forked from 340Lab/serverless_sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproxy_env2.py
250 lines (210 loc) · 8.02 KB
/
proxy_env2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
CUR_FPATH = os.path.abspath(__file__)
CUR_FDIR = os.path.dirname(CUR_FPATH)
# chdir to the directory of this script
os.chdir(CUR_FDIR)
import requests
import numpy as np
import json
from pprint import pprint
from gym.spaces import Box
from numpy import uint8
import serverless_sim
import random
OBSERVATION_N = 80
SIM_URL = "http://127.0.0.1:3000/"
ACTION_SPACE_LOW = 0
ACTION_SPACE_HIGH = 1
class ProxyEnv2:
url = SIM_URL
multi_agent_cnt = 1
multi_agent_obs = np.zeros((10,))
action_space = type('', (object,), {
"low": [ACTION_SPACE_LOW],
"high": [ACTION_SPACE_HIGH],
"shape": [1],
"n": 12})()
spec = type('', (object,), {"id": "proxy_env"})()
observation_space = Box(-1, np.Inf,
(1, OBSERVATION_N, OBSERVATION_N), np.float32)
obs = np.zeros((1, OBSERVATION_N, OBSERVATION_N))
step_cnt = 0
# according to network config
# pub struct Config {
# /// for the different algos, should use the same seed
# pub rand_seed: String,
# /// low middle high
# pub request_freq: String,
# /// dag type: single, chain, dag, mix
# pub dag_type: String,
# /// cold start: high, low, mix
# pub cold_start: String,
# /// cpu, data, mix
# pub fn_type: String,
# /// each stage control algorithm settings
# pub es: ESConfig,
# }
config = {
# /// "ai", "lass", "hpa", "es"
"rand_seed": "",
"request_freq": "low",
"dag_type": "single",
"cold_start": "high",
"fn_type": "cpu",
"no_log": False,
# // optional
"es": {
# // ai, lass, hpa
"up": "ai",
# // no, ai, rule
"down": "ai",
# // rule,ai,faasflow
"sche": "ai",
# direct, smooth_30, smooth_100
"down_smooth": "",
# sac ppo mat
"ai_type": "",
},
}
reset_cnt = 0
def typekey(self):
if "es" in self.config:
return self.config["plan"]+"_"+self.config["es"]["up"]+"_"+self.config["es"]["down"]+"_"+self.config["es"]["sche"]
return self.config["plan"]
def _rule_request_freq(self):
# print("request_freq",self.config["request_freq"])
assert self.config["request_freq"] in ["middle", "low", "high"]
return self
def _rule_dag_type(self):
assert self.config["dag_type"] in ["single", "chain", "dag", "mix"]
return self
def _rule_cold_start(self):
assert self.config["cold_start"] in ["high"]
return self
def _rule_fn_type(self):
assert self.config["fn_type"] in ["cpu", "data"]
return self
def _rule_es(self):
allowed_up = ["ai", "lass", "fnsche", "hpa", "faasflow", "no"]
allowed_down = ["ai", "lass", "fnsche", "hpa", "faasflow", "no"]
allowed_sche = ["rule", "fnsche", "faasflow", "rule_prewarm_succ",
"round_robin", "random", "load_least", "gofs", "pass","time"]
up_down_must_same = ["ai", "lass", "hpa", "faasflow", "fnsche"]
non_scaler_sche = ["fnsche", "faasflow"]
config = self.config
assert config["es"]["up"] in allowed_up
assert config["es"]["down"] in allowed_down
assert config["es"]["sche"] in allowed_sche
assert config["es"]["down_smooth"] in [
"direct", "smooth_30", "smooth_100"]
if config["es"]["up"] in ["ai"]:
assert config["es"]["ai_type"] in ["sac", "ppo", "mat", "ppo_hrf"]
if config["es"]["up"] in up_down_must_same:
assert config["es"]["up"] == config["es"]["down"]
if config["es"]["sche"] in non_scaler_sche:
assert "no" == config["es"]["up"]
def __init__(self, do_change_seed, config, multi_agent=False):
