217,"nqc+20":0.0183579292,"smv+20":0.0154016173,"clarity+20+100":1.8507925494,"wig+50":32.5610047873,"nqc+50":0.0226853723,"smv+50":0.0183565411,"clarity+50+100":1.7561238981,"wig+100":32.301263325,"nqc+100":0.0206011136,"smv+100":0.0143788853,"clarity+100+100":1.7106874494,"wig+1000":31.659425812,"nqc+1000":0.0145935026,"smv+1000":0.0102102644,"clarity+1000+100":1.6574788714}
+{"qid":"141","wig+5":27.3000594215,"nqc+5":0.0036838053,"smv+5":0.0030090085,"clarity+5+100":2.1598362973,"wig+10":27.1273394865,"nqc+10":0.0152581236,"smv+10":0.0112273649,"clarity+10+100":1.8390495929,"wig+20":26.8245932219,"nqc+20":0.0226507398,"smv+20":0.0191009258,"clarity+20+100":1.6881928969,"wig+50":26.5310430933,"nqc+50":0.026057472,"smv+50":0.021074962,"clarity+50+100":1.5461214273,"wig+100":26.3035351783,"nqc+100":0.0252242222,"smv+100":0.0200214397,"clarity+100+100":1.4706470073,"wig+1000":25.4491241428,"nqc+1000":0.0213346055,"smv+1000":0.0148510995,"clarity+1000+100":1.3257432892}
+{"qid":"142","wig+5":16.0620430448,"nqc+5":0.0000717768,"smv+5":0.0000702253,"clarity+5+100":1.620645964,"wig+10":16.0607381189,"nqc+10":0.0001920515,"smv+10":0.0001444294,"clarity+10+100":1.5943048335,"wig+20":16.0397272032,"nqc+20":0.0019070482,"smv+20":0.0016084935,"clarity+20+100":1.4539019189,"wig+50":15.9309246534,"nqc+50":0.0145221159,"smv+50":0.0104275364,"clarity+50+100":1.3464819068,"wig+100":15.6300639999,"nqc+100":0.0387647031,"smv+100":0.0309294142,"clarity+100+100":1.23578747,"wig+1000":13.2182918994,"nqc+1000":0.0787075416,"smv+1000":0.0490084847,"clarity+1000+100":1.2144288758}
+{"qid":"143","wig+5":12.8288158895,"nqc+5":0.0261877267,"smv+5":0.0230572397,"clarity+5+100":1.7545061431,"wig+10":12.7992650951,"nqc+10":0.0199391247,"smv+10":0.0159768938,"clarity+10+100":1.5899724007,"wig+20":12.3423732108,"nqc+20":0.050481888,"smv+20":0.0412959036,"clarity+20+100":1.50485597,"wig+50":11.7685673314,"nqc+50":0.0722777382,"smv+50":0.0543824679,"clarity+50+100":1.3933218042,"wig+100":11.041307494,"nqc+100":0.0870815699,"smv+100":0.0657588021,"clarity+100+100":1.3737382029,"wig+1000":8.9321606062,"nqc+1000":0.0850215985,"smv+1000":0.0532286674,"clarity+1000+100":1.3665974519}
+{"qid":"145","wig+5":18.4858915014,"nqc+5":0.0001115686,"smv+5":0.0000926223,"clarity+5+100":1.8497255965,"wig+10":18.4840510787,"nqc+10":0.0001516698,"smv+10":0.0001305619,"clarity+10+100":1.6918534822,"wig+20":18.4791193286,"nqc+20":0.0005934035,"smv+20":0.0004762373,"clarity+20+100":1.611309791,"wig+50":18.4496514387,"nqc+50":0.0033306981,"smv+50":0.0025549096,"clarity+50+100":1.4403279945,"wig+100":18.3876983147,"nqc+100":0.0079194962,"smv+100":0.0060761554,"clarity+100+100":1.3187577151,"wig+1000":16.8175144955,"nqc+1000":0.0593839255,"smv+1000":0.0439105997,"clarity+1000+100":1.1479865269}
+{"qid":"146","wig+5":23.0106963498,"nqc+5":0.0077205704,"smv+5":0.0053634048,"clarity+5+100":2.053927162,"wig+10":22.7174893046,"nqc+10":0.0332005586,"smv+10":0.0254190965,"clarity+10+100":2.0220427851,"wig+20":22.3365176615,"nqc+20":0.037618299,"smv+20":0.030696354,"clarity+20+100":1.9853889184,"wig+50":21.8261059169,"nqc+50":0.0454071028,"smv+50":0.0356338621,"clarity+50+100":1.8312202541,"wig+100":21.4997507823,"nqc+100":0.0425079753,"smv+100":0.0306977118,"clarity+100+100":1.7863059864,"wig+1000":21.2185185678,"nqc+1000":0.0393513038,"smv+1000":0.0286808651,"clarity+1000+100":1.6297310957}
+{"qid":"147","wig+5":26.2358935488,"nqc+5":0.0081566638,"smv+5":0.0055000655,"clarity+5+100":1.9863902584,"wig+10":26.0621000004,"nqc+10":0.0129401971,"smv+10":0.0085643284,"clarity+10+100":1.9020843686,"wig+20":25.9382955845,"nqc+20":0.0184421442,"smv+20":0.0154871226,"clarity+20+100":1.704959738,"wig+50":25.7502208436,"nqc+50":0.0193712127,"smv+50":0.0152950314,"clarity+50+100":1.5838545888,"wig+100":25.467287534,"nqc+100":0.0235694792,"smv+100":0.0186218067,"clarity+100+100":1.5329939235,"wig+1000":24.4471202024,"nqc+1000":0.0222900937,"smv+1000":0.0153526853,"clarity+1000+100":1.470373492}
+{"qid":"148","wig+5":29.8636061657,"nqc+5":0.005839897,"smv+5":0.0045922822,"clarity+5+100":2.4427230365,"wig+10":29.3880552908,"nqc+10":0.0286673012,"smv+10":0.0235401034,"clarity+10+100":2.2895758242,"wig+20":29.0699541336,"nqc+20":0.0324040877,"smv+20":0.0268190724,"clarity+20+100":2.2384953768,"wig+50":28.3864350303,"nqc+50":0.0341329829,"smv+50":0.024808726,"clarity+50+100":2.1194168576,"wig+100":28.0112590094,"nqc+100":0.0302683018,"smv+100":0.019130273,"clarity+100+100":2.1055563343,"wig+1000":27.5189291774,"nqc+1000":0.0156061397,"smv+1000":0.0086355856,"clarity+1000+100":2.0806661955}
+{"qid":"149","wig+5":23.2915420687,"nqc+5":0.0000589371,"smv+5":0.0000553291,"clarity+5+100":2.2888969877,"wig+10":23.2907464228,"nqc+10":0.0000737723,"smv+10":0.0000591021,"clarity+10+100":2.1722663615,"wig+20":23.2866425164,"nqc+20":0.0002791081,"smv+20":0.0002252577,"clarity+20+100":2.0813889305,"wig+50":23.2657584046,"nqc+50":0.0019133761,"smv+50":0.0013701027,"clarity+50+100":1.9345852687,"wig+100":23.0589161673,"nqc+100":0.0154014835,"smv+100":0.0119217001,"clarity+100+100":1.884861442,"wig+1000":21.086992676,"nqc+1000":0.0415298932,"smv+1000":0.0246264063,"clarity+1000+100":1.835909696}
+{"qid":"150","wig+5":25.5471656423,"nqc+5":0.0007755337,"smv+5":0.0006680431,"clarity+5+100":2.451719117,"wig+10":25.4670071176,"nqc+10":0.0059313229,"smv+10":0.0050050601,"clarity+10+100":2.2213845813,"wig+20":25.1343514515,"nqc+20":0.0179256812,"smv+20":0.0141735789,"clarity+20+100":2.1832471534,"wig+50":24.5058358451,"nqc+50":0.0264844585,"smv+50":0.018066121,"clarity+50+100":2.1546439204,"wig+100":24.077994115,"nqc+100":0.0280032873,"smv+100":0.0181628921,"clarity+100+100":2.1486995357,"wig+1000":23.2130848402,"nqc+1000":0.0193783151,"smv+1000":0.0119467478,"clarity+1000+100":2.1172295072}
+{"qid":"152","wig+5":15.2872588781,"nqc+5":0.0456417561,"smv+5":0.0285406749,"clarity+5+100":3.9945303184,"wig+10":15.3082093986,"nqc+10":0.0384069371,"smv+10":0.0277021805,"clarity+10+100":3.260176499,"wig+20":14.8444288158,"nqc+20":0.048756431,"smv+20":0.0401153056,"clarity+20+100":2.9425866073,"wig+50":14.4059681634,"nqc+50":0.0422756969,"smv+50":0.0315924097,"clarity+50+100":2.8527505542,"wig+100":14.1399014931,"nqc+100":0.0403742465,"smv+100":0.0291160299,"clarity+100+100":2.733106264,"wig+1000":13.7463749058,"nqc+1000":0.0304228265,"smv+1000":0.020655338,"clarity+1000+100":2.5473013922}
+{"qid":"153","wig+5":18.9585610521,"nqc+5":0.0023116339,"smv+5":0.0017706806,"clarity+5+100":2.3089224604,"wig+10":18.6255333996,"nqc+10":0.0312895505,"smv+10":0.0254805121,"clarity+10+100":2.1767832154,"wig+20":17.7195918587,"nqc+20":0.0671310895,"smv+20":0.0545572023,"clarity+20+100":2.1061997411,"wig+50":17.0020373654,"nqc+50":0.069589905,"smv+50":0.05198731,"clarity+50+100":2.0816402466,"wig+100":17.2196139194,"nqc+100":0.0565205308,"smv+100":0.0440034166,"clarity+100+100":2.0060624791,"wig+1000":17.1648401354,"nqc+1000":0.0525341051,"smv+1000":0.0413424348,"clarity+1000+100":1.9241458433}
+{"qid":"154","wig+5":27.1106005893,"nqc+5":0.0311793618,"smv+5":0.0260930026,"clarity+5+100":2.2599253475,"wig+10":27.0257287652,"nqc+10":0.0272335782,"smv+10":0.0229504382,"clarity+10+100":2.1250926779,"wig+20":26.7442764524,"nqc+20":0.0266329401,"smv+20":0.0208623386,"clarity+20+100":2.0401058788,"wig+50":26.4371447499,"nqc+50":0.0242925177,"smv+50":0.0176753151,"clarity+50+100":2.075393599,"wig+100":26.2241572871,"nqc+100":0.0242108163,"smv+100":0.0177938705,"clarity+100+100":2.045460599,"wig+1000":25.5473194385,"nqc+1000":0.0148504479,"smv+1000":0.0093194482,"clarity+1000+100":1.9706852941}
+{"qid":"155","wig+5":22.0911357929,"nqc+5":0.0003200069,"smv+5":0.0002748624,"clarity+5+100":2.3456832501,"wig+10":21.8847139631,"nqc+10":0.0123170734,"smv+10":0.0096294882,"clarity+10+100":2.2329534088,"wig+20":21.6525465127,"nqc+20":0.0226080108,"smv+20":0.0165237905,"clarity+20+100":2.0945390666,"wig+50":21.3364543571,"nqc+50":0.032516636,"smv+50":0.0233608216,"clarity+50+100":2.0353472387,"wig+100":20.8146073416,"nqc+100":0.0446523258,"smv+100":0.0369173324,"clarity+100+100":1.9690112952,"wig+1000":19.2820401237,"nqc+1000":0.0382077546,"smv+1000":0.02176006,"clarity+1000+100":1.9514982611}
+{"qid":"156","wig+5":12.6424611112,"nqc+5":0.0016897861,"smv+5":0.0014479396,"clarity+5+100":2.3271439435,"wig+10":12.6124730003,"nqc+10":0.0035222315,"smv+10":0.0028681381,"clarity+10+100":2.272451655,"wig+20":12.3925857926,"nqc+20":0.032626509,"smv+20":0.0247962734,"clarity+20+100":2.0315260337,"wig+50":11.733952859,"nqc+50":0.0809157482,"smv+50":0.0628640939,"clarity+50+100":1.9526094382,"wig+100":11.1704614316,"nqc+100":0.0927866305,"smv+100":0.0688873453,"clarity+100+100":1.9056784815,"wig+1000":9.6096984142,"nqc+1000":0.0972154894,"smv+1000":0.0668784821,"clarity+1000+100":1.8141622063}
+{"qid":"157","wig+5":27.9464164585,"nqc+5":0.0010223913,"smv+5":0.0009273825,"clarity+5+100":2.5123702664,"wig+10":27.867045942,"nqc+10":0.0048855795,"smv+10":0.0040959296,"clarity+10+100":2.3666547267,"wig+20":27.7473360825,"nqc+20":0.0117732337,"smv+20":0.0098151892,"clarity+20+100":1.9730613562,"wig+50":27.4821629235,"nqc+50":0.0188651966,"smv+50":0.0151331769,"clarity+50+100":1.7770201801,"wig+100":27.1998015761,"nqc+100":0.0233772701,"smv+100":0.0182132447,"clarity+100+100":1.728333859,"wig+1000":26.3485894906,"nqc+1000":0.0210162959,"smv+1000":0.0146900058,"clarity+1000+100":1.5725540527}
+{"qid":"158","wig+5":17.5671545406,"nqc+5":0.0003634942,"smv+5":0.000257991,"clarity+5+100":2.6339672561,"wig+10":17.5119571547,"nqc+10":0.0089883508,"smv+10":0.0074234475,"clarity+10+100":2.5138790024,"wig+20":17.309824843,"nqc+20":0.0290403168,"smv+20":0.023758312,"clarity+20+100":2.300108659,"wig+50":16.524199069,"nqc+50":0.0610402696,"smv+50":0.0455776468,"clarity+50+100":2.155124874,"wig+100":15.6623426419,"nqc+100":0.076327576,"smv+100":0.0555713465,"clarity+100+100":2.1148596318,"wig+1000":14.4396020945,"nqc+1000":0.0619369438,"smv+1000":0.0370976671,"clarity+1000+100":2.0743671613}
+{"qid":"160","wig+5":12.0216059593,"nqc+5":0.0016135831,"smv+5":0.0010745086,"clarity+5+100":1.9677252681,"wig+10":11.8298905393,"nqc+10":0.025499048,"smv+10":0.0211007977,"clarity+10+100":1.8399528225,"wig+20":11.4451881474,"nqc+20":0.0627487936,"smv+20":0.0465634957,"clarity+20+100":1.6983627558,"wig+50":10.3941309735,"nqc+50":0.1403895164,"smv+50":0.1124610439,"clarity+50+100":1.5583112938,"wig+100":9.6770061705,"nqc+100":0.1539179644,"smv+100":0.1177575752,"clarity+100+100":1.4604046054,"wig+1000":7.4333985225,"nqc+1000":0.127999471,"smv+1000":0.0723134132,"clarity+1000+100":1.4502696456}
+{"qid":"161","wig+5":20.5802930346,"nqc+5":0.0123081089,"smv+5":0.0089819128,"clarity+5+100":1.974706849,"wig+10":20.6433425967,"nqc+10":0.0105421094,"smv+10":0.0082881449,"clarity+10+100":1.9104246704,"wig+20":20.5719228819,"nqc+20":0.0132431882,"smv+20":0.0100568154,"clarity+20+100":1.8664821432,"wig+50":20.3247346911,"nqc+50":0.0193789023,"smv+50":0.0142256165,"clarity+50+100":1.7826264443,"wig+100":20.0026093974,"nqc+100":0.0251626654,"smv+100":0.0189570402,"clarity+100+100":1.7650585567,"wig+1000":18.3606478539,"nqc+1000":0.0351288467,"smv+1000":0.0226318417,"clarity+1000+100":1.7354292981}
+{"qid":"163","wig+5":21.7412037733,"nqc+5":0.0007514678,"smv+5":0.0006710976,"clarity+5+100":2.0241531536,"wig+10":21.6768437291,"nqc+10":0.0058135063,"smv+10":0.0046631794,"clarity+10+100":1.8997115212,"wig+20":21.6415049312,"nqc+20":0.0055826689,"smv+20":0.004654375,"clarity+20+100":1.8758643724,"wig+50":21.1116142561,"nqc+50":0.031671324,"smv+50":0.0256085892,"clarity+50+100":1.7360244839,"wig+100":20.6143246668,"nqc+100":0.0410129462,"smv+100":0.0313594474,"clarity+100+100":1.6977770253,"wig+1000":19.191662577,"nqc+1000":0.0339094022,"smv+1000":0.0194768082,"clarity+1000+100":1.6672753207}
+{"qid":"164","wig+5":23.6254099565,"nqc+5":0.0007647588,"smv+5":0.0005363606,"clarity+5+100":2.2141471219,"wig+10":23.3618961032,"nqc+10":0.0226873124,"smv+10":0.0174183528,"clarity+10+100":2.1701448482,"wig+20":23.0418474327,"nqc+20":0.0266311089,"smv+20":0.0202227821,"clarity+20+100":2.103053428,"wig+50":22.8147474581,"nqc+50":0.0234783524,"smv+50":0.0169553049,"clarity+50+100":1.9870682966,"wig+100":22.4202301884,"nqc+100":0.028146851,"smv+100":0.020619413,"clarity+100+100":1.9315469924,"wig+1000":21.4046690271,"nqc+1000":0.0224179658,"smv+1000":0.0142239154,"clarity+1000+100":1.879048644}
+{"qid":"165","wig+5":24.1410994322,"nqc+5":0.0019364364,"smv+5":0.0016572023,"clarity+5+100":1.7313218424,"wig+10":23.9396218859,"nqc+10":0.0158132658,"smv+10":0.0133022505,"clarity+10+100":1.5448705435,"wig+20":23.8400390855,"nqc+20":0.0162180527,"smv+20":0.0133856446,"clarity+20+100":1.4548559756,"wig+50":23.7569020519,"nqc+50":0.0227816101,"smv+50":0.0177862326,"clarity+50+100":1.3455229252,"wig+100":23.6262704071,"nqc+100":0.0251006219,"smv+100":0.0197552442,"clarity+100+100":1.2675240789,"wig+1000":22.3650118249,"nqc+1000":0.0389802457,"smv+1000":0.0296236098,"clarity+1000+100":1.1221468211}
+{"qid":"167","wig+5":40.6419823809,"nqc+5":0.0025131224,"smv+5":0.0018693092,"clarity+5+100":2.1100322144,"wig+10":40.6758350803,"nqc+10":0.0020332415,"smv+10":0.0016996541,"clarity+10+100":1.8677726326,"wig+20":40.6140088547,"nqc+20":0.0025825911,"smv+20":0.0021109209,"clarity+20+100":1.6760149729,"wig+50":40.5524529726,"nqc+50":0.003258386,"smv+50":0.0024381535,"clarity+50+100":1.4694670321,"wig+100":40.4922068293,"nqc+100":0.0037508955,"smv+100":0.0028996798,"clarity+100+100":1.3027695358,"wig+1000":40.2968897562,"nqc+1000":0.0041673806,"smv+1000":0.0031561081,"clarity+1000+100":0.9914830339}
+{"qid":"168","wig+5":24.5465853908,"nqc+5":0.0024979125,"smv+5":0.0017263555,"clarity+5+100":2.0504898015,"wig+10":24.3726872438,"nqc+10":0.0120629149,"smv+10":0.0099954049,"clarity+10+100":1.956840842,"wig+20":24.1746083623,"nqc+20":0.0169012622,"smv+20":0.0132251871,"clarity+20+100":1.834877618,"wig+50":23.8830102716,"nqc+50":0.0264627909,"smv+50":0.0210516332,"clarity+50+100":1.4401073844,"wig+100":23.7354786175,"nqc+100":0.0284408367,"smv+100":0.0223655199,"clarity+100+100":1.255873881,"wig+1000":23.1573679566,"nqc+1000":0.029067366,"smv+1000":0.0226288782,"clarity+1000+100":1.0068887061}
+{"qid":"169","wig+5":19.4658574658,"nqc+5":0.0340840849,"smv+5":0.0291251226,"clarity+5+100":1.5971618311,"wig+10":19.4267666927,"nqc+10":0.0330931015,"smv+10":0.0290370202,"clarity+10+100":1.4771316363,"wig+20":19.1808477969,"nqc+20":0.0323576889,"smv+20":0.0249939112,"clarity+20+100":1.4342096744,"wig+50":18.7256049428,"nqc+50":0.0367978568,"smv+50":0.0267684203,"clarity+50+100":1.3865584978,"wig+100":18.3606399915,"nqc+100":0.0364156734,"smv+100":0.0263658329,"clarity+100+100":1.3562061703,"wig+1000":17.4241770445,"nqc+1000":0.0339085143,"smv+1000":0.0244630466,"clarity+1000+100":1.2937420553}
+{"qid":"170","wig+5":25.5289879006,"nqc+5":0.0127686947,"smv+5":0.0106716207,"clarity+5+100":1.9192422334,"wig+10":25.2536644517,"nqc+10":0.0188742603,"smv+10":0.0152508996,"clarity+10+100":1.8489049608,"wig+20":25.1477900092,"nqc+20":0.0184619109,"smv+20":0.0148227587,"clarity+20+100":1.7354991136,"wig+50":24.6284301649,"nqc+50":0.0281427212,"smv+50":0.0214153249,"clarity+50+100":1.6163330835,"wig+100":24.3156419525,"nqc+100":0.0291446278,"smv+100":0.02167053,"clarity+100+100":1.5064234954,"wig+1000":23.4109578757,"nqc+1000":0.0246032702,"smv+1000":0.0162693363,"clarity+1000+100":1.4540587966}
+{"qid":"171","wig+5":27.7190983392,"nqc+5":0.0095740632,"smv+5":0.0084195546,"clarity+5+100":2.1630717392,"wig+10":27.7853144981,"nqc+10":0.0071788152,"smv+10":0.0059485807,"clarity+10+100":1.8159937027,"wig+20":27.6343958639,"nqc+20":0.0122015155,"smv+20":0.0097489051,"clarity+20+100":1.6934357385,"wig+50":27.3490932329,"nqc+50":0.0189080212,"smv+50":0.0135978002,"clarity+50+100":1.5529580512,"wig+100":27.1147729247,"nqc+100":0.0215339296,"smv+100":0.015332403,"clarity+100+100":1.440354304,"wig+1000":26.0490791417,"nqc+1000":0.0255068829,"smv+1000":0.018173229,"clarity+1000+100":1.3087690562}
+{"qid":"173","wig+5":27.6988555196,"nqc+5":0.0071441659,"smv+5":0.0058684355,"clarity+5+100":1.9035082149,"wig+10":27.5801910567,"nqc+10":0.0125667547,"smv+10":0.0089001238,"clarity+10+100":1.816772748,"wig+20":27.5585712942,"nqc+20":0.0134639746,"smv+20":0.0101030391,"clarity+20+100":1.8225223426,"wig+50":27.422837385,"nqc+50":0.0155528118,"smv+50":0.0114918986,"clarity+50+100":1.8244138884,"wig+100":27.1389170362,"nqc+100":0.0222015859,"smv+100":0.0176361144,"clarity+100+100":1.8067617908,"wig+1000":26.2093893227,"nqc+1000":0.021889367,"smv+1000":0.0144626692,"clarity+1000+100":1.6168927026}
+{"qid":"175","wig+5":30.2924708983,"nqc+5":0.0002366638,"smv+5":0.0001989242,"clarity+5+100":2.2275421839,"wig+10":30.2813327035,"nqc+10":0.0009084712,"smv+10":0.000660847,"clarity+10+100":2.1043274406,"wig+20":30.2569616133,"nqc+20":0.0028027873,"smv+20":0.0019822318,"clarity+20+100":2.0595809908,"wig+50":30.1970130129,"nqc+50":0.0061843284,"smv+50":0.0047874033,"clarity+50+100":1.9244581702,"wig+100":30.0369859507,"nqc+100":0.0114308393,"smv+100":0.0087649568,"clarity+100+100":1.8851877112,"wig+1000":28.6478148398,"nqc+1000":0.0242354273,"smv+1000":0.0155985444,"clarity+1000+100":1.8168687922}
