-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
125 lines (92 loc) · 4.13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
@author Konstantin Lopuhin
"""
from functools import partial
from torch import nn
import torchvision.models as M
import pretrainedmodels
resnet18 = M.resnet18
resnet34 = M.resnet34
resnet50 = M.resnet50
resnet101 = M.resnet101
resnet152 = M.resnet152
vgg16 = M.vgg16
vgg16_bn = M.vgg16_bn
densenet121 = M.densenet121
densenet161 = M.densenet161
densenet201 = M.densenet201
class ResNetFinetune(nn.Module):
finetune = True
def __init__(self, num_classes, net_cls=M.resnet50, dropout=False):
super().__init__()
self.net = net_cls(pretrained=True)
if dropout:
self.net.fc = nn.Sequential(
nn.Dropout(),
nn.Linear(self.net.fc.in_features, num_classes),
)
else:
self.net.fc = nn.Linear(self.net.fc.in_features, num_classes)
def fresh_params(self):
return self.net.fc.parameters()
def forward(self, x):
return self.net(x)
class DenseNetFinetune(nn.Module):
finetune = True
def __init__(self, num_classes, net_cls=M.densenet121):
super().__init__()
self.net = net_cls(pretrained=True)
self.net.classifier = nn.Linear(self.net.classifier.in_features, num_classes)
def fresh_params(self):
return self.net.classifier.parameters()
def forward(self, x):
return self.net(x)
class InceptionV3Finetune(nn.Module):
finetune = True
def __init__(self, num_classes: int):
super().__init__()
self.net = M.inception_v3(pretrained=True)
self.net.fc = nn.Linear(self.net.fc.in_features, num_classes)
def fresh_params(self):
return self.net.fc.parameters()
def forward(self, x):
if self.net.training:
x, _aux_logits = self.net(x)
return x
else:
return self.net(x)
class FinetunePretrainedmodels(nn.Module):
finetune = True
def __init__(self, num_classes: int, net_cls, net_kwards):
super().__init__()
self.net = net_cls(**net_kwards)
self.net.last_linear = nn.Linear(self.net.last_linear.in_features, num_classes)
def fresh_params(self):
return self.net.last_linear.parameters()
def forward(self, x):
return self.net(x)
# partial 函数的功能就是:把一个函数的某些参数给固定住,返回一个新的函数
# 即将ResNetFinetune函数固定住,然后将该函数中的参数net_cls赋予一定的数值
resnet18_finetune = partial(ResNetFinetune, net_cls=M.resnet18)
resnet34_finetune = partial(ResNetFinetune, net_cls=M.resnet34)
resnet50_finetune = partial(ResNetFinetune, net_cls=M.resnet50)
resnet101_finetune = partial(ResNetFinetune, net_cls=M.resnet101)
resnet152_finetune = partial(ResNetFinetune, net_cls=M.resnet152)
densenet121_finetune = partial(DenseNetFinetune, net_cls=M.densenet121)
densenet161_finetune = partial(DenseNetFinetune, net_cls=M.densenet161)
densenet201_finetune = partial(DenseNetFinetune, net_cls=M.densenet201)
xception_finetune = partial(FinetunePretrainedmodels,
net_cls=pretrainedmodels.xception,
net_kwards={'pretrained': 'imagenet'})
inceptionv4_finetune = partial(FinetunePretrainedmodels,
net_cls=pretrainedmodels.inceptionv4,
net_kwards={'pretrained': 'imagenet+background', 'num_classes': 1001})
inceptionresnetv2_finetune = partial(FinetunePretrainedmodels,
net_cls=pretrainedmodels.inceptionresnetv2,
net_kwards={'pretrained': 'imagenet+background', 'num_classes': 1001})
nasnetmobile_finetune = partial(FinetunePretrainedmodels,
net_cls=pretrainedmodels.nasnetamobile,
net_kwards={'pretrained': 'imagenet', 'num_classes': 1000})
nasnet_finetune = partial(FinetunePretrainedmodels,
net_cls=pretrainedmodels.nasnetalarge,
net_kwards={'pretrained': 'imagenet', 'num_classes': 1000})