-
Notifications
You must be signed in to change notification settings - Fork 7
/
caption_mplug.py
358 lines (292 loc) · 15.1 KB
/
caption_mplug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import argparse
import os
import ruamel_yaml as yaml
import language_evaluation
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_caption_mplug import MPLUG
from models.vit import interpolate_pos_embed, resize_pos_embed
from models.tokenization_bert import BertTokenizer
import utils
from dataset.utils import save_result
from dataset import create_dataset, create_sampler, create_loader, coco_collate_fn
from scheduler import create_scheduler
from optim import create_optimizer, create_two_optimizer
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, do_amp=False,
do_two_optim=False, do_accum=False, accum_steps=1):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
if do_two_optim:
metric_logger.add_meter('lr1', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('lr2', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
else:
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps * step_size
for i, (image, caption, object_labels, image_ids, gold_caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device, non_blocking=True)
if config['prompt'] != "":
caption = [config['prompt'] + each+config['eos'] for each in caption]
else:
caption = [each+config['eos'] for each in caption]
question_input = [config['bos']+" "+each for each in object_labels]
if i == 0:
print (question_input)
caption = tokenizer(caption, padding='longest', truncation=True, max_length=args.max_input_length, return_tensors="pt").to(device)
question_input = tokenizer(question_input, padding='longest', truncation=True, max_length=args.max_input_length, return_tensors="pt").to(device)
# question_input = caption.input_ids[0,0].repeat(caption.input_ids.size(0), 1)
if epoch > 0 or not config['warm_up']:
alpha = config['alpha']
else:
alpha = config['alpha'] * min(1, i / len(data_loader))
loss = model(image, question_input, caption, train=True)
if accum_steps > 1:
loss = loss / accum_steps
if do_amp:
from apex import amp
with amp.scale_loss(loss, optimizer) as scaled_loss:
# logger.info('scaled loss: {}'.format(str(scaled_loss)))
scaled_loss.backward()
else:
loss.backward()
if (i + 1) % accum_steps == 0:
optimizer.step()
optimizer.zero_grad()
metric_logger.update(loss=loss.item())
if do_two_optim:
metric_logger.update(lr1=optimizer.param_groups[0]["lr"])
metric_logger.update(lr2=optimizer.param_groups[2]["lr"])
else:
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch == 0 and i % step_size == 0 and i <= warmup_iterations:
scheduler.step(i // step_size)
del image, question_input,caption,loss
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Generate VQA test result:'
print_freq = 50
result = []
answer_input = None
for n, (image, caption, object_labels, image_ids, gold_caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device,non_blocking=True)
caption = [each+config['eos'] for each in caption]
question_input = [config['bos']+" "+each for each in object_labels]
caption = tokenizer(caption, padding='longest', truncation=True, max_length=args.max_input_length, return_tensors="pt").to(device)
question_input = tokenizer(question_input, padding='longest', truncation=True, max_length=args.max_input_length, return_tensors="pt").to(device)
topk_ids, topk_probs = model(image, question_input, caption, train=False)
for image_id, topk_id, topk_prob, gold_caption_list in zip(image_ids, topk_ids, topk_probs, gold_caption):
ans = tokenizer.decode(topk_id[0]).replace("[SEP]", "").replace("[CLS]", "").replace("[PAD]", "").strip()
result.append({"question_id":image_id, "pred_caption":ans, "gold_caption":gold_caption_list})
return result
@torch.no_grad()
def evaluate(model, data_loader, dataset, tokenizer, device, config):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print_freq = 50
predicts = []
answers = []
answer_input = None
for n, (image, caption, image_ids, gold_caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device,non_blocking=True)
caption = [each+config['eos'] for each in caption]
question_input = [config['bos']]*len(caption)
caption = tokenizer(caption, padding='longest', truncation=True, max_length=args.max_input_length, return_tensors="pt").to(device)
question_input = tokenizer(question_input, padding='longest', truncation=True, max_length=args.max_input_length, return_tensors="pt").to(device)
for i in range(len(gold_caption)):
predicts.append(gold_caption[i][0])
answers.append(gold_caption[i])
#{'Bleu_1': 0.9999999999863945, 'Bleu_2': 0.9999999999859791, 'Bleu_3': 0.9999999999854866, 'Bleu_4': 0.999999999984889, 'METEOR': 1.0, 'ROUGE_L': 1.0, 'CIDEr': 2.7246232035629268, 'SPICE': 0.40389416048620613}
result = cal_metric(predicts, answers)
metric_logger.meters['Bleu_1'].update(result["Bleu_1"], n=image.size(0))
metric_logger.meters['Bleu_2'].update(result["Bleu_1"], n=image.size(0))
metric_logger.meters['Bleu_3'].update(result["Bleu_1"], n=image.size(0))