+{"qid":"176","wig+5":24.1103667254,"nqc+5":0.0030804098,"smv+5":0.0028455789,"clarity+5+100":2.4109472196,"wig+10":23.9521772115,"nqc+10":0.0117876175,"smv+10":0.009643591,"clarity+10+100":2.1895918764,"wig+20":23.8784798262,"nqc+20":0.0112077694,"smv+20":0.0083932046,"clarity+20+100":2.003309317,"wig+50":23.6711274973,"nqc+50":0.0154488005,"smv+50":0.0120789664,"clarity+50+100":1.987485571,"wig+100":23.5102266208,"nqc+100":0.0195647565,"smv+100":0.0146294875,"clarity+100+100":1.8964297934,"wig+1000":22.0651191221,"nqc+1000":0.0349532189,"smv+1000":0.0239265129,"clarity+1000+100":1.8635231209}
+{"qid":"177","wig+5":18.0898034478,"nqc+5":0.0008105222,"smv+5":0.0007234899,"clarity+5+100":2.2589573472,"wig+10":18.0771655772,"nqc+10":0.0024126603,"smv+10":0.0018360491,"clarity+10+100":2.144678995,"wig+20":18.0665783071,"nqc+20":0.0023168175,"smv+20":0.0018605215,"clarity+20+100":1.9501646031,"wig+50":17.8688157381,"nqc+50":0.0210635732,"smv+50":0.0169127715,"clarity+50+100":1.8262075671,"wig+100":17.580753592,"nqc+100":0.0305515218,"smv+100":0.0233777993,"clarity+100+100":1.6836511023,"wig+1000":16.0603738062,"nqc+1000":0.0514852727,"smv+1000":0.0357890319,"clarity+1000+100":1.5611119819}
+{"qid":"181","wig+5":20.2119140561,"nqc+5":0.0248109507,"smv+5":0.0199708098,"clarity+5+100":2.1113768971,"wig+10":20.2360439918,"nqc+10":0.0199776711,"smv+10":0.0153081489,"clarity+10+100":1.8599269799,"wig+20":20.0085022423,"nqc+20":0.0326172991,"smv+20":0.0254715499,"clarity+20+100":1.6412470599,"wig+50":19.7245493271,"nqc+50":0.0397923065,"smv+50":0.0321925392,"clarity+50+100":1.4382921213,"wig+100":19.3841141704,"nqc+100":0.0479298684,"smv+100":0.0385479986,"clarity+100+100":1.3298946785,"wig+1000":18.607361672,"nqc+1000":0.0401561214,"smv+1000":0.0278696119,"clarity+1000+100":1.1985044196}
+{"qid":"182","wig+5":28.1233700549,"nqc+5":0.0071199396,"smv+5":0.0053360377,"clarity+5+100":2.0821412578,"wig+10":28.0790863622,"nqc+10":0.0061504192,"smv+10":0.0043722095,"clarity+10+100":1.8375278449,"wig+20":27.970143591,"nqc+20":0.0082241727,"smv+20":0.0061299922,"clarity+20+100":1.6643069884,"wig+50":27.8785840902,"nqc+50":0.0097109702,"smv+50":0.0073624198,"clarity+50+100":1.3959456633,"wig+100":27.7765822594,"nqc+100":0.0109326547,"smv+100":0.0084016114,"clarity+100+100":1.2507391831,"wig+1000":27.1488572173,"nqc+1000":0.0155361734,"smv+1000":0.012082989,"clarity+1000+100":1.0805935003}
+{"qid":"183","wig+5":16.1702783594,"nqc+5":0.0006992111,"smv+5":0.00061272,"clarity+5+100":1.7462853334,"wig+10":16.0383102376,"nqc+10":0.0236358247,"smv+10":0.0193292104,"clarity+10+100":1.5473017528,"wig+20":16.0482923345,"nqc+20":0.0174736655,"smv+20":0.0127110744,"clarity+20+100":1.5096589702,"wig+50":15.8232509457,"nqc+50":0.042954895,"smv+50":0.0323689899,"clarity+50+100":1.3931419369,"wig+100":15.6309460182,"nqc+100":0.0508504478,"smv+100":0.0399722087,"clarity+100+100":1.2927470954,"wig+1000":13.9480320801,"nqc+1000":0.0822764021,"smv+1000":0.0624119342,"clarity+1000+100":1.113528022}
+{"qid":"184","wig+5":19.2457556217,"nqc+5":0.0057950969,"smv+5":0.0049734652,"clarity+5+100":2.1701242449,"wig+10":18.4841571533,"nqc+10":0.055993092,"smv+10":0.0460164129,"clarity+10+100":2.064671667,"wig+20":17.6826970657,"nqc+20":0.0636151025,"smv+20":0.0440795281,"clarity+20+100":2.0493729759,"wig+50":17.263388953,"nqc+50":0.0510981565,"smv+50":0.0313519229,"clarity+50+100":2.0375234668,"wig+100":16.9888342949,"nqc+100":0.0457479914,"smv+100":0.0303591448,"clarity+100+100":2.005124991,"wig+1000":16.2264048807,"nqc+1000":0.0360267306,"smv+1000":0.0224225056,"clarity+1000+100":1.9846326093}
+{"qid":"187","wig+5":22.6215626203,"nqc+5":0.0322952059,"smv+5":0.0283860952,"clarity+5+100":1.999612878,"wig+10":22.5313162464,"nqc+10":0.0299251879,"smv+10":0.0248027762,"clarity+10+100":1.8700368169,"wig+20":22.3042876352,"nqc+20":0.0319209986,"smv+20":0.0277749819,"clarity+20+100":1.7428898009,"wig+50":21.8849705753,"nqc+50":0.0317072905,"smv+50":0.0255400387,"clarity+50+100":1.6764643303,"wig+100":21.6829993345,"nqc+100":0.0305812369,"smv+100":0.0234719215,"clarity+100+100":1.6164331339,"wig+1000":20.9342655479,"nqc+1000":0.0224905716,"smv+1000":0.0157533086,"clarity+1000+100":1.4963425757}
+{"qid":"189","wig+5":19.0943850575,"nqc+5":0.0380869624,"smv+5":0.032448973,"clarity+5+100":2.1934469622,"wig+10":18.6889479046,"nqc+10":0.0373643537,"smv+10":0.0289701967,"clarity+10+100":2.1606639468,"wig+20":17.9988753806,"nqc+20":0.0523034335,"smv+20":0.036721136,"clarity+20+100":2.1405303028,"wig+50":17.2755029007,"nqc+50":0.0500573615,"smv+50":0.0340345225,"clarity+50+100":2.1299877806,"wig+100":16.8413133254,"nqc+100":0.0463859037,"smv+100":0.0305675507,"clarity+100+100":2.1210954493,"wig+1000":16.015454021,"nqc+1000":0.0264035533,"smv+1000":0.0145348178,"clarity+1000+100":2.1097401537}
+{"qid":"190","wig+5":22.9274912925,"nqc+5":0.0179173038,"smv+5":0.0158960263,"clarity+5+100":2.2232563189,"wig+10":22.4451440739,"nqc+10":0.0324601985,"smv+10":0.0257394465,"clarity+10+100":2.1013697989,"wig+20":22.2339080349,"nqc+20":0.0352565599,"smv+20":0.0281357498,"clarity+20+100":1.9061619948,"wig+50":22.0345477335,"nqc+50":0.0343343496,"smv+50":0.0273872208,"clarity+50+100":1.6917920599,"wig+100":21.7761872847,"nqc+100":0.0337779511,"smv+100":0.0270139432,"clarity+100+100":1.6264386871,"wig+1000":20.9314817307,"nqc+1000":0.02952034,"smv+1000":0.0211801294,"clarity+1000+100":1.3843584425}
+{"qid":"196","wig+5":24.4921460827,"nqc+5":0.000959983,"smv+5":0.0008073405,"clarity+5+100":1.9607409686,"wig+10":24.4927568758,"nqc+10":0.0007136546,"smv+10":0.0005510841,"clarity+10+100":1.8538656881,"wig+20":24.2360599102,"nqc+20":0.021245998,"smv+20":0.0157872641,"clarity+20+100":1.8032496909,"wig+50":24.0276503681,"nqc+50":0.0250981511,"smv+50":0.0197392563,"clarity+50+100":1.6558232755,"wig+100":23.6855707168,"nqc+100":0.0323957143,"smv+100":0.0254954494,"clarity+100+100":1.5350338176,"wig+1000":22.3829417587,"nqc+1000":0.0323899112,"smv+1000":0.0204679777,"clarity+1000+100":1.4753189388}
+{"qid":"200","wig+5":24.28343319,"nqc+5":0.0016835869,"smv+5":0.0013811307,"clarity+5+100":2.6224635246,"wig+10":24.2640811267,"nqc+10":0.0018451723,"smv+10":0.0013548836,"clarity+10+100":2.3332130443,"wig+20":24.2099498512,"nqc+20":0.0033747633,"smv+20":0.0024827456,"clarity+20+100":2.2871532673,"wig+50":23.7192466627,"nqc+50":0.0298662368,"smv+50":0.0250900474,"clarity+50+100":2.1306469753,"wig+100":23.1223210272,"nqc+100":0.0356706487,"smv+100":0.0265179339,"clarity+100+100":2.118840884,"wig+1000":22.0152443349,"nqc+1000":0.0239003044,"smv+1000":0.0139027866,"clarity+1000+100":2.0910465227}
+{"qid":"201","wig+5":12.3118812077,"nqc+5":0.0002681187,"smv+5":0.0002062763,"clarity+5+100":2.5880336479,"wig+10":12.3110648945,"nqc+10":0.000293957,"smv+10":0.0002525767,"clarity+10+100":2.5532406648,"wig+20":12.3038320522,"nqc+20":0.0015420203,"smv+20":0.0011360448,"clarity+20+100":2.3320608756,"wig+50":12.157461747,"nqc+50":0.0219665427,"smv+50":0.0164112776,"clarity+50+100":2.0161823546,"wig+100":11.6470230969,"nqc+100":0.0886321155,"smv+100":0.0682733234,"clarity+100+100":1.913831573,"wig+1000":8.9402549337,"nqc+1000":0.1448664585,"smv+1000":0.0884650063,"clarity+1000+100":1.865240803}
+{"qid":"202","wig+5":12.0942939219,"nqc+5":0.0002951335,"smv+5":0.0002814388,"clarity+5+100":2.5208142986,"wig+10":12.0947914236,"nqc+10":0.0004586879,"smv+10":0.0003648026,"clarity+10+100":2.5033444099,"wig+20":12.0889876363,"nqc+20":0.0011319144,"smv+20":0.0008461373,"clarity+20+100":2.3764191962,"wig+50":11.8546132862,"nqc+50":0.0463445997,"smv+50":0.0328353162,"clarity+50+100":1.9894386764,"wig+100":11.4504929883,"nqc+100":0.0703059327,"smv+100":0.0546039026,"clarity+100+100":1.8865947386,"wig+1000":8.5643254795,"nqc+1000":0.1424536308,"smv+1000":0.0887057191,"clarity+1000+100":1.8405588723}
+{"qid":"203","wig+5":24.0898982386,"nqc+5":0.0002201847,"smv+5":0.000200542,"clarity+5+100":2.3051266795,"wig+10":24.0084786779,"nqc+10":0.0088334248,"smv+10":0.0072950531,"clarity+10+100":2.3696016446,"wig+20":23.9449052266,"nqc+20":0.0113955864,"smv+20":0.0094031062,"clarity+20+100":2.2901587502,"wig+50":23.700182693,"nqc+50":0.0229651629,"smv+50":0.0186991107,"clarity+50+100":2.1286090051,"wig+100":23.2840289937,"nqc+100":0.0320999138,"smv+100":0.0253582279,"clarity+100+100":1.9939201624,"wig+1000":22.0965481333,"nqc+1000":0.0286892873,"smv+1000":0.0171860845,"clarity+1000+100":1.8800149364}
+{"qid":"204","wig+5":17.1718391236,"nqc+5":0.0000950173,"smv+5":0.0000770767,"clarity+5+100":2.8548233209,"wig+10":17.1720129442,"nqc+10":0.000134874,"smv+10":0.0001056732,"clarity+10+100":2.4425070486,"wig+20":17.1705547664,"nqc+20":0.0005226957,"smv+20":0.0003332131,"clarity+20+100":2.4057682838,"wig+50":16.9372119596,"nqc+50":0.0317662617,"smv+50":0.0240165451,"clarity+50+100":2.0433119071,"wig+100":16.7144924496,"nqc+100":0.0345123894,"smv+100":0.0258175336,"clarity+100+100":1.8959578203,"wig+1000":14.1440461775,"nqc+1000":0.0718111882,"smv+1000":0.0425598246,"clarity+1000+100":1.8490978618}
+{"qid":"205","wig+5":19.7718487331,"nqc+5":0.0003686044,"smv+5":0.0002334661,"clarity+5+100":2.0913334045,"wig+10":19.7224385444,"nqc+10":0.0036553086,"smv+10":0.0032625536,"clarity+10+100":2.0664708965,"wig+20":19.6236479025,"nqc+20":0.0131291098,"smv+20":0.0094585791,"clarity+20+100":2.1118431743,"wig+50":19.4298082359,"nqc+50":0.0328511942,"smv+50":0.0257400021,"clarity+50+100":1.9570260853,"wig+100":18.7669712827,"nqc+100":0.0534591552,"smv+100":0.0416893629,"clarity+100+100":1.8900459547,"wig+1000":17.0637036631,"nqc+1000":0.0492739467,"smv+1000":0.028486116,"clarity+1000+100":1.8186510904}
+{"qid":"206","wig+5":35.8101517981,"nqc+5":0.0010871679,"smv+5":0.0007833583,"clarity+5+100":2.44860164,"wig+10":35.8037733188,"nqc+10":0.001617121,"smv+10":0.0013096201,"clarity+10+100":2.2959177191,"wig+20":35.7523735762,"nqc+20":0.0041978291,"smv+20":0.0033158474,"clarity+20+100":2.2035653167,"wig+50":35.6939317581,"nqc+50":0.0051577029,"smv+50":0.0041395682,"clarity+50+100":1.9559878193,"wig+100":35.5931748954,"nqc+100":0.0085315366,"smv+100":0.0065522674,"clarity+100+100":1.8590374375,"wig+1000":34.8017873818,"nqc+1000":0.0119227286,"smv+1000":0.0077039553,"clarity+1000+100":1.7609687704}
+{"qid":"208","wig+5":20.4188177301,"nqc+5":0.000295026,"smv+5":0.0002440077,"clarity+5+100":2.3288574545,"wig+10":20.4174889009,"nqc+10":0.0003068745,"smv+10":0.0002582236,"clarity+10+100":2.1406420318,"wig+20":20.3958662301,"nqc+20":0.002736741,"smv+20":0.0021345704,"clarity+20+100":2.043542693,"wig+50":20.3091151134,"nqc+50":0.0071664944,"smv+50":0.005549172,"clarity+50+100":1.9143112072,"wig+100":19.9325882805,"nqc+100":0.0289705295,"smv+100":0.0224292641,"clarity+100+100":1.8503295574,"wig+1000":18.0020987341,"nqc+1000":0.0422850244,"smv+1000":0.0242382734,"clarity+1000+100":1.8229599724}
+{"qid":"209","wig+5":23.2917465056,"nqc+5":0.000563722,"smv+5":0.0004725813,"clarity+5+100":2.2513723215,"wig+10":23.2854234495,"nqc+10":0.0007763863,"smv+10":0.0006545882,"clarity+10+100":2.1335154622,"wig+20":23.2763604795,"nqc+20":0.0012676808,"smv+20":0.0009799189,"clarity+20+100":1.9971366469,"wig+50":23.1150240568,"nqc+50":0.015229678,"smv+50":0.0111976092,"clarity+50+100":1.8955474928,"wig+100":22.8551825678,"nqc+100":0.0224322396,"smv+100":0.0168410243,"clarity+100+100":1.8559153384,"wig+1000":21.3986420153,"nqc+1000":0.0301673681,"smv+1000":0.0189677501,"clarity+1000+100":1.8024738366}
+{"qid":"210","wig+5":17.7993858284,"nqc+5":0.0404276585,"smv+5":0.0316462354,"clarity+5+100":2.7681453769,"wig+10":17.2035783153,"nqc+10":0.048457474,"smv+10":0.0315619213,"clarity+10+100":2.7291695748,"wig+20":16.3466765236,"nqc+20":0.0585170628,"smv+20":0.0414485671,"clarity+20+100":2.7261886967,"wig+50":15.7524224292,"nqc+50":0.0478769573,"smv+50":0.0288957175,"clarity+50+100":2.7205697619,"wig+100":15.4612330649,"nqc+100":0.0435317424,"smv+100":0.0258823769,"clarity+100+100":2.6273464803,"wig+1000":15.0308271528,"nqc+1000":0.0269727281,"smv+1000":0.0152020859,"clarity+1000+100":2.4500163154}
+{"qid":"211","wig+5":21.7722182775,"nqc+5":0.001138375,"smv+5":0.0010780754,"clarity+5+100":1.910027348,"wig+10":21.7332651548,"nqc+10":0.0041568161,"smv+10":0.0033801821,"clarity+10+100":1.8876182042,"wig+20":21.6685787762,"nqc+20":0.0072865228,"smv+20":0.0061554687,"clarity+20+100":1.7567134869,"wig+50":21.4954095807,"nqc+50":0.0117642075,"smv+50":0.0084842572,"clarity+50+100":1.7127840335,"wig+100":21.2351337654,"nqc+100":0.02423583,"smv+100":0.0178357643,"clarity+100+100":1.6792715659,"wig+1000":19.6833570159,"nqc+1000":0.0410450844,"smv+1000":0.0275985557,"clarity+1000+100":1.4802560947}
+{"qid":"212","wig+5":26.3454936094,"nqc+5":0.0093660118,"smv+5":0.0065289626,"clarity+5+100":2.2449919353,"wig+10":26.2190428512,"nqc+10":0.0120669209,"smv+10":0.0088266214,"clarity+10+100":2.1770888706,"wig+20":25.9023165336,"nqc+20":0.0186581923,"smv+20":0.015738935,"clarity+20+100":2.1161968479,"wig+50":25.151261319,"nqc+50":0.0336966715,"smv+50":0.0260106847,"clarity+50+100":2.0983278581,"wig+100":24.7822246813,"nqc+100":0.0331934211,"smv+100":0.0260417703,"clarity+100+100":2.0949062611,"wig+1000":23.9189714005,"nqc+1000":0.0215694704,"smv+1000":0.0126744278,"clarity+1000+100":2.0761094983}
+{"qid":"213","wig+5":20.0411497677,"nqc+5":0.0088280259,"smv+5":0.0064501456,"clarity+5+100":2.032634326,"wig+10":20.1013509826,"nqc+10":0.0071716537,"smv+10":0.0062314857,"clarity+10+100":1.8933654309,"wig+20":20.0731721986,"nqc+20":0.0078994978,"smv+20":0.0063252416,"clarity+20+100":1.8461406251,"wig+50":19.9087200224,"nqc+50":0.012063303,"smv+50":0.0087892325,"clarity+50+100":1.728672288,"wig+100":19.6817318774,"nqc+100":0.0218097752,"smv+100":0.0163817472,"clarity+100+100":1.6005060699,"wig+1000":17.7464522429,"nqc+1000":0.0442245561,"smv+1000":0.0276018386,"clarity+1000+100":1.5134253077}
+{"qid":"214","wig+5":33.4385800318,"nqc+5":0.0097088537,"smv+5":0.0076378766,"clarity+5+100":2.3710535222,"wig+10":33.2776417669,"nqc+10":0.0117991313,"smv+10":0.0090835664,"clarity+10+100":2.3699723261,"wig+20":33.3929632816,"nqc+20":0.0095671117,"smv+20":0.0073061756,"clarity+20+100":2.0170666674,"wig+50":33.1738143789,"nqc+50":0.011318399,"smv+50":0.0084487538,"clarity+50+100":1.9959663281,"wig+100":33.0069659265,"nqc+100":0.0122883852,"smv+100":0.0090382161,"clarity+100+100":1.8757236755,"wig+1000":32.4588230221,"nqc+1000":0.011162483,"smv+1000":0.0077254573,"clarity+1000+100":1.6288805645}
+{"qid":"215","wig+5":26.252195813,"nqc+5":0.0028224929,"smv+5":0.0023353314,"clarity+5+100":2.0970721511,"wig+10":26.2729182442,"nqc+10":0.0021530939,"smv+10":0.0017338178,"clarity+10+100":2.0395717616,"wig+20":26.1337546571,"nqc+20":0.0127368497,"smv+20":0.0098888827,"clarity+20+100":1.8766202525,"wig+50":25.9412755762,"nqc+50":0.0191972494,"smv+50":0.0140678994,"clarity+50+100":1.8192927373,"wig+100":25.7433025062,"nqc+100":0.0219089053,"smv+100":0.0164785687,"clarity+100+100":1.700612178,"wig+1000":24.7092394023,"nqc+1000":0.0250055969,"smv+1000":0.016728873,"clarity+1000+100":1.5944411458}
+{"qid":"216","wig+5":22.9994561045,"nqc+5":0.0033287136,"smv+5":0.0023067038,"clarity+5+100":2.4353413549,"wig+10":22.7915522283,"nqc+10":0.0099243906,"smv+10":0.0075493594,"clarity+10+100":2.2613135899,"wig+20":22.667935916,"nqc+20":0.0249284247,"smv+20":0.0191535284,"clarity+20+100":1.9942250811,"wig+50":22.1261244364,"nqc+50":0.0341988833,"smv+50":0.0266467448,"clarity+50+100":1.9488918419,"wig+100":21.7530107041,"nqc+100":0.0362227313,"smv+100":0.0278561914,"clarity+100+100":1.9184076456,"wig+1000":20.5816764253,"nqc+1000":0.0287370943,"smv+1000":0.0175176027,"clarity+1000+100":1.8443665978}
+{"qid":"217","wig+5":24.1405645912,"nqc+5":0.0017657205,"smv+5":0.0014596406,"clarity+5+100":2.2121996385,"wig+10":24.0906363351,"nqc+10":0.0049960492,"smv+10":0.0040314629,"clarity+10+100":2.1772220298,"wig+20":23.9798241373,"nqc+20":0.0117177629,"smv+20":0.0092394807,"clarity+20+100":2.0145415994,"wig+50":23.7841319047,"nqc+50":0.0197615426,"smv+50":0.0151656879,"clarity+50+100":1.9258044319,"wig+100":23.165993201,"nqc+100":0.0411382387,"smv+100":0.0318712058,"clarity+100+100":1.8758053813,"wig+1000":21.921356589,"nqc+1000":0.0356412403,"smv+1000":0.0223751892,"clarity+1000+100":1.8311117715}
+{"qid":"218","wig+5":18.7073875003,"nqc+5":0.0002264475,"smv+5":0.0001990426,"clarity+5+100":2.3720581455,"wig+10":18.691364561,"nqc+10":0.0020467402,"smv+10":0.0016087329,"clarity+10+100":2.0870483591,"wig+20":18.6750931433,"nqc+20":0.0025629394,"smv+20":0.0020919751,"clarity+20+100":1.9287828757,"wig+50":18.5812868134,"nqc+50":0.0128997014,"smv+50":0.0090333844,"clarity+50+100":1.8197445948,"wig+100":18.3312832471,"nqc+100":0.0278201221,"smv+100":0.0218881262,"clarity+100+100":1.7969890652,"wig+1000":16.4161102356,"nqc+1000":0.0541512803,"smv+1000":0.0347949371,"clarity+1000+100":1.7789531781}
+{"qid":"219","wig+5":20.1360705984,"nqc+5":0.0005234184,"smv+5":0.0004160311,"clarity+5+100":2.1461443569,"wig+10":20.1275174856,"nqc+10":0.0011976838,"smv+10":0.0009663749,"clarity+10+100":1.9701747156,"wig+20":19.8830289655,"nqc+20":0.0280375381,"smv+20":0.0219255766,"clarity+20+100":1.9032597603,"wig+50":19.8702238887,"nqc+50":0.0261292512,"smv+50":0.0201160994,"clarity+50+100":1.7493131032,"wig+100":19.7078493341,"nqc+100":0.0270131624,"smv+100":0.0213194636,"clarity+100+100":1.6859145035,"wig+1000":18.2838504569,"nqc+1000":0.0442060409,"smv+1000":0.0293078725,"clarity+1000+100":1.6060747387}
