forked from hx173149/C3D-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_c3d_ucf101.py
266 lines (243 loc) · 11.4 KB
/
train_c3d_ucf101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains and Evaluates the MNIST network using a feed dictionary."""
# pylint: disable=missing-docstring
import os
import time
import numpy
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import input_data
import c3d_model
import math
import numpy as np
# Basic model parameters as external flags.
flags = tf.app.flags
gpu_num = 1
#flags.DEFINE_float('learning_rate', 0.0, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 5000, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size.')
FLAGS = flags.FLAGS
MOVING_AVERAGE_DECAY = 0.9999
model_save_dir = './models'
def placeholder_inputs(batch_size):
"""Generate placeholder variables to represent the input tensors.
These placeholders are used as inputs by the rest of the model building
code and will be fed from the downloaded data in the .run() loop, below.
Args:
batch_size: The batch size will be baked into both placeholders.
Returns:
images_placeholder: Images placeholder.
labels_placeholder: Labels placeholder.
"""
# Note that the shapes of the placeholders match the shapes of the full
# image and label tensors, except the first dimension is now batch_size
# rather than the full size of the train or test data sets.
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
c3d_model.NUM_FRAMES_PER_CLIP,
c3d_model.CROP_SIZE,
c3d_model.CROP_SIZE,
c3d_model.CHANNELS))
labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size))
return images_placeholder, labels_placeholder
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def tower_loss(name_scope, logit, labels):
cross_entropy_mean = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,logits=logit)
)
tf.summary.scalar(
name_scope + '_cross_entropy',
cross_entropy_mean
)
weight_decay_loss = tf.get_collection('weightdecay_losses')
tf.summary.scalar(name_scope + '_weight_decay_loss', tf.reduce_mean(weight_decay_loss) )
# Calculate the total loss for the current tower.
total_loss = cross_entropy_mean + weight_decay_loss
tf.summary.scalar(name_scope + '_total_loss', tf.reduce_mean(total_loss) )
return total_loss
def tower_acc(logit, labels):
correct_pred = tf.equal(tf.argmax(logit, 1), labels)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
return accuracy
def _variable_on_cpu(name, shape, initializer):
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def _variable_with_weight_decay(name, shape, wd):
var = _variable_on_cpu(name, shape, tf.contrib.layers.xavier_initializer())
if wd is not None:
weight_decay = tf.nn.l2_loss(var)*wd
tf.add_to_collection('weightdecay_losses', weight_decay)
return var
def run_training():
# Get the sets of images and labels for training, validation, and
# Tell TensorFlow that the model will be built into the default Graph.
# Create model directory
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
use_pretrained_model = True
model_filename = "./sports1m_finetuning_ucf101.model"
with tf.Graph().as_default():
global_step = tf.get_variable(
'global_step',
[],
initializer=tf.constant_initializer(0),
trainable=False
)
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size * gpu_num
)
tower_grads1 = []
tower_grads2 = []
logits = []
opt_stable = tf.train.AdamOptimizer(1e-4)
opt_finetuning = tf.train.AdamOptimizer(1e-3)
with tf.variable_scope('var_name') as var_scope:
weights = {
'wc1': _variable_with_weight_decay('wc1', [3, 3, 3, 3, 64], 0.0005),
'wc2': _variable_with_weight_decay('wc2', [3, 3, 3, 64, 128], 0.0005),
'wc3a': _variable_with_weight_decay('wc3a', [3, 3, 3, 128, 256], 0.0005),
'wc3b': _variable_with_weight_decay('wc3b', [3, 3, 3, 256, 256], 0.0005),
'wc4a': _variable_with_weight_decay('wc4a', [3, 3, 3, 256, 512], 0.0005),
'wc4b': _variable_with_weight_decay('wc4b', [3, 3, 3, 512, 512], 0.0005),
'wc5a': _variable_with_weight_decay('wc5a', [3, 3, 3, 512, 512], 0.0005),
'wc5b': _variable_with_weight_decay('wc5b', [3, 3, 3, 512, 512], 0.0005),
'wd1': _variable_with_weight_decay('wd1', [8192, 4096], 0.0005),
'wd2': _variable_with_weight_decay('wd2', [4096, 4096], 0.0005),
