-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgrounded_sam.py
340 lines (308 loc) · 12.9 KB
/
grounded_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import argparse
import json
import os
import copy
import nltk
import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
import numpy as np
import matplotlib.pyplot as plt
# caption anything
from transformers import BlipProcessor, BlipForConditionalGeneration
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def generate_caption(raw_image, processor, blip_model):
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = blip_model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def generate_tags(raw_text):
# generate specific categories in the caption
tags = {'nouns':[], 'adj':[]}
text = nltk.word_tokenize(raw_text)
tagged=nltk.pos_tag(text)
for i in tagged:
if i[1][0] == "N":
tags['nouns'].append(i[0])
elif i[1][0] == "J":
tags['adj'].append(i[0])
return tags
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (num_query, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (num_query, 4)
logits.shape[0]
# filter output box with > box_threshold (match with caption) Language-Guided Query Selection
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
# convert ids to token (filter stop-words in captions to get tokens)
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, pred_phrases, torch.Tensor(scores)
# if iou > 0.9, we consider they are the same box
def IoU(b1, b2):
if b1[2] <= b2[0] or \
b1[3] <= b2[1] or \
b1[0] >= b2[2] or \
b1[1] >= b2[3]:
return 0
b1b2 = np.vstack([b1,b2])
minc = np.min(b1b2, 0)
maxc = np.max(b1b2, 0)
union_area = (maxc[2]-minc[0])*(maxc[3]-minc[1])
int_area = (minc[2]-maxc[0])*(minc[3]-maxc[1])
return float(int_area)/float(union_area)
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def box_process(box, image_pil):
processed_box = box.clone()
size = image_pil.size
H, W = size[1], size[0]
processed_box = processed_box * torch.Tensor([W, H, W, H])
processed_box[:2] = processed_box[:2] - processed_box[2:] / 2
processed_box[2:] = processed_box[:2] + processed_box[2:]
return processed_box
def show_box(box, ax, label, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor=color, facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def save_mask_data(output_dir, caption, mask_list, box_list, label_list):
value = 0 # 0 for background
mask_list = torch.stack(mask_list)
mask_img = torch.zeros(mask_list.shape[-2:])
for idx, mask in enumerate(mask_list):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, 'mask_test.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
json_data = {
'caption': caption,
'mask':[{
'value': value,
'label': 'background'
}]
}
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1]
json_data['mask'].append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.numpy().tolist(),
})
with open(os.path.join(output_dir, 'label_test.json'), 'w') as f:
json.dump(json_data, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--config", type=str, required=True, help="path to config file")
parser.add_argument(
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument(
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
parser.add_argument("--specific_label", nargs='+', required=False, default=[], help="path to image file")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
args = parser.parse_args()
# cfg
config_file = args.config # change the path of the model config file
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
sam_checkpoint = args.sam_checkpoint
image_path = args.input_image
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.box_threshold
device = args.device
specific_label = args.specific_label
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image and process with PIL
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, grounded_checkpoint, device=device)
# visualize raw image
image_pil.save(os.path.join(output_dir, "test.jpg"))
# generate caption and tags for categories and run grounding dino model with captions
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
caption = generate_caption(image_pil, processor, blip_model)
# prepare for object detection
category_texts = []
if len(specific_label) > 0:
# run grounding dino model with specific category
for label in specific_label:
category_texts.append(label)
else:
# run grounding dino model with total category set
category_set = json.load(open('label_words.json'))
for k in category_set:
category_texts.append(category_set[k])
print(f"Caption: {caption}")
tags = generate_tags(caption)
for tag in tags['nouns']:
if tag not in category_texts:
category_texts.append(tag)
total_boxes = []
total_predphrases = []
total_scores = []
for category in category_texts:
boxes_filt, pred_phrases, pred_scores = get_grounding_output(
model, image, category, box_threshold, text_threshold, device=device
)
# fuse those overlap bbox with highest score of label
if boxes_filt.shape[0] > 0:
total_boxes.append(boxes_filt)
total_predphrases.append(pred_phrases)
total_scores.append(pred_scores)
valid_boxes = []
valid_phrases = []
valid_scores = []
valid_categories = set()
# filter those overlapped boxes by nms and process boxes into image size (xyxy)
for boxes_filt, pred_phrases, pred_scores in zip(total_boxes, total_predphrases, total_scores):
for i in range(boxes_filt.shape[0]):
valid_boxes.append(box_process(boxes_filt[i], image_pil))
valid_phrases.append(pred_phrases[i])
valid_scores.append(pred_scores[i])
valid_categories.add(pred_phrases[i].split('(')[0])
valid_boxes = torch.stack(valid_boxes)
valid_scores = torch.stack(valid_scores)
# internal fusion for better recognization
fusion_boxes = []
fusion_scores = []
fusion_phrases = []
for c in valid_categories:
c_boxes = []
c_scores = []
c_phrases = []
for box, phrase, score in zip(valid_boxes, valid_phrases, valid_scores):
if phrase.split('(')[0] == c:
c_boxes.append(box)
c_scores.append(score)
c_phrases.append(phrase)
c_boxes = torch.stack(c_boxes)
c_scores = torch.stack(c_scores)
c_nms_idx = torchvision.ops.nms(c_boxes, c_scores, iou_threshold=0.5).numpy().tolist()
final_boxes = c_boxes[c_nms_idx]
final_phrases = [c_phrases[idx] for idx in c_nms_idx]
final_scores = []
for i in range(final_boxes.shape[0]):
final_score = 0.0
for c_box, c_score in zip(c_boxes, c_scores):
if IoU(c_box.numpy(), final_boxes[i].numpy()) > 0.5:
final_score += c_score.item()
final_scores.append(final_score)
for final_box, final_phrase, final_score in zip(final_boxes, final_phrases, final_scores):
fusion_boxes.append(final_box)
fusion_phrases.append(final_phrase)
fusion_scores.append(torch.tensor(final_score, dtype=torch.float32))
# fusion scores for the same label and same box
valid_boxes = torch.stack(fusion_boxes)
valid_scores = torch.stack(fusion_scores)
valid_phrases = fusion_phrases
nms_idx = torchvision.ops.nms(valid_boxes, valid_scores, iou_threshold=0.5).numpy().tolist()
valid_boxes = valid_boxes[nms_idx]
valid_phrases = [valid_phrases[idx] for idx in nms_idx]
# initialize SAM
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
total_masks = []
# mask with accurate bounding boxes
for valid_box in valid_boxes:
valid_box = valid_box.cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(valid_box, image.shape[:2])
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
total_masks.append(masks)
# visualization image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for masks in total_masks:
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
# non-ambiguity annotation
for valid_box, valid_phrase in zip(valid_boxes, valid_phrases):
show_box(valid_box.numpy(), plt.gca(), valid_phrase, random_color=True)
plt.axis('off')
plt.savefig(os.path.join(output_dir, "annotation_edit_test.jpg"), bbox_inches="tight")
# save for mask annotation data in json
save_mask_data(output_dir, caption, total_masks, valid_boxes, valid_phrases)