+{"qid":"223","wig+5":18.2985971674,"nqc+5":0.0026611828,"smv+5":0.0022931363,"clarity+5+100":1.7722633244,"wig+10":18.176408254,"nqc+10":0.011982633,"smv+10":0.0093561949,"clarity+10+100":1.701070817,"wig+20":17.9742599515,"nqc+20":0.0214199585,"smv+20":0.0176913918,"clarity+20+100":1.5378477565,"wig+50":17.7576701996,"nqc+50":0.0335316067,"smv+50":0.025274928,"clarity+50+100":1.3959294337,"wig+100":17.4781636166,"nqc+100":0.0414381245,"smv+100":0.0313368163,"clarity+100+100":1.3041726251,"wig+1000":16.1297058312,"nqc+1000":0.0556436787,"smv+1000":0.0409935164,"clarity+1000+100":1.1794149638}
+{"qid":"224","wig+5":18.9420251763,"nqc+5":0.0205023965,"smv+5":0.0177558923,"clarity+5+100":1.9135843791,"wig+10":19.0556432829,"nqc+10":0.017210632,"smv+10":0.0128464149,"clarity+10+100":1.6684301701,"wig+20":18.8970115207,"nqc+20":0.0340457443,"smv+20":0.0258403769,"clarity+20+100":1.5697252969,"wig+50":18.7887837309,"nqc+50":0.0345338059,"smv+50":0.0268591641,"clarity+50+100":1.4300531514,"wig+100":18.669619283,"nqc+100":0.0350046751,"smv+100":0.0264715952,"clarity+100+100":1.3629286823,"wig+1000":17.3794982155,"nqc+1000":0.0445359695,"smv+1000":0.0318334563,"clarity+1000+100":1.2113915204}
+{"qid":"225","wig+5":18.3197246674,"nqc+5":0.0166480731,"smv+5":0.0132573984,"clarity+5+100":1.4876106015,"wig+10":18.2943195304,"nqc+10":0.0138574288,"smv+10":0.0106720674,"clarity+10+100":1.4289082195,"wig+20":18.2775962251,"nqc+20":0.0171596002,"smv+20":0.0131941429,"clarity+20+100":1.26419811,"wig+50":18.020049964,"nqc+50":0.0306589591,"smv+50":0.0240970347,"clarity+50+100":1.1834025754,"wig+100":17.8134936567,"nqc+100":0.0367891546,"smv+100":0.0287951429,"clarity+100+100":1.110724875,"wig+1000":16.6579361111,"nqc+1000":0.0515729888,"smv+1000":0.0386041956,"clarity+1000+100":1.0480180319}
+{"qid":"226","wig+5":17.5597843791,"nqc+5":0.0010591904,"smv+5":0.0008440349,"clarity+5+100":2.1910418106,"wig+10":17.5031735439,"nqc+10":0.0040277325,"smv+10":0.0032295719,"clarity+10+100":1.9351125404,"wig+20":17.2127943291,"nqc+20":0.0325649802,"smv+20":0.026120176,"clarity+20+100":1.7165444022,"wig+50":15.9207476941,"nqc+50":0.0709362787,"smv+50":0.0503758124,"clarity+50+100":1.7096940072,"wig+100":15.2083467923,"nqc+100":0.0676049549,"smv+100":0.0415220502,"clarity+100+100":1.7080028869,"wig+1000":14.414057803,"nqc+1000":0.0446281992,"smv+1000":0.0244574637,"clarity+1000+100":1.7020436002}
+{"qid":"227","wig+5":20.0977220918,"nqc+5":0.0354590009,"smv+5":0.0282865294,"clarity+5+100":2.9142385495,"wig+10":19.6875344606,"nqc+10":0.0387401208,"smv+10":0.0303894809,"clarity+10+100":2.7813734888,"wig+20":19.3879095778,"nqc+20":0.0371459427,"smv+20":0.028118537,"clarity+20+100":2.5989223944,"wig+50":18.8525387114,"nqc+50":0.0375644811,"smv+50":0.0242460793,"clarity+50+100":2.5346206593,"wig+100":18.4624028528,"nqc+100":0.0356107827,"smv+100":0.0233172893,"clarity+100+100":2.5188335267,"wig+1000":17.6027023628,"nqc+1000":0.0261471527,"smv+1000":0.0169380606,"clarity+1000+100":2.4701619638}
+{"qid":"230","wig+5":18.3121511563,"nqc+5":0.02036002,"smv+5":0.016824043,"clarity+5+100":2.0053230247,"wig+10":17.7699913169,"nqc+10":0.0578162118,"smv+10":0.0428951362,"clarity+10+100":1.8994488784,"wig+20":17.5997820706,"nqc+20":0.0569177775,"smv+20":0.0445769272,"clarity+20+100":1.7317254962,"wig+50":17.0869975322,"nqc+50":0.0694453589,"smv+50":0.0553269169,"clarity+50+100":1.586196226,"wig+100":16.2933853603,"nqc+100":0.0740696896,"smv+100":0.0554591962,"clarity+100+100":1.564893553,"wig+1000":15.3424606202,"nqc+1000":0.0592248622,"smv+1000":0.0396579131,"clarity+1000+100":1.5275417181}
+{"qid":"231","wig+5":25.3567198539,"nqc+5":0.0034553433,"smv+5":0.0030289986,"clarity+5+100":2.0378127108,"wig+10":25.0420517207,"nqc+10":0.0291689166,"smv+10":0.0232042563,"clarity+10+100":1.9575549838,"wig+20":23.9047774835,"nqc+20":0.0542561562,"smv+20":0.0425689552,"clarity+20+100":1.9443953088,"wig+50":23.0516503908,"nqc+50":0.0524070233,"smv+50":0.0333148852,"clarity+50+100":1.8928999686,"wig+100":22.5512422537,"nqc+100":0.042833377,"smv+100":0.0212510362,"clarity+100+100":1.8923493561,"wig+1000":22.2899165537,"nqc+1000":0.0349393372,"smv+1000":0.0155766282,"clarity+1000+100":1.8917229494}
+{"qid":"232","wig+5":23.1204275376,"nqc+5":0.000156911,"smv+5":0.0001308117,"clarity+5+100":1.4973476088,"wig+10":23.1180411177,"nqc+10":0.0002520786,"smv+10":0.0002213749,"clarity+10+100":1.4359365338,"wig+20":23.1137188554,"nqc+20":0.0006792607,"smv+20":0.0005202126,"clarity+20+100":1.3523233861,"wig+50":23.103554275,"nqc+50":0.001105698,"smv+50":0.0009000084,"clarity+50+100":1.2291535729,"wig+100":22.9832011112,"nqc+100":0.0108674574,"smv+100":0.0085611389,"clarity+100+100":1.1634245004,"wig+1000":21.5270486161,"nqc+1000":0.0378560141,"smv+1000":0.0254845031,"clarity+1000+100":1.1189490867}
+{"qid":"233","wig+5":18.3750386881,"nqc+5":0.0339028866,"smv+5":0.0242972729,"clarity+5+100":2.3659565539,"wig+10":18.2258962745,"nqc+10":0.0441608438,"smv+10":0.0319803048,"clarity+10+100":2.0500645755,"wig+20":17.8801560427,"nqc+20":0.0512126445,"smv+20":0.036114556,"clarity+20+100":1.9875461094,"wig+50":17.3302464318,"nqc+50":0.0587401279,"smv+50":0.0445039876,"clarity+50+100":1.6494064687,"wig+100":16.6984335124,"nqc+100":0.0579839263,"smv+100":0.0416853147,"clarity+100+100":1.6468427931,"wig+1000":15.5134819958,"nqc+1000":0.0448002192,"smv+1000":0.0287550356,"clarity+1000+100":1.6406051093}
+{"qid":"234","wig+5":23.7686561846,"nqc+5":0.0092310249,"smv+5":0.0062601883,"clarity+5+100":1.7771582931,"wig+10":23.711381555,"nqc+10":0.0095456957,"smv+10":0.007184103,"clarity+10+100":1.723667105,"wig+20":23.1728918607,"nqc+20":0.0342414672,"smv+20":0.0284221168,"clarity+20+100":1.6687641921,"wig+50":23.0496685407,"nqc+50":0.0304287831,"smv+50":0.0241406315,"clarity+50+100":1.4911799425,"wig+100":22.9155017628,"nqc+100":0.0274450168,"smv+100":0.021687651,"clarity+100+100":1.4096839473,"wig+1000":21.8794988592,"nqc+1000":0.0306273331,"smv+1000":0.0218059232,"clarity+1000+100":1.3076006994}
+{"qid":"241","wig+5":33.9098650594,"nqc+5":0.0002389926,"smv+5":0.0002046502,"clarity+5+100":2.2900676333,"wig+10":33.9012036186,"nqc+10":0.0003201781,"smv+10":0.0002302955,"clarity+10+100":2.214854078,"wig+20":33.8729090112,"nqc+20":0.0015733185,"smv+20":0.0011950426,"clarity+20+100":2.0667481509,"wig+50":33.8092966685,"nqc+50":0.0027160239,"smv+50":0.002229145,"clarity+50+100":1.9291894796,"wig+100":33.725885232,"nqc+100":0.004632747,"smv+100":0.0033868592,"clarity+100+100":1.848626669,"wig+1000":33.1011826917,"nqc+1000":0.0088511032,"smv+1000":0.0056654335,"clarity+1000+100":1.5816621527}
+{"qid":"245","wig+5":25.8922508906,"nqc+5":0.0009933934,"smv+5":0.0007834455,"clarity+5+100":1.5651035992,"wig+10":25.8849663197,"nqc+10":0.0011470693,"smv+10":0.000938336,"clarity+10+100":1.392971713,"wig+20":25.8427782311,"nqc+20":0.0041212123,"smv+20":0.0030668957,"clarity+20+100":1.3901456759,"wig+50":25.7542620362,"nqc+50":0.0087495029,"smv+50":0.0066424642,"clarity+50+100":1.3243752332,"wig+100":25.5847438678,"nqc+100":0.0133057085,"smv+100":0.0105608694,"clarity+100+100":1.2963740156,"wig+1000":24.5010595211,"nqc+1000":0.0233019369,"smv+1000":0.0158660713,"clarity+1000+100":1.2135879885}
+{"qid":"246","wig+5":25.4663920819,"nqc+5":0.0003342615,"smv+5":0.0002688784,"clarity+5+100":1.5285952755,"wig+10":25.4530392552,"nqc+10":0.0009285178,"smv+10":0.0007329504,"clarity+10+100":1.4324035682,"wig+20":25.4470374975,"nqc+20":0.0012404245,"smv+20":0.0009907518,"clarity+20+100":1.3966456567,"wig+50":25.4010918572,"nqc+50":0.0036180835,"smv+50":0.0027180247,"clarity+50+100":1.3056264893,"wig+100":25.2840942807,"nqc+100":0.0097397678,"smv+100":0.00772866,"clarity+100+100":1.2787810758,"wig+1000":24.044176516,"nqc+1000":0.0290124481,"smv+1000":0.0203129327,"clarity+1000+100":1.1945273753}
+{"qid":"247","wig+5":23.5479895274,"nqc+5":0.000067412,"smv+5":0.0000591345,"clarity+5+100":1.7841126965,"wig+10":23.5291782799,"nqc+10":0.0011575459,"smv+10":0.0009935709,"clarity+10+100":1.5500882846,"wig+20":23.4868101668,"nqc+20":0.0026849763,"smv+20":0.0020774635,"clarity+20+100":1.4514786648,"wig+50":23.3717885222,"nqc+50":0.0101560262,"smv+50":0.0075765582,"clarity+50+100":1.2752293773,"wig+100":23.182748777,"nqc+100":0.0153152726,"smv+100":0.012131019,"clarity+100+100":1.2254145297,"wig+1000":21.9324296164,"nqc+1000":0.0314156933,"smv+1000":0.0223655418,"clarity+1000+100":1.1321043059}
+{"qid":"250","wig+5":15.8447630424,"nqc+5":0.0106591362,"smv+5":0.0084050615,"clarity+5+100":1.8459116472,"wig+10":15.8951857935,"nqc+10":0.0082379928,"smv+10":0.0064104271,"clarity+10+100":1.5741326545,"wig+20":15.7902739323,"nqc+20":0.0241420531,"smv+20":0.0187668756,"clarity+20+100":1.5091869738,"wig+50":15.488324577,"nqc+50":0.0447306835,"smv+50":0.0361766031,"clarity+50+100":1.3455622011,"wig+100":15.2764506078,"nqc+100":0.0461462125,"smv+100":0.0365978291,"clarity+100+100":1.2530882262,"wig+1000":13.4352333692,"nqc+1000":0.0700398598,"smv+1000":0.0493768309,"clarity+1000+100":1.1743037932}
+{"qid":"251","wig+5":21.5668742629,"nqc+5":0.016838279,"smv+5":0.0131255343,"clarity+5+100":1.6894459348,"wig+10":21.4833038786,"nqc+10":0.016035191,"smv+10":0.0134836038,"clarity+10+100":1.4867964972,"wig+20":21.1790794573,"nqc+20":0.0306470205,"smv+20":0.0245868959,"clarity+20+100":1.3998618098,"wig+50":20.873620055,"nqc+50":0.0357277279,"smv+50":0.0278178408,"clarity+50+100":1.3181261791,"wig+100":20.5987110502,"nqc+100":0.0418582505,"smv+100":0.0335727001,"clarity+100+100":1.2224593868,"wig+1000":19.608572632,"nqc+1000":0.0406384857,"smv+1000":0.0275411628,"clarity+1000+100":1.2267096161}
+{"qid":"252","wig+5":21.8691943663,"nqc+5":0.0058681228,"smv+5":0.0046323114,"clarity+5+100":1.6405169507,"wig+10":21.8365466034,"nqc+10":0.0078173858,"smv+10":0.0065682061,"clarity+10+100":1.4504773381,"wig+20":21.5789949536,"nqc+20":0.0228964714,"smv+20":0.0183078621,"clarity+20+100":1.3618924838,"wig+50":21.4332138454,"nqc+50":0.0267108377,"smv+50":0.0209429024,"clarity+50+100":1.2996581373,"wig+100":21.2399940725,"nqc+100":0.0312332686,"smv+100":0.0245048352,"clarity+100+100":1.2607288468,"wig+1000":20.0663151715,"nqc+1000":0.0404068847,"smv+1000":0.0284175944,"clarity+1000+100":1.1747473408}
+{"qid":"253","wig+5":25.1243139022,"nqc+5":0.0015015037,"smv+5":0.001401477,"clarity+5+100":1.9250997746,"wig+10":25.0276672521,"nqc+10":0.0069436187,"smv+10":0.005012362,"clarity+10+100":1.8571149652,"wig+20":24.7716424449,"nqc+20":0.0235796393,"smv+20":0.0183771414,"clarity+20+100":1.6257745628,"wig+50":24.6699809221,"nqc+50":0.0206202474,"smv+50":0.0157544558,"clarity+50+100":1.3576104122,"wig+100":24.3815428322,"nqc+100":0.0249806332,"smv+100":0.020240433,"clarity+100+100":1.2872656171,"wig+1000":23.5732748885,"nqc+1000":0.0244844598,"smv+1000":0.0174011534,"clarity+1000+100":1.1438214215}
+{"qid":"254","wig+5":28.5591638491,"nqc+5":0.0001361034,"smv+5":0.0001221983,"clarity+5+100":1.9953796243,"wig+10":28.4079584917,"nqc+10":0.0080837645,"smv+10":0.0066323492,"clarity+10+100":1.9230170455,"wig+20":28.3460149974,"nqc+20":0.0098805795,"smv+20":0.0081821434,"clarity+20+100":1.7806388876,"wig+50":28.1906606394,"nqc+50":0.0122461633,"smv+50":0.0099216724,"clarity+50+100":1.5575282058,"wig+100":28.0775057785,"nqc+100":0.0142714974,"smv+100":0.0111160648,"clarity+100+100":1.3307926734,"wig+1000":27.61698535,"nqc+1000":0.0178664338,"smv+1000":0.0137260629,"clarity+1000+100":1.0390652973}
+{"qid":"255","wig+5":30.0548124929,"nqc+5":0.0000999002,"smv+5":0.0000910737,"clarity+5+100":1.9872084725,"wig+10":29.9518348967,"nqc+10":0.0056012862,"smv+10":0.0047772002,"clarity+10+100":1.9361164012,"wig+20":29.8468687185,"nqc+20":0.0077855247,"smv+20":0.0061008794,"clarity+20+100":1.6774454719,"wig+50":29.7301841639,"nqc+50":0.0092074343,"smv+50":0.0067429374,"clarity+50+100":1.5313849817,"wig+100":29.6738734321,"nqc+100":0.01066004,"smv+100":0.0081137465,"clarity+100+100":1.3171186902,"wig+1000":29.1323017836,"nqc+1000":0.0152741652,"smv+1000":0.0117802052,"clarity+1000+100":1.060841945}
+{"qid":"257","wig+5":29.3945441766,"nqc+5":0.0007721195,"smv+5":0.0006315985,"clarity+5+100":2.5154480612,"wig+10":29.2413001689,"nqc+10":0.0084970715,"smv+10":0.0073867106,"clarity+10+100":2.3213280185,"wig+20":28.8515973668,"nqc+20":0.0185923063,"smv+20":0.0129754031,"clarity+20+100":2.2629660942,"wig+50":28.5038829152,"nqc+50":0.0214864901,"smv+50":0.0154292427,"clarity+50+100":1.9976889828,"wig+100":28.2801992556,"nqc+100":0.0226128016,"smv+100":0.0177405177,"clarity+100+100":1.7724642769,"wig+1000":27.6541552335,"nqc+1000":0.0171854084,"smv+1000":0.0117117548,"clarity+1000+100":1.5912574585}
+{"qid":"259","wig+5":28.4960156061,"nqc+5":0.0009143791,"smv+5":0.0006887459,"clarity+5+100":1.9521214613,"wig+10":28.4045613464,"nqc+10":0.003871414,"smv+10":0.003231433,"clarity+10+100":1.7649406484,"wig+20":28.4002021726,"nqc+20":0.0036730668,"smv+20":0.0030193253,"clarity+20+100":1.6069268767,"wig+50":28.1230775979,"nqc+50":0.0143914294,"smv+50":0.0113056239,"clarity+50+100":1.5203902597,"wig+100":27.7920108456,"nqc+100":0.0214867412,"smv+100":0.0171138089,"clarity+100+100":1.4142191136,"wig+1000":26.5131591334,"nqc+1000":0.0233964104,"smv+1000":0.0152276475,"clarity+1000+100":1.3572238458}
+{"qid":"261","wig+5":14.1369916565,"nqc+5":0.0000267229,"smv+5":0.0000210169,"clarity+5+100":2.1440259029,"wig+10":13.9462851621,"nqc+10":0.022988508,"smv+10":0.0180046391,"clarity+10+100":2.0241394734,"wig+20":13.3860999782,"nqc+20":0.0533406348,"smv+20":0.0368846373,"clarity+20+100":1.9406758288,"wig+50":12.4631093489,"nqc+50":0.0737054896,"smv+50":0.0510119734,"clarity+50+100":1.9105343714,"wig+100":12.0183027144,"nqc+100":0.0695998163,"smv+100":0.0452243738,"clarity+100+100":1.8957577174,"wig+1000":10.7109435859,"nqc+1000":0.0537044801,"smv+1000":0.0344377097,"clarity+1000+100":1.8295629703}
+{"qid":"264","wig+5":24.5139802679,"nqc+5":0.0308207154,"smv+5":0.0246457434,"clarity+5+100":3.1455130403,"wig+10":23.8611662077,"nqc+10":0.0363573416,"smv+10":0.0216039432,"clarity+10+100":3.1113023064,"wig+20":23.5172679755,"nqc+20":0.0347432311,"smv+20":0.0211647091,"clarity+20+100":2.9680729456,"wig+50":23.0432848797,"nqc+50":0.0299987685,"smv+50":0.0180784879,"clarity+50+100":2.9442270098,"wig+100":22.7763045435,"nqc+100":0.0252558989,"smv+100":0.0155172996,"clarity+100+100":2.9299828103,"wig+1000":22.2824076305,"nqc+1000":0.0148640654,"smv+1000":0.009097091,"clarity+1000+100":2.8385218669}
+{"qid":"265","wig+5":18.1009856106,"nqc+5":0.0090404946,"smv+5":0.0077828198,"clarity+5+100":1.9250799677,"wig+10":18.1264046273,"nqc+10":0.009338883,"smv+10":0.0075499337,"clarity+10+100":1.8190877396,"wig+20":17.6984516854,"nqc+20":0.0369248133,"smv+20":0.0289869307,"clarity+20+100":1.761637506,"wig+50":16.835948658,"nqc+50":0.0544362742,"smv+50":0.0422472218,"clarity+50+100":1.7370513257,"wig+100":16.3208412046,"nqc+100":0.0554174884,"smv+100":0.0405118573,"clarity+100+100":1.7155418918,"wig+1000":15.3037941315,"nqc+1000":0.0351916406,"smv+1000":0.0222931466,"clarity+1000+100":1.6871813488}
+{"qid":"266","wig+5":16.9072931953,"nqc+5":0.0060614731,"smv+5":0.0052203997,"clarity+5+100":1.9073919921,"wig+10":16.9122117028,"nqc+10":0.0064606771,"smv+10":0.0056025932,"clarity+10+100":1.7645805206,"wig+20":16.7860054461,"nqc+20":0.0207693208,"smv+20":0.0146131156,"clarity+20+100":1.4835286018,"wig+50":16.5521257472,"nqc+50":0.0359147727,"smv+50":0.0280582809,"clarity+50+100":1.2675301222,"wig+100":16.1100139316,"nqc+100":0.0658272398,"smv+100":0.0522237467,"clarity+100+100":1.2128206174,"wig+1000":14.6390908403,"nqc+1000":0.067977082,"smv+1000":0.0442197466,"clarity+1000+100":1.0779354397}
+{"qid":"267","wig+5":18.9860891233,"nqc+5":0.0047883403,"smv+5":0.0043580222,"clarity+5+100":2.0950905037,"wig+10":18.7842006383,"nqc+10":0.022854485,"smv+10":0.0178341404,"clarity+10+100":1.9658689794,"wig+20":18.7130859204,"nqc+20":0.021015401,"smv+20":0.0165103708,"clarity+20+100":1.7296045624,"wig+50":18.4351487868,"nqc+50":0.0305713512,"smv+50":0.0239583725,"clarity+50+100":1.5311310949,"wig+100":18.1691456501,"nqc+100":0.0365325856,"smv+100":0.0285853446,"clarity+100+100":1.4108798708,"wig+1000":17.0790896812,"nqc+1000":0.0402907708,"smv+1000":0.0290131662,"clarity+1000+100":1.2531935831}
+{"qid":"268","wig+5":20.1488059916,"nqc+5":0.0027586656,"smv+5":0.0022795794,"clarity+5+100":2.44988278,"wig+10":20.1005984167,"nqc+10":0.0047315892,"smv+10":0.0039838574,"clarity+10+100":2.3586574889,"wig+20":19.2551473751,"nqc+20":0.0557176977,"smv+20":0.0447149928,"clarity+20+100":2.2930538919,"wig+50":18.3518471233,"nqc+50":0.0576418486,"smv+50":0.0388922854,"clarity+50+100":2.2813057999,"wig+100":17.755795748,"nqc+100":0.0540952234,"smv+100":0.0335425602,"clarity+100+100":2.2756374364,"wig+1000":16.9919653372,"nqc+1000":0.0369581168,"smv+1000":0.0209638395,"clarity+1000+100":2.2644988397}
