forked from mengyou2/DecoulpingNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nerf_helpers.py
703 lines (549 loc) · 24.9 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import os
import torch
import imageio
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Misc utils
def img2mse(x, y, M=None):
if M == None:
return torch.mean((x - y) ** 2)
else:
return torch.sum((x - y) ** 2 * M) / (torch.sum(M) + 1e-8) / x.shape[-1]
def img2mae(x, y, M=None):
if M == None:
return torch.mean(torch.abs(x - y))
else:
return torch.sum(torch.abs(x - y) * M) / (torch.sum(M) + 1e-8) / x.shape[-1]
def L1(x, M=None):
if M == None:
return torch.mean(torch.abs(x))
else:
return torch.sum(torch.abs(x) * M) / (torch.sum(M) + 1e-8) / x.shape[-1]
def L2(x, M=None):
if M == None:
return torch.mean(x ** 2)
else:
return torch.sum((x ** 2) * M) / (torch.sum(M) + 1e-8) / x.shape[-1]
def entropy(x):
return -torch.sum(x * torch.log(x + 1e-19)) / x.shape[0]
def mse2psnr(x): return -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
def to8b(x): return (255 * np.clip(x, 0, 1)).astype(np.uint8)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn,
freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0, input_dims=3):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input': True,
'input_dims': input_dims,
'max_freq_log2': multires-1,
'num_freqs': multires,
'log_sampling': True,
'periodic_fns': [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj): return eo.embed(x)
return embed, embedder_obj.out_dim
# Dynamic NeRF model architecture
class NeRF_d(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirsDyn=True):
"""
"""
super(NeRF_d, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirsDyn = use_viewdirsDyn
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
if self.use_viewdirsDyn:
self.feature_linear = nn.Linear(W, W)
self.alpha_linear = nn.Linear(W, 1)
self.rgb_linear = nn.Linear(W//2, 3)
else:
self.output_linear = nn.Linear(W, output_ch)
self.sf_linear = nn.Linear(W, 6)
self.weight_linear = nn.Linear(W, 1)
def forward(self, x):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
# Scene flow should be unbounded. However, in NDC space the coordinate is
# bounded in [-1, 1].
sf = torch.tanh(self.sf_linear(h))
blending = torch.sigmoid(self.weight_linear(h))
if self.use_viewdirsDyn:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = self.rgb_linear(h)
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return torch.cat([outputs, sf, blending], dim=-1)
# Static NeRF model architecture
class NeRF_s(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=True):
"""
"""
super(NeRF_s, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
if self.use_viewdirs:
self.feature_linear = nn.Linear(W, W)
self.alpha_linear = nn.Linear(W, 1)
self.rgb_linear = nn.Linear(W//2, 3)
else:
self.output_linear = nn.Linear(W, output_ch)
self.weight_linear = nn.Linear(W, 1)
def forward(self, x):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
blending = torch.sigmoid(self.weight_linear(h))
if self.use_viewdirs:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = self.rgb_linear(h)
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return torch.cat([outputs, blending], -1)
def batchify(fn, chunk):
"""Constructs a version of 'fn' that applies to smaller batches.
"""
if chunk is None:
return fn
def ret(inputs):
return torch.cat([fn(inputs[i:i+chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
return ret
def run_network(inputs, viewdirs, fn, embed_fn, embeddirs_fn, netchunk=1024*64):
"""Prepares inputs and applies network 'fn'.
"""
inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]])
embedded = embed_fn(inputs_flat)
if viewdirs is not None:
input_dirs = viewdirs[:, None].expand(inputs[:, :, :3].shape)
input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]])
embedded_dirs = embeddirs_fn(input_dirs_flat)
embedded = torch.cat([embedded, embedded_dirs], -1)
outputs_flat = batchify(fn, netchunk)(embedded)
outputs = torch.reshape(outputs_flat, list(
inputs.shape[:-1]) + [outputs_flat.shape[-1]])
return outputs
def create_nerf(args):
"""Instantiate NeRF's MLP model.
