-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
284 lines (239 loc) · 9.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
import numpy as np
import torch.nn as nn
import gym
import os
from collections import deque
import random
import copy
import skimage
import torch.multiprocessing as mp
class eval_mode(object):
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
tau * param.data + (1 - tau) * target_param.data
)
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def module_hash(module):
result = 0
for tensor in module.state_dict().values():
result += tensor.sum().item()
return result
def make_dir(dir_path):
try:
os.mkdir(dir_path)
except OSError:
pass
return dir_path
def preprocess_obs(obs, bits=5):
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
bins = 2**bits
assert obs.dtype == torch.float32
if bits < 8:
obs = torch.floor(obs / 2**(8 - bits))
obs = obs / bins
obs = obs + torch.rand_like(obs) / bins
obs = obs - 0.5
return obs
def random_augment(obses, rad_height, rad_width):
n, c, h, w = obses.shape
_h = h - 2 * rad_height
_w = w - 2 * rad_width
w1 = torch.randint(0, rad_width + 1, (n,))
h1 = torch.randint(0, rad_height + 1, (n,))
cropped_obses = torch.empty((n, c, _h, _w), device=obses.device).float()
for i, (obs, w11, h11) in enumerate(zip(obses, w1, h1)):
cropped_obses[i][:] = obs[:, h11:h11 + _h, w11:w11 + _w]
return cropped_obses
def evaluate(env, agent, num_episodes, L, step, args):
for i in range(num_episodes):
obs = env.reset()
#video.init(enabled=(i == 0))
done = False
episode_reward = 0
while not done:
with eval_mode(agent):
obs = obs[:, args.rad_offset: args.image_size + args.rad_offset, args.rad_offset: args.image_size + args.rad_offset]
action = agent.select_action(obs)
obs, reward, done, _ = env.step(action)
#video.record(env)
episode_reward += reward
#video.save('%d.mp4' % step)
L.log('eval/episode_reward', episode_reward, step)
L.dump(step)
class BufferQueue(object):
"""Queue to transfer arbitrary number of data between processes"""
def __init__(self, num_items, max_size=10, start_method='spawn'):
self.max_size = max_size
ctx = mp.get_context(start_method)
self.queues = [ctx.Queue(max_size) for _ in range(num_items)]
def put(self, *items):
for queue, item in zip(self.queues, items):
queue.put(item)
def get(self):
return [queue.get() for queue in self.queues]
class RadReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(self, obs_shape, state_shape, action_shape, capacity, batch_size, rad_offset, device):
self.capacity = capacity
self.batch_size = batch_size
self.device = device
# the proprioceptive obs is stored as float32, pixels obs as uint8
#obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
self.ignore_obs = True
self.ignore_state = True
if obs_shape[-1] != 0:
self.obses = np.empty((capacity, *obs_shape), dtype=np.uint8)
self.next_obses = np.empty((capacity, *obs_shape), dtype=np.uint8)
self.ignore_obs = False
self.rad_h = round(rad_offset * obs_shape[1])
self.rad_w = round(rad_offset * obs_shape[2])
if state_shape[-1] != 0:
self.states = np.empty((capacity, *state_shape), dtype=np.float32)
self.next_states = np.empty((capacity, *state_shape), dtype=np.float32)
self.ignore_state = False
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.rewards = np.empty((capacity, 1), dtype=np.float32)
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
self.idx = 0
self.last_save = 0
self.full = False
def add(self, obs, state, action, reward, next_obs, next_state, done):
if not self.ignore_obs:
self.obses[self.idx] = obs
self.next_obses[self.idx] = next_obs
if not self.ignore_state:
self.states[self.idx]= state
self.next_states[self.idx]= next_state
self.actions[self.idx]= action
self.rewards[self.idx]= reward
self.not_dones[self.idx]= not done
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def sample(self):
idxs = np.random.randint(
0, self.capacity if self.full else self.idx, size=self.batch_size
)
if self.ignore_obs:
obses = None
next_obses = None
else:
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
next_obses = torch.as_tensor(self.next_obses[idxs], device=self.device).float()
obses = random_augment(obses, self.rad_h, self.rad_w)
next_obses = random_augment(next_obses, self.rad_h, self.rad_w)
if self.ignore_state:
states = None
next_states = None
else:
states = torch.as_tensor(self.states[idxs], device=self.device).float()
next_states = torch.as_tensor(self.next_states[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
return obses, states, actions, rewards, next_obses, next_states, not_dones
import time
import threading
import cv2 as cv
class AsyncRadReplayBuffer(RadReplayBuffer):
def __init__(self, obs_shape, state_shape, action_shape, capacity, batch_size, rad_offset,
device, input_queue, output_queue, init_step, max_update_freq, sync_queue):
super(AsyncRadReplayBuffer, self).__init__(obs_shape, state_shape, action_shape, capacity, batch_size,
rad_offset, device)
self.init_step = init_step
self._step = 0
self._send_counter = 0
self._max_update_freq = max_update_freq
self.input_queue = input_queue
self.output_queue = output_queue
self.sync_queue = sync_queue
self.start_thread()
def start_thread(self):
threading.Thread(target=self.recv_from_env).start()
threading.Thread(target=self.send_to_update).start()
def recv_from_env(self):
while True:
self.add(*self.input_queue.get())
self._step += 1
def send_to_update(self):
while True:
if self._send_counter > (self._step - self.init_step) * self._max_update_freq:
time.sleep(0.1)
else:
if self.sync_queue is not None:
self.sync_queue.get()
self.output_queue.put(tuple(self.sample()))
self._send_counter += 1
def save(self, save_dir):
if self.idx == self.last_save:
return
path = os.path.join(save_dir, '%d_%d.pt' % (self.last_save, self.idx))
payload = [
self.obses[self.last_save:self.idx],
self.states[self.last_save:self.idx],
self.next_obses[self.last_save:self.idx],
self.next_states[self.last_save:self.idx],
self.actions[self.last_save:self.idx],
self.rewards[self.last_save:self.idx],
self.not_dones[self.last_save:self.idx]
]
self.last_save = self.idx
torch.save(payload, path)
def load(self, save_dir):
chunks = os.listdir(save_dir)
chucks = sorted(chunks, key=lambda x: int(x.split('_')[0]))
for chunk in chucks:
start, end = [int(x) for x in chunk.split('.')[0].split('_')]
path = os.path.join(save_dir, chunk)
payload = torch.load(path)
assert self.idx == start
self.obses[start:end] = payload[0]
self.states[start:end] = payload[1]
self.next_obses[start:end] = payload[2]
self.next_states[start:end] = payload[3]
self.actions[start:end] = payload[4]
self.rewards[start:end] = payload[5]
self.not_dones[start:end] = payload[6]
self.idx = end
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
gym.Wrapper.__init__(self, env)
self._k = k
self._frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = gym.spaces.Box(
low=0,
high=1,
shape=((shp[0] * k,) + shp[1:]),
dtype=env.observation_space.dtype
)
self._max_episode_steps = env._max_episode_steps
def reset(self):
obs = self.env.reset()
for _ in range(self._k):
self._frames.append(obs)
return self._get_obs()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self._frames.append(obs)
return self._get_obs(), reward, done, info
def _get_obs(self):
assert len(self._frames) == self._k
return np.concatenate(list(self._frames), axis=0)