+{"qid":"269","wig+5":19.3369095727,"nqc+5":0.003329995,"smv+5":0.002813118,"clarity+5+100":2.1619756731,"wig+10":19.0710323041,"nqc+10":0.0389836261,"smv+10":0.032312398,"clarity+10+100":2.2577263944,"wig+20":18.7106413981,"nqc+20":0.05026387,"smv+20":0.0401866924,"clarity+20+100":2.2067713267,"wig+50":17.6685678799,"nqc+50":0.0668835848,"smv+50":0.0516528497,"clarity+50+100":2.14316291,"wig+100":17.0237437018,"nqc+100":0.0645278645,"smv+100":0.0444953867,"clarity+100+100":2.1116836199,"wig+1000":16.1648730629,"nqc+1000":0.0422210901,"smv+1000":0.0228088742,"clarity+1000+100":2.0924397026}
+{"qid":"272","wig+5":34.1104550997,"nqc+5":0.0013930356,"smv+5":0.0011802825,"clarity+5+100":1.8702127765,"wig+10":33.8708314174,"nqc+10":0.0111835694,"smv+10":0.0090290422,"clarity+10+100":1.7758755879,"wig+20":33.6315223476,"nqc+20":0.014510597,"smv+20":0.0116087009,"clarity+20+100":1.6841479131,"wig+50":33.411494079,"nqc+50":0.0141312094,"smv+50":0.0104989068,"clarity+50+100":1.6097368727,"wig+100":33.1995456115,"nqc+100":0.014556196,"smv+100":0.010677908,"clarity+100+100":1.5557760934,"wig+1000":32.6790101906,"nqc+1000":0.0126122538,"smv+1000":0.0088849918,"clarity+1000+100":1.3304840489}
+{"qid":"273","wig+5":15.1165473283,"nqc+5":0.0822736168,"smv+5":0.0711063588,"clarity+5+100":2.7881085687,"wig+10":14.0020603129,"nqc+10":0.0961223967,"smv+10":0.0649599525,"clarity+10+100":2.7717052377,"wig+20":13.2607555807,"nqc+20":0.0894222678,"smv+20":0.0519801338,"clarity+20+100":2.7653195347,"wig+50":12.2651064599,"nqc+50":0.0908225461,"smv+50":0.0524384955,"clarity+50+100":2.7344459191,"wig+100":11.703959863,"nqc+100":0.0778258016,"smv+100":0.0451268517,"clarity+100+100":2.7338898239,"wig+1000":10.9938501883,"nqc+1000":0.0588520082,"smv+1000":0.0330401854,"clarity+1000+100":2.7334379468}
+{"qid":"274","wig+5":14.0352871112,"nqc+5":0.0006294783,"smv+5":0.0005532649,"clarity+5+100":1.5040360191,"wig+10":14.0186678969,"nqc+10":0.0017792057,"smv+10":0.0015468341,"clarity+10+100":1.5917293773,"wig+20":13.8326129023,"nqc+20":0.0239987317,"smv+20":0.0203336603,"clarity+20+100":1.5157376502,"wig+50":13.7599718054,"nqc+50":0.0375572952,"smv+50":0.0281185091,"clarity+50+100":1.3935588129,"wig+100":13.4559049398,"nqc+100":0.0596506081,"smv+100":0.0457180976,"clarity+100+100":1.3039178265,"wig+1000":11.6018334582,"nqc+1000":0.102975575,"smv+1000":0.0781505926,"clarity+1000+100":1.107232945}
+{"qid":"275","wig+5":26.446991999,"nqc+5":0.0025396766,"smv+5":0.0021945057,"clarity+5+100":1.858116537,"wig+10":26.4414492153,"nqc+10":0.002041978,"smv+10":0.0016059153,"clarity+10+100":1.5566022681,"wig+20":26.3744298066,"nqc+20":0.0059089036,"smv+20":0.0046048174,"clarity+20+100":1.4097629394,"wig+50":26.3084873203,"nqc+50":0.0109345114,"smv+50":0.0075891135,"clarity+50+100":1.2857927896,"wig+100":26.1669816892,"nqc+100":0.0158054207,"smv+100":0.0116606908,"clarity+100+100":1.2342971329,"wig+1000":24.9974547905,"nqc+1000":0.0297784999,"smv+1000":0.0214980641,"clarity+1000+100":1.1188401986}
+{"qid":"277","wig+5":21.2371953143,"nqc+5":0.007282701,"smv+5":0.0053822509,"clarity+5+100":1.9418786099,"wig+10":20.7229677941,"nqc+10":0.0403550286,"smv+10":0.0346297338,"clarity+10+100":1.9352456571,"wig+20":20.6049815102,"nqc+20":0.0392957791,"smv+20":0.0321509024,"clarity+20+100":1.8911830472,"wig+50":19.6552887407,"nqc+50":0.0519799039,"smv+50":0.0372378765,"clarity+50+100":1.8553271156,"wig+100":19.2328261124,"nqc+100":0.0499822689,"smv+100":0.0352097652,"clarity+100+100":1.810858993,"wig+1000":18.6413778365,"nqc+1000":0.0414934779,"smv+1000":0.0292790516,"clarity+1000+100":1.6691137536}
+{"qid":"283","wig+5":16.7567112516,"nqc+5":0.0158565169,"smv+5":0.0146236972,"clarity+5+100":2.0187823364,"wig+10":16.2878068406,"nqc+10":0.0494456748,"smv+10":0.0391913093,"clarity+10+100":2.5037552982,"wig+20":15.7809714075,"nqc+20":0.05085975,"smv+20":0.0365744031,"clarity+20+100":2.4779376549,"wig+50":15.4452000735,"nqc+50":0.0534385178,"smv+50":0.0392790505,"clarity+50+100":2.1420576936,"wig+100":15.07129381,"nqc+100":0.0549141092,"smv+100":0.0409615035,"clarity+100+100":2.0175844913,"wig+1000":14.2774305077,"nqc+1000":0.045688284,"smv+1000":0.0288405419,"clarity+1000+100":1.764350434}
+{"qid":"284","wig+5":14.9741431146,"nqc+5":0.0000389648,"smv+5":0.0000341985,"clarity+5+100":2.0780040055,"wig+10":14.9716786474,"nqc+10":0.0002574324,"smv+10":0.0002075959,"clarity+10+100":2.0782922518,"wig+20":14.8992583378,"nqc+20":0.0154019463,"smv+20":0.0112841573,"clarity+20+100":1.8551858489,"wig+50":14.6564025184,"nqc+50":0.0380322312,"smv+50":0.0287414806,"clarity+50+100":1.6730617728,"wig+100":14.0059605976,"nqc+100":0.0719983162,"smv+100":0.0546824221,"clarity+100+100":1.6168684654,"wig+1000":11.8771053011,"nqc+1000":0.0902545117,"smv+1000":0.0564702531,"clarity+1000+100":1.584849706}
+{"qid":"285","wig+5":18.9650047728,"nqc+5":0.0005701037,"smv+5":0.0004733024,"clarity+5+100":1.8648644626,"wig+10":18.9593697659,"nqc+10":0.0005334339,"smv+10":0.0004032998,"clarity+10+100":1.7429498919,"wig+20":18.8993660344,"nqc+20":0.0053031869,"smv+20":0.0042406829,"clarity+20+100":1.6025014785,"wig+50":18.5394029024,"nqc+50":0.0299213383,"smv+50":0.0236159319,"clarity+50+100":1.4351514872,"wig+100":18.3850416854,"nqc+100":0.0328273717,"smv+100":0.0255798241,"clarity+100+100":1.2968023749,"wig+1000":17.1391680613,"nqc+1000":0.0467025102,"smv+1000":0.0340721961,"clarity+1000+100":1.1690545255}
+{"qid":"288","wig+5":21.714727548,"nqc+5":0.0000344298,"smv+5":0.0000230369,"clarity+5+100":2.214371054,"wig+10":21.7138063008,"nqc+10":0.000058318,"smv+10":0.0000436898,"clarity+10+100":2.1011940431,"wig+20":21.7119790154,"nqc+20":0.0001782691,"smv+20":0.0001435963,"clarity+20+100":2.0125759817,"wig+50":21.701145243,"nqc+50":0.0011962286,"smv+50":0.0007729009,"clarity+50+100":1.9470334256,"wig+100":21.5957748859,"nqc+100":0.0121349512,"smv+100":0.0086921288,"clarity+100+100":1.8187758689,"wig+1000":20.0992757645,"nqc+1000":0.0391274906,"smv+1000":0.026566507,"clarity+1000+100":1.635243337}
+{"qid":"291","wig+5":23.644330783,"nqc+5":0.0016504191,"smv+5":0.0013107013,"clarity+5+100":2.4444625315,"wig+10":23.2036345583,"nqc+10":0.0275633368,"smv+10":0.0216330081,"clarity+10+100":2.4299927997,"wig+20":22.9278807806,"nqc+20":0.0244133687,"smv+20":0.0175681872,"clarity+20+100":2.3903030429,"wig+50":22.3641369239,"nqc+50":0.0333358764,"smv+50":0.0247665561,"clarity+50+100":2.2622379201,"wig+100":21.9615407977,"nqc+100":0.0333126067,"smv+100":0.0238942914,"clarity+100+100":2.2398423645,"wig+1000":21.2813153204,"nqc+1000":0.0236666208,"smv+1000":0.0151638343,"clarity+1000+100":2.1658094682}
+{"qid":"292","wig+5":24.3783078914,"nqc+5":0.0043701474,"smv+5":0.0032936642,"clarity+5+100":2.2035532897,"wig+10":23.918144449,"nqc+10":0.0299997686,"smv+10":0.0253539752,"clarity+10+100":2.1730678005,"wig+20":23.7314240441,"nqc+20":0.026207931,"smv+20":0.0201529926,"clarity+20+100":2.128915421,"wig+50":23.2494506492,"nqc+50":0.0367311677,"smv+50":0.0298011865,"clarity+50+100":2.1650601566,"wig+100":22.9573557044,"nqc+100":0.0346865607,"smv+100":0.0263941133,"clarity+100+100":2.1046715117,"wig+1000":22.1214505866,"nqc+1000":0.0233133412,"smv+1000":0.0147217508,"clarity+1000+100":2.026873103}
+{"qid":"293","wig+5":31.208431108,"nqc+5":0.0026799065,"smv+5":0.0020866613,"clarity+5+100":1.9967583888,"wig+10":31.0126182886,"nqc+10":0.0128535616,"smv+10":0.0099623249,"clarity+10+100":1.8777569007,"wig+20":30.830051927,"nqc+20":0.0156048556,"smv+20":0.0125764737,"clarity+20+100":1.7924797574,"wig+50":30.3888243492,"nqc+50":0.0226749895,"smv+50":0.0186460665,"clarity+50+100":1.7834987044,"wig+100":30.0852365522,"nqc+100":0.022465474,"smv+100":0.016756664,"clarity+100+100":1.7333273732,"wig+1000":29.3165789696,"nqc+1000":0.0150151116,"smv+1000":0.0089589441,"clarity+1000+100":1.6658615191}
+{"qid":"294","wig+5":25.3381151966,"nqc+5":0.0263723472,"smv+5":0.0232788226,"clarity+5+100":1.8911829556,"wig+10":25.2284613882,"nqc+10":0.024398694,"smv+10":0.0198944956,"clarity+10+100":1.8714517335,"wig+20":25.3744779663,"nqc+20":0.019243228,"smv+20":0.0162470816,"clarity+20+100":1.9147309507,"wig+50":24.9032509916,"nqc+50":0.0272972447,"smv+50":0.0206682724,"clarity+50+100":1.8266619435,"wig+100":24.4716861784,"nqc+100":0.0297526103,"smv+100":0.0217829718,"clarity+100+100":1.7948743888,"wig+1000":23.624296546,"nqc+1000":0.0266073392,"smv+1000":0.0160691491,"clarity+1000+100":1.7530353839}
+{"qid":"295","wig+5":16.6169872447,"nqc+5":0.0375403463,"smv+5":0.0315142408,"clarity+5+100":2.4891611951,"wig+10":16.0187581759,"nqc+10":0.0606290079,"smv+10":0.0426570976,"clarity+10+100":2.4657451431,"wig+20":15.3520217523,"nqc+20":0.0725053741,"smv+20":0.0508951142,"clarity+20+100":2.3919128562,"wig+50":14.6899006044,"nqc+50":0.0752524037,"smv+50":0.0521069874,"clarity+50+100":2.2466963909,"wig+100":14.3505389913,"nqc+100":0.0724661563,"smv+100":0.0487614162,"clarity+100+100":2.1065305389,"wig+1000":13.6049470495,"nqc+1000":0.0547153228,"smv+1000":0.0329238529,"clarity+1000+100":2.0621712067}
+{"qid":"296","wig+5":14.7529651981,"nqc+5":0.0007760413,"smv+5":0.0007329281,"clarity+5+100":2.2205340844,"wig+10":14.7419933984,"nqc+10":0.0012962699,"smv+10":0.0009733812,"clarity+10+100":2.1156350945,"wig+20":14.5347398471,"nqc+20":0.0280570951,"smv+20":0.0220412053,"clarity+20+100":2.0648838129,"wig+50":13.5919416628,"nqc+50":0.0800818077,"smv+50":0.0613926624,"clarity+50+100":1.9703206137,"wig+100":13.1331382826,"nqc+100":0.0759054294,"smv+100":0.0541541331,"clarity+100+100":1.9339603974,"wig+1000":11.4542547604,"nqc+1000":0.0624031099,"smv+1000":0.0388234037,"clarity+1000+100":1.9032634304}
+{"qid":"297","wig+5":27.1501368961,"nqc+5":0.0000942199,"smv+5":0.0000590972,"clarity+5+100":2.2598788162,"wig+10":27.1061774078,"nqc+10":0.0041019839,"smv+10":0.0033298291,"clarity+10+100":2.16954645,"wig+20":27.1078070498,"nqc+20":0.0032742116,"smv+20":0.0024955735,"clarity+20+100":2.0407577296,"wig+50":27.0743479292,"nqc+50":0.0038799015,"smv+50":0.0031767834,"clarity+50+100":1.9313143829,"wig+100":26.9318087935,"nqc+100":0.0091812084,"smv+100":0.00720491,"clarity+100+100":1.8133386041,"wig+1000":25.635516284,"nqc+1000":0.0237930351,"smv+1000":0.0154506685,"clarity+1000+100":1.6751620426}
+{"qid":"298","wig+5":27.3871060327,"nqc+5":0.0018122253,"smv+5":0.0015956456,"clarity+5+100":2.1365544876,"wig+10":27.3697634307,"nqc+10":0.0019965552,"smv+10":0.001578727,"clarity+10+100":2.1070747423,"wig+20":27.3244565844,"nqc+20":0.0028831324,"smv+20":0.0021290657,"clarity+20+100":1.963737236,"wig+50":27.1613160286,"nqc+50":0.0100476983,"smv+50":0.007926133,"clarity+50+100":1.8649924262,"wig+100":26.9549478615,"nqc+100":0.0154383748,"smv+100":0.0127039053,"clarity+100+100":1.8064361197,"wig+1000":25.8358650884,"nqc+1000":0.0207207458,"smv+1000":0.0135593127,"clarity+1000+100":1.7047665057}
+{"qid":"299","wig+5":19.7287747956,"nqc+5":0.0437799655,"smv+5":0.0376116597,"clarity+5+100":2.2520711466,"wig+10":19.7815128935,"nqc+10":0.0328100592,"smv+10":0.0250010298,"clarity+10+100":2.0668593013,"wig+20":19.5429775691,"nqc+20":0.0352057309,"smv+20":0.0273292417,"clarity+20+100":1.9013015895,"wig+50":19.3082556318,"nqc+50":0.0370837872,"smv+50":0.0300591069,"clarity+50+100":1.5239308472,"wig+100":19.0152434459,"nqc+100":0.0434700097,"smv+100":0.0346207283,"clarity+100+100":1.3450669455,"wig+1000":18.1568278164,"nqc+1000":0.0404655738,"smv+1000":0.0295626963,"clarity+1000+100":1.0855199112}
+{"qid":"300","wig+5":19.7352575714,"nqc+5":0.0390771692,"smv+5":0.0324373229,"clarity+5+100":2.8786846921,"wig+10":19.1318841282,"nqc+10":0.0608186031,"smv+10":0.0492717198,"clarity+10+100":2.7458409957,"wig+20":18.477112886,"nqc+20":0.06632985,"smv+20":0.0488223008,"clarity+20+100":2.7098379263,"wig+50":17.4761680796,"nqc+50":0.0629738666,"smv+50":0.0412544927,"clarity+50+100":2.7056330434,"wig+100":16.9748138142,"nqc+100":0.0522978832,"smv+100":0.0291933259,"clarity+100+100":2.7052685443,"wig+1000":16.4674603763,"nqc+1000":0.0247778171,"smv+1000":0.0118515654,"clarity+1000+100":2.7017970093}
+{"qid":"301","wig+5":23.9366160372,"nqc+5":0.0001882399,"smv+5":0.0001578036,"clarity+5+100":2.0691956055,"wig+10":23.937042273,"nqc+10":0.0001761686,"smv+10":0.0001303898,"clarity+10+100":2.0634950034,"wig+20":23.9357050562,"nqc+20":0.0002846593,"smv+20":0.0002208608,"clarity+20+100":2.0627221043,"wig+50":23.8848356753,"nqc+50":0.0034761612,"smv+50":0.0028406593,"clarity+50+100":1.9254154483,"wig+100":23.6833885831,"nqc+100":0.0180754521,"smv+100":0.012883548,"clarity+100+100":1.8393435618,"wig+1000":21.8721197029,"nqc+1000":0.0410373932,"smv+1000":0.0267262642,"clarity+1000+100":1.707566354}
+{"qid":"303","wig+5":19.7750494889,"nqc+5":0.0047381511,"smv+5":0.0039528385,"clarity+5+100":2.1688461659,"wig+10":19.669803491,"nqc+10":0.0108345496,"smv+10":0.0080371138,"clarity+10+100":2.0239686126,"wig+20":19.4146570411,"nqc+20":0.0387576733,"smv+20":0.0316293667,"clarity+20+100":1.8882406482,"wig+50":19.102724557,"nqc+50":0.0424033465,"smv+50":0.0335156055,"clarity+50+100":1.7600989023,"wig+100":18.8174092395,"nqc+100":0.0454929973,"smv+100":0.0359698762,"clarity+100+100":1.7473070012,"wig+1000":17.5565346596,"nqc+1000":0.0426527156,"smv+1000":0.0270500935,"clarity+1000+100":1.6878611525}
+{"qid":"304","wig+5":29.3443694886,"nqc+5":0.0006180299,"smv+5":0.0005506837,"clarity+5+100":2.0839605862,"wig+10":29.2613107108,"nqc+10":0.0037057231,"smv+10":0.0031384185,"clarity+10+100":1.9760692749,"wig+20":29.083821566,"nqc+20":0.0119097406,"smv+20":0.0081794284,"clarity+20+100":1.8829086574,"wig+50":28.882657846,"nqc+50":0.0146942853,"smv+50":0.0109106137,"clarity+50+100":1.8032391827,"wig+100":28.6376203815,"nqc+100":0.018182632,"smv+100":0.0142650459,"clarity+100+100":1.7785057143,"wig+1000":27.5179865045,"nqc+1000":0.0202344348,"smv+1000":0.0133980141,"clarity+1000+100":1.7238765911}
+{"qid":"306","wig+5":25.0320495881,"nqc+5":0.0018775373,"smv+5":0.0014736235,"clarity+5+100":1.9782759169,"wig+10":24.700205423,"nqc+10":0.0288479586,"smv+10":0.0227218323,"clarity+10+100":1.861629434,"wig+20":24.2604901727,"nqc+20":0.0372221579,"smv+20":0.0301395784,"clarity+20+100":1.800466682,"wig+50":24.1425548979,"nqc+50":0.033248188,"smv+50":0.0268804317,"clarity+50+100":1.5818642254,"wig+100":24.0373107831,"nqc+100":0.0306372887,"smv+100":0.0234700402,"clarity+100+100":1.4154356246,"wig+1000":22.9035411108,"nqc+1000":0.030601196,"smv+1000":0.0208194568,"clarity+1000+100":1.3279667322}
+{"qid":"314","wig+5":24.4501713317,"nqc+5":0.0010950223,"smv+5":0.0009867945,"clarity+5+100":1.6569744779,"wig+10":24.4467434649,"nqc+10":0.0009747996,"smv+10":0.000799241,"clarity+10+100":1.4391538463,"wig+20":24.3987447821,"nqc+20":0.0051610244,"smv+20":0.0037529033,"clarity+20+100":1.3066339848,"wig+50":24.2370565691,"nqc+50":0.0115326913,"smv+50":0.0088812597,"clarity+50+100":1.2322322488,"wig+100":24.1153826934,"nqc+100":0.0163911299,"smv+100":0.0126322845,"clarity+100+100":1.1708780913,"wig+1000":22.9059545343,"nqc+1000":0.030935492,"smv+1000":0.0223255061,"clarity+1000+100":1.0985529471}
+{"qid":"315","wig+5":20.0237353679,"nqc+5":0.0047817167,"smv+5":0.0038335521,"clarity+5+100":1.8517487374,"wig+10":19.7698959038,"nqc+10":0.0260430566,"smv+10":0.0203090693,"clarity+10+100":1.6873379851,"wig+20":19.5061152056,"nqc+20":0.0397408177,"smv+20":0.0330199895,"clarity+20+100":1.5275942657,"wig+50":19.1934651758,"nqc+50":0.0419987,"smv+50":0.0338402988,"clarity+50+100":1.4058758833,"wig+100":18.8671910925,"nqc+100":0.0443856991,"smv+100":0.0337037148,"clarity+100+100":1.3515847117,"wig+1000":17.6581691453,"nqc+1000":0.0373973993,"smv+1000":0.0242888357,"clarity+1000+100":1.2587965899}
+{"qid":"316","wig+5":14.9995812221,"nqc+5":0.0899584608,"smv+5":0.0780695584,"clarity+5+100":1.7623234142,"wig+10":15.116023977,"nqc+10":0.0761261402,"smv+10":0.0618333523,"clarity+10+100":1.5996343516,"wig+20":14.8870286943,"nqc+20":0.0752494653,"smv+20":0.0576001888,"clarity+20+100":1.4174450422,"wig+50":15.0592891129,"nqc+50":0.0580094713,"smv+50":0.0444700215,"clarity+50+100":1.2193770773,"wig+100":14.5799974241,"nqc+100":0.0724639792,"smv+100":0.054315145,"clarity+100+100":1.1649007414,"wig+1000":13.10828088,"nqc+1000":0.0707031719,"smv+1000":0.0490384688,"clarity+1000+100":1.054489996}
+{"qid":"317","wig+5":17.023877049,"nqc+5":0.0121508156,"smv+5":0.0104627203,"clarity+5+100":1.7559878563,"wig+10":16.9234497229,"nqc+10":0.023459954,"smv+10":0.0191617499,"clarity+10+100":1.4954025874,"wig+20":16.8725446853,"nqc+20":0.0221245259,"smv+20":0.0171101232,"clarity+20+100":1.3437125755,"wig+50":16.699389588,"nqc+50":0.027128378,"smv+50":0.0220924101,"clarity+50+100":1.2753923851,"wig+100":16.4607305561,"nqc+100":0.0359170941,"smv+100":0.0278789737,"clarity+100+100":1.2231435914,"wig+1000":14.6987287392,"nqc+1000":0.0567630155,"smv+1000":0.0380797807,"clarity+1000+100":1.1904375402}
+{"qid":"321","wig+5":27.4536302354,"nqc+5":0.000949571,"smv+5":0.0007659509,"clarity+5+100":2.1349648448,"wig+10":27.387051173,"nqc+10":0.0041261611,"smv+10":0.0033737905,"clarity+10+100":1.9262844804,"wig+20":27.2953189473,"nqc+20":0.0092450393,"smv+20":0.0074033826,"clarity+20+100":1.643207829,"wig+50":27.1228558635,"nqc+50":0.01361271,"smv+50":0.0111209152,"clarity+50+100":1.4619193847,"wig+100":26.8425333319,"nqc+100":0.0206712424,"smv+100":0.0157712841,"clarity+100+100":1.3684829552,"wig+1000":25.5640277369,"nqc+1000":0.0265926504,"smv+1000":0.0175525079,"clarity+1000+100":1.2829244546}