"""
embed_fn_d, input_ch_d = get_embedder(args.multires, args.i_embed, 4)
# 10 * 2 * 4 + 4 = 84
# L * (sin, cos) * (x, y, z, t) + (x, y, z, t)
input_ch_views = 0
embeddirs_fn = None
if args.use_viewdirs:
embeddirs_fn, input_ch_views = get_embedder(
args.multires_views, args.i_embed, 3)
# 4 * 2 * 3 + 3 = 27
# L * (sin, cos) * (3 Cartesian viewing direction unit vector from [theta, phi]) + (3 Cartesian viewing direction unit vector from [theta, phi])
output_ch = 5 if args.N_importance > 0 else 4
skips = [4]
model_d = NeRF_d(D=args.netdepth, W=args.netwidth,
input_ch=input_ch_d, output_ch=output_ch, skips=skips,
input_ch_views=input_ch_views,
use_viewdirsDyn=args.use_viewdirsDyn).to(device)
device_ids = list(range(torch.cuda.device_count()))
model_d = torch.nn.DataParallel(model_d, device_ids=device_ids)
grad_vars = list(model_d.parameters())
embed_fn_s, input_ch_s = get_embedder(args.multires, args.i_embed, 3)
# 10 * 2 * 3 + 3 = 63
# L * (sin, cos) * (x, y, z) + (x, y, z)
model_s = NeRF_s(D=args.netdepth, W=args.netwidth,
input_ch=input_ch_s, output_ch=output_ch, skips=skips,
input_ch_views=input_ch_views,
use_viewdirs=args.use_viewdirs).to(device)
model_s = torch.nn.DataParallel(model_s, device_ids=device_ids)
grad_vars += list(model_s.parameters())
# num_params_d = sum(param.numel() for param in model_d.parameters())
# print(num_params_d)
# num_params_s = sum(param.numel() for param in model_s.parameters())
# print(num_params_s)
# num_params = num_params_s+num_params_d
# print(num_params)
# print(tt)
model_fine = None
if args.N_importance > 0:
raise NotImplementedError
def network_query_fn_d(inputs, viewdirs, network_fn): return run_network(
inputs, viewdirs, network_fn,
embed_fn=embed_fn_d,
embeddirs_fn=embeddirs_fn,
netchunk=args.netchunk)
def network_query_fn_s(inputs, viewdirs, network_fn): return run_network(
inputs, viewdirs, network_fn,
embed_fn=embed_fn_s,
embeddirs_fn=embeddirs_fn,
netchunk=args.netchunk)
render_kwargs_train = {
'network_query_fn_d': network_query_fn_d,
'network_query_fn_s': network_query_fn_s,
'network_fn_d': model_d,
'network_fn_s': model_s,
'perturb': args.perturb,
'N_importance': args.N_importance,
'N_samples': args.N_samples,
'use_viewdirs': args.use_viewdirs,
'raw_noise_std': args.raw_noise_std,
'inference': False,
'DyNeRF_blending': args.DyNeRF_blending,
}
# NDC only good for LLFF-style forward facing data
if args.dataset_type != 'llff' or args.no_ndc:
print('Not ndc!')
render_kwargs_train['ndc'] = False
render_kwargs_train['lindisp'] = args.lindisp
else:
render_kwargs_train['ndc'] = True
render_kwargs_test = {
k: render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
render_kwargs_test['raw_noise_std'] = 0.
render_kwargs_test['inference'] = True
# Create optimizer
optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))
start = 0
basedir = args.basedir
expname = args.expname
if args.ft_path is not None and args.ft_path != 'None':
ckpts = [args.ft_path]
else:
ckpts = [os.path.join(basedir, expname, f) for f in sorted(os.listdir(os.path.join(basedir, expname))) if 'tar' in f]
print('Found ckpts', ckpts)
if len(ckpts) > 0 and not args.no_reload:
ckpt_path = ckpts[-1]
print('Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path)
start = ckpt['global_step'] + 1
# optimizer.load_state_dict(ckpt['optimizer_state_dict'])
model_d.load_state_dict(ckpt['network_fn_d_state_dict'])
model_s.load_state_dict(ckpt['network_fn_s_state_dict'])
print('Resetting step to', start)
if model_fine is not None:
raise NotImplementedError
return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer
# Ray helpers
def get_rays(H, W, focal, c2w):
"""Get ray origins, directions from a pinhole camera."""
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
dirs = torch.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3, :3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3, -1].expand(rays_d.shape)
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
"""Normalized device coordinate rays.
Space such that the canvas is a cube with sides [-1, 1] in each axis.
Args:
H: int. Height in pixels.
