-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
49 lines (44 loc) · 2.71 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from torch.nn.utils.rnn import pad_sequence
class AudioDataLoader(torch.utils.data.DataLoader):
def __init__(self, pad_token_id, bos_token_id, n_mels, *args, **kwargs):
"""
Creates a data loader for AudioDatasets.
"""
super(AudioDataLoader, self).__init__(*args, **kwargs)
self.collate_fn = self._collate_fn
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.n_mels = n_mels
def _collate_fn(self, batch):
# batch : input_values: log_melspect, ["grapheme_labels"]["input_ids"]: tokenized labels
# input_values shape: (seq, mel_cnt)
input_audios = [s["input_values"] for s in batch]
audio_lengths = [s["input_values"].size(0) for s in batch]
targets = [torch.as_tensor(s["input_ids"], dtype=torch.int32) for s in batch]
target_lengths = [len(s["input_ids"]) for s in batch]
tensor_audio_lengths = torch.IntTensor(audio_lengths)
target_lengths = torch.IntTensor(target_lengths)
# input_ids: (,token)
input_texts = list()
for s in batch:
input_texts.append(
torch.cat(
[
torch.full(size=[1], fill_value=self.pad_token_id),
torch.as_tensor(s["input_ids"], dtype=torch.int32),
]
)
)
text_lengths = [len(s) for s in input_texts]
assert self.n_mels == batch[0]["input_values"].size(-1), "config의 feature shape과 실제 데이터의 feature가 다름"
for s in range(len(target_lengths)):
assert text_lengths[s] == target_lengths[s] + 1, "prednet의 Input은 targets_lengts에 +1(blank)여야 합니다. 데이터 오류!"
input_audios = pad_sequence(input_audios, batch_first=True, padding_value=self.pad_token_id)
input_texts = pad_sequence(input_texts, batch_first=True, padding_value=self.pad_token_id)
targets = pad_sequence(targets, batch_first=True, padding_value=self.pad_token_id)
# input_audios, tensor_audio_lengths, input_texts, targets, audio_lengths, target_lengths: on_cuda
# audio_lengths, text_lengths : on_cpu or not tensor
# pack_pad를 진행하기위한 lengths계산은 무조건 CPU에서 동작해야하는데, rnntloss를 계산하기위한 lengths는 무조건 Tensor여야 한다.
# 여기서 Tensor로 집어넣으면 무조건 gpu로 가기때문에, .cpu() .cuda()로 옮겨다니면 오버헤드가 발생할 여지가 있으므로, 애시당초에 여러 버전의 lengths를 주기로 했다.
return input_audios, audio_lengths, tensor_audio_lengths, input_texts, text_lengths, targets, target_lengths