+{"qid":"323","wig+5":19.9349883583,"nqc+5":0.0250686294,"smv+5":0.0221647692,"clarity+5+100":1.9713993752,"wig+10":20.0316541211,"nqc+10":0.0190564716,"smv+10":0.0138717339,"clarity+10+100":1.7730569435,"wig+20":19.9983026242,"nqc+20":0.0200831066,"smv+20":0.01532328,"clarity+20+100":1.719892195,"wig+50":19.5704331965,"nqc+50":0.0340374856,"smv+50":0.0273613048,"clarity+50+100":1.6568766631,"wig+100":19.0059486143,"nqc+100":0.0453888428,"smv+100":0.0347345281,"clarity+100+100":1.6143192818,"wig+1000":17.9159165885,"nqc+1000":0.0372175953,"smv+1000":0.0254857644,"clarity+1000+100":1.4718595942}
+{"qid":"327","wig+5":28.7610609963,"nqc+5":0.0045474512,"smv+5":0.0038545126,"clarity+5+100":2.5695398569,"wig+10":28.6413300485,"nqc+10":0.0069754513,"smv+10":0.0053492465,"clarity+10+100":2.333060309,"wig+20":28.518639001,"nqc+20":0.0094759273,"smv+20":0.0068388333,"clarity+20+100":2.0312710787,"wig+50":28.2485550528,"nqc+50":0.0170414711,"smv+50":0.0126222221,"clarity+50+100":1.7753765971,"wig+100":27.9277774104,"nqc+100":0.0199547024,"smv+100":0.0147994042,"clarity+100+100":1.7368050004,"wig+1000":26.9625409687,"nqc+1000":0.0190871481,"smv+1000":0.0127508002,"clarity+1000+100":1.5730488568}
+{"qid":"331","wig+5":19.9512714227,"nqc+5":0.0010323776,"smv+5":0.0009098381,"clarity+5+100":1.5379395859,"wig+10":19.916415032,"nqc+10":0.0044901026,"smv+10":0.0034377603,"clarity+10+100":1.412713615,"wig+20":19.8823840962,"nqc+20":0.0071398238,"smv+20":0.0059343853,"clarity+20+100":1.3636031434,"wig+50":19.7744843162,"nqc+50":0.0186639449,"smv+50":0.0122959185,"clarity+50+100":1.2635620916,"wig+100":19.6376795434,"nqc+100":0.0247941842,"smv+100":0.017151996,"clarity+100+100":1.2173489436,"wig+1000":17.7710063684,"nqc+1000":0.0568047825,"smv+1000":0.040179129,"clarity+1000+100":1.1588638271}
+{"qid":"332","wig+5":28.2434679263,"nqc+5":0.0002452654,"smv+5":0.0002157558,"clarity+5+100":2.3376594326,"wig+10":28.2425194281,"nqc+10":0.000211786,"smv+10":0.00018663,"clarity+10+100":2.1846696527,"wig+20":28.2369404626,"nqc+20":0.0005927757,"smv+20":0.0004479668,"clarity+20+100":1.9853893616,"wig+50":28.182090113,"nqc+50":0.0067154371,"smv+50":0.0045076258,"clarity+50+100":1.9002002783,"wig+100":28.0187639895,"nqc+100":0.013374195,"smv+100":0.0105383432,"clarity+100+100":1.8555869119,"wig+1000":26.6940701718,"nqc+1000":0.0237404472,"smv+1000":0.0146734136,"clarity+1000+100":1.7836231704}
+{"qid":"333","wig+5":23.9512961072,"nqc+5":0.0003169349,"smv+5":0.0002742793,"clarity+5+100":2.0946786707,"wig+10":23.9211826777,"nqc+10":0.0030510641,"smv+10":0.0023674697,"clarity+10+100":2.0588488946,"wig+20":23.9312184272,"nqc+20":0.0022597698,"smv+20":0.0016124487,"clarity+20+100":2.0752616728,"wig+50":23.9071271159,"nqc+50":0.0049979098,"smv+50":0.0032928487,"clarity+50+100":1.9341615645,"wig+100":23.6190368242,"nqc+100":0.0238198754,"smv+100":0.0181605568,"clarity+100+100":1.8825357748,"wig+1000":21.8228275011,"nqc+1000":0.0397444643,"smv+1000":0.023945056,"clarity+1000+100":1.8184922143}
+{"qid":"335","wig+5":20.8436428895,"nqc+5":0.0029670441,"smv+5":0.0026607385,"clarity+5+100":2.3004529816,"wig+10":20.8125527213,"nqc+10":0.0040441586,"smv+10":0.0031746552,"clarity+10+100":2.2116175456,"wig+20":20.7882917898,"nqc+20":0.005033851,"smv+20":0.0040482251,"clarity+20+100":2.0461601581,"wig+50":20.5723740947,"nqc+50":0.0185790604,"smv+50":0.0147663878,"clarity+50+100":1.958177346,"wig+100":20.2216732383,"nqc+100":0.0305953905,"smv+100":0.0233313166,"clarity+100+100":1.8944948135,"wig+1000":18.4619511517,"nqc+1000":0.0429280603,"smv+1000":0.0269215378,"clarity+1000+100":1.8529667194}
+{"qid":"336","wig+5":20.8979953724,"nqc+5":0.0004004808,"smv+5":0.0003080745,"clarity+5+100":2.2989928038,"wig+10":20.8806292118,"nqc+10":0.0017900294,"smv+10":0.0013596298,"clarity+10+100":2.1364741222,"wig+20":20.8248441544,"nqc+20":0.0080746825,"smv+20":0.0059501968,"clarity+20+100":2.0524413308,"wig+50":20.6517845541,"nqc+50":0.0170341223,"smv+50":0.0137825228,"clarity+50+100":1.9510288287,"wig+100":20.1861476721,"nqc+100":0.0369021861,"smv+100":0.0289053653,"clarity+100+100":1.8893171922,"wig+1000":18.598916176,"nqc+1000":0.0404196127,"smv+1000":0.0254580231,"clarity+1000+100":1.8295431111}
+{"qid":"338","wig+5":23.7050656554,"nqc+5":0.0018462996,"smv+5":0.0012599866,"clarity+5+100":2.1666697584,"wig+10":23.5350341023,"nqc+10":0.0134736392,"smv+10":0.0109802064,"clarity+10+100":1.9974953709,"wig+20":23.3189941017,"nqc+20":0.0231402672,"smv+20":0.0183933501,"clarity+20+100":1.9520075493,"wig+50":22.934605371,"nqc+50":0.0314513006,"smv+50":0.0245361377,"clarity+50+100":1.9270666439,"wig+100":22.6212268536,"nqc+100":0.0361497216,"smv+100":0.0282142889,"clarity+100+100":1.7701660053,"wig+1000":21.6600242923,"nqc+1000":0.0254026793,"smv+1000":0.0152058167,"clarity+1000+100":1.7434759383}
+{"qid":"339","wig+5":24.7788397936,"nqc+5":0.0023242106,"smv+5":0.0018951389,"clarity+5+100":1.729998835,"wig+10":24.7728940627,"nqc+10":0.0019439904,"smv+10":0.0014633217,"clarity+10+100":1.5589330296,"wig+20":24.6196574965,"nqc+20":0.0157406165,"smv+20":0.0114828421,"clarity+20+100":1.369319343,"wig+50":24.4695553731,"nqc+50":0.0168914156,"smv+50":0.0133023899,"clarity+50+100":1.3396835363,"wig+100":24.2401959648,"nqc+100":0.0249880826,"smv+100":0.0200715308,"clarity+100+100":1.2671890194,"wig+1000":23.1460779794,"nqc+1000":0.027487091,"smv+1000":0.0189146495,"clarity+1000+100":1.1761069758}
+{"qid":"340","wig+5":19.1624536917,"nqc+5":0.0486426587,"smv+5":0.0405532272,"clarity+5+100":1.975373569,"wig+10":19.3000491122,"nqc+10":0.0386065852,"smv+10":0.0298268711,"clarity+10+100":1.7531301823,"wig+20":19.1530538231,"nqc+20":0.0439755625,"smv+20":0.0338451197,"clarity+20+100":1.5214525035,"wig+50":19.0012211348,"nqc+50":0.0378229033,"smv+50":0.028699751,"clarity+50+100":1.4344555958,"wig+100":18.8572153605,"nqc+100":0.0386681682,"smv+100":0.0304961364,"clarity+100+100":1.3031455605,"wig+1000":17.8722766696,"nqc+1000":0.0361530871,"smv+1000":0.0262068493,"clarity+1000+100":1.2004339033}
+{"qid":"347","wig+5":18.5887531514,"nqc+5":0.000473135,"smv+5":0.0004228439,"clarity+5+100":1.4972440238,"wig+10":18.5881054695,"nqc+10":0.0004969396,"smv+10":0.0004259096,"clarity+10+100":1.434448949,"wig+20":18.5786671193,"nqc+20":0.0011219054,"smv+20":0.0009450303,"clarity+20+100":1.3162822241,"wig+50":18.5186251741,"nqc+50":0.0106838467,"smv+50":0.0073171557,"clarity+50+100":1.2286184585,"wig+100":18.3661225686,"nqc+100":0.021208311,"smv+100":0.0162939077,"clarity+100+100":1.1681172333,"wig+1000":16.5233662814,"nqc+1000":0.0551173131,"smv+1000":0.0367189418,"clarity+1000+100":1.1115484236}
+{"qid":"348","wig+5":15.4590611691,"nqc+5":0.0011474656,"smv+5":0.0010269463,"clarity+5+100":1.5797862341,"wig+10":15.3753876739,"nqc+10":0.0126052598,"smv+10":0.0103090626,"clarity+10+100":1.4849523051,"wig+20":15.3868333591,"nqc+20":0.0110165295,"smv+20":0.0090064918,"clarity+20+100":1.3973545454,"wig+50":15.043025519,"nqc+50":0.0509986568,"smv+50":0.0403161867,"clarity+50+100":1.2642068198,"wig+100":14.579835221,"nqc+100":0.0647183738,"smv+100":0.0531286234,"clarity+100+100":1.2163548712,"wig+1000":12.6636932786,"nqc+1000":0.0824795725,"smv+1000":0.052374354,"clarity+1000+100":1.1845373316}
+{"qid":"349","wig+5":19.3434781074,"nqc+5":0.0003287999,"smv+5":0.0002994558,"clarity+5+100":1.7389972802,"wig+10":19.0859632557,"nqc+10":0.022885064,"smv+10":0.0193527702,"clarity+10+100":1.5973715517,"wig+20":18.990324778,"nqc+20":0.0234208804,"smv+20":0.019159176,"clarity+20+100":1.38470152,"wig+50":18.6735670417,"nqc+50":0.0420104884,"smv+50":0.0339285143,"clarity+50+100":1.2432522844,"wig+100":18.4653960546,"nqc+100":0.0461039271,"smv+100":0.0355400433,"clarity+100+100":1.1649838957,"wig+1000":17.0969923949,"nqc+1000":0.0553234663,"smv+1000":0.0375248382,"clarity+1000+100":1.0775638414}
+{"qid":"352","wig+5":22.1678401409,"nqc+5":0.0374734015,"smv+5":0.0323525901,"clarity+5+100":1.5338761537,"wig+10":22.3795663417,"nqc+10":0.0282667315,"smv+10":0.0219041926,"clarity+10+100":1.4769218163,"wig+20":22.3488339245,"nqc+20":0.0239459894,"smv+20":0.0186099196,"clarity+20+100":1.4342608496,"wig+50":22.1246448725,"nqc+50":0.0279788659,"smv+50":0.022174811,"clarity+50+100":1.3383706799,"wig+100":22.0167701691,"nqc+100":0.0303254993,"smv+100":0.0242681153,"clarity+100+100":1.2989174531,"wig+1000":21.1649909914,"nqc+1000":0.0335211256,"smv+1000":0.02378142,"clarity+1000+100":1.1954559675}
+{"qid":"353","wig+5":19.3971718524,"nqc+5":0.0004867275,"smv+5":0.0004208328,"clarity+5+100":1.5140822716,"wig+10":19.3595507189,"nqc+10":0.0039047707,"smv+10":0.0034278527,"clarity+10+100":1.3749123381,"wig+20":19.2743019743,"nqc+20":0.0113694777,"smv+20":0.0083958545,"clarity+20+100":1.321979207,"wig+50":19.2186793458,"nqc+50":0.0131159358,"smv+50":0.0103298418,"clarity+50+100":1.2414289096,"wig+100":19.0633590383,"nqc+100":0.022055963,"smv+100":0.018126767,"clarity+100+100":1.1989758908,"wig+1000":18.1367119453,"nqc+1000":0.0356574636,"smv+1000":0.0265838412,"clarity+1000+100":1.0928854545}
+{"qid":"355","wig+5":13.4307191472,"nqc+5":0.000904477,"smv+5":0.0008333592,"clarity+5+100":2.5583542746,"wig+10":13.4227317318,"nqc+10":0.0011519825,"smv+10":0.0009461497,"clarity+10+100":2.4869704687,"wig+20":13.3621340903,"nqc+20":0.0095292532,"smv+20":0.0072022501,"clarity+20+100":2.1881127027,"wig+50":13.0585097588,"nqc+50":0.0451675316,"smv+50":0.0361035216,"clarity+50+100":1.9012553579,"wig+100":12.7558089768,"nqc+100":0.0557621049,"smv+100":0.0430179965,"clarity+100+100":1.7691278196,"wig+1000":10.5950055288,"nqc+1000":0.1037943606,"smv+1000":0.0702939483,"clarity+1000+100":1.7353816363}
+{"qid":"356","wig+5":21.4388470335,"nqc+5":0.0001776983,"smv+5":0.0001353835,"clarity+5+100":2.3899291393,"wig+10":21.3252282088,"nqc+10":0.0107423744,"smv+10":0.0089002907,"clarity+10+100":2.3661819071,"wig+20":21.1602184732,"nqc+20":0.0190288584,"smv+20":0.0155548674,"clarity+20+100":2.0596763357,"wig+50":20.7001997355,"nqc+50":0.0371452411,"smv+50":0.0291057968,"clarity+50+100":2.0186447951,"wig+100":20.2498168509,"nqc+100":0.0483593756,"smv+100":0.0380790326,"clarity+100+100":1.9229390336,"wig+1000":19.0994003908,"nqc+1000":0.0520945047,"smv+1000":0.0368185015,"clarity+1000+100":1.8169329312}
+{"qid":"360","wig+5":25.8851370583,"nqc+5":0.0010133688,"smv+5":0.0007282939,"clarity+5+100":2.1937305843,"wig+10":25.6322398361,"nqc+10":0.0142283359,"smv+10":0.0116895518,"clarity+10+100":2.0980951937,"wig+20":25.5311502788,"nqc+20":0.0210587588,"smv+20":0.0163677905,"clarity+20+100":1.7921217697,"wig+50":25.3930964046,"nqc+50":0.0198758351,"smv+50":0.0151813675,"clarity+50+100":1.5316496918,"wig+100":25.2494203371,"nqc+100":0.0232310984,"smv+100":0.0179804081,"clarity+100+100":1.3514880499,"wig+1000":24.2918387389,"nqc+1000":0.0255762634,"smv+1000":0.0181296856,"clarity+1000+100":1.1983600913}
+{"qid":"365","wig+5":20.9442560817,"nqc+5":0.0024261931,"smv+5":0.0018851314,"clarity+5+100":1.6898717593,"wig+10":20.916387263,"nqc+10":0.0032893792,"smv+10":0.0026924493,"clarity+10+100":1.7132918492,"wig+20":20.7933243787,"nqc+20":0.0107734468,"smv+20":0.0090007839,"clarity+20+100":1.5793281766,"wig+50":20.5331910715,"nqc+50":0.0224595771,"smv+50":0.0170181442,"clarity+50+100":1.4197725647,"wig+100":20.3057933038,"nqc+100":0.0280059324,"smv+100":0.0218704284,"clarity+100+100":1.352972301,"wig+1000":19.0338259267,"nqc+1000":0.0401814336,"smv+1000":0.0302118058,"clarity+1000+100":1.2146600822}
diff --git a/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_non_string_query_ids_approvaltests.approved.jsonl b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_non_string_query_ids_approvaltests.approved.jsonl
new file mode 100644
index 0000000..33e1c20
--- /dev/null
+++ b/code/qpptk/tests/TirexIntegrationTest.test_on_cranfield_dataset_with_non_string_query_ids_approvaltests.approved.jsonl
@@ -0,0 +1,2 @@
+{"qid":"query-with-id-269","max-idf":4.8463322428,"avg-idf":3.3416967629,"scq":123.4509985196,"max-scq":23.4910299236,"avg-scq":17.6358569314,"var":11.8987240323,"max-var":3.3068232006,"avg-var":0.991560336,"wig+5":1.3714396318,"nqc+5":0.0265491245,"smv+5":0.0209004866,"clarity+5+100":5.5866993972,"wig+10":1.1794424105,"nqc+10":0.0212626037,"smv+10":0.0127391772,"clarity+10+100":5.4738985821,"wig+20":1.0207651009,"nqc+20":0.0171662938,"smv+20":0.0090472475,"clarity+20+100":5.2777686256,"wig+50":0.7517569832,"nqc+50":0.0162926244,"smv+50":0.0110673153,"clarity+50+100":5.0506665795,"wig+100":0.539390818,"nqc+100":0.0159666547,"smv+100":0.0118648231,"clarity+100+100":4.8970434295,"wig+1000":0.0555610977,"nqc+1000":0.016023371,"smv+1000":0.0116241125,"clarity+1000+100":4.5410109582}
+{"qid":"query-with-id-272","max-idf":6.551080335,"avg-idf":3.0070400126,"scq":297.4870773499,"max-scq":20.0924487977,"avg-scq":14.8743538675,"var":22.9136738645,"max-var":2.8228699303,"avg-var":0.6739315843,"wig+5":1.3938423581,"nqc+5":0.0065861708,"smv+5":0.0062831781,"clarity+5+100":3.7188355216,"wig+10":1.1354886963,"nqc+10":0.0090138852,"smv+10":0.007552497,"clarity+10+100":3.6856214573,"wig+20":0.9102298692,"nqc+20":0.0092540694,"smv+20":0.0073326023,"clarity+20+100":3.6331152699,"wig+50":0.6404746488,"nqc+50":0.0088313205,"smv+50":0.0063992902,"clarity+50+100":3.5939695713,"wig+100":0.4543804584,"nqc+100":0.0083291073,"smv+100":0.0058829587,"clarity+100+100":3.5699592708,"wig+1000":-0.085992652,"nqc+1000":0.0069568209,"smv+1000":0.0048477523,"clarity+1000+100":3.5152600584}
diff --git a/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_end_to_end_with_run_01_approval.approved.jsonl b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_end_to_end_with_run_01_approval.approved.jsonl
new file mode 100644
index 0000000..91ecf0b
--- /dev/null
+++ b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_end_to_end_with_run_01_approval.approved.jsonl
@@ -0,0 +1,3 @@
+{"qid":"1","wig+5":6.9431571325,"nqc+5":0.0433805568,"smv+5":null,"clarity+5+100":2.7431934039,"wig+10":6.9431571325,"nqc+10":0.0433805568,"smv+10":null,"clarity+10+100":2.7431934039,"wig+20":6.9431571325,"nqc+20":0.0433805568,"smv+20":null,"clarity+20+100":2.7431934039,"wig+50":6.9431571325,"nqc+50":0.0433805568,"smv+50":null,"clarity+50+100":2.7431934039,"wig+100":6.9431571325,"nqc+100":0.0433805568,"smv+100":null,"clarity+100+100":2.7431934039,"wig+1000":6.9431571325,"nqc+1000":0.0433805568,"smv+1000":null,"clarity+1000+100":2.7431934039}
+{"qid":"2","wig+5":3.8721194712,"nqc+5":0.1470633166,"smv+5":null,"clarity+5+100":2.3208312544,"wig+10":3.8721194712,"nqc+10":0.1470633166,"smv+10":null,"clarity+10+100":2.3208312544,"wig+20":3.8721194712,"nqc+20":0.1470633166,"smv+20":null,"clarity+20+100":2.3208312544,"wig+50":3.8721194712,"nqc+50":0.1470633166,"smv+50":null,"clarity+50+100":2.3208312544,"wig+100":3.8721194712,"nqc+100":0.1470633166,"smv+100":null,"clarity+100+100":2.3208312544,"wig+1000":3.8721194712,"nqc+1000":0.1470633166,"smv+1000":null,"clarity+1000+100":2.3208312544}
+{"qid":"3","wig+5":4.8199019572,"nqc+5":0.0,"smv+5":null,"clarity+5+100":2.361615051,"wig+10":4.8199019572,"nqc+10":0.0,"smv+10":null,"clarity+10+100":2.361615051,"wig+20":4.8199019572,"nqc+20":0.0,"smv+20":null,"clarity+20+100":2.361615051,"wig+50":4.8199019572,"nqc+50":0.0,"smv+50":null,"clarity+50+100":2.361615051,"wig+100":4.8199019572,"nqc+100":0.0,"smv+100":null,"clarity+100+100":2.361615051,"wig+1000":4.8199019572,"nqc+1000":0.0,"smv+1000":null,"clarity+1000+100":2.361615051}
diff --git a/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_end_to_end_with_run_02_approval.approved.jsonl b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_end_to_end_with_run_02_approval.approved.jsonl
new file mode 100644
index 0000000..73247a0
--- /dev/null
+++ b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_end_to_end_with_run_02_approval.approved.jsonl
@@ -0,0 +1,3 @@
+{"qid":"1","wig+5":6.9431571325,"nqc+5":0.0433805568,"smv+5":null,"clarity+5+100":2.7431934039,"wig+10":6.9431571325,"nqc+10":0.0433805568,"smv+10":null,"clarity+10+100":2.7431934039,"wig+20":6.9431571325,"nqc+20":0.0433805568,"smv+20":null,"clarity+20+100":2.7431934039,"wig+50":6.9431571325,"nqc+50":0.0433805568,"smv+50":null,"clarity+50+100":2.7431934039,"wig+100":6.9431571325,"nqc+100":0.0433805568,"smv+100":null,"clarity+100+100":2.7431934039,"wig+1000":6.9431571325,"nqc+1000":0.0433805568,"smv+1000":null,"clarity+1000+100":2.7431934039}
+{"qid":"2","wig+5":3.7054528045,"nqc+5":0.1559842027,"smv+5":null,"clarity+5+100":3.2054528045,"wig+10":3.7054528045,"nqc+10":0.1559842027,"smv+10":null,"clarity+10+100":3.2054528045,"wig+20":3.7054528045,"nqc+20":0.1559842027,"smv+20":null,"clarity+20+100":3.2054528045,"wig+50":3.7054528045,"nqc+50":0.1559842027,"smv+50":null,"clarity+50+100":3.2054528045,"wig+100":3.7054528045,"nqc+100":0.1559842027,"smv+100":null,"clarity+100+100":3.2054528045,"wig+1000":3.7054528045,"nqc+1000":0.1559842027,"smv+1000":null,"clarity+1000+100":3.2054528045}
+{"qid":"3","wig+5":5.1734553478,"nqc+5":0.0733528179,"smv+5":null,"clarity+5+100":2.69519388,"wig+10":5.1734553478,"nqc+10":0.0733528179,"smv+10":null,"clarity+10+100":2.69519388,"wig+20":5.1734553478,"nqc+20":0.0733528179,"smv+20":null,"clarity+20+100":2.69519388,"wig+50":5.1734553478,"nqc+50":0.0733528179,"smv+50":null,"clarity+50+100":2.69519388,"wig+100":5.1734553478,"nqc+100":0.0733528179,"smv+100":null,"clarity+100+100":2.69519388,"wig+1000":5.1734553478,"nqc+1000":0.0733528179,"smv+1000":null,"clarity+1000+100":2.69519388}