metric_logger.meters['Bleu_4'].update(result["Bleu_1"], n=image.size(0))
metric_logger.meters['Bleu_1'].update(result["Bleu_1"], n=image.size(0))
# gather the stats from all processes
torch.cuda.empty_cache()
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def cal_metric(result_file):
result_list = json.load(open(result_file, "r"))
predicts = []
answers = []
for each in result_list:
predicts.append(each["pred_caption"])
answers.append(each["gold_caption"])
evaluator = language_evaluation.CocoEvaluator(verbose=False)
results = evaluator.run_evaluation(predicts, answers)
print (len(result_list), results)
return results
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating vqa datasets")
datasets = create_dataset('coco', config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True, False, False], num_tasks, global_rank)
else:
samplers = [None, None, None]
train_loader, val_loader, test_loader = create_loader(datasets,samplers,
batch_size=[config['batch_size_train'],config['batch_size_test'], config['batch_size_test']],
num_workers=[8,8,8],is_trains=[True, False, False],
collate_fns=[coco_collate_fn, coco_collate_fn, coco_collate_fn])
tokenizer = BertTokenizer.from_pretrained(args.text_encoder)
#### Model ####
print("Creating model")
model = MPLUG(config=config, tokenizer=tokenizer)
model = model.to(device)
if not args.do_two_optim:
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
else:
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_two_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.do_amp:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
try:
state_dict = checkpoint['model']
except:
state_dict = checkpoint['module']
# reshape positional embedding to accomodate for image resolution change
if config["clip_name"] == "ViT-B-16":
num_patches = int(config["image_res"] * config["image_res"]/(16*16))
elif config["clip_name"] == "ViT-L-14":
num_patches = int(config["image_res"] * config["image_res"]/(14*14))
pos_embed = nn.Parameter(torch.zeros(num_patches + 1, 768).float())
pos_embed = resize_pos_embed(state_dict['visual_encoder.visual.positional_embedding'].unsqueeze(0),
pos_embed.unsqueeze(0))
state_dict['visual_encoder.visual.positional_embedding'] = pos_embed
if not args.evaluate:
for key in list(state_dict.keys()):
if ('fusion' in key or 'bert' in key) and 'decode' not in key:
encoder_key = key.replace('fusion.', '').replace('bert.', '')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % args.checkpoint)
print(msg)
model_without_ddp = model
if args.distributed:
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
import apex
model = apex.parallel.DistributedDataParallel(model, delay_allreduce=True)
model_without_ddp = model.module
print("Start training")
start_time = time.time()
vqa_result = evaluation(model, test_loader, tokenizer, device, config)
result_file = save_result(vqa_result, args.result_dir, 'vqa_result_epoch10')
if utils.is_main_process():
result = cal_metric(result_file)
dist.barrier()
for epoch in range(start_epoch, max_epoch):
if epoch > 0:
lr_scheduler.step(epoch + warmup_steps)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler,
config, do_amp=args.do_amp, do_two_optim=args.do_two_optim, accum_steps=args.accum_steps)
if args.evaluate:
break
vqa_result = evaluation(model, test_loader, tokenizer, device, config)
result_file = save_result(vqa_result, args.result_dir, 'vqa_result_epoch%d' % epoch)
if utils.is_main_process():
result = cal_metric(result_file)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
torch.save({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}, os.path.join(args.output_dir, 'checkpoint_%02d.pth' % epoch))
dist.barrier()
#vqa_result = evaluation(model, test_loader, tokenizer, device, config)
#result_file = save_result(vqa_result, args.result_dir, 'vqa_result_epoch%d' % epoch)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--text_decoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--min_length', default=1, type=int)
parser.add_argument('--lr', default=2e-5, type=float)
parser.add_argument('--max_length', default=10, type=int)
parser.add_argument('--max_input_length', default=25, type=int)
parser.add_argument('--beam_size', default=5, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--do_two_optim', action='store_true')
parser.add_argument('--add_object', action='store_true')
parser.add_argument('--do_amp', action='store_true')
parser.add_argument('--no_init_decocde', action='store_true')
parser.add_argument('--do_accum', action='store_true')
parser.add_argument('--accum_steps', default=4, type=int)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
config["min_length"] = args.min_length
config["max_length"] = args.max_length
config["add_object"] = args.add_object
config["beam_size"] = args.beam_size
#config['optimizer']['lr'] = args.lr
#config['schedular']['lr'] = args.lr
config['text_encoder'] = args.text_encoder
config['text_decoder'] = args.text_decoder
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)