-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
197 lines (166 loc) · 8.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import torch
import torch.nn as nn
import numpy as np
from transformers import BertModel, AlbertModel, DistilBertModel, RobertaModel, XLNetModel
model_ckpts = {'bert': "./lm_model/bert-base-uncased",
'albert': "./lm_model/albert-base-v2",
'roberta': "./lm_model/roberta-base",
'xlnet': "./lm_model/xlnet-base-cased",
'distilbert': "./lm_model/distilbert-base-uncased"}
class LMNet(nn.Module):
def __init__(self,
finetuning=True,
lm='bert',
data_path=None,
use_literal_gnn=True,
use_digital_gnn=True,
use_structure_gnn=True,
use_name_gnn=True,
bert_path=None):
super().__init__()
self.path = data_path
self.use_literal_gnn = use_literal_gnn
self.use_digital_gnn = use_digital_gnn
self.use_structure_gnn = use_structure_gnn
self.use_name_gnn = use_name_gnn
self.Literal_embeddingA = None
self.Literal_embeddingB = None
self.Digital_embeddingA = None
self.Digital_embeddingB = None
self.Structure_embeddingA = None
self.Structure_embeddingB = None
self.Name_embeddingA = None
self.Name_embeddingB = None
self.load_gnn_embedding()
# load the model or model checkpoint
if bert_path is None:
if lm == 'bert':
self.bert = BertModel.from_pretrained(model_ckpts[lm])
elif lm == 'distilbert':
self.bert = DistilBertModel.from_pretrained(model_ckpts[lm])
elif lm == 'albert':
self.bert = AlbertModel.from_pretrained(model_ckpts[lm])
elif lm == 'xlnet':
self.bert = XLNetModel.from_pretrained(model_ckpts[lm])
elif lm == 'roberta':
self.bert = RobertaModel.from_pretrained(model_ckpts[lm])
else:
output_model_file = bert_path
model_state_dict = torch.load(output_model_file,
map_location=lambda storage, loc: storage)
if lm == 'bert':
self.bert = BertModel.from_pretrained(model_ckpts[lm],
state_dict=model_state_dict)
elif lm == 'distilbert':
self.bert = DistilBertModel.from_pretrained(model_ckpts[lm],
state_dict=model_state_dict)
elif lm == 'albert':
self.bert = AlbertModel.from_pretrained(model_ckpts[lm],
state_dict=model_state_dict)
elif lm == 'xlnet':
self.bert = XLNetModel.from_pretrained(model_ckpts[lm],
state_dict=model_state_dict)
elif lm == 'roberta':
self.bert = RobertaModel.from_pretrained(model_ckpts[lm],
state_dict=model_state_dict)
self.finetuning = finetuning
self.module_dict = nn.ModuleDict({})
hidden_size = 768
hidden_dropout_prob = 0.1
vocab_size = 2
self.module_dict['classification_dropout'] = nn.Dropout(hidden_dropout_prob)
if self.use_literal_gnn or self.use_digital_gnn or self.use_digital_gnn or self.use_name_gnn:
self.module_dict['classification_fc1'] = nn.Linear(hidden_size + 128 * 2, vocab_size)
else:
self.module_dict['classification_fc1'] = nn.Linear(hidden_size, vocab_size)
def load_gnn_embedding(self):
if self.use_literal_gnn:
pathA = os.path.join(self.path, 'Literal_embeddingA.npy')
pathB = os.path.join(self.path, 'Literal_embeddingB.npy')
self.Literal_embeddingA = torch.tensor(np.load(pathA), requires_grad=False)
self.Literal_embeddingB = torch.tensor(np.load(pathB), requires_grad=False)
if self.use_digital_gnn:
pathA = os.path.join(self.path, 'Digital_embeddingA.npy')
pathB = os.path.join(self.path, 'Digital_embeddingB.npy')
self.Digital_embeddingA = torch.tensor(np.load(pathA), requires_grad=False)
self.Digital_embeddingB = torch.tensor(np.load(pathB), requires_grad=False)