diff --git a/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_unification_of_run_files_run_01.approved. b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_unification_of_run_files_run_01.approved.
new file mode 100644
index 0000000..5a9004a
--- /dev/null
+++ b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_unification_of_run_files_run_01.approved.
@@ -0,0 +1,8 @@
+1 0 doc-3 1 1.0 merged
+1 0 doc-4 2 0.0 merged
+2 0 doc-1 1 1.0 merged
+2 0 doc-6 2 0.0 merged
+2 0 doc-1 3 1.0 merged
+3 0 doc-1 1 0.0 merged
+3 0 doc-3 2 0.0 merged
+3 0 doc-2 3 0.0 merged
diff --git a/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_unification_of_run_files_run_02.approved. b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_unification_of_run_files_run_02.approved.
new file mode 100644
index 0000000..fb5f834
--- /dev/null
+++ b/code/qpptk/tests/TwoCustomRunFilesForPredictionTest.test_unification_of_run_files_run_02.approved.
@@ -0,0 +1,6 @@
+1 0 doc-3 1 1.0 merged
+1 0 doc-4 2 0.0 merged
+2 0 doc-1 1 1.0 merged
+2 0 doc-2 2 0.0 merged
+3 0 doc-5 1 1.0 merged
+3 0 doc-6 2 0.0 merged
diff --git a/code/qpptk/tests/__init__.py b/code/qpptk/tests/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/code/qpptk/tests/custom_run_file_for_prediction_test.py b/code/qpptk/tests/custom_run_file_for_prediction_test.py
new file mode 100644
index 0000000..b03bd15
--- /dev/null
+++ b/code/qpptk/tests/custom_run_file_for_prediction_test.py
@@ -0,0 +1,75 @@
+import unittest
+import os
+import tempfile
+from qpptk import main, parse_args
+import pandas as pd
+from approvaltests import verify_file
+
+class CustomRunFileForPredictionTest(unittest.TestCase):
+ def test_with_run_file_where_one_query_is_highly_effective(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run.txt', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predPost', '--output', out_dir, '--cleanOutput', '--stats_index_path', stats_dir])
+ main(args)
+
+ actual = pd.read_json(out_dir + '/queries.jsonl', lines=True)
+
+ self.assertEqual(len(actual), 3)
+ # run is constructed so that query 1 is more effective than query 2 than query 3
+ self.assertEqual(actual.iloc[0].to_dict()['qid'], 1.0)
+ self.assertEqual(actual.iloc[0].to_dict()['wig+10'], 12.4250979385)
+ self.assertEqual(actual.iloc[0].to_dict()['nqc+100'], 0.00043380560000000004)
+ self.assertEqual(actual.iloc[0].to_dict()['smv+100'], -0.00043380560000000004)
+ self.assertEqual(actual.iloc[0].to_dict()['clarity+1000+100'], 2.6993897409)
+
+ self.assertEqual(actual.iloc[1].to_dict()['qid'], 2.0)
+ self.assertEqual(actual.iloc[1].to_dict()['wig+10'], 4.2054528045)
+ self.assertEqual(actual.iloc[1].to_dict()['nqc+100'], 0.2547211364)
+ self.assertEqual(str(actual.iloc[1].to_dict()['smv+100']), 'nan')
+ self.assertEqual(actual.iloc[1].to_dict()['clarity+1000+100'], 2.240679245)
+
+ self.assertEqual(actual.iloc[2].to_dict()['qid'], 3.0)
+ self.assertEqual(actual.iloc[2].to_dict()['wig+10'], -20.8716444259)
+ self.assertEqual(actual.iloc[2].to_dict()['nqc+100'], 6.6373379689)
+ self.assertEqual(str(actual.iloc[2].to_dict()['smv+100']), 'nan')
+ self.assertEqual(actual.iloc[2].to_dict()['clarity+1000+100'], 3.2047245641)
+
+ def test_with_run_file_where_one_query_is_highly_effective_approvaltest(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run.txt', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predPost', '--output', out_dir, '--cleanOutput', '--stats_index_path', stats_dir])
+ main(args)
+
+ verify_file(out_dir + '/queries.jsonl')
+
+ def test_with_run_file_where_all_queries_are_highly_effective(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-02.txt', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predPost', '--output', out_dir, '--cleanOutput', '--stats_index_path', stats_dir])
+ main(args)
+
+ actual = pd.read_json(out_dir + '/queries.jsonl', lines=True)
+
+ self.assertEqual(len(actual), 3)
+ # All queries should be predicted as rather effective
+ self.assertEqual(actual.iloc[0].to_dict()['qid'], 1.0)
+ self.assertEqual(actual.iloc[0].to_dict()['wig+10'], 12.4250979385)
+ self.assertEqual(actual.iloc[0].to_dict()['nqc+100'], 0.00043380560000000004)
+ self.assertEqual(actual.iloc[0].to_dict()['smv+100'], -0.00043380560000000004)
+ self.assertEqual(actual.iloc[0].to_dict()['clarity+1000+100'], 2.6993897409)
+
+ self.assertEqual(actual.iloc[1].to_dict()['qid'], 2.0)
+ self.assertEqual(actual.iloc[1].to_dict()['wig+10'], 13.2004528045)
+ self.assertEqual(actual.iloc[1].to_dict()['nqc+100'], 0.001559842)
+ self.assertEqual(actual.iloc[1].to_dict()['smv+100'], -0.001559842)
+ self.assertEqual(actual.iloc[1].to_dict()['clarity+1000+100'], 3.2054528045)
+
+ self.assertEqual(actual.iloc[2].to_dict()['qid'], 3.0)
+ self.assertEqual(actual.iloc[2].to_dict()['wig+10'], 11.8874342352)
+ self.assertEqual(actual.iloc[2].to_dict()['nqc+100'], 0.0007335282000000001)
+ self.assertEqual(actual.iloc[2].to_dict()['smv+100'], -0.0007335281)
+ self.assertEqual(actual.iloc[2].to_dict()['clarity+1000+100'], 2.6956075044)
+
+ def test_with_run_file_where_all_queries_are_highly_effective_approval(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-02.txt', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predPost', '--output', out_dir, '--cleanOutput', '--stats_index_path', stats_dir])
+ main(args)
+
+ verify_file(out_dir + '/queries.jsonl')
\ No newline at end of file
diff --git a/code/qpptk/tests/end_to_end_test.py b/code/qpptk/tests/end_to_end_test.py
new file mode 100644
index 0000000..dffc3a6
--- /dev/null
+++ b/code/qpptk/tests/end_to_end_test.py
@@ -0,0 +1,37 @@
+import unittest
+from qpptk import main, parse_args
+import tempfile
+import pandas as pd
+import os
+from approvaltests import verify_file
+
+class TestEndToEnd(unittest.TestCase):
+ def test_end_to_end(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predict', '--retrieve', '--output', out_dir, '--cleanOutput','--stats_index_path', stats_dir])
+ main(args)
+
+ actual = pd.read_json(out_dir + '/queries.jsonl', lines=True)
+
+ assert len(actual) == 3
+
+ assert actual.iloc[0].to_dict()['avg-idf'] == 1.3296613489
+ assert actual.iloc[0].to_dict()['avg-scq'] == 2.2134369757
+ assert actual.iloc[0].to_dict()['clarity+1000+100'] == 2.6980214786000003
+ assert actual.iloc[0].to_dict()['max-idf'] == 1.7917594692
+
+ assert actual.iloc[1].to_dict()['avg-idf'] == 1.0986122887
+ assert actual.iloc[1].to_dict()['avg-scq'] == 2.909294382
+ assert actual.iloc[1].to_dict()['max-idf'] == 1.0986122887
+
+ assert actual.iloc[2].to_dict()['avg-idf'] == 1.0986122887
+ assert actual.iloc[2].to_dict()['avg-scq'] == 2.6282473855
+ assert actual.iloc[2].to_dict()['max-idf'] == 1.0986122887
+
+
+ def test_end_to_end_with_approvaltest(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predict', '--retrieve', '--output', out_dir, '--cleanOutput','--stats_index_path', stats_dir])
+ main(args)
+
+ verify_file(out_dir + '/queries.jsonl')
diff --git a/code/qpptk/tests/query_parsing_test.py b/code/qpptk/tests/query_parsing_test.py
new file mode 100644
index 0000000..131497b
--- /dev/null
+++ b/code/qpptk/tests/query_parsing_test.py
@@ -0,0 +1,32 @@
+import unittest
+from qpptk import get_queries_object, parse_args
+import tempfile
+import os
+
+
+class QueryParsingTest(unittest.TestCase):
+ def test_end_to_end_with_porter_stemmer(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ expected = [
+ {'achiev': 1, 'hubbl': 1, 'telescop': 1},
+ {'exit': 1, 'how': 1, 'to': 1, 'vim': 1},
+ {'attack': 1, 'heart': 1, 'sign': 1}
+ ]
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predict', '--retrieve', '--output', out_dir, '--cleanOutput','--stats_index_path', stats_dir])
+ actual = get_queries_object(args)
+ assert expected[0] == actual.get_query(qid='1')
+ assert expected[1] == actual.get_query(qid='2')
+ assert expected[2] == actual.get_query(qid='3')
+
+ def test_end_to_end_without_stemmer(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ expected = [
+ {'achievements': 1, 'hubble': 1, 'telescope': 1},
+ {'exit': 1, 'how': 1, 'to': 1, 'vim': 1},
+ {'attack': 1, 'heart': 1, 'signs': 1}
+ ]
+ args = parse_args(['-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-02/index', '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl', '--predict', '--retrieve', '--output', out_dir, '--cleanOutput','--stats_index_path', stats_dir])
+ actual = get_queries_object(args)
+ assert expected[0] == actual.get_query(qid='1')
+ assert expected[1] == actual.get_query(qid='2')
+ assert expected[2] == actual.get_query(qid='3')
\ No newline at end of file
diff --git a/code/qpptk/tests/resources/small-example-01/documents.jsonl.gz b/code/qpptk/tests/resources/small-example-01/documents.jsonl.gz
new file mode 100644
index 0000000..c073992
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/documents.jsonl.gz differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.direct.bf b/code/qpptk/tests/resources/small-example-01/index/data.direct.bf
new file mode 100644
index 0000000..e978868
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.direct.bf differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.document.fsarrayfile b/code/qpptk/tests/resources/small-example-01/index/data.document.fsarrayfile
new file mode 100644
index 0000000..abc7fb9
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.document.fsarrayfile differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.inverted.bf b/code/qpptk/tests/resources/small-example-01/index/data.inverted.bf
new file mode 100644
index 0000000..a8352b5
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.inverted.bf differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomapfile b/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomapfile
new file mode 100644
index 0000000..2d78988
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomapfile differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomaphash b/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomaphash
new file mode 100644
index 0000000..15e9338
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomaphash differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomapid b/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomapid
new file mode 100644
index 0000000..bd01471
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.lexicon.fsomapid differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.meta-0.fsomapfile b/code/qpptk/tests/resources/small-example-01/index/data.meta-0.fsomapfile
new file mode 100644
index 0000000..30178d9
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.meta-0.fsomapfile differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.meta.idx b/code/qpptk/tests/resources/small-example-01/index/data.meta.idx
new file mode 100644
index 0000000..de35a2e
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.meta.idx differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.meta.zdata b/code/qpptk/tests/resources/small-example-01/index/data.meta.zdata
new file mode 100644
index 0000000..e42c97c
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-01/index/data.meta.zdata differ
diff --git a/code/qpptk/tests/resources/small-example-01/index/data.properties b/code/qpptk/tests/resources/small-example-01/index/data.properties
new file mode 100644
index 0000000..18444a5
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-01/index/data.properties
@@ -0,0 +1,71 @@
+#/builds/code-research/tira/workshop-on-open-web-search/query-processing-20231027-training/tira-ir-starter/2023-11-07-11-58-40/output/index/data_stream0_1.properties
+#Tue Nov 07 11:00:02 GMT 2023
+index.document-factory.parameter_values=${index.direct.fields.count}
+index.meta-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon.termids=fileinmem
+index.meta-inputstream.class=org.terrier.structures.ZstdCompressedMetaIndex$InputStream
+index.inverted-inputstream.class=org.terrier.structures.bit.BitPostingIndexInputStream
+index.lexicon-valuefactory.class=org.terrier.structures.FieldLexiconEntry$Factory
+index.document.class=org.terrier.structures.FSADocumentIndexInMem
+index.lexicon.class=org.terrier.structures.FSOMapFileLexicon
+index.lexicon-inputstream.parameter_values=structureName,index
+num.Documents=6
+index.lexicon-entry-inputstream.class=org.terrier.structures.FSOMapFileLexicon$MapFileLexiconEntryIterator
+index.meta.class=org.terrier.structures.ZstdCompressedMetaIndex
+index.inverted-inputstream.parameter_values=index,structureName,lexicon-entry-inputstream,org.terrier.structures.postings.bit.FieldIterablePosting
+index.lexicon.bsearchshortcut=charmap
+index.lexicon-inputstream.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.lexicon-keyfactory.parameter_values=${max.term.length}
+num.Tokens=74
+index.direct.class=org.terrier.structures.bit.BitPostingIndex
+index.lexicon-inputstream.class=org.terrier.structures.FSOMapFileLexicon$MapFileLexiconIterator
+index.lexicon-valuefactory.parameter_types=java.lang.String
+index.document.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon-entry-inputstream.parameter_values=structureName,index
+index.inverted.blocks.max=0
+index.meta.entry-length=151
+index.meta.value-lengths=50
+termpipelines=Stopwords,PorterStemmer
+max.term.length=20
+index.direct-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.util.Iterator,java.lang.Class
+index.inverted-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.util.Iterator,java.lang.Class
+index.direct.fields.count=1
+index.lexicon-keyfactory.class=org.terrier.structures.seralization.FixedSizeTextFactory
+index.meta.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon-entry-inputstream.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.inverted.class=org.terrier.structures.bit.BitPostingIndex
+index.document-factory.parameter_types=java.lang.String
+index.meta.value-sorted=true
+index.document-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.direct.blocks=0
+index.direct.blocks.max=0
+index.inverted.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.lang.Class
+index.meta.entries=6
+num.Pointers=69
+index.inverted.blocks=0
+num.field.0.Tokens=74
+index.terrier.version=5.7
+index.meta.reverse-key-names=docno
+index.lexicon.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.meta.parameter_values=index,structureName
+num.Terms=60
+index.inverted.fields.names=text
+index.direct-inputstream.parameter_values=index,structureName,document-inputstream,org.terrier.structures.postings.bit.FieldIterablePosting
+index.direct.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.lang.Class
+index.direct-inputstream.class=org.terrier.structures.bit.BitPostingIndexInputStream
+index.document.parameter_values=index,structureName
+index.inverted.fields.count=1
+index.document-inputstream.parameter_values=index,structureName
+index.meta.index-source=fileinmem
+index.meta-inputstream.parameter_values=index,structureName
+index.meta.key-names=docno
+index.lexicon-keyfactory.parameter_types=java.lang.String
+index.document-inputstream.class=org.terrier.structures.FSADocumentIndex$FSADocumentIndexIterator
+index.lexicon.parameter_values=structureName,index
+index.lexicon-valuefactory.parameter_values=${index.direct.fields.count}
+index.direct.fields.names=text
+index.created=1699354800838
+index.document-factory.class=org.terrier.structures.FieldDocumentIndexEntry$Factory
+index.direct.parameter_values=index,structureName,org.terrier.structures.postings.bit.FieldIterablePosting
+index.inverted.parameter_values=index,structureName,org.terrier.structures.postings.bit.FieldIterablePosting
+index.meta.data-source=fileinmem
diff --git a/code/qpptk/tests/resources/small-example-01/queries.jsonl b/code/qpptk/tests/resources/small-example-01/queries.jsonl
new file mode 100644
index 0000000..16cc68e
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-01/queries.jsonl
@@ -0,0 +1,3 @@
+{"qid": "1", "query": "hubble telescope achievements"}
+{"qid": "2", "query": "how to exit vim?"}
+{"qid": "3", "query": "signs heart attack"}
diff --git a/code/qpptk/tests/resources/small-example-01/run-02.txt b/code/qpptk/tests/resources/small-example-01/run-02.txt
new file mode 100644
index 0000000..77cf25a
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-01/run-02.txt
@@ -0,0 +1,6 @@
+1 0 doc-3 1 10 system
+1 0 doc-4 2 9.99 system
+2 0 doc-1 1 10 system
+2 0 doc-2 2 9.99 system
+3 0 doc-5 1 10 system
+3 0 doc-6 2 9.99 system
diff --git a/code/qpptk/tests/resources/small-example-01/run-with-ground-truth-scores.txt b/code/qpptk/tests/resources/small-example-01/run-with-ground-truth-scores.txt
new file mode 100644
index 0000000..cae1f6e
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-01/run-with-ground-truth-scores.txt
@@ -0,0 +1,18 @@
+1 0 doc-3 1 1 system
+1 0 doc-1 2 0 system
+1 0 doc-2 3 0 system
+1 0 doc-4 3 0 system
+1 0 doc-5 3 0 system
+1 0 doc-6 3 0 system
+2 0 doc-1 1 1 system
+2 0 doc-2 2 0 system
+2 0 doc-3 3 0 system
+2 0 doc-4 3 0 system
+2 0 doc-5 3 0 system
+2 0 doc-6 3 0 system
+3 0 doc-5 1 1 system
+3 0 doc-1 2 0 system
