-
Notifications
You must be signed in to change notification settings - Fork 1
/
nucDiv.R
94 lines (73 loc) · 4.21 KB
/
nucDiv.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# A function to calculate nucleotide diversity for different ecotypes using SNP data in a specified genomic region.
# Change to the directory of ECOGEMS using the setwd function of R.
# Usage: type the next three lines in R Console without the leading #
# source("Global.R")
# nuc.div.plot <- nucDiv(chr="chr07", nuc.start=2839000, nuc.end=2840000, step=10, groups=c("Wild", "Cultivar"), numerator="Wild", denominator="Cultivar", mutType = NULL, snpSites = NULL)
# grid.draw(grid.arrange(nuc.div.plot[[1]], nuc.div.plot[[2]], ncol=1, heights=c(2.3, 1)))
# Then the nucleotide diversity in this region would be displayed in a plotting device.
# For more info, please check the Diversity menu of the ECOGEMS database.
nucDiv <- function(chr="chr07", nuc.start=2800000, nuc.end=2900000, step=10,
groups=c("Wild", "Cultivar"), numerator="Wild", denominator="Cultivar",
mutType = NULL, snpSites = NULL) {
data <- fetchSnp(chr=chr, start=nuc.start, end=nuc.end, mutType = mutType)[[1]]
if (!is.null(snpSites) && length(snpSites)>=1) {
data <- data[rownames(data) %in% snpSites, , drop=FALSE]
}
dat.mat <- t(data)
dat.mat[is.na(dat.mat)] <- "-"
dat.bin <- ape::as.DNAbin(dat.mat)
div.group <- lapply(unique(c(groups, numerator, denominator)), function(x){
x.accession <- readLines(paste0("./data/", x, ".acc.txt"))
dat <- dat.bin[rownames(dat.bin) %in% x.accession, ]
nuc.div <- lapply(seq(1, ncol(dat.bin), by=step), function(i){
dat.i <- dat[, i:min(i+step-1, ncol(dat.bin))]
# if(!is.matrix(dat.i)) {return(NULL)}
div <- pegas::nuc.div(dat.i, pairwise.deletion = TRUE)
return(div)
})
nuc.div.df <- do.call(rbind, nuc.div)
nuc.div.df <- data.frame(nuc.div.df, stringsAsFactors = FALSE)
})
div.group.df <- do.call(cbind, div.group)
names(div.group.df) <- unique(c(groups, numerator, denominator))
dat.pos <- as.numeric(substr(colnames(dat.mat), 3, 10))
nuc.pos <- dat.pos[seq(1, ncol(dat.mat), by=step)][1:nrow(div.group.df)]
div.group.df$pos <- nuc.pos
diVTxt <<- div.group.df
diVTxt <<- diVTxt[, c(ncol(diVTxt), 1:(ncol(diVTxt)-1))]
names(diVTxt)[1] <<- "position"
div.group.df.1 <- div.group.df[, c("pos", groups)]
div.group.df.2 <- div.group.df[, c("pos", numerator, denominator)]
div.group.df.1.long <- tidyr::gather(div.group.df.1, group, diversity, -pos)
div.group.df.2.long <- tidyr::gather(div.group.df.2, group, diversity, -pos)
nuc.chr <- substr(chr, 4, 5)
nuc.gene.info <- gene.info
nuc.gene.info$chr <- substr(nuc.gene.info$id, 7, 8)
nuc.gene.info <- nuc.gene.info[nuc.gene.info$chr==nuc.chr &
nuc.gene.info$start>=as.numeric(nuc.start) &
nuc.gene.info$end<=as.numeric(nuc.end), ]
p1 <- ggplot2::ggplot(div.group.df.1.long) + ggplot2::geom_line(ggplot2::aes(x=pos, y=diversity, color=group))
p1 <- p1 + ggplot2::xlab("") + ggplot2::ylab("Nucleotide diversity")
p1 <- p1 + ggplot2::theme_classic() + ggplot2::ylim(-0.14, NA)
p1 <- p1 + ggplot2::theme(legend.title = ggplot2::element_blank())
p1 <- p1 + ggplot2::theme(legend.position="top")
if (nrow(nuc.gene.info)>=1) {
p1 <- p1 + ggplot2::geom_rect(ggplot2::aes(xmin=start, xmax=end, ymin=-0.05, ymax=-0.07), color="grey40", data=nuc.gene.info)
p1 <- p1 + ggplot2::geom_text(ggplot2::aes(x=(start+end)/2, y=-0.12, label=id), angle=50, size=2.5, data=nuc.gene.info)
}
p1 <- p1 + ggplot2::theme(axis.ticks.x = ggplot2::element_blank(), axis.text.x = ggplot2::element_blank(),
axis.line.x = ggplot2::element_blank())
div.group.df.2$value <- div.group.df.2[,numerator]/div.group.df.2[,denominator]
p2 <- ggplot2::ggplot(div.group.df.2) + ggplot2::geom_line(ggplot2::aes(x=pos, y=value))
p2 <- p2 + ggplot2::xlab("genomic position") + ggplot2::ylab(paste0(numerator, "/", denominator))
p2 <- p2 + ggplot2::theme_classic()
gp1 <- ggplot2::ggplotGrob(p1)
gp2 <- ggplot2::ggplotGrob(p2)
maxWidth = grid::unit.pmax(gp1$widths[2:5], gp2$widths[2:5])
gp1$widths[2:5] <- as.list(maxWidth)
gp2$widths[2:5] <- as.list(maxWidth)
return(list(gp1, gp2))
# grid.draw(
# grid.arrange(gp1, gp2, ncol=1, heights=c(2.3, 1))
# )
}