if self.use_structure_gnn:
pathA = os.path.join(self.path, 'Structure_embeddingA.npy')
pathB = os.path.join(self.path, 'Structure_embeddingB.npy')
self.Structure_embeddingA = torch.tensor(np.load(pathA), requires_grad=False)
self.Structure_embeddingB = torch.tensor(np.load(pathB), requires_grad=False)
if self.use_name_gnn:
pathA = os.path.join(self.path, 'Name_embeddingA.npy')
pathB = os.path.join(self.path, 'Name_embeddingB.npy')
self.Name_embeddingA = torch.tensor(np.load(pathA), requires_grad=False)
self.Name_embeddingB = torch.tensor(np.load(pathB), requires_grad=False)
def encode(self, x, batch_size=256):
dropout = self.module_dict['classification_dropout']
self.bert.eval()
embedding = torch.zeros(x.size(0), 768)
left = 0
while left < x.size(0):
right = min(left + batch_size, x.size(0))
output = self.bert(x[left: right].cuda())
pooler_output, _ = torch.max(output[0], dim=1)
embedding[left: right] = dropout(pooler_output)
left += batch_size
return embedding
def forward(self, x, sample, sentencesA=None, sentencesB=None):
"""Forward function of the models for classification."""
dropout = self.module_dict['classification_dropout']
fc1 = self.module_dict['classification_fc1']
# Sentence features
if self.training and self.finetuning:
self.bert.train()
output = self.bert(x)
cls = output[0][:, 0, :]
pairs = dropout(cls)
output = self.bert(sentencesA)
cls = output[0][:, 0, :]
pairA = dropout(cls)
output = self.bert(sentencesB)
cls = output[0][:, 0, :]
pairB = dropout(cls)
pooled_output = pairs
else:
self.bert.eval()
with torch.no_grad():
output = self.bert(x)
cls = output[0][:, 0, :]
pairs = dropout(cls)
pooled_output = pairs
# Graph features
embeddingA = torch.zeros(sample.size(0), 128, requires_grad=False).cuda().half()
embeddingB = torch.zeros(sample.size(0), 128, requires_grad=False).cuda().half()
if self.use_literal_gnn:
Literal_embeddingA = torch.index_select(self.Literal_embeddingA, 0, sample[:, 0]).cuda().half()
Literal_embeddingB = torch.index_select(self.Literal_embeddingB, 0, sample[:, 1]).cuda().half()
embeddingA += Literal_embeddingA
embeddingB += Literal_embeddingB
if self.use_digital_gnn:
Digital_embeddingA = torch.index_select(self.Digital_embeddingA, 0, sample[:, 0]).cuda().half()
Digital_embeddingB = torch.index_select(self.Digital_embeddingB, 0, sample[:, 1]).cuda().half()
embeddingA += Digital_embeddingA
embeddingB += Digital_embeddingB
if self.use_structure_gnn:
Structure_embeddingA = torch.index_select(self.Structure_embeddingA, 0, sample[:, 0]).cuda().half()
Structure_embeddingB = torch.index_select(self.Structure_embeddingB, 0, sample[:, 1]).cuda().half()
embeddingA += Structure_embeddingA
embeddingB += Structure_embeddingB
if self.use_name_gnn:
Name_embeddingA = torch.index_select(self.Name_embeddingA, 0, sample[:, 0]).cuda().half()
Name_embeddingB = torch.index_select(self.Name_embeddingB, 0, sample[:, 1]).cuda().half()
embeddingA += Name_embeddingA
embeddingB += Name_embeddingB
if self.use_literal_gnn or self.use_digital_gnn or self.use_digital_gnn or self.use_name_gnn:
abs_embedding = torch.abs(embeddingA - embeddingB)
dot_embedding = embeddingA * embeddingB
pooled_output = torch.cat((pooled_output, abs_embedding, dot_embedding), dim=1)
logits = fc1(pooled_output)
y_hat = logits.argmax(-1)
if self.training and self.finetuning:
return logits, y_hat, pairA, pairB
else:
return logits, y_hat