forked from zealscott/ST2Vec
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpreprocess.py
209 lines (174 loc) · 6.64 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import yaml
import networkx as nx
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pandas as pd
from torch_geometric.nn import Node2Vec
from Model import Date2VecConvert
import time
import datetime
import random
random.seed(1953)
def prepare_dataset(trajfile, timefile, kseg = 5):
"""
:param trajfile: map-matching result
:param timefile: raw coor-timestamp file
:param kseg: Simplify the trajectory to kseg
"""
node_list = pd.read_csv(trajfile)
node_list = node_list.Node_list
time_list = pd.read_csv(timefile)
time_list = time_list.Time_list
node_list_int = []
for nlist in node_list:
tmp_list = []
nlist = nlist[1:-1].replace('[', '').replace(']', '').replace(' ', ',').replace('\n', ',').split(',')
for n in nlist:
if n != '':
tmp_list.append(int(n))
node_list_int.append(tmp_list)
node_list_int = np.array(node_list_int)
time_list_int = []
for tlist in time_list:
tmp_list = []
tlist = tlist[1:-1].replace('[', '').replace(']', '').replace(' ', ',').replace('\n', ',').split(',')
for t in tlist:
if t != '':
tmp_list.append(int(t))
time_list_int.append(tmp_list)
time_list_int = np.array(time_list_int)
df = pd.read_csv(trajfile)
trajs = df.Coor_list
coor_trajs = []
for traj in trajs:
traj = traj[1:-1].replace('[', '').replace(']', '').replace(' ', ',').replace('\n', ',').split(',')
ts = []
for s in traj:
if s != '':
ts.append(float(s))
traj = np.reshape(ts, [-1, 2], order='C')
coor_trajs.append(traj)
kseg_coor_trajs = []
for t in coor_trajs:
kseg_coor = []
seg = len(t) // kseg
t = np.array(t)
for i in range(kseg):
if i == kseg - 1:
kseg_coor.append(np.mean(t[i * seg:], axis=0))
else:
kseg_coor.append(np.mean(t[i * seg:i * seg + seg], axis=0))
kseg_coor_trajs.append(kseg_coor)
kseg_coor_trajs = np.array(kseg_coor_trajs)
print("complete: ksegment")
shuffle_index = list(range(len(node_list_int)))
random.shuffle(shuffle_index)
shuffle_index = shuffle_index[:50000] # 5w size of dataset
coor_trajs = np.array(coor_trajs)
coor_trajs = coor_trajs[shuffle_index]
kseg_coor_trajs = kseg_coor_trajs[shuffle_index]
time_list_int = time_list_int[shuffle_index]
node_list_int = node_list_int[shuffle_index]
np.save(str(config["shuffle_coor_file"]), coor_trajs)
np.save(str(config["shuffle_node_file"]), node_list_int)
np.save(str(config["shuffle_time_file"]), time_list_int)
np.save(str(config["shuffle_kseg_file"]), kseg_coor_trajs)
class Date2vec(nn.Module):
def __init__(self):
super(Date2vec, self).__init__()
self.d2v = Date2VecConvert(model_path="./d2v_model/d2v_98291_17.169918439404636.pth")
def forward(self, time_seq):
all_list = []
for one_seq in time_seq:
one_list = []
for timestamp in one_seq:
t = datetime.datetime.fromtimestamp(timestamp)
t = [t.hour, t.minute, t.second, t.year, t.month, t.day]
x = torch.Tensor(t).float()
embed = self.d2v(x)
one_list.append(embed)
one_list = torch.cat(one_list, dim=0)
one_list = one_list.view(-1, 64)
all_list.append(one_list.numpy().tolist())
all_list = np.array(all_list)
return all_list
def read_graph(dataset):
"""
Read network edages from text file and return networks object
:param file: input dataset name
:return: edage index with shape (n,2)
"""
dataPath = "./data/" + dataset
edge = dataPath + "/road/edge_weight.csv"
node = dataPath + "/road/node.csv"
df_dege = pd.read_csv(edge, sep=',')
df_node = pd.read_csv(node, sep=',')
edge_index = df_dege[["s_node", "e_node"]].to_numpy()
num_node = df_node["node"].size
print("{0} road netowrk has {1} edages.".format(config["dataset"], edge_index.shape[0]))
print("{0} road netowrk has {1} nodes.".format(config["dataset"], num_node))
return edge_index, num_node
def train(model, loader, optimizer):
model.train()
total_loss = 0
for pos_rw, neg_rw in loader:
optimizer.zero_grad()
loss = model.loss(pos_rw.to(device), neg_rw.to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
def train_epoch(model, loader, optimizer):
# Training with epoch iteration
last_loss = 1
print("Training node embedding with node2vec...")
for i in range(100):
loss = train(model, loader, optimizer)
print('Epoch: {0} \tLoss: {1:.4f}'.format(i, loss))
if abs(last_loss - loss) < 1e-5:
break
else:
last_loss = loss
@torch.no_grad()
def save_embeddings(model, num_nodes, dataset, device):
model.eval()
node_features = model(torch.arange(num_nodes, device=device)).cpu().numpy()
np.save("./data/" + dataset + "/node_features.npy", node_features)
print("Node embedding saved at: ./data/" + dataset + "/node_features.npy")
return
if __name__ == "__main__":
config = yaml.safe_load(open('config.yaml'))
edge_index, num_node = read_graph(str(config["dataset"]))
device = "cuda:" + str(config["cuda"])
feature_size = config["feature_size"]
walk_length = config["node2vec"]["walk_length"]
context_size = config["node2vec"]["context_size"]
walks_per_node = config["node2vec"]["walks_per_node"]
p = config["node2vec"]["p"]
q = config["node2vec"]["q"]
edge_index = torch.LongTensor(edge_index).t().contiguous().to(device)
model = Node2Vec(
edge_index,
embedding_dim=feature_size,
walk_length=walk_length,
context_size=context_size,
walks_per_node=walks_per_node,
num_negative_samples=1,
p=p,
q=q,
sparse=True,
num_nodes=num_node
).to(device)
loader = model.loader(batch_size=128, shuffle=True)
optimizer = torch.optim.SparseAdam(model.parameters(), lr=0.01)
# Train until delta loss has been reached
train_epoch(model, loader, optimizer)
save_embeddings(model, num_node, str(config["dataset"]), device)
prepare_dataset(trajfile=str(config["traj_file"]), timefile=str(config["time_file"]), kseg=config["kseg"])
d2vec = Date2vec()
timelist = np.load(str(config["shuffle_time_file"]), allow_pickle=True)
d2v = d2vec(timelist)
print(len(d2v))
np.save(str(config["shuffle_d2vec_file"]), d2v)