W: int. Width in pixels.
focal: float. Focal length of pinhole camera.
near: float or array of shape[batch_size]. Near depth bound for the scene.
rays_o: array of shape [batch_size, 3]. Camera origin.
rays_d: array of shape [batch_size, 3]. Ray direction.
Returns:
rays_o: array of shape [batch_size, 3]. Camera origin in NDC.
rays_d: array of shape [batch_size, 3]. Ray direction in NDC.
"""
# Shift ray origins to near plane
t = -(near + rays_o[..., 2]) / rays_d[..., 2]
rays_o = rays_o + t[..., None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[..., 0] / rays_o[..., 2]
o1 = -1./(H/(2.*focal)) * rays_o[..., 1] / rays_o[..., 2]
o2 = 1. + 2. * near / rays_o[..., 2]
d0 = -1./(W/(2.*focal)) * \
(rays_d[..., 0]/rays_d[..., 2] - rays_o[..., 0]/rays_o[..., 2])
d1 = -1./(H/(2.*focal)) * \
(rays_d[..., 1]/rays_d[..., 2] - rays_o[..., 1]/rays_o[..., 2])
d2 = -2. * near / rays_o[..., 2]
rays_o = torch.stack([o0, o1, o2], -1)
rays_d = torch.stack([d0, d1, d2], -1)
return rays_o, rays_d
def get_grid(H, W, num_img, flows_f, flow_masks_f, flows_b, flow_masks_b):
# |--------------------| |--------------------|
# | j | | v |
# | i * | | u * |
# | | | |
# |--------------------| |--------------------|
i, j = np.meshgrid(np.arange(W, dtype=np.float32),
np.arange(H, dtype=np.float32), indexing='xy')
grid = np.empty((0, H, W, 8), np.float32)
for idx in range(num_img):
grid = np.concatenate((grid, np.stack([i,
j,
flows_f[idx, :, :, 0],
flows_f[idx, :, :, 1],
flow_masks_f[idx, :, :],
flows_b[idx, :, :, 0],
flows_b[idx, :, :, 1],
flow_masks_b[idx, :, :]], -1)[None, ...]))
return grid
def NDC2world(pts, H, W, f):
# NDC coordinate to world coordinate
pts_z = 2 / (torch.clamp(pts[..., 2:], min=-1., max=1-1e-3) - 1)
pts_x = - pts[..., 0:1] * pts_z * W / 2 / f
pts_y = - pts[..., 1:2] * pts_z * H / 2 / f
pts_world = torch.cat([pts_x, pts_y, pts_z], -1)
return pts_world
def render_3d_point(H, W, f, pose, weights, pts):
"""Render 3D position along each ray and project it to the image plane.
"""
c2w = pose
w2c = c2w[:3, :3].transpose(0, 1) # same as np.linalg.inv(c2w[:3, :3])
# Rendered 3D position in NDC coordinate
pts_map_NDC = torch.sum(weights[..., None] * pts, -2)
# NDC coordinate to world coordinate
pts_map_world = NDC2world(pts_map_NDC, H, W, f)
# World coordinate to camera coordinate
# Translate
pts_map_world = pts_map_world - c2w[:, 3]
# Rotate
pts_map_cam = torch.sum(pts_map_world[..., None, :] * w2c[:3, :3], -1)
# Camera coordinate to 2D image coordinate
pts_plane = torch.cat([pts_map_cam[..., 0:1] / (- pts_map_cam[..., 2:]) * f + W * .5,
- pts_map_cam[..., 1:2] / (- pts_map_cam[..., 2:]) * f + H * .5],
-1)
return pts_plane
def induce_flow(H, W, focal, pose_neighbor, weights, pts_3d_neighbor, pts_2d):
# Render 3D position along each ray and project it to the neighbor frame's image plane.
pts_2d_neighbor = render_3d_point(H, W, focal,
pose_neighbor,
weights,
pts_3d_neighbor)
induced_flow = pts_2d_neighbor - pts_2d
return induced_flow
def compute_depth_loss(dyn_depth, gt_depth):
t_d = torch.median(dyn_depth)
s_d = torch.mean(torch.abs(dyn_depth - t_d))
dyn_depth_norm = (dyn_depth - t_d) / s_d
t_gt = torch.median(gt_depth)
s_gt = torch.mean(torch.abs(gt_depth - t_gt))
gt_depth_norm = (gt_depth - t_gt) / s_gt
return torch.mean((dyn_depth_norm - gt_depth_norm) ** 2)
def normalize_depth(depth):
return torch.clamp(depth / percentile(depth, 97), 0., 1.)
def percentile(t, q):
"""
Return the ``q``-th percentile of the flattened input tensor's data.
