-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_transformation_gif.py
138 lines (115 loc) · 4.47 KB
/
generate_transformation_gif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Generate a transformation GIF using the FluxPipeline.
This script generates a series of images based on a list of prompts and creates a GIF that shows a transformation from one image to another. The script uses the FluxPipeline to generate the images and the PIL library to create the GIF.
"""
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import torch
from PIL import Image
from pathlib import Path
from typing import List
from config.env_config import setup_environment
from pipeline.flux_pipeline import FluxPipeline
from core.seed_manager import SeedProfile
from utils.system_utils import setup_workspace, suppress_warnings
from config.logging_config import logger
# Suppress warnings and setup environment
suppress_warnings()
setup_environment()
# Initialize workspace and pipeline
workspace = setup_workspace()
pipeline = FluxPipeline(workspace=workspace)
# Load the model
if not pipeline.load_model():
logger.error("Failed to load the model. Exiting.")
exit(1)
def generate_transformation_images(
prompts: List[str],
output_dir: Path,
num_inference_steps: int = 4,
guidance_scale: float = 0.0,
height: int = 512,
width: int = 512,
seed: int = 42,
) -> List[Image.Image]:
"""
Generate a series of images based on a list of prompts.
Args:
prompts: A list of prompts to generate images from.
output_dir: The directory to save the generated images.
num_inference_steps: The number of inference steps to use.
guidance_scale: The guidance scale to use.
height: The height of the generated images.
width: The width of the generated images.
seed: The seed to use for image generation.
Returns:
A list of generated images.
"""
images = []
for idx, prompt in enumerate(prompts):
logger.info(f"Generating image {idx + 1}/{len(prompts)}")
image, used_seed = pipeline.generate_image(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
seed=seed,
)
if image:
# Save the image
image_path = output_dir / f"frame_{idx:03d}.png"
image.save(image_path)
images.append(image)
else:
logger.error(f"Failed to generate image for prompt: {prompt}")
return images
def create_gif(images: List[Image.Image], output_path: Path, duration: int = 500):
"""
Create a GIF from a list of images.
Args:
images: A list of PIL Image objects.
output_path: The path to save the GIF.
duration: The duration of each frame in the GIF.
"""
images[0].save(
output_path,
save_all=True,
append_images=images[1:],
duration=duration,
loop=0,
)
logger.info(f"GIF saved to {output_path}")
def main():
"""
Main function to generate a transformation GIF.
This function defines the transformation prompts, generates the images, and creates a GIF from the generated images.
"""
# Define the transformation prompts
prompts = [
"A high-quality photo of a cute cat running in a grassy field, ultra-realistic, 4k resolution.",
"A photo of a cat running, starting to morph into a giant creature, detailed, high-resolution.",
"An image of a cat gradually transforming into Godzilla, mid-transformation, photorealistic.",
"A depiction of Godzilla emerging from the form of a cat, highly detailed, dramatic lighting.",
"A high-quality photo of Godzilla roaring in a city, ultra-realistic, 4k resolution.",
]
output_dir = Path("transformation_frames")
output_dir.mkdir(parents=True, exist_ok=True)
# Generate images
images = generate_transformation_images(
prompts=prompts,
output_dir=output_dir,
num_inference_steps=10, # Increase for better quality
guidance_scale=3.5, # Standard value for Stable Diffusion models
height=512,
width=512,
seed=42, # Use a fixed seed for consistency
)
if images:
# Create GIF
output_gif_path = output_dir / "cat_to_godzilla.gif"
create_gif(images, output_gif_path, duration=500)
else:
logger.error("No images were generated. Cannot create GIF.")
if __name__ == "__main__":
main()