-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwo_train.py
125 lines (91 loc) · 3.68 KB
/
wo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import json
import time
from sentence_transformers import SentenceTransformer, util
from utils import *
from datetime import datetime
def read_ground_truth(file_path, only_test_set=True):
train_path = os.path.join(file_path, 'train.csv')
valid_path = os.path.join(file_path, 'valid.csv')
test_path = os.path.join(file_path, 'test.csv')
x = []
y_truth = []
with open(train_path) as train_file, open(valid_path) as valid_file, open(test_path) as test_file:
if only_test_set:
files = [test_file.readlines()]
else:
files = [train_file.readlines(), valid_file.readlines(), test_file.readlines()]
for lines in files:
for i, line in enumerate(lines):
if i == 0:
continue
values = line.strip().split(',')
x.append((int(values[0]), int(values[1])))
y_truth.append(int(values[2]))
return x, y_truth
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--vis_device', type=str, default='0')
parser.add_argument('--data_name', type=str, default='Structured/Fodors-Zagats')
parser.add_argument('--seed', default=2021, type=int)
args = parser.parse_args(args)
return args
if __name__ == '__main__':
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.vis_device
if args.seed != -1:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
os.environ['PYTHONHASHSEED'] = str(args.seed)
if not os.path.exists('./log'):
os.mkdir('./log')
if not os.path.exists('./checkpoint'):
os.mkdir('./checkpoint')
configs = json.load(open('configs.json'))
configs = {conf['name']: conf for conf in configs}
config = configs[args.data_name]
model_name = config['model']
max_length = int(config['max_length'])
data_name = args.data_name
model = SentenceTransformer(model_name)
cur_time = '_' + datetime.now().strftime('%F %T')
set_logger(data_name.replace('/', '') + '_seeds_' + cur_time)
logging.info(args)
logging.info('Seed: {}'.format(torch.initial_seed()))
path = config['path']
vecA = os.path.join(path, 'vecA.npy')
vecB = os.path.join(path, 'vecB.npy')
logging.info('Compute embedding...')
tableA = os.path.join(path, 'tableA.csv')
tableB = os.path.join(path, 'tableB.csv')
entityA = read_entity(tableA, skip=True, add_token=True)
entityB = read_entity(tableB, skip=True, add_token=True)
# Encode
embeddingA = model.encode(entityA, batch_size=512)
embeddingB = model.encode(entityB, batch_size=512)
# Norm
embeddingA = [v / np.linalg.norm(v) for v in embeddingA]
embeddingB = [v / np.linalg.norm(v) for v in embeddingB]
np.save(vecA, embeddingA)
np.save(vecB, embeddingB)
t1 = time.time()
embeddingA = torch.tensor(embeddingA).cuda()
embeddingB = torch.tensor(embeddingB).cuda()
sim_score = util.pytorch_cos_sim(embeddingA, embeddingB)
pairs, y_truth = read_ground_truth(path, only_test_set=True)
distA, topkA = torch.topk(sim_score, k=1, dim=1)
distB, topkB = torch.topk(sim_score, k=1, dim=0)
topkB = topkB.t()
y_pred = []
for pair in pairs:
a, b = pair
if b in topkA[a] and a in topkB[b]:
y_pred.append(1)
else:
y_pred.append(0)
precision, recall, F1 = evaluate(y_truth, y_pred)
logging.info('precision: {:.4f} recall: {:.4f} F1: {:.4f}'.format(precision, recall, F1))