CAUTION:
* Needs PyTorch >= 1.1.0, as ``torch.kthvalue()`` is used.
* Values are not interpolated, which corresponds to
``numpy.percentile(..., interpolation="nearest")``.
:param t: Input tensor.
:param q: Percentile to compute, which must be between 0 and 100 inclusive.
:return: Resulting value (scalar).
"""
k = 1 + round(.01 * float(q) * (t.numel() - 1))
result = t.view(-1).kthvalue(k).values.item()
return result
def save_res(moviebase, ret, fps=None):
if fps == None:
if len(ret['rgbs']) < 25:
fps = 4
else:
fps = 24
for k in ret:
if 'rgbs' in k:
imageio.mimwrite(moviebase + k + '.mp4',
to8b(ret[k]), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(ret[k]), format='gif', fps=fps)
elif 'depths' in k:
imageio.mimwrite(moviebase + k + '.mp4',
to8b(ret[k]), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(ret[k]), format='gif', fps=fps)
elif 'disps' in k:
imageio.mimwrite(moviebase + k + '.mp4',
to8b(ret[k] / np.max(ret[k])), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(ret[k] / np.max(ret[k])), format='gif', fps=fps)
elif 'sceneflow_' in k:
# print(norm_sf(ret[k]).shape)
# print(tt)
imageio.mimwrite(moviebase + k + '.mp4',
to8b(norm_sf(ret[k])), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(norm_sf(ret[k])), format='gif', fps=fps)
elif 'flows' in k:
imageio.mimwrite(moviebase + k + '.mp4',
ret[k], fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# ret[k], format='gif', fps=fps)
elif 'dynamicness' in k:
imageio.mimwrite(moviebase + k + '.mp4',
to8b(ret[k]), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(ret[k]), format='gif', fps=fps)
elif 'disocclusions' in k:
imageio.mimwrite(moviebase + k + '.mp4',
to8b(ret[k][..., 0]), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(ret[k][..., 0]), format='gif', fps=fps)
elif 'blending' in k:
blending = ret[k][..., None]
blending = np.moveaxis(blending, [0, 1, 2, 3], [1, 2, 0, 3])
imageio.mimwrite(moviebase + k + '.mp4',
to8b(blending), fps=fps, quality=8, macro_block_size=1)
# imageio.mimsave(moviebase + k + '.gif',
# to8b(blending), format='gif', fps=fps)
elif 'weights' in k:
imageio.mimwrite(moviebase + k + '.mp4',
to8b(ret[k]), fps=fps, quality=8, macro_block_size=1)
else:
raise NotImplementedError
def norm_sf_channel(sf_ch):
# Make sure zero scene flow is not shifted
sf_ch[sf_ch >= 0] = sf_ch[sf_ch >= 0] / sf_ch.max() / 2
sf_ch[sf_ch < 0] = sf_ch[sf_ch < 0] / np.abs(sf_ch.min()) / 2
sf_ch = sf_ch + 0.5
return sf_ch
def norm_sf(sf):
sf = np.concatenate((norm_sf_channel(sf[..., 0:1]),
norm_sf_channel(sf[..., 1:2]),
norm_sf_channel(sf[..., 2:3])), -1)
sf = np.moveaxis(sf, [0, 1, 2, 3], [1, 2, 0, 3])
return sf
# Spatial smoothness (adapted from NSFF)
def compute_sf_smooth_s_loss(pts1, pts2, H, W, f):
N_samples = pts1.shape[1]
# NDC coordinate to world coordinate
pts1_world = NDC2world(pts1[..., :int(N_samples * 0.95), :], H, W, f)
pts2_world = NDC2world(pts2[..., :int(N_samples * 0.95), :], H, W, f)
# scene flow in world coordinate
scene_flow_world = pts1_world - pts2_world
return L1(scene_flow_world[..., :-1, :] - scene_flow_world[..., 1:, :])
# Temporal smoothness
def compute_sf_smooth_loss(pts, pts_f, pts_b, H, W, f):
N_samples = pts.shape[1]
pts_world = NDC2world(pts[..., :int(N_samples * 0.9), :], H, W, f)
pts_f_world = NDC2world(pts_f[..., :int(N_samples * 0.9), :], H, W, f)
pts_b_world = NDC2world(pts_b[..., :int(N_samples * 0.9), :], H, W, f)
