-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
316 lines (238 loc) · 8.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from include import *
from torch.autograd import Variable
def save(list_or_dict,name):
f = open(name, 'w')
f.write(str(list_or_dict))
f.close()
def load(name):
f = open(name, 'r')
a = f.read()
tmp = eval(a)
f.close()
return tmp
def dot_numpy(vector1 , vector2,emb_size = 512):
vector1 = vector1.reshape([-1, emb_size])
vector2 = vector2.reshape([-1, emb_size])
vector2 = vector2.transpose(1,0)
cosV12 = np.dot(vector1, vector2)
return cosV12
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def softmax_cross_entropy_criterion(logit, truth, is_average=True):
loss = F.cross_entropy(logit, truth, reduce=is_average)
return loss
def softmax_add_newwhale(logit, truth):
indexs_NoNew = (truth != 5004).nonzero().view(-1)
indexs_New = (truth == 5004).nonzero().view(-1)
logits_NoNew = logit[indexs_NoNew]
truth_NoNew = truth[indexs_NoNew]
logits_New = logit[indexs_New]
print(logits_New.size())
if logits_NoNew.size()[0]>0:
loss = nn.CrossEntropyLoss(reduce=True)(logits_NoNew, truth_NoNew)
else:
loss = 0
if logits_New.size()[0]>0:
logits_New = torch.softmax(logits_New,1)
logits_New = logits_New.topk(1,1,True,True)[0]
target_New = torch.zeros_like(logits_New).float().cuda()
loss += nn.L1Loss()(logits_New, target_New)
return loss
# def bce_criterion(logit, truth, top_n = None):
#
# if top_n is None:
# loss = F.binary_cross_entropy_with_logits(logit, truth, reduce=True)
# return loss
# else:
# loss = F.binary_cross_entropy_with_logits(logit, truth, reduce=False)
# value, index= loss.topk(top_n, dim=1, largest=True, sorted=True)
# return value.mean()
def metric(logit, truth, is_average=True, is_prob = False):
if is_prob:
prob = logit
else:
prob = F.softmax(logit, 1)
value, top = prob.topk(5, dim=1, largest=True, sorted=True)
correct = top.eq(truth.view(-1, 1).expand_as(top))
if is_average==True:
# top-3 accuracy
correct = correct.float().sum(0, keepdim=False)
correct = correct/len(truth)
top = [correct[0],
correct[0] + correct[1],
correct[0] + correct[1] + correct[2],
correct[0] + correct[1] + correct[2] + correct[3],
correct[0] + correct[1] + correct[2] + correct[3] + correct[4]]
precision = correct[0] / 1 + correct[1] / 2 + correct[2] / 3 + correct[3] / 4 + correct[4] / 5
return precision, top[0]
else:
return correct
def metric_for_5005(prob, label, thres = 0.5):
shape = prob.shape
prob_5005 = np.ones([shape[0], shape[1] + 1]) * thres
prob_5005[:, :5004] = prob
precision , top5 = top_n_np(prob_5005, label)
return precision, top5
# def metric(prob, label):
# precision , top5 = top_n_np(prob, label)
# return precision, top5
def metric_for_4flip(prob, label, thres = 0.5):
shape = prob.shape
prob_5005 = np.ones([shape[0], shape[1] + 1]) * thres
prob_5005[:, :5004*4] = prob
precision , top5 = top_n_np(prob_5005, label)
return precision, top5
def top_n_np(preds, labels):
n = 5
predicted = np.fliplr(preds.argsort(axis=1)[:, -n:])
top5 = []
re = 0
for i in range(len(preds)):
predicted_tmp = predicted[i]
labels_tmp = labels[i]
for n_ in range(5):
re += np.sum(labels_tmp == predicted_tmp[n_]) / (n_ + 1.0)
re = re / len(preds)
for i in range(n):
top5.append(np.sum(labels == predicted[:, i])/ (1.0*len(labels)))
return re, top5
def metric_binary(logit, truth):
prob = F.softmax(logit, 1)
value, top = prob.topk(2, dim=1, largest=True, sorted=True)
correct = top.eq(truth.view(-1, 1).expand_as(top))
correct = correct.float().sum(0, keepdim=False)
correct = correct / len(truth)
return correct[0]
def metric_bce(logit, truth):
prob = F.sigmoid(logit)
prob[prob > 0.5] = 1
prob[prob < 0.5] = 0
