-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDense_layer.py
178 lines (96 loc) · 4.35 KB
/
Dense_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import os
class Dense_layer:
def __init__(self,activation,backward_activation,layer_dims=[10,5]):
"""
layer_dims : list -- indicating how many hidden units in each layer (**notice that layer_dims[0] is dimensions of input layer not hidden layer)
activation -- list -- a list containing functions (**notice that activation[0] is the activation function of first hidden layer)
backward_activation -- a list containing function that calcualte derivative of activation of corresponding layer
"""
self.layer_dims = layer_dims[:]
self.activation = activation[:]
self.backward_activation = backward_activation[:]
def initialize_parameters(self):
length = len(self.layer_dims)
parameters = {}
for l in range(1,length):
para_W = "W" + str(l)
para_b = "b" + str(l)
parameters[para_W] = np.random.randn(layer_dims[l],layer_dims[l-1])
parameters[para_b] = np.zeros((layer_dims[l],1))
return parameters
def initialize_Adam(self,parameters):
v = {}
s = {}
for para in parameters.keys():
grad = "d" + para
v[grad] = np.zeros_like(parameters[para])
s[grad] = np.zeros_like(parameters[para])
return v,s
def update_parameters_with_Adam(self,parameters,gradients,v,s,L,learning_rate=0.01,beta1=0.9,beta2=0.999,eplison=1e-8):
v_corrected = {}
s_corrected = {}
for para in parameters.keys():
grad = "d"+para
v[grad] = beta1*v[grad]+(1-beta1)*gradients[grad]
s[grad] = beta2*s[grad]+(1-beta2)*(gradients[grad]**2)
v_corrected = v[grad]/(1-beta1**L)
s_corrected = s[grad]/(1-beta2**L)
parameters[para] -= learning_rate*v_corrected/np.sqrt(s_corrected+eplison)
return parameters,v,s
def step_forward(self,a_prev,WL,bL,act_func_L):
z = np.dot(WL,a_prev)+bL
a_next = act_func_L(z)
cache_L = (a_next,a_prev,z,WL,bL)
return a_next,cache_L
def forward_propagation(self,a0,parameters):
length = len(self.layer_dims)
a_prev = a0
a = []
cache = []
for l in range(1,length):
a_prev,cache_L = self.step_forward(a_prev,parameters["W"+str(l)],parameters["b"+str(l)],self.activation[l-1])
a.append(a_prev)
cache.append(cache_L)
return a,cache
def step_backward(self,da_next,backward_activation_L,cache_L):
"""
cache_L: (a_next,a_prev,z,WL,bL)
"""
a_next,a_prev,z,WL,bL = cache_L
m = a_prev.shape[1]
dZ = backward_activation_L(z) * da_next
dW = np.dot(dZ,a_prev.T)/m
db = np.sum(dZ,axis=1,keepdims=True)/m
da_prev = np.dot(WL.T,dZ)
return da_prev,dW,db
def backward_propagation(self,dAL,cache):
length = len(self.layer_dims)
da_next = dAL
gradients = {}
for l in reversed(range(1,length)):
grad_W = "dW"+str(l)
grad_b = "db"+str(l)
grad_A = "dA"+str(l-1)
cache_L = cache[l-1]
da_next,dW,db = self.step_backward(da_next,self.backward_activation[l-1],cache_L)
gradients[grad_A] = da_next
gradients[grad_W] = dW
gradients[grad_b] = db
return gradients
def optimize(self,a0,parameters,v,s,L,learning_rate=0.01,beta1=0.9,beta2=0.999,eplison=1e-8):
#forward propogation
a,cache = self.forward_propagation(a0,parameters)
#calculate dAL
#backward propogation
gradients = self.back_propagation(dAL,cache)
#update parameters
parameters,v,s = self.update_parameters_with_Adam(parameters,gradients,v,s,L,learning_rate=0.01,beta1=0.9,beta2=0.999,eplison=1e-8)
return parameters,a[-1],v,s
def model(self,X,Y,iterations=100,learning_rate=0.01,beta1=0.9,beta2=0.999,eplison=1e-8):
parameters = self.initialize_parameters()
v,s = self.initialize_Adam(parameters)
#calculate first dAL
for i in range(iterations):
parameters,aL,v,s = self.optimize(a0,parameters,v,s,L,learning_rate=0.01,beta1=0.9,beta2=0.999,eplison=1e-8)
return parameters,aL