self.config = config
self.begin_seed = config["rand_seed"]
self.do_change_seed = do_change_seed
self._rule_cold_start() \
._rule_dag_type() \
._rule_fn_type() \
._rule_request_freq() \
._rule_es()
self.multi_agent = multi_agent
def __request(self, api, data=None):
# print("request: ",self.url+api,", data: ",data)
if data is None:
return requests.post(self.url+api)
else:
return requests.post(self.url+api, json=data)
def reset(self):
self.reset_cnt += 1
def generate_random_str(randomlength=16):
"""
生成一个指定长度的随机字符串
"""
random_str = ''
base_str = 'ABCDEFGHIGKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz0123456789'
length = len(base_str) - 1
for i in range(randomlength):
random_str += base_str[random.randint(0, length)]
return random_str
if self.do_change_seed:
if self.reset_cnt % 3 == 0:
self.config["rand_seed"] = self.begin_seed
self.config["no_log"] = False
else:
self.config["rand_seed"] = generate_random_str()
self.config["no_log"] = True
if self.reset_cnt > 20 and "no_perform_cost_rate_score" in self.config["es"]:
self.config["es"].pop("no_perform_cost_rate_score")
if self.reset_cnt > 7 and "fit_hpa" in self.config["es"]:
self.config["es"].pop("fit_hpa")
self.step_cnt = 0
self.__request("reset", self.config)
if self.multi_agent:
return [self.multi_agent_obs for _ in range(self.n_agents)]
else:
return self.obs
# serverless_sim.fn_reset(json.dumps(self.config))
def step(self, action):
if self.multi_agent:
return self.multi_agent_step(action)
else:
return self.single_agent_step(action)
def multi_agent_step(self, action):
res = self.__request("step", {"action": action, "config": self.config})
print("res", res)
res = res.json()
def single_agent_step(self, action):
print("single_agent_step", action)
# res=serverless_sim.fn_step(json.dumps({"action":action,"config":self.config}))
res = self.__request("step", {"action": action, "config": self.config})
print("res", res)
res = res.json()
# res=json.loads(res)
# print("res: ",res)
# print("res: ",res.status_code,res.text)
# res=res.json()
# return res["observation"],res["reward"],res["done"],res["info"]
state_arr = json.loads(res["state"])
print("state arr len", len(state_arr), "current step",
self.step_cnt, "reset_cnt", self.reset_cnt)
# state_arr
# for c in state_str:
# state_arr.append(ord(c))
if len(state_arr) < OBSERVATION_N*OBSERVATION_N:
for i in range(OBSERVATION_N*OBSERVATION_N-len(state_arr)):
state_arr.append(0)
# elif len(state_arr) > OBSERVATION_N*OBSERVATION_N:
# print("Warning: state length is greater than OBSERVATION_N, truncating, info may be lost",len(state_arr))
# state_arr=state_arr[:OBSERVATION_N*OBSERVATION_N]
state_mat = np.reshape(state_arr, self.obs.shape)
self.step_cnt += 1
# if self.step_cnt==10000:
# res["stop"]=True
return state_mat, res["score"], res["stop"], res["info"]
# class EnvForAI:
# env=ProxyEnv2({
# "rand_seed":"hello",
# "request_freq":"middle",
# "dag_type":"single",
# "cold_start":"high",
# "fn_type":"cpu",
# "es": {
# "up":"fnsche",
# "down":"fnsche",
# "sche":"fnsche",
# },
# })
# def __init__(self):
# self.observation_space=self.env.observation_space
# self.action_space=self.env.action_space
# self.spec=self.env.spec
# def step(self,action):
# return self.env.step(action)
# def reset(self):
# self.env.config["rand_seed"]=generate_random_str()
# return self.env.reset()