# scene flow in world coordinate
sceneflow_f = pts_f_world - pts_world
sceneflow_b = pts_b_world - pts_world
# For a 3D point, its forward and backward sceneflow should be opposite.
return L2(sceneflow_f + sceneflow_b)
def gradient_x(img):
return img[:, :, :, :-1] - img[:, :, :, 1:]
def gradient_y(img):
return img[:, :, :-1, :] - img[:, :, 1:, :]
def gradient(pred):
D_dy = pred[:, :, 1:, :] - pred[:, :, :-1, :]
D_dx = pred[:, :, :, 1:] - pred[:, :, :, :-1]
return D_dx, D_dy
def depth_smoothness(depth):
"""Computes image-aware depth smoothness loss."""
depth = depth.unsqueeze(0).unsqueeze(1)
# img = img.unsqueeze(0)
depth_dx = gradient_x(depth)
depth_dy = gradient_y(depth)
# image_dx = gradient_x(img)
# image_dy = gradient_y(img)
# weights_x = torch.exp(-(lambda_wt * torch.mean(torch.abs(image_dx), 3, keepdim=True)))
# weights_y = torch.exp(-(lambda_wt * torch.mean(torch.abs(image_dy), 3, keepdim=True)))
smoothness_x = depth_dx
smoothness_y = depth_dy
# smoothness_x = depth_dx * weights_x
# smoothness_y = depth_dy * weights_y
return torch.mean(torch.abs(smoothness_x)) + torch.mean(torch.abs(smoothness_y))
def warp_comparsion(img1,img2,d1,p1,p2,H,W,focal):
d1 = -1 / (d1-1)
# print(tt)
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
dirs = torch.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -torch.ones_like(i)], -1)
dirs = dirs*(d1.view(H,W).unsqueeze(2))
# Rotate ray directions from camera frame to the world frame
coords = torch.sum(dirs[..., np.newaxis, :] * p1[:3, :3], -1) + p1[:3, 3]# dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
# rays_o = c2w[:3, -1].expand(rays_d.shape)
c2w = p2
w2c = c2w[:3, :3].transpose(0, 1) # same as np.linalg.inv(c2w[:3, :3])
coords_ = coords - p2[:3, 3]
# Rotate
pts_map_cam = torch.sum(coords_[..., None, :] * w2c[:3, :3], -1)
# Camera coordinate to 2D image coordinate
x_norm = 2*(pts_map_cam[..., 0:1] / (- pts_map_cam[..., 2:]) * focal + W * .5)/(W-1)-1
y_norm = 2*(- pts_map_cam[..., 1:2] / (- pts_map_cam[..., 2:]) * focal + H * .5)/(H-1)-1
pts_plane = torch.cat([x_norm,y_norm], -1)
mask = ((x_norm > 1)+(x_norm < -1)+(y_norm < -1)+(y_norm > 1)).detach()
mask = mask.permute(2,0,1).unsqueeze(1).repeat(1,3,1,1)
img1_warped = F.grid_sample(img2.unsqueeze(0).reshape(1,H,W,3).permute(0,3,1,2), pts_plane.unsqueeze(0), padding_mode='border')
reconstruction_loss = compute_reconstr_loss(img1_warped, img1.unsqueeze(0).reshape(1,H,W,3).permute(0,3,1,2), mask, simple=False)
return reconstruction_loss,img1_warped
def compute_reconstr_loss(warped, ref, mask, simple=True):
if simple:
return F.smooth_l1_loss(warped*mask, ref*mask, reduction='mean')
else:
alpha = 0.5
ref_dx, ref_dy = gradient(ref * mask)
warped_dx, warped_dy = gradient(warped * mask)
photo_loss = F.smooth_l1_loss(warped*mask, ref*mask, reduction='mean')
grad_loss = F.smooth_l1_loss(warped_dx, ref_dx, reduction='mean') + \
F.smooth_l1_loss(warped_dy, ref_dy, reduction='mean')
return (1 - alpha) * photo_loss + alpha * grad_loss