+3 0 doc-2 3 0 system
+3 0 doc-3 3 0 system
+3 0 doc-4 3 0 system
+3 0 doc-6 3 0 system
\ No newline at end of file
diff --git a/code/qpptk/tests/resources/small-example-01/run.txt b/code/qpptk/tests/resources/small-example-01/run.txt
new file mode 100644
index 0000000..68add6f
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-01/run.txt
@@ -0,0 +1,8 @@
+1 0 doc-3 1 10 system
+1 0 doc-4 2 9.99 system
+2 0 doc-1 1 2 system
+2 0 doc-6 2 1 system
+2 0 doc-1 3 0 system
+3 0 doc-1 1 1 system
+3 0 doc-3 2 -10 system
+3 0 doc-2 3 -100 system
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.direct.bf b/code/qpptk/tests/resources/small-example-02/index/data.direct.bf
new file mode 100644
index 0000000..e978868
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.direct.bf differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.document.fsarrayfile b/code/qpptk/tests/resources/small-example-02/index/data.document.fsarrayfile
new file mode 100644
index 0000000..abc7fb9
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.document.fsarrayfile differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.inverted.bf b/code/qpptk/tests/resources/small-example-02/index/data.inverted.bf
new file mode 100644
index 0000000..a8352b5
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.inverted.bf differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomapfile b/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomapfile
new file mode 100644
index 0000000..2d78988
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomapfile differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomaphash b/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomaphash
new file mode 100644
index 0000000..15e9338
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomaphash differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomapid b/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomapid
new file mode 100644
index 0000000..bd01471
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.lexicon.fsomapid differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.meta-0.fsomapfile b/code/qpptk/tests/resources/small-example-02/index/data.meta-0.fsomapfile
new file mode 100644
index 0000000..30178d9
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.meta-0.fsomapfile differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.meta.idx b/code/qpptk/tests/resources/small-example-02/index/data.meta.idx
new file mode 100644
index 0000000..de35a2e
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.meta.idx differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.meta.zdata b/code/qpptk/tests/resources/small-example-02/index/data.meta.zdata
new file mode 100644
index 0000000..e42c97c
Binary files /dev/null and b/code/qpptk/tests/resources/small-example-02/index/data.meta.zdata differ
diff --git a/code/qpptk/tests/resources/small-example-02/index/data.properties b/code/qpptk/tests/resources/small-example-02/index/data.properties
new file mode 100644
index 0000000..19bdd99
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-02/index/data.properties
@@ -0,0 +1,71 @@
+#/builds/code-research/tira/workshop-on-open-web-search/query-processing-20231027-training/tira-ir-starter/2023-11-07-11-58-40/output/index/data_stream0_1.properties
+#Tue Nov 07 11:00:02 GMT 2023
+index.document-factory.parameter_values=${index.direct.fields.count}
+index.meta-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon.termids=fileinmem
+index.meta-inputstream.class=org.terrier.structures.ZstdCompressedMetaIndex$InputStream
+index.inverted-inputstream.class=org.terrier.structures.bit.BitPostingIndexInputStream
+index.lexicon-valuefactory.class=org.terrier.structures.FieldLexiconEntry$Factory
+index.document.class=org.terrier.structures.FSADocumentIndexInMem
+index.lexicon.class=org.terrier.structures.FSOMapFileLexicon
+index.lexicon-inputstream.parameter_values=structureName,index
+num.Documents=6
+index.lexicon-entry-inputstream.class=org.terrier.structures.FSOMapFileLexicon$MapFileLexiconEntryIterator
+index.meta.class=org.terrier.structures.ZstdCompressedMetaIndex
+index.inverted-inputstream.parameter_values=index,structureName,lexicon-entry-inputstream,org.terrier.structures.postings.bit.FieldIterablePosting
+index.lexicon.bsearchshortcut=charmap
+index.lexicon-inputstream.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.lexicon-keyfactory.parameter_values=${max.term.length}
+num.Tokens=74
+index.direct.class=org.terrier.structures.bit.BitPostingIndex
+index.lexicon-inputstream.class=org.terrier.structures.FSOMapFileLexicon$MapFileLexiconIterator
+index.lexicon-valuefactory.parameter_types=java.lang.String
+index.document.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon-entry-inputstream.parameter_values=structureName,index
+index.inverted.blocks.max=0
+index.meta.entry-length=151
+index.meta.value-lengths=50
+termpipelines=Stopwords
+max.term.length=20
+index.direct-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.util.Iterator,java.lang.Class
+index.inverted-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.util.Iterator,java.lang.Class
+index.direct.fields.count=1
+index.lexicon-keyfactory.class=org.terrier.structures.seralization.FixedSizeTextFactory
+index.meta.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon-entry-inputstream.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.inverted.class=org.terrier.structures.bit.BitPostingIndex
+index.document-factory.parameter_types=java.lang.String
+index.meta.value-sorted=true
+index.document-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.direct.blocks=0
+index.direct.blocks.max=0
+index.inverted.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.lang.Class
+index.meta.entries=6
+num.Pointers=69
+index.inverted.blocks=0
+num.field.0.Tokens=74
+index.terrier.version=5.7
+index.meta.reverse-key-names=docno
+index.lexicon.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.meta.parameter_values=index,structureName
+num.Terms=60
+index.inverted.fields.names=text
+index.direct-inputstream.parameter_values=index,structureName,document-inputstream,org.terrier.structures.postings.bit.FieldIterablePosting
+index.direct.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.lang.Class
+index.direct-inputstream.class=org.terrier.structures.bit.BitPostingIndexInputStream
+index.document.parameter_values=index,structureName
+index.inverted.fields.count=1
+index.document-inputstream.parameter_values=index,structureName
+index.meta.index-source=fileinmem
+index.meta-inputstream.parameter_values=index,structureName
+index.meta.key-names=docno
+index.lexicon-keyfactory.parameter_types=java.lang.String
+index.document-inputstream.class=org.terrier.structures.FSADocumentIndex$FSADocumentIndexIterator
+index.lexicon.parameter_values=structureName,index
+index.lexicon-valuefactory.parameter_values=${index.direct.fields.count}
+index.direct.fields.names=text
+index.created=1699354800838
+index.document-factory.class=org.terrier.structures.FieldDocumentIndexEntry$Factory
+index.direct.parameter_values=index,structureName,org.terrier.structures.postings.bit.FieldIterablePosting
+index.inverted.parameter_values=index,structureName,org.terrier.structures.postings.bit.FieldIterablePosting
+index.meta.data-source=fileinmem
diff --git a/code/qpptk/tests/resources/small-example-02/queries.jsonl b/code/qpptk/tests/resources/small-example-02/queries.jsonl
new file mode 100644
index 0000000..16cc68e
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-02/queries.jsonl
@@ -0,0 +1,3 @@
+{"qid": "1", "query": "hubble telescope achievements"}
+{"qid": "2", "query": "how to exit vim?"}
+{"qid": "3", "query": "signs heart attack"}
diff --git a/code/qpptk/tests/resources/small-example-03/queries.jsonl b/code/qpptk/tests/resources/small-example-03/queries.jsonl
new file mode 100644
index 0000000..eb48fb7
--- /dev/null
+++ b/code/qpptk/tests/resources/small-example-03/queries.jsonl
@@ -0,0 +1,2 @@
+{"qid": "query-with-id-269", "query": "has a criterion been established for determining the axial compressor\nchoking line ."}
+{"qid": "query-with-id-272", "query": "has a theory of quasi-conical flows been developed, in supersonic\nlinearised theory, for which the upwash distribution on the lifting\nsurface, apart from being a homogeneous function in the\nco-ordinate, is permitted to have a quite general functional form ."}
diff --git a/code/qpptk/tests/tirex_integration_test.py b/code/qpptk/tests/tirex_integration_test.py
new file mode 100644
index 0000000..cd86897
--- /dev/null
+++ b/code/qpptk/tests/tirex_integration_test.py
@@ -0,0 +1,84 @@
+import unittest
+from tira.rest_api_client import Client
+from qpptk import main, parse_args
+from approvaltests import verify_file
+import tempfile
+
+class TirexIntegrationTest(unittest.TestCase):
+ def test_on_cranfield_dataset_with_approvaltests(self):
+ tira = Client()
+ index_dir = tira.get_run_output('ir-benchmarks/tira-ir-starter/Index (tira-ir-starter-pyterrier)', 'cranfield-20230107-training') + '/index'
+ queries = tira.download_dataset('ir-benchmarks', 'cranfield-20230107-training') + '/queries.jsonl'
+
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', index_dir,
+ '--jsonl_queries', queries,
+ '--output', out_dir,
+ '--stats_index_path', stats_dir,
+ '--predict', '--retrieve', '--cleanOutput'
+ ])
+ main(args)
+
+ # I only spot-checked that the output looks reasonable, no in-depth tests
+ verify_file(out_dir + '/queries.jsonl')
+
+ def test_on_cranfield_dataset_with_non_string_query_ids_approvaltests(self):
+ tira = Client()
+ index_dir = tira.get_run_output('ir-benchmarks/tira-ir-starter/Index (tira-ir-starter-pyterrier)', 'cranfield-20230107-training') + '/index'
+ queries = 'tests/resources/small-example-03/queries.jsonl'
+
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', index_dir,
+ '--jsonl_queries', queries,
+ '--output', out_dir,
+ '--stats_index_path', stats_dir,
+ '--predict', '--retrieve', '--cleanOutput'
+ ])
+ main(args)
+
+ # I only spot-checked that the output looks reasonable, no in-depth tests
+ verify_file(out_dir + '/queries.jsonl')
+
+ def test_on_cranfield_dataset_with_approvaltests_and_bm25_run(self):
+ tira = Client()
+ index_dir = tira.get_run_output('ir-benchmarks/tira-ir-starter/Index (tira-ir-starter-pyterrier)', 'cranfield-20230107-training') + '/index'
+ bm25_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', 'cranfield-20230107-training') + '/run.txt'
+ queries = tira.download_dataset('ir-benchmarks', 'cranfield-20230107-training') + '/queries.jsonl'
+
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', index_dir,
+ '--jsonl_queries', queries,
+ '--run-file', bm25_run,
+ '--output', out_dir,
+ '--stats_index_path', stats_dir,
+ '--predPost', '--retrieve', '--cleanOutput'
+ ])
+ main(args)
+
+ # I only spot-checked that the output looks reasonable, no in-depth tests
+ verify_file(out_dir + '/queries.jsonl')
+
+ def test_on_cranfield_dataset_with_approvaltests_and_bm25_run_with_monot5_scores(self):
+ tira = Client()
+ index_dir = tira.get_run_output('ir-benchmarks/tira-ir-starter/Index (tira-ir-starter-pyterrier)', 'cranfield-20230107-training') + '/index'
+ bm25_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', 'cranfield-20230107-training') + '/run.txt'
+ monot5_run = tira.get_run_output('ir-benchmarks/tira-ir-starter/MonoT5 Base (tira-ir-starter-gygaggle)', 'cranfield-20230107-training') + '/run.txt'
+ queries = tira.download_dataset('ir-benchmarks', 'cranfield-20230107-training') + '/queries.jsonl'
+
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', index_dir,
+ '--jsonl_queries', queries,
+ '--run-file', bm25_run,
+ '--use-scores-from-run-file', monot5_run,
+ '--output', out_dir,
+ '--stats_index_path', stats_dir,
+ '--predPost', '--retrieve', '--cleanOutput'
+ ])
+ main(args)
+
+ # I only spot-checked that the output looks reasonable, no in-depth tests
+ verify_file(out_dir + '/queries.jsonl')
diff --git a/code/qpptk/tests/two_custom_run_files_for_prediction_test.py b/code/qpptk/tests/two_custom_run_files_for_prediction_test.py
new file mode 100644
index 0000000..dda8b8f
--- /dev/null
+++ b/code/qpptk/tests/two_custom_run_files_for_prediction_test.py
@@ -0,0 +1,116 @@
+import unittest
+import os
+import tempfile
+from pathlib import Path
+import pandas as pd
+from qpptk import replace_scores_in_run_file_with_reference_scores, parse_args, main
+from approvaltests import verify_file
+
+class TwoCustomRunFilesForPredictionTest(unittest.TestCase):
+ def test_unification_of_run_files_run_01(self):
+ unified_run_file = replace_scores_in_run_file_with_reference_scores(
+ run_file=Path(os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run.txt'),
+ reference_run_file=Path(os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-with-ground-truth-scores.txt')
+ )
+
+ verify_file(unified_run_file)
+
+ def test_unification_of_run_files_run_02(self):
+ unified_run_file = replace_scores_in_run_file_with_reference_scores(
+ run_file=Path(os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-02.txt'),
+ reference_run_file=Path(os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-with-ground-truth-scores.txt')
+ )
+
+ verify_file(unified_run_file)
+
+
+ def test_end_to_end_with_run_01(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/',
+ '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run.txt',
+ '--use-scores-from-run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-with-ground-truth-scores.txt',
+ '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl',
+ '--predPost', '--cleanOutput',
+ '--output', out_dir,
+ '--stats_index_path', stats_dir
+ ])
+ main(args)
+
+ actual = pd.read_json(out_dir + '/queries.jsonl', lines=True)
+
+ self.assertEqual(len(actual), 3)
+ # run is constructed so that query 1 is more effective than query 2 than query 3
+ self.assertEqual(actual.iloc[0].to_dict()['qid'], 1.0)
+ self.assertEqual(actual.iloc[0].to_dict()['wig+10'], 6.9431571325)
+ self.assertEqual(actual.iloc[0].to_dict()['nqc+100'], 0.043380556800000004)
+ self.assertEqual(str(actual.iloc[0].to_dict()['smv+100']), 'nan')
+ self.assertEqual(actual.iloc[0].to_dict()['clarity+1000+100'], 2.7431934039)
+
+ self.assertEqual(actual.iloc[1].to_dict()['qid'], 2.0)
+ self.assertEqual(actual.iloc[1].to_dict()['wig+10'], 3.8721194712)
+ self.assertEqual(actual.iloc[1].to_dict()['nqc+100'], 0.1470633166)
+ self.assertEqual(str(actual.iloc[1].to_dict()['smv+100']), 'nan')
+ self.assertEqual(actual.iloc[1].to_dict()['clarity+1000+100'], 2.3208312544)
+
+ self.assertEqual(actual.iloc[2].to_dict()['qid'], 3.0)
+ self.assertEqual(actual.iloc[2].to_dict()['wig+10'], 4.8199019572)
+ self.assertEqual(actual.iloc[2].to_dict()['nqc+100'], 0.0)
+ self.assertEqual(str(actual.iloc[2].to_dict()['smv+100']), 'nan')
+ self.assertEqual(actual.iloc[2].to_dict()['clarity+1000+100'], 2.3616150510000002)
+
+ def test_end_to_end_with_run_01_approval(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/',
+ '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run.txt',
+ '--use-scores-from-run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-with-ground-truth-scores.txt',
+ '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl',
+ '--predPost', '--cleanOutput',
+ '--output', out_dir,
+ '--stats_index_path', stats_dir
+ ])
+ main(args)
+
+ verify_file(out_dir + '/queries.jsonl')
+
+ def test_end_to_end_with_run_02(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/',
+ '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-02.txt',
+ '--use-scores-from-run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-with-ground-truth-scores.txt',
+ '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl',
+ '--predPost', '--cleanOutput',
+ '--output', out_dir,
+ '--stats_index_path', stats_dir
+ ])
+ main(args)
+
+ actual = pd.read_json(out_dir + '/queries.jsonl', lines=True)
+
+ self.assertEqual(len(actual), 3)
+ # All queries should be predicted as rather effective
+ self.assertEqual(actual.iloc[0].to_dict()['qid'], 1.0)
+ self.assertEqual(actual.iloc[0].to_dict()['wig+10'], 6.9431571325)
+
+ self.assertEqual(actual.iloc[1].to_dict()['qid'], 2.0)
+ self.assertEqual(actual.iloc[1].to_dict()['wig+10'], 3.7054528045)
+
+ self.assertEqual(actual.iloc[2].to_dict()['qid'], 3.0)
+ self.assertEqual(actual.iloc[2].to_dict()['wig+10'], 5.1734553478)
+
+
+ def test_end_to_end_with_run_02_approval(self):
+ with tempfile.TemporaryDirectory() as out_dir, tempfile.TemporaryDirectory() as stats_dir:
+ args = parse_args([
+ '-ti', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/index/',
+ '--run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-02.txt',
+ '--use-scores-from-run-file', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/run-with-ground-truth-scores.txt',
+ '--jsonl_queries', os.path.dirname(os.path.realpath(__file__)) + '/resources/small-example-01/queries.jsonl',
+ '--predPost', '--cleanOutput',
+ '--output', out_dir,
+ '--stats_index_path', stats_dir
+ ])
+ main(args)
+ verify_file(out_dir + '/queries.jsonl')
diff --git a/docker/Dockerfile b/docker/Dockerfile
new file mode 100644
index 0000000..ff1ff39
--- /dev/null
+++ b/docker/Dockerfile
@@ -0,0 +1,10 @@
+# docker build -f docker/Dockerfile -t mam10eks/qpptk:0.0.1 .
+# We start from an image that already has all dependencies installed
+FROM mam10eks/qpptk:0.0.1-dev
+
+COPY code/qpptk/ /workspaces/QPP-EnhancedEval/code/qpptk
+
+RUN pip install -e . \
+ && pytest
+
+ENTRYPOINT [ "python3", "/qpptk_main.py" ]
diff --git a/docker/Dockerfile.dev b/docker/Dockerfile.dev
new file mode 100644
index 0000000..c8a3504
--- /dev/null
+++ b/docker/Dockerfile.dev
@@ -0,0 +1,16 @@
+# docker build -f docker/Dockerfile.dev -t mam10eks/qpptk:0.0.2-dev .
+# We start from an image that already has Terrier + PyTerrier as dependencies installed
+FROM webis/ir-lab-wise-2023:0.0.1
+
+COPY code/qpptk/ /workspaces/QPP-EnhancedEval/code/qpptk
+
+WORKDIR /workspaces/QPP-EnhancedEval/code/qpptk
+
+RUN pip install -r requirements.txt \
+ && rm -Rf * \
+ && mkdir -p /root/repos/ \
+ && apt-get update \
+ && apt-get install -y curl wget git \
+ && ln -s /workspaces/QPP-EnhancedEval/code/qpptk /root/repos/qpptk \
+ && ln -s /workspaces/QPP-EnhancedEval/code/qpptk/qpptk/qpptk_main.py /qpptk_main.py
+
diff --git a/docker/README.md b/docker/README.md
new file mode 100644
index 0000000..a1e8948
--- /dev/null
+++ b/docker/README.md
@@ -0,0 +1,52 @@
+# Docker image with qpptk
+
+Build the docker image via this command:
+
+```
+docker build -t qpptk .. -f ./Dockerfile
+```
+
+As soon as we have finalized everything and we have published the docker image, the build command above can be removed because others can directly use the published image.
+
+If the image was build, you can run qpptk via Docker with the following command (e.g., printing the help message):
+
+```
+docker run --rm -ti qpptk --help
+```
+
+# Run it on full-rank approaches
+
+Assuming you already have a pyterrier index (see below how to build it), you can run:
+
+```
+tira-run \
+ --input-directory ${PWD}/sample-input-full-rank \
+ --input-run ${PWD}/pyterrier-index \
+ --output-directory ${PWD}/qpptk-predictions-full-rank \
+ --image qpptk \
+ --command '/qpptk-dummy-full-rank.sh $inputDataset $inputRun $outputDir'
+```
+
+Build the pyterrier index with this command (you can skip this step, the small test index is already added to the repository):
+
+```
+tira-run \
+ --input-directory ${PWD}/sample-input-full-rank \
+ --output-directory ${PWD}/pyterrier-index \
+ --image webis/tira-ir-starter-pyterrier:0.0.2-base \
+ --command '/workspace/pyterrier_cli.py --input $inputDataset --output $outputDir --index_directory $outputDir'
+```
+
+
+# Run on re-rank approaches
+
+Assuming you have `tira` installed (use `pip3 install tira`), you can run it via:
+
+```
+tira-run \
+ --input-directory ${PWD}/sample-input-re-rank \
+ --output-directory ${PWD}/qpptk-predictions-re-rank \
+ --image qpptk \
+ --command '/qpptk-dummy-re-rank.sh $inputDataset $outputDir'
+```
+
diff --git a/docker/pyterrier-index/index/data.direct.bf b/docker/pyterrier-index/index/data.direct.bf
new file mode 100644
index 0000000..58abc43
Binary files /dev/null and b/docker/pyterrier-index/index/data.direct.bf differ
diff --git a/docker/pyterrier-index/index/data.document.fsarrayfile b/docker/pyterrier-index/index/data.document.fsarrayfile
new file mode 100644
index 0000000..27fd2f2
Binary files /dev/null and b/docker/pyterrier-index/index/data.document.fsarrayfile differ
diff --git a/docker/pyterrier-index/index/data.inverted.bf b/docker/pyterrier-index/index/data.inverted.bf
new file mode 100644
index 0000000..5002d37
Binary files /dev/null and b/docker/pyterrier-index/index/data.inverted.bf differ
diff --git a/docker/pyterrier-index/index/data.lexicon.fsomapfile b/docker/pyterrier-index/index/data.lexicon.fsomapfile
new file mode 100644
index 0000000..f07580a
Binary files /dev/null and b/docker/pyterrier-index/index/data.lexicon.fsomapfile differ
diff --git a/docker/pyterrier-index/index/data.lexicon.fsomaphash b/docker/pyterrier-index/index/data.lexicon.fsomaphash
new file mode 100644
index 0000000..87bcc30
Binary files /dev/null and b/docker/pyterrier-index/index/data.lexicon.fsomaphash differ
diff --git a/docker/pyterrier-index/index/data.lexicon.fsomapid b/docker/pyterrier-index/index/data.lexicon.fsomapid
new file mode 100644
index 0000000..46b7bff
Binary files /dev/null and b/docker/pyterrier-index/index/data.lexicon.fsomapid differ
diff --git a/docker/pyterrier-index/index/data.meta-0.fsomapfile b/docker/pyterrier-index/index/data.meta-0.fsomapfile
new file mode 100644
index 0000000..382f10c
Binary files /dev/null and b/docker/pyterrier-index/index/data.meta-0.fsomapfile differ
diff --git a/docker/pyterrier-index/index/data.meta.idx b/docker/pyterrier-index/index/data.meta.idx
new file mode 100644
index 0000000..bc3930c
Binary files /dev/null and b/docker/pyterrier-index/index/data.meta.idx differ
diff --git a/docker/pyterrier-index/index/data.meta.zdata b/docker/pyterrier-index/index/data.meta.zdata
new file mode 100644
index 0000000..61c8a16
Binary files /dev/null and b/docker/pyterrier-index/index/data.meta.zdata differ
diff --git a/docker/pyterrier-index/index/data.properties b/docker/pyterrier-index/index/data.properties
new file mode 100644
index 0000000..270c19f
--- /dev/null
+++ b/docker/pyterrier-index/index/data.properties
@@ -0,0 +1,71 @@
+#/tira-data/output/index/data_stream0_1.properties
+#Mon Aug 07 05:27:40 GMT 2023
+index.document-factory.parameter_values=${index.direct.fields.count}
+index.meta-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon.termids=fileinmem
+index.meta-inputstream.class=org.terrier.structures.ZstdCompressedMetaIndex$InputStream
+index.inverted-inputstream.class=org.terrier.structures.bit.BitPostingIndexInputStream
+index.lexicon-valuefactory.class=org.terrier.structures.FieldLexiconEntry$Factory
+index.document.class=org.terrier.structures.FSADocumentIndexInMem
+index.lexicon.class=org.terrier.structures.FSOMapFileLexicon
+index.lexicon-inputstream.parameter_values=structureName,index
+num.Documents=5
+index.lexicon-entry-inputstream.class=org.terrier.structures.FSOMapFileLexicon$MapFileLexiconEntryIterator
+index.meta.class=org.terrier.structures.ZstdCompressedMetaIndex
+index.inverted-inputstream.parameter_values=index,structureName,lexicon-entry-inputstream,org.terrier.structures.postings.bit.FieldIterablePosting
+index.lexicon.bsearchshortcut=charmap
+index.lexicon-inputstream.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.lexicon-keyfactory.parameter_values=${max.term.length}
+num.Tokens=31
+index.direct.class=org.terrier.structures.bit.BitPostingIndex
+index.lexicon-inputstream.class=org.terrier.structures.FSOMapFileLexicon$MapFileLexiconIterator
+index.lexicon-valuefactory.parameter_types=java.lang.String
+index.document.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon-entry-inputstream.parameter_values=structureName,index
+index.inverted.blocks.max=0
+index.meta.entry-length=301
+index.meta.value-lengths=100
+termpipelines=Stopwords,PorterStemmer
+max.term.length=20
+index.direct-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.util.Iterator,java.lang.Class
+index.inverted-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.util.Iterator,java.lang.Class
+index.direct.fields.count=1
+index.lexicon-keyfactory.class=org.terrier.structures.seralization.FixedSizeTextFactory
+index.meta.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.lexicon-entry-inputstream.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.inverted.class=org.terrier.structures.bit.BitPostingIndex
+index.document-factory.parameter_types=java.lang.String
+index.meta.value-sorted=true
+index.document-inputstream.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String
+index.direct.blocks=0
+index.direct.blocks.max=0
+index.inverted.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.lang.Class
+index.meta.entries=5
+num.Pointers=31
+index.inverted.blocks=0
+num.field.0.Tokens=31
+index.terrier.version=5.7
+index.meta.reverse-key-names=docno
+index.lexicon.parameter_types=java.lang.String,org.terrier.structures.IndexOnDisk
+index.meta.parameter_values=index,structureName
+num.Terms=24
+index.inverted.fields.names=text
+index.direct-inputstream.parameter_values=index,structureName,document-inputstream,org.terrier.structures.postings.bit.FieldIterablePosting
+index.direct.parameter_types=org.terrier.structures.IndexOnDisk,java.lang.String,java.lang.Class
+index.direct-inputstream.class=org.terrier.structures.bit.BitPostingIndexInputStream
+index.document.parameter_values=index,structureName
+index.inverted.fields.count=1
+index.document-inputstream.parameter_values=index,structureName
+index.meta.index-source=fileinmem
+index.meta-inputstream.parameter_values=index,structureName
+index.meta.key-names=docno
+index.lexicon-keyfactory.parameter_types=java.lang.String
+index.document-inputstream.class=org.terrier.structures.FSADocumentIndex$FSADocumentIndexIterator
+index.lexicon.parameter_values=structureName,index
+index.lexicon-valuefactory.parameter_values=${index.direct.fields.count}
+index.direct.fields.names=text
+index.created=1691386059964
+index.document-factory.class=org.terrier.structures.FieldDocumentIndexEntry$Factory
+index.direct.parameter_values=index,structureName,org.terrier.structures.postings.bit.FieldIterablePosting
+index.inverted.parameter_values=index,structureName,org.terrier.structures.postings.bit.FieldIterablePosting
+index.meta.data-source=fileinmem
diff --git a/docker/pyterrier-index/index/partial_2659142649_postings_mat.npz b/docker/pyterrier-index/index/partial_2659142649_postings_mat.npz
new file mode 100644
index 0000000..b586763
Binary files /dev/null and b/docker/pyterrier-index/index/partial_2659142649_postings_mat.npz differ
diff --git a/docker/run-test.sh b/docker/run-test.sh
new file mode 100644
index 0000000..bca708f
--- /dev/null
+++ b/docker/run-test.sh
@@ -0,0 +1,5 @@
+qpptk --pyterrier_index {PATH_TO_INDEX} --queries {PATH_TO_QUERIES.jsonl} --output_dir {PREDICTIONS_DIR} --predictors {all, pre, post, [scq, idf, var]} [--top_docs k, --retrieval_results {PATH_TO_TREC_RESULT}]
+
+# if no top_docs run on a default list of params [5, 10, 25, 50, 75, 100, 150, 200,250]
+# generate a separate file for each predictor
+# results file format: {'qid': QID, 'predictor_name': MaxIDF, 'prediction_score':0.2, 'hparameters': {top_docs: 10}}
diff --git a/docker/sample-input-full-rank/documents.jsonl b/docker/sample-input-full-rank/documents.jsonl
new file mode 100644
index 0000000..e0c5eee
--- /dev/null
+++ b/docker/sample-input-full-rank/documents.jsonl
@@ -0,0 +1,5 @@
+{"docno": "pangram-01", "text": "How quickly daft jumping zebras vex.", "original_document": {"doc_id": "pangram-01", "text": "How quickly daft jumping zebras vex.", "letters": 30}}
+{"docno": "pangram-02", "text": "Quick fox jumps nightly above wizard.", "original_document": {"doc_id": "pangram-02", "text": "Quick fox jumps nightly above wizard.", "letters": 31}}
+{"docno": "pangram-03", "text": "The jay, pig, fox, zebra and my wolves quack!", "original_document": {"doc_id": "pangram-03", "text": "The jay, pig, fox, zebra and my wolves quack!", "letters": 33}}
+{"docno": "pangram-04", "text": "The quick brown fox jumps over the lazy dog.", "original_document": {"doc_id": "pangram-04", "text": "The quick brown fox jumps over the lazy dog.", "letters": 35}}
+{"docno": "pangram-05", "text": "As quirky joke, chefs won\u2019t pay devil magic zebra tax.", "original_document": {"doc_id": "pangram-05", "text": "As quirky joke, chefs won\u2019t pay devil magic zebra tax.", "letters": 42}}
diff --git a/docker/sample-input-full-rank/metadata.json b/docker/sample-input-full-rank/metadata.json
new file mode 100644
index 0000000..6d255e5
--- /dev/null
+++ b/docker/sample-input-full-rank/metadata.json
@@ -0,0 +1 @@
+{"ir_datasets_id": "pangrams"}
diff --git a/docker/sample-input-full-rank/queries.jsonl b/docker/sample-input-full-rank/queries.jsonl
new file mode 100644
index 0000000..69b5345
--- /dev/null
+++ b/docker/sample-input-full-rank/queries.jsonl
@@ -0,0 +1,3 @@
+{"qid": "1", "query": "fox jumps above animal", "original_query": {"query_id": "1", "title": "fox jumps above animal", "description": "What pangrams have a fox jumping above some animal?", "narrative": "Relevant pangrams have a fox jumping over an animal (e.g., an dog). Pangrams containing a fox that is not jumping or jumps over something that is not an animal are not relevant."}}
+{"qid": "2", "query": "multiple animals including a zebra", "original_query": {"query_id": "2", "title": "multiple animals including a zebra", "description": "Which pangrams have multiple animals where one of the animals is a zebra?", "narrative": "Relevant pangrams have at least two animals, one of the animals must be a Zebra. Pangrams containing only a Zebra are not relevant."}}
+{"qid": "3", "query": "fox", "original_query": {"query_id": "1", "title": "fox jumps above animal", "description": "What pangrams have a fox jumping above some animal?", "narrative": "Relevant pangrams have a fox jumping over an animal (e.g., an dog). Pangrams containing a fox that is not jumping or jumps over something that is not an animal are not relevant."}}
diff --git a/docker/sample-input-full-rank/queries.xml b/docker/sample-input-full-rank/queries.xml
new file mode 100644
index 0000000..b0b33f3
--- /dev/null
+++ b/docker/sample-input-full-rank/queries.xml
@@ -0,0 +1,40 @@
+
+
+
+ fox jumps above animal
+
+
+
+ 1
+
+
+ fox jumps above animal
+
+
+ What pangrams have a fox jumping above some animal?
+
+
+ Relevant pangrams have a fox jumping over an animal (e.g., an dog). Pangrams containing a fox that is not jumping or jumps over something that is not an animal are not relevant.
+
+
+
+
+
+ multiple animals including a zebra
+
+
+
+ 2
+
+
+ multiple animals including a zebra
+
+
+ Which pangrams have multiple animals where one of the animals is a zebra?
+
+
+ Relevant pangrams have at least two animals, one of the animals must be a Zebra. Pangrams containing only a Zebra are not relevant.
+
+
+
+
\ No newline at end of file
diff --git a/docker/sample-input-full-rank/sample.qrels b/docker/sample-input-full-rank/sample.qrels
new file mode 100644
index 0000000..1965738
--- /dev/null
+++ b/docker/sample-input-full-rank/sample.qrels
@@ -0,0 +1,4 @@
+1 0 pangram-04 1
+1 0 pangram-05 0
+2 0 pangram-04 0
+2 0 pangram-05 1
diff --git a/docker/sample-input-re-rank/rerank.jsonl.gz b/docker/sample-input-re-rank/rerank.jsonl.gz
new file mode 100644
index 0000000..ca23621
Binary files /dev/null and b/docker/sample-input-re-rank/rerank.jsonl.gz differ