correct = prob.eq(truth.view(-1, 1).expand_as(prob))
correct = correct.float().sum(0, keepdim=False)
correct = correct/len(truth)
return correct
def do_valid_siamese(model, net, valid_loader, criterion ):
valid_num = 0
probs = []
truths = []
losses = []
corrects = []
for input_A,input_B, truth in valid_loader:
inputA = to_var(input_A)
inputB = to_var(input_B)
truth = to_var(truth)
fea_A = model.forward(inputA)
fea_B = model.forward(inputB)
fea = torch.cat([fea_A, fea_B], dim=1)
logit = net.forward(fea)
loss = criterion(logit, truth)
correct = metric_bce(logit, truth)
valid_num += len(input_A)
# probs.append(prob.data.cpu().numpy())
losses.append(loss.data.cpu().numpy().reshape([-1]))
corrects.append(correct.data.cpu().numpy().reshape([-1]))
truths.append(truth.data.cpu().numpy())
assert(valid_num == len(valid_loader.sampler))
#------------------------------------------------------
correct = np.concatenate(corrects)
loss = np.concatenate(losses)
loss = loss.mean()
precision = correct.mean()
valid_loss = np.array([
loss, 0.0, 0.0, precision
])
return valid_loss
def do_valid( net, valid_loader, criterion ):
valid_num = 0
probs = []
truths = []
losses = []
corrects = []
for input, truth in valid_loader:
input = input.cuda()
truth = truth.cuda()
input = to_var(input)
truth = to_var(truth)
logit, _ = net(input, truth, is_infer = True)
prob = F.softmax(logit,1)
loss = criterion(logit, truth, False)
correct = metric(logit, truth, False)
valid_num += len(input)
probs.append(prob.data.cpu().numpy())
losses.append(loss.data.cpu().numpy())
corrects.append(correct.data.cpu().numpy())
truths.append(truth.data.cpu().numpy())
assert(valid_num == len(valid_loader.sampler))
#------------------------------------------------------
prob = np.concatenate(probs)
correct = np.concatenate(corrects)
truth = np.concatenate(truths).astype(np.int32).reshape(-1,1)
loss = np.concatenate(losses)
#---
#top = np.argsort(-predict,1)[:,:3]
loss = loss.mean()
correct = correct.mean(0)
top = [correct[0],
correct[0]+correct[1] ,
correct[0]+correct[1]+correct[2],
correct[0]+correct[1]+correct[2]+correct[3],
correct[0] + correct[1] + correct[2] + correct[3]+ correct[4]]
precision = correct[0]/1 + correct[1]/2 + correct[2]/3 + correct[3]/4 + correct[4]/5
#----
valid_loss = np.array([
loss, top[0], top[4], precision
])
return valid_loss
def load_train_map(train_image_list_path = r'/data2/shentao/Projects/Kaggle_Whale/image_list/train_image_list.txt'):
f = open(train_image_list_path, 'r')
lines = f.readlines()
f.close()
label_dict = {}
for line in lines:
line = line.strip()
line = line.split(' ')
img_name = line[0]
index = int(line[1])
id = line[2]
label_dict[img_name] = [index,id]
return label_dict
#
def prob_to_csv_top5(prob, key_id, name):
CLASS_NAME,_ = load_CLASS_NAME()
prob = np.asarray(prob)
print(prob.shape)
top = np.argsort(-prob,1)[:,:5]
word = []
index = 0
rs = []
for (t0,t1,t2,t3,t4) in top:
word.append(
CLASS_NAME[t0] + ' ' + \
CLASS_NAME[t1] + ' ' + \
CLASS_NAME[t2])
top_k_label_name = r''
label = CLASS_NAME[t0]
score = prob[index][t0]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t1]
score = prob[index][t1]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t2]
score = prob[index][t2]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t3]
score = prob[index][t3]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t4]
score = prob[index][t4]
top_k_label_name += label + ' ' + str(score) + ' '
# print(top_k_label_name)
rs.append(top_k_label_name)
index += 1
# break
pd.DataFrame({'key_id':key_id, 'word':rs}).to_csv( '{}.csv'.format(name), index=None)
if __name__ == '__main__':
dict = load_train_map()
print(dict)