'out': _variable_with_weight_decay('wout', [4096, c3d_model.NUM_CLASSES], 0.0005)
}
biases = {
'bc1': _variable_with_weight_decay('bc1', [64], 0.000),
'bc2': _variable_with_weight_decay('bc2', [128], 0.000),
'bc3a': _variable_with_weight_decay('bc3a', [256], 0.000),
'bc3b': _variable_with_weight_decay('bc3b', [256], 0.000),
'bc4a': _variable_with_weight_decay('bc4a', [512], 0.000),
'bc4b': _variable_with_weight_decay('bc4b', [512], 0.000),
'bc5a': _variable_with_weight_decay('bc5a', [512], 0.000),
'bc5b': _variable_with_weight_decay('bc5b', [512], 0.000),
'bd1': _variable_with_weight_decay('bd1', [4096], 0.000),
'bd2': _variable_with_weight_decay('bd2', [4096], 0.000),
'out': _variable_with_weight_decay('bout', [c3d_model.NUM_CLASSES], 0.000),
}
for gpu_index in range(0, gpu_num):
with tf.device('/gpu:%d' % gpu_index):
varlist2 = [ weights['out'],biases['out'] ]
varlist1 = list( set(list(weights.values()) + list(biases.values())) - set(varlist2) )
logit = c3d_model.inference_c3d(
images_placeholder[gpu_index * FLAGS.batch_size:(gpu_index + 1) * FLAGS.batch_size,:,:,:,:],
0.5,
FLAGS.batch_size,
weights,
biases
)
loss_name_scope = ('gpud_%d_loss' % gpu_index)
loss = tower_loss(
loss_name_scope,
logit,
labels_placeholder[gpu_index * FLAGS.batch_size:(gpu_index + 1) * FLAGS.batch_size]
)
grads1 = opt_stable.compute_gradients(loss, varlist1)
grads2 = opt_finetuning.compute_gradients(loss, varlist2)
tower_grads1.append(grads1)
tower_grads2.append(grads2)
logits.append(logit)
logits = tf.concat(logits,0)
accuracy = tower_acc(logits, labels_placeholder)
tf.summary.scalar('accuracy', accuracy)
grads1 = average_gradients(tower_grads1)
grads2 = average_gradients(tower_grads2)
apply_gradient_op1 = opt_stable.apply_gradients(grads1)
apply_gradient_op2 = opt_finetuning.apply_gradients(grads2, global_step=global_step)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
train_op = tf.group(apply_gradient_op1, apply_gradient_op2, variables_averages_op)
null_op = tf.no_op()
# Create a saver for writing training checkpoints.
saver = tf.train.Saver(list(weights.values()) + list(biases.values()))
init = tf.global_variables_initializer()
# Create a session for running Ops on the Graph.
config = tf.ConfigProto(allow_soft_placement = True)
config.gpu_options.allow_growth = True
sess = tf.Session(
#config=tf.ConfigProto(allow_soft_placement=True)
config=config
)
sess.run(init)
if os.path.isfile(model_filename) and use_pretrained_model:
saver.restore(sess, model_filename)
print("Successfully load the pretrained data")
# Create summary writter
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('./visual_logs/train', sess.graph)
test_writer = tf.summary.FileWriter('./visual_logs/test', sess.graph)
for step in xrange(FLAGS.max_steps):
start_time = time.time()
train_images, train_labels, _, _, _ = input_data.read_clip_and_label(
filename='list/train.list',
batch_size=FLAGS.batch_size * gpu_num,
num_frames_per_clip=c3d_model.NUM_FRAMES_PER_CLIP,
crop_size=c3d_model.CROP_SIZE,
shuffle=True
)
sess.run(train_op, feed_dict={
images_placeholder: train_images,
labels_placeholder: train_labels
})
duration = time.time() - start_time
print('Step %d: %.3f sec' % (step, duration))
# Save a checkpoint and evaluate the model periodically.
if (step) % 10 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, os.path.join(model_save_dir, 'c3d_ucf_model'), global_step=step)
print('Training Data Eval:')
summary, acc = sess.run(
[merged, accuracy],
feed_dict={images_placeholder: train_images,
labels_placeholder: train_labels
})
print ("accuracy: " + "{:.5f}".format(acc))
train_writer.add_summary(summary, step)
print('Validation Data Eval:')
val_images, val_labels, _, _, _ = input_data.read_clip_and_label(
filename='list/test.list',
batch_size=FLAGS.batch_size * gpu_num,
num_frames_per_clip=c3d_model.NUM_FRAMES_PER_CLIP,
crop_size=c3d_model.CROP_SIZE,
shuffle=True
)
summary, acc = sess.run(
[merged, accuracy],
feed_dict={
images_placeholder: val_images,
labels_placeholder: val_labels
})
print ("accuracy: " + "{:.5f}".format(acc))
test_writer.add_summary(summary